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Abstract: We are interested in the restoration of noisy and blurry images where the texture mainly
follows a single direction (i.e., directional images). Problems of this type arise, for example, in
microscopy or computed tomography for carbon or glass fibres. In order to deal with these problems,
the Directional Total Generalized Variation (DTGV) was developed by Kongskov et al. in 2017 and
2019, in the case of impulse and Gaussian noise. In this article we focus on images corrupted by
Poisson noise, extending the DTGV regularization to image restoration models where the data fitting
term is the generalized Kullback–Leibler divergence. We also propose a technique for the identifica-
tion of the main texture direction, which improves upon the techniques used in the aforementioned
work about DTGV. We solve the problem by an ADMM algorithm with proven convergence and
subproblems that can be solved exactly at a low computational cost. Numerical results on both
phantom and real images demonstrate the effectiveness of our approach.

Keywords: directional image restoration; Poisson noise; DTGV regularization; ADMM method

1. Introduction

Poisson noise appears in processes where digital images are obtained by the count
of particles (generally photons). This is the case of X-ray computed tomography, positron
emission tomography, confocal and fluorescence microscopy and optical/infrared astro-
nomical imaging, to name just a few applications (see, e.g., [1] and the references therein).
In this case, the object to be restored can be represented as a vector u ∈ Rn and the data
can be assumed to be a vector b ∈ Nn

0 , whose entries bj are sampled from n independent
Poisson random variables Bj with probability

P(Bj = bj) =
e−(Au+γ)j(Au + γ)

bj
j

bj!
.

The matrix A = (aij) ∈ Rn×n models the observation mechanism of the imaging
system and the following standard assumptions are made:

aij ≥ 0 for all i, j,
n

∑
i=1

aij = 1 for all j. (1)

The vector γ ∈ Rn, with γ > 0, models the background radiation detected by
the sensors.

By applying a maximum-likelihood approach [1,2], we can estimate u by minimizing
the Kullback–Leibler (KL) divergence of Au + γ from b:

DKL(Au + γ, b) =
n

∑
i=1

(
bi ln

bi
[Au + γ]i

+ [Au + γ]i − bi

)
, (2)
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where we set

bi ln
bi

[Au + γ]i
= 0 if bi = 0.

Regularization is usually introduced in (2) to deal with the ill-conditioning of this
problem. The Total Variation (TV) regularization [3] has been widely used in this context,
because it preserves edges and is able to smooth flat areas of the image. However, since
it may produce staircase artifacts, other TV-based regularizers have been proposed. For
example, the Total Generalized Variation (TGV) has been proposed and applied in [4–7] to
overcome the staircasing effect while keeping the ability of identifying edges. On the other
hand, to improve the quality of restoration for directional images, the Directional TV (DTV)
regularization has been considered in [8], in the discrete setting. In [9,10], a regularizer
combining DTV and TGV, named Directional TGV (DTGV), has been successfully applied
to directional images affected by impulse and Gaussian noise.

Given an image u ∈ Rn, the discrete second-order Directional TGV of u is defined as

DTGV2(u) = min
w∈R2n

α0

∥∥∥∇̃u−w
∥∥∥

2,1|R2n
+ α1

∥∥∥Ẽw
∥∥∥

2,1|R4n
, (3)

where w ∈ R2n, ∇̃ ∈ R2n×n and Ẽ ∈ R4n×2n are the discrete directional gradient operator
and the directional symmetrized derivative, respectively, and α0, α1 ∈ (0, +∞). For any
vector v ∈ R2n we set

‖v‖2,1|R2n =
n

∑
j=1

√
v2

j + v2
n+j, (4)

and for any vector y ∈ R4n we set

‖y‖2,1|R4n =
n

∑
j=1

√
y2

j + y2
n+j + y2

2n+j + y2
3n+j. (5)

Given an angle θ ∈ [−π, π] and a scaling parameter a > 0, we have that the discrete
directional gradient operator has the form

∇̃ =

[
Dθ

Dθ⊥

]
=

[
cos(θ)DH + sin(θ)DV

a(− sin(θ)DH + cos(θ)DV)

]
,

where Dθ , Dθ⊥ ∈ Rn×n represent the forward finite-difference operators along the di-
rections determined by θ and θ⊥ = θ + π

2 , respectively, and DH , DV ∈ Rn×n represent
the forward finite-difference operators along the horizontal and the vertical direction,
respectively. Moreover, the directional symmetrized derivative is defined in block-wise
form as

Ẽ =


Dθ 0

1
2 Dθ⊥

1
2 Dθ

1
2 Dθ⊥

1
2 Dθ

0 Dθ⊥

.

It is worth noting that, by fixing θ = 0 and a = 1, we have Dθ = DH and Dθ⊥ = DV ,
and the operators ∇̃ and Ẽ define the TGV2 regularization [4].

We observe that the definition of both the matrix A and the finite difference operators
DH and DV depend on the choice of boundary conditions. We make the following assumption.

Assumption 1. We assume that periodic boundary conditions are considered for A, DH and DV .
Therefore, those matrices are Block Circulant with Circulant Blocks (BCCB).

In this work we focus on directional images affected by Poisson noise, with the aim
of assessing the behaviour of DTGV in this case. Besides extending the use of DTGV
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to Poisson noise, we introduce a novel technique for estimating the main direction of
the image, which appears to be more efficient than the techniques applied in [9,10]. We
solve the resulting optimization problem by using a customized version of the Alternating
Direction Method of Multipliers (ADMM). We note that all the ADMM subproblems can be
solved exactly at a low cost, thanks also to the use of FFTs, and that the method has proven
convergence. Finally, we show the effectiveness of our approach on a set of test images,
corrupted by out-of-focus and Gaussian blurs and noise with different signal-to-noise
ratios. In particular, the KL-DTGV model of our problem is described in Section 2 and the
technique for estimating the main direction is presented in Section 3. A detailed description
of the ADMM version used for the minimization is given in Section 4 and the results of the
numerical experiments are discussed in Section 5. Conclusions are given in Section 6.

Throughout this work we denote matrices with uppercase lightface letters, vectors
with lowercase boldface letters and scalars with lowercase lightface letters. All the vectors
are column vectors. Given a vector v, we use vi or (v)i to denote its i-th entry. We use
R+ to indicate the set of real nonnegative numbers and ‖ · ‖ to indicate the two-norm.
For brevity, given any vectors v and w we use the notation (v, w) instead of [v> w>]>.
Likewise, given any scalars v and w, we use (v, w) to indicate the vector [v w]>. We also
use the notation ([v]1, [v]2) to highlight the subvectors [v]1 and [v]2 forming the vector v.
Finally, by writing v > 0 we mean that all the entries of v are nonnegative and at least one
of them is positive.

2. The KL-DTGV2 Model

We briefly describe the KL-DTGV2 model for the restoration of directional images
corrupted by Poisson noise. Let b ∈ Rn be the observed image. We want to recover the
original image by minimizing a combination of the KL divergence (2) and the DTGV2

regularizer (3), i.e., by solving the optimization problem

min
u,w

λ DKL(Au + γ, b) + α0

∥∥∥∇̃u−w
∥∥∥

2,1|R2n
+ α1

∥∥∥Ẽw
∥∥∥

2,1|R4n

s.t. u ≥ 0,
(6)

where u ∈ Rn, A ∈ Rn×n, γ, b ∈ Rn, w ∈ R2n, and ∇̃ ∈ R2n×n and Ẽ ∈ R4n×2n are
the linear operators defining the DTGV2 regularization. The parameters λ ∈ (0, +∞)
and α0, α1 ∈ (0, 1) determine the balance between the KL data fidelity term and the two
components of the regularization term.

We note that problem (6) is a nonsmooth convex optimization problem because of the
properties of the KL divergence (see, e.g., [11]) and the DTGV operator (see, e.g., [10]).

3. Efficient Estimation of the Image Direction

An essential ingredient in the DTGV regularization is the estimation of the angle θ
representing the image texture direction. In [10], an estimation algorithm based on the
one in [12] is proposed, whose basic idea is to compute a pixelwise direction estimate and
then θ as the average of that estimate. In [9], which focuses on impulse noise removal, a
more efficient and robust algorithm for estimating the direction is presented, based on
the Fourier transform. The main idea behind this algorithm is to exploit the fact that two-
dimensional Fourier basis functions can be seen as images with one-directional patterns.
However, despite being very efficient from a computational viewpoint, this technique does
not appear to be fully reliable in our tests on Poissonian images (see Section 5.1). Therefore,
we propose a different approach for estimating the direction, based on classical tools of
image processing: the Sobel filter [13] and the Hough transform [14,15].

Our technique is based on the idea that if an image has a one-directional structure,
i.e., its main pattern consists of stripes, then the edges of the image mainly consist of lines
going in the direction of the stripes. The first stage of the proposed algorithm uses the Sobel
filter to determine the edges of the noisy and blurry image. Then, the Hough transform is
applied to the edge image in order to detect the lines. The Hough transform is based on
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the idea that each straight line can be identified by a pair (r, η) where r is the distance of
the line from the origin, and η is the angle between the x axis and the segment connecting
the origin with its orthogonal projection on the line. The output of the transform is a
matrix in which each entry is associated with a pair (r, η), i.e., with a straight line in the
image, and its value is the sum of the values in the pixels that are on the line. Hence, the
elements with the highest value in the Hough transform indicate the lines that are most
likely to be present in the input image. Because of its definition, the Hough transform tends
to overestimate diagonal lines in rectangular images (diagonal lines through the central
part of the image contain the largest number of pixels); therefore, before computing the
transform we apply a mask to the edge image, considering only the pixels inside the largest
circle centered in the center of the image. After the Hough transform has been applied,
we compute the square of the two-norm of each column of the matrix resulting from the
transform, to determine a score for each angle from −90◦ to 90◦. Intuitively, the score for
each angle is related to the number of lines with that particular inclination which have
been detected in the image. Finally, we set the direction estimate θ ∈ [−π, π] as

θ =


90− ηmax

180
π, ηmax ≥ 0,

−90− ηmax

180
π, ηmax < 0.

where ηmax is the value of η corresponding to the maximum score. A pseudocode for the
estimation algorithm is provided in Algorithm 1 and an example of the algorithm workflow
is given in Figure 1.

Algorithm 1 Direction estimation.
1: Use the Sobel operator to obtain the image e of the edges of the noisy and blurry image b.
2: Apply a disk mask to cut out some diagonal edges in e, obtaining a new edge image ẽ (Figure 1b).

3: Compute the Hough transform h(ẽ) (Figure 1c).
4: Set ηmax as the value of η corresponding to the column of h(ẽ) with maximum 2-norm. (Figure 1d)

5: Set θ =

{ 90−ηmax
180 π, ηmax ≥ 0,

−90−ηmax
180 π, ηmax < 0.

(yellow line in Figure 1a)

(a) image (b) edge detection (Sobel filter + mask)

-80 -60 -40 -20 0 20 40 60 80

-600

-400

-200

0

200

400

600

r

0

20

40

60

80

100

120

-80 -60 -40 -20 0 20 40 60 80

2

3

4

5

6

7

8

9

10

11

s
c
o

re

10
4

(c) Hough transform (d) direction scoring

Figure 1. Workflow of Algorithm 1 on a random directional image.



J. Imaging 2021, 7, 99 5 of 18

4. ADMM for Minimizing the KL-DTGV2 Model

Although problem (6) is a bound-constrained convex optimization problem, the
nondifferentiability of the DTGV2 regularizer does not allow its solution by classical
optimization methods for smooth problems, such as gradient methods (see [16–18] and the
references therein). However, the problem can be solved by methods based on splitting
techniques, such as [19–23]. Here we solve (6) by the Alternating Direction Method of
Multipliers (ADMM) [20]. To this end, we first reformulate the problem as follows:

min
u,w,z1,z2,z3,z4

λ DKL(z1 + γ, b) + α0 ‖z2‖2,1|R2n + α1 ‖z3‖2,1|R4n + χRn
+
(z4)

s.t. z1 = A u,
z2 = ∇̃u−w,
z3 = Ẽw,
z4 = u,

(7)

where z1 ∈ Rn, z2 ∈ R2n, z3 ∈ R4n, z4 ∈ Rn, and χRn
+
(z4) is the characteristic function

of the nonnegative orthant in Rn. A similar splitting has been used in [24] for TV-based
deblurring of Poissonian images. By introducing the auxiliary variables x = (u, w) and
z = (z1, z2, z3, z4) we can further reformulate the KL-DTGV2 problem as

min
x,z

F1(x) + F2(z)

s.t. H x + G z = 0,
(8)

where we set

F1(x) = 0, F2(z) = λ DKL(z1 + γ, b) + α0 ‖z2‖2,1|R2n + α1 ‖z3‖2,1|R4n + χRn
+
(z4), (9)

and we define the matrices H ∈ R8n×3n and G ∈ R8n×8n as

H =


A 0
∇̃ −I2n
0 Ẽ

In 0

, G =


−In 0 0 0

0 −I2n 0 0
0 0 −I4n 0
0 0 0 −In

. (10)

We consider the Lagrangian function associated with problem (8),

L(x, z, ξ) = F1(x) + F2(z) + ξ>(H x + G z), (11)

where ξ ∈ R8n is a vector of Lagrange multipliers, and then the augmented
Lagrangian function

LA(x, z, ξ; ρ) = F1(x) + F2(z) + ξ>(H x + G z) +
ρ

2
‖H x + G z‖2

2, (12)

where ρ > 0.
Now we are ready to introduce the ADMM method for the solution of problem (8).

Let x0 ∈ R3n, z0 ∈ R8n, ξ0 ∈ R8n. At each step k > 0 the ADMM method computes the
new iterate

(
xk+1, zk+1, ξk+1

)
as follows:

xk+1 = arg min
x∈R3n

LA(x, zk, ξk; ρ),

zk+1 = arg min
z∈R8n

LA(xk+1, z, ξk; ρ),

ξk+1 = ξk + ρ
(

H xk+1 + G zk+1
)

.

(13)

Note that the functions F1(x) and F2(z) in (8) are closed, proper and convex. Moreover,
the matrices H and G defined in (10) are such that G = −I8n and H has full rank. Hence,
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the convergence of the method defined by (13) can be proved by applying a classical con-
vergence result from the seminal paper by Eckstein and Bertsekas [25] (Theorem 8), which
we report in a form that can be immediately applied to our reformulation of the problem.

Theorem 1. Let us consider a problem of the form (8) where F1(x) and F2(z) are closed, proper
and convex functions and H has full rank. Let x0 ∈ R3n, z0 ∈ R8n, ξ0 ∈ R8n, and ρ > 0. Suppose
{εk}, {νk} ⊂ R+ are summable sequences such that for all k∥∥∥∥xk+1 − arg min

x∈R3n
LA(x, zk, ξk; ρ)

∥∥∥∥ ≤ εk,∥∥∥∥zk+1 − arg min
z∈R8n

LA(xk+1, z, ξk; ρ)

∥∥∥∥ ≤ νk,

ξk+1 = ξk + ρ
(

H xk+1 + G zk+1
)

.

If there exists a saddle point (x∗, z∗, ξ∗) of L(x, z, ξ), then xk → x∗, zk → z∗ and ξk → ξ∗. If
such saddle point does not exist, then at least one of the sequences {zk} or {ξk} is unbounded.

Since we are dealing with linear constraints, we can recast (13) in a more convenient
form, by observing that the linear term in (12) can be included in the quadratic one. By in-
troducing the vector of scaled Lagrange multipliers µk = 1

ρ ξk, the ADMM method becomes

xk+1 = arg min
x∈R3n

ρ

2

∥∥∥H x− zk + µk
∥∥∥2

2
, (14)

zk+1 = arg min
z∈R8n

F2(z) +
ρ

2

∥∥∥H xk+1 − z + µk
∥∥∥2

2
, (15)

µk+1 = µk + H xk+1 + G zk+1. (16)

In the next sections we show how the solutions to subproblems (14) and (15) can be
computed exactly with a small computational effort.

4.1. Solving the Subproblem in x

Problem (14) is an overdetermined least squares problem, since H is a tall-and-
skinny matrix with full rank. Hence, its solution can be computed by solving the normal
equations system

H>H x = H>vk
x, (17)

where we set vk
x = zk − µk. Starting from the definition of H given in (10), we have

H>H =

 In + A>A + ∇̃>∇̃ −∇̃>

−∇̃ I2n + Ẽ>Ẽ

 =

=


In + A>A + ∇̃>∇̃ −D>θ −D>

θ⊥

−Dθ In + D>θ Dθ +
1
2 D>

θ⊥
Dθ⊥

1
2 D>

θ⊥
Dθ

−Dθ⊥
1
2 D>θ Dθ⊥ In +

1
2 D>θ Dθ + D>

θ⊥
Dθ⊥

.

System (17) may be quite large and expensive, also for relatively small images. How-
ever, as pointed out in Assumption 1, A, Dθ and Dθ⊥ have a BCCB structure, hence all the
blocks of H>H maintain that structure. By recalling that BCCB matrices can be diagonal-
ized by means of two-dimensional Discrete Fourier Transforms (DFTs), we show how the
solution to (17) can be computed expeditiously.

Let F ∈ Cn×n be the matrix representing the two-dimensional DFT operator, and let
F ∗ denote its inverse, i.e., its adjoint. We can write H>H as
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H>H =

 F ∗ 0 0
0 F ∗ 0
0 0 F ∗

 Γ −∆∗θ −∆∗
θ⊥

−∆θ Φ11 Φ12
−∆θ⊥ Φ21 Φ22

 F 0 0
0 F 0
0 0 F

, (18)

where each block of the central matrix is the diagonal complex matrix associated with
the corresponding block in H>H, and ∆∗θ , ∆∗

θ⊥
denote the (diagonal) adjoint matrices of

∆θ , ∆θ⊥ . By (18) and the definition of x, we can reformulate (17) as Γ −∆∗θ −∆∗
θ⊥

−∆θ Φ11 Φ12
−∆θ⊥ Φ21 Φ22

 F u
F w1
F w2

 =

 F [H>vk
x]1

F [H>vk
x]2

F [H>vk
x]3

, (19)

where we split w and vk
x in two and three blocks of size n, respectively.

Now we recall a result about the inversion of block matrices. Suppose that a square
matrix M is partitioned into four blocks, i.e.,

M =

[
M11 M12
M21 M22

]
;

then, if M11 and M22 are invertible, we have

M−1 =

[
M11 M12
M21 M22

]−1

=


(

M11 −M12 M−1
22 M21

)−1
0

0
(

M22 −M21 M−1
11 M12

)−1

[ I −M12 M−1
22

−M21 M−1
11 I

]
.

(20)

By applying (20) to the matrix consisting of the second and third block rows and
columns of the matrix in (19), which we denote Φ, we get

Φ−1 =

[
Φ11 Φ12
Φ21 Φ22

]−1

=


(

Φ11 −Φ12Φ−1
22 Φ21

)−1
−
(

Φ11 −Φ12Φ−1
22 Φ21

)−1
Φ12Φ−1

22

−
(

Φ22 −Φ21Φ−1
11 Φ12

)−1
Φ21Φ−1

11

(
Φ22 −Φ21Φ−1

11 Φ12

)−1

.

(21)

To simplify the notation we set

Ψ =

[
Ψ11 Ψ12
Ψ21 Ψ22

]
= Φ−1, (22)

and observe that the matrices Ψij ∈ Cn×n are diagonal. Letting ∆∗ =
[
∆∗θ ∆∗

θ⊥

]
, applying

the inversion formula (20) to the whole matrix in (19), and using (21) and (22), we get[
Γ −∆∗

−∆ Φ

]−1

=

[
Ξ−1 0

0 Ω−1

][
In −∆∗Ψ

−∆ Γ−1 I2n

]
, (23)

where

Ξ = Γ− ∆∗Ψ ∆ = Γ−
[
∆∗θ ∆∗

θ⊥
][ Ψ11 Ψ12

Ψ21 Ψ22

][
∆θ

∆θ∗

]
,

Ω = Φ− ∆ Γ−1∆∗ =
[

Φ11 Φ12
Φ21 Φ22

]
−
[

∆θ

∆θ⊥

]
Γ−1[∆∗θ ∆∗

θ⊥
]
.

We note that Ξ ∈ Cn×n is diagonal (and its inversion is straightforward), while
Ω ∈ C2n×2n has a 2× 2 block structure with blocks that are diagonal matrices belonging to
Cn×n. Thus, we can compute Υ = Ω−1 by applying (20):
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Υ =

[
Υ11 Υ12
Υ21 Υ22

]
=

[
Ω11 Ω12
Ω21 Ω22

]−1

=


(

Ω11 −Ω12Ω−1
22 Ω21

)−1
−
(

Ω11 −Ω12Ω−1
22 Ω21

)−1
Ω12Ω−1

22

−
(

Ω22 −Ω21Ω−1
11 Ω12

)−1
Ω21Ω−1

11

(
Ω22 −Ω21Ω−1

11 Ω12

)−1

 (24)

Summing up, by (19), (23) and (24), the solution to (17) can be obtained by computing y1
y2
y3

 =

[
Ξ−1 0

0 Υ

][
In −∆>Ψ

−∆ Γ−1 I2n

] F [H>vk
x]1

F [H>vk
x]2

F [H>vk
x]3

, (25)

and setting

uk+1 = F ∗y1, wk+1
1 = F ∗y2, wk+1

2 = F ∗y3. (26)

Remark 1. The only quantity in (25) that varies at each iteration is vk
x. Hence, the matrices ∆, Γ,

Ψ, Ξ−1, and Υ can be computed only once before the ADMM method starts. This means that the
overall cost of the exact solution of (14) at each iteration reduces to six two-dimensional DFTs and
two matrix–vector products involving two 3× 3 block matrices with diagonal blocks of dimension n.

4.2. Solving the Subproblem in z

By looking at the form of F2(z)–see (9)–and by defining the vector vk
z = H xk+1 + µk,

we see that problem (15) can be split into the four problems

zk+1
1 = arg min

z1∈Rn
λDKL(z1 + γ, b) +

ρ

2

∥∥∥z1 − [vk
z]1

∥∥∥2

2
, (27)

zk+1
2 = arg min

z2∈R2n
α0‖z2‖2,1|R2n +

ρ

2

∥∥∥z2 − [vk
z]2

∥∥∥2

2
, (28)

zk+1
3 = arg min

z3∈R4n
α1‖z3‖2,1|R4n +

ρ

2

∥∥∥z3 − [vk
z]3

∥∥∥2

2
, (29)

zk+1
4 = arg min

z4∈Rn
χRn

+
(z4) +

ρ

2

∥∥∥z4 − [vk
z]4

∥∥∥2

2
, (30)

where vk
z = ([vk

z]1, [vk
z]2, [vk

z]3, [vk
z]4), with [vk

z]1 ∈ Rn, [vk
z]2 ∈ R2n,[vk

z]3 ∈ R4n, and
[vk

z]4 ∈ Rn. Now we focus on the solution of the four subproblems.

4.2.1. Update of z1

By the form of the Kullback–Leibler divergence in (2), the minimization problem (27)
is equivalent to

min
z1∈Rn

λ
n

∑
i=1

(
bi ln

bi
(z1)i + γi

+ (z1)i + γi − bi

)
+

ρ

2

n

∑
i=1

((z1)i − di)
2, (31)

where we set d = [vk
z]1 to ease the notation. From (31) it is clear that the problem in z1 can

be split into n problems of the form

min
z∈R

λ(−b ln(z + γ) + z) +
ρ

2
(z− d)2. (32)

Since the objective function of this problem is strictly convex, its solution can be
determined by setting the gradient equal to zero, i.e., by solving
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λ

(
− b

z + γ
+ 1
)
+ ρ(z− d) = 0,

which leads to the quadratic equation

z2 +

(
λ

ρ
+ γ− d

)
z− λ

ρ

( ρ

λ
γd− γ + b

)
= 0. (33)

Since, by looking at the domain of the objective function in (32), z + γ has to be strictly
positive, we set each entry of zk+1

1 as the largest solution of the corresponding quadratic
Equation (33).

4.2.2. Update of z2 and z3

The minimization problems (28) and (29) correspond to the computation of the proximal
operators of the functions f (z2) =

α0
ρ ‖z2‖2,1|R2n and g(z3) =

α1
ρ ‖z3‖2,1|R4n , respectively.

By the definitions given in (4) and (5), we see that the two (2,1)-norms correspond
to the sum of two-norms of vectors in R2 and R4, respectively. This means that the
computation of both the proximal operators can be split into the computation of n proximal
operators of functions that are scaled two-norms in either R2 or R4.

The proximal operator of the function f (y) = c‖y‖, c > 0, at a vector d is

proxc‖·‖(d) = arg min
y

c‖y‖+ 1
2
‖y− d‖2.

It can be shown (see, e.g., [26] [Chapter 6]) that

proxc‖·‖(d) =
(

1− c
max{‖d‖, c}

)
d = max

{
‖d‖ − c
‖d‖ , 0

}
d. (34)

Hence, for the update of z2 we proceed as follows. By setting d = [vk
z]2 and c = α0

ρ ,
for each i = 1, . . . , n we have(

(zk+1
2 )i, (zk+1

2 )n+i

)
= proxc‖·‖((di, dn+i)).

To update z3, we set d = [vk
z]3 and c = α1

ρ and compute

(
(zk+1

3 )i, (zk+1
3 )n+i, (zk+1

3 )2n+i, (zk+1
3 )3n+i

)
= proxc‖·‖((di, dn+i, d2n+i, d3n+i)).

4.2.3. Update of z4

It is straightforward to verify that the update of z4 in (30) can be obtained as

zk+1
4 = ΠRn

+

(
[vk

z]4
)

,

where ΠRn
+

is the Euclidean projection onto the nonnegative orthant in Rn.

4.3. Summary of the ADMM Method

For the sake of clarity, in Algorithm 2 we sketch the ADMM version for solving
problem (7).

In many image restoration applications, a reasonably good starting guess for u is
often available. For example, if A represents a blur operator, a common choice is to set
u0 equal to the the noisy and blurry image. We make this choice for u0. By numerical
experiments we also verified that once x = (u, w) has been initialized, it is convenient to
set u1 = u0, w1

1 = w0
1 and w1

2 = w0
2 and to shift the order of the updates in the ADMM

scheme (14)–(16), so that a “more effective” initialization of z and µ is performed. We see
from line 9 of Algorithm 2 that the algorithm stops when the relative change in the restored
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image u goes below a certain threshold tol ∈ (0, 1) or a maximum number of iterations
kmax is reached. Finally, we note that for the case of the KL-TGV2 model, corresponding to
θ = 0 and a = 1, we have that Dθ = DH and Dθ⊥ = DV ; hence, we use the initialization
w0

1 = DHu0 and w0
2 = DVu0.

Algorithm 2 ADMM for problem (7).

1: Let u0 ∈ Rn, w0
1 = Dθu0, w0

2 = Dθ⊥u0, µ0 = 0, z0 = 0, λ, ρ ∈ (0, +∞), α0, α1 ∈ (0, 1)
2: Compute matrices ∆, Γ, Ψ, Ξ−1, and Υ as specified in Section 4.1
3: Let k = 0, u1 = u0, w1 = w0, stop = f alse, tol ∈ (0, 1), kmax ∈ N
4: while not stop and k ≤ kmax do
5: Compute zk+1 by solving the four subproblems (27)–(30)
6: Compute µk+1 as in (16)
7: k = k + 1
8: Compute uk+1, wk+1

1 and wk+1
2 by (25) and (26)

9: Set stop =
(
‖uk+1 − uk‖ < tol ‖uk‖

)
10: end while

5. Numerical Results

All the experiments were carried out using MATLAB R2018a on a 3.50 GHz Intel Xeon
E3 with 16 GB of RAM and Windows operating system. In this section, we first illustrate
the effectiveness of Algorithm 1 for the estimation of the image direction by comparing it
with the one given in [9] and by analysing its sensitivity to the degradation in the image to
be restored. Then, we present numerical experiments that demonstrate the improvement
of the KL-DTGV2 model upon the KL-TGV2 model for the restoration of directional images
corrupted by Poisson noise.

Four directional images named phantom (512× 512), grass (375× 600), leaves (203×
300) and carbon (247× 300) were used in the experiments. The first image is a piecewise
affine fibre phantom image obtained with the fibre_phantom_pa MATLAB function avail-
able from http://www2.compute.dtu.dk/~pcha/HDtomo/ (accessed on 20 September
2020). The second and third images represent grass and veins of leaves, respectively, which
naturally exhibit a directional structure. The last image is a Scanning Electron Microscope
(SEM) image of carbon fibres. The images are shown in Figures 2–5.

To simulate experimental data, each reference image was convolved with two PSFs,
one corresponding to a Gaussian blur with variance 2, generated by the psfGauss function
from [27], and the other corresponding to an out-of-focus blur with radius 5, obtained with
the function fspecial from the MATLAB Image Processing Toolbox. To take into account
the existence of some background emission, a constant term γ equal to 10−10 was added to
all pixels of the blurry image. The resulting image was corrupted by Poisson noise, using
the MATLAB function imnoise. The intensities of the original images were pre-scaled to
get noisy and blurry images with Signal to Noise Ratio (SNR) equal to 43 and 37 dB. We
recall that in the case of Poisson noise, which affects the photon counting process, the SNR
is estimated as [28]

SNR = 10 log10

 Nexact√
Nexact + Nbackground

,

where Nexact and Nbackground are the total number of photons in the image to be recovered
and in the background term, respectively. Finally, the corrupted images were scaled to have
their maximum intensity values equal to 1. For each test problem, the noisy and blurry
images are shown in Figures 2–5.

http://www2.compute.dtu.dk/~pcha/HDtomo/
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Figure 2. Test problem phantom: original and corrupted images. The yellow dash-dotted line indicates the direction
estimated by Algorithm 1 and the red dashed line the direction estimated by the method in [9].

Figure 3. Test problem grass: original and corrupted images. The yellow dash-dotted line indicates the direction estimated
by Algorithm 1 and the red dashed line the direction estimated by the method in [9].

Figure 4. Test problem leaves: original and corrupted images. The yellow dash-dotted line indicates the direction estimated
by Algorithm 1 and the red dashed line the direction estimated by the method in [9].
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Figure 5. Test problem carbon: original and corrupted images. The yellow dash-dotted line indicates the direction estimated
by Algorithm 1 and the red dashed line the direction estimated by the method in [9].

5.1. Direction Estimation

In Figures 2–5 we compare Algorithm 1 with the algorithm proposed in [9], showing
that Algorithm 1 always correctly estimates the main direction of the four test images.
We also test the robustness of our algorithm with respect to noise and blur. In Figure 6
we show the estimated main direction of the phantom image corrupted by Poisson noise
with SNR = 35, 37, 39, 41, 43 dB and out-of-focus blurs with radius R = 5, 7, 9. In only one
case (SNR = 35, R = 7) Algorithm 1 fails, returning as estimate the orthogonal direction,
i.e., the direction corresponding to the large black line and the background color gradient.
Finally, we test Algorithm 1 on a phantom image with vertical, horizontal and diagonal
main directions corresponding to θ = 0, 90, 45. The results, in Figure 7, show that our
algorithm is not sensitive to the specific directional structure of the image.

Figure 6. Direction estimation for phantom with SNR = 35, 37, 39, 41, 43 dB (from left to right) and out-of-focus blur with
radius R = 5, 7, 9 (from top to bottom).
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Figure 7. Direction estimation for phantom with SNR = 37, 43 (top, bottom) and out-of-focus blur with radius R = 5.

5.2. Image Deblurring

We compare the quality of the restorations obtained by using the DTGV2 and TGV2

regularizers and ADMM for the solution of both models. In all the tests, the value of the
penalty parameter was set as ρ = 10 and the value of the stopping threshold as tol = 10−4.
A maximum number of kmax = 500 iterations was allowed. By following [9,10], the weight
parameters of DTGV were chosen as α0 = β and α1 = (1− β) with β = 2/3. For each
test problem, the value of the regularization parameter λ was tuned by a trial-and-error
strategy. This strategy consisted in running ADMM with initial guess u0 = b several times
on each test image, varying the value of λ at each execution. For all the runs the stopping
criterion for ADMM and the values of α0, α1 and ρ were the same as described above. The
value of λ yielding the smallest Root Mean Square Error (RMSE) at the last iteration was
chosen as the “optimal” value.

The numerical results are summarized in Table 1, where the RMSE, the Improved
Signal to Noise Ratio (ISNR) [29], and the structural similarity (SSIM) index [30] are used
to give a quantitative evaluation of the quality of the restorations. As a measure of the
computational cost, the number of iterations and the time in seconds are reported. Table 1
also shows, for each test problem, the values of the regularization parameter λ. The restored
images are shown in Figures 8–11. For the carbon test problem, Figure 12 shows the error
images, i.e., the images obtained as the absolute difference between the original image and
the restored one. The values of the pixels of the error images have been scaled in the range
[m, M] where m and M are the minimum and maximum pixel value of the DTGV2 and
TGV2 error images.

From the results, it is evident that the DTGV2 model outperforms the TGV2 one in
terms of quality of the restoration. A visual inspection of the figures shows that the DTGV2

regularization is very effective in removing the noise, while for high noise levels the TGV2

reconstructions still exhibit noise artifacts. Finally, by observing the “Iters” column of the
table, we can conclude that, on average, the TGV2 regularization requires less ADMM
iterations to achieve a relative change in the restoration that is below the fixed threshold.
However, the computational time per iteration is very small and also ADMM for the
KL-DGTV2 regularization is efficient.

Finally, to illustrate the behaviour of ADMM, in Figure 13 we plot the RMSE history
for the carbon test problem. A similar RMSE behaviour has been observed in all the
numerical experiments.
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Table 1. Numerical results for the test problems.

Blur SNR Model λ RMSE ISNR MSSIM Iters Time

phantom

Out-of-focus

43 DTGV 57.5 2.2558 × 10−2 9.5472 9.3007 × 10−1 86 10.95
TGV 275 2.8043 × 10−2 7.6568 8.9887 × 10−1 89 11.33

37 DTGV 3.25 3.7573 × 10−2 7.4431 8.5823 × 10−1 122 15.45
TGV 22.5 4.1719 × 10−2 6.5339 8.4061 × 10−1 52 6.64

Gaussian

43 DTGV 25 1.5530 × 10−2 9.1966 9.7829 × 10−1 56 7.17
TGV 100 1.8100 × 10−2 7.8667 9.7200 × 10−1 45 5.76

37 DTGV 3 2.5498 × 10−2 9.0841 9.2994 × 10−1 90 11.41
TGV 17.5 3.0674 × 10−2 7.4788 9.0199 × 10−1 53 6.76

grass

Out-of-focus

43 DTGV 60 3.6313 × 10−2 7.7364 8.7262 × 10−1 136 15.55
TGV 550 3.6575 × 10−2 7.6738 8.7188 × 10−1 179 20.39

37 DTGV 50 5.6164 × 10−2 4.7390 7.6165 × 10−1 160 18.56
TGV 55 5.7604 × 10−2 4.5191 7.4566 × 10−1 72 8.31

Gaussian

43 DTGV 65 2.9883 × 10−2 6.3343 9.2764 × 10−1 106 12.08
TGV 650 3.0814 × 10−2 6.0676 9.2523 × 10−1 136 15.48

37 DTGV 5.5 4.2274 × 10−2 4.7973 8.5615 × 10−1 98 11.13
TGV 35 4.3936 × 10−2 4.4624 8.4795 × 10−1 54 6.18

leaves

Out-of-focus

43 DTGV 125 6.2767 × 10−2 7.4978 8.2099 × 10−1 251 31.18
TGV 1100 8.2397 × 10−2 5.1342 7.1557 × 10−1 435 53.74

37 DTGV 12.5 9.5597 × 10−2 4.1497 6.3065 × 10−1 257 31.87
TGV 90 1.1874 × 10−1 2.2665 4.3294 × 10−1 113 14.03

Gaussian

43 DTGV 150 7.3332 × 10−2 4.8675 7.7456 × 10−1 236 29.13
TGV 1750 8.0857 × 10−2 4.0190 7.3001 × 10−1 380 46.77

37 DTGV 12.5 9.0999 × 10−2 3.3907 6.6469 × 10−1 148 18.36
TGV 100 1.0308 × 10−1 2.3081 5.6534 × 10−1 103 12.85

carbon

Out-of-focus

43 DTGV 150 1.8360 × 10−2 1.2830 × 101 9.4734 × 10−1 331 13.78
TGV 850 2.3825 × 10−2 1.0567 × 101 9.3671 × 10−1 233 9.73

37 DTGV 20 3.1682 × 10−2 8.2416 8.6294 × 10−1 171 7.07
TGV 150 3.8840 × 10−2 6.4723 8.2237 × 10−1 155 6.55

Gaussian

43 DTGV 250 2.0453 × 10−2 8.6178 9.5974 × 10−1 305 12.53
TGV 950 2.4839 × 10−2 6.9302 9.5698 × 10−1 171 7.12

37 DTGV 15 2.7995 × 10−2 6.2017 9.3007 × 10−1 128 5.36
TGV 150 3.3061 × 10−2 4.7572 8.9690 × 10−1 118 4.73
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Figure 8. Test problem phantom: images restored with DTGV2 (top) and TGV2 (bottom).

Figure 9. Test problem grass: images restored with DTGV2 (top) and TGV2 (bottom).

Figure 10. Test problem leaves: images restored with DTGV2 (top) and TGV2 (bottom).
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Figure 11. Test problem carbon: images restored with DTGV2 (top) and TGV2 (bottom).

Figure 12. Test problem carbon: difference images with DTGV2 (top) and TGV2 (bottom).

Figure 13. Test problem carbon: RMSE history for the KL-DGTV2 (continuous line) and KL-TGV2 (dashed line) models.

6. Conclusions

We dealt with the use of the Directional TGV regularization in the case of directional
images corrupted by Poisson noise. We presented the KL-DTGV2 model and introduced a
two-block ADMM version for its minimization. Finally, we proposed an effective strategy
for the estimation of the main direction of the image. Our numerical experiments show
that for Poisson noise the DTGV2 regularization provides superior restoration performance
compared with the standard TGV2 regularization, thus remarking the importance of taking
into account the texture structure of the image. A crucial ingredient for the success of the
model was the proposed direction estimation strategy, which proved to be more reliable
than those proposed in the literature.
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Possible future work includes the use of space-variant regularization terms and the
analysis of automatic strategies for the selection of the regularization parameters.
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