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Abstract: We study the power extracted by an electromagnetic energy harvester driven by broadband
vibrations. We describe the system with a linear model, featuring an underdamped stochastic
differential equation for an effective mass in a harmonic potential, coupled electromechanically
with the current in the circuit. We compare the characteristic curve (power vs. load resistance)
obtained in experiments for several values of the vibration amplitude with the analytical results
computed from the model. Then, we focus on a more refined analysis, taking into account the
temporal correlations of the current signal and the fluctuations of the extracted power over finite
times. We find a very good agreement between the analytical predictions and the experimental data,
showing that the linear model with effective parameters can describe the real system, even at the
fine level of fluctuations. Our results could be useful in the framework of stochastic thermodynamics
applied to energy harvesting systems.

Keywords: electromagnetic energy harvester; stochastic thermodynamics; work fluctuations; correlation
functions

1. Introduction

Harvesting energy from environmental noise is a fundamental task in many contexts,
from the microscales, as in Brownian motors driven by thermal fluctuations [1–4], to
the macroscopic world, as for random vibrations in ships, bridges, railroad cars, and
aircraft [5]. In order to treat systems where fluctuations play a central role, in recent
years, thermodynamics concepts such as heat, work and entropy have been extended
to the realm of stochastic processes and non-equilibrium systems, paving the way to
the development of stochastic thermodynamics [6,7]. The interest in the study of these
fluctuating quantities, such as heat and work defined along a single stochastic trajectory of
the system, is motivated by the search for optimization protocols in models of engines where
fluctuations are dominant [8] and by the general symmetry properties that the distribution
functions have been shown to satisfy, both theoretically [9–11] and experimentally [12,13].

From a more practical perspective, in Internet of Things applications, energy harvest-
ing systems, converting ambient energy into electricity, can represent an alternative solution
to disposable batteries [14,15]. That is why energy harvesters have found application in
very different fields [16–18]; see also [19,20]. In particular, vibration energy harvesters,
which convert the wide available mechanical energy of vibrations into electric energy, have
proven particularly attractive [21,22]. These devices are mainly based on piezoelectric
materials or electromagnetic induction [23,24]. Both piezoelectric and electromagnetic
vibration harvesters are typically operated in resonant structures and can efficiently operate
only near resonance, even if electromagnetic harvesters are characterized by higher powers
with respect to piezoelectric ones. In the literature, the study of vibration harvesters forced
by non-sinusoidal or random vibrations has been deeply carried out in case of piezoelectric
technology [25–27], and in case of hybrid electromagnetic-piezoelectric systems [28,29]. On
the other hand, electromagnetic vibration harvesters are typically studied under purely
sinusoidal vibrations tuned to their resonance frequency. Analysis of electromagnetic
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harvesters in the presence of random vibrations can be found in [30,31], but the literature
lacks a stochastic analysis of the fluctuations and distributions of their relevant quantities.

In this work, we consider a linear model for an electromagnetic energy harvester driven
by white noise, amenable for analytical solution, and compare in detail the theoretical
predictions from the model with real experiments. The model consists of an underdamped
Langevin equation describing the stochastic motion of an effective mass in the presence
of a harmonic potential and electromechanically coupled with an external variable, the
current in the circuit, whose dynamics is not directly affected by the noise. The model
is, by construction, out of equilibrium, since detailed balance is broken by the coupling
with the current variable. This can also be interpreted as a feedback mechanism acting on
the mass and introducing a memory effect in the system [32,33]; see also [27] where we
performed a similar analysis on a piezoelectric energy harvester. We first fit the effective
model parameters to the characteristic curve of the system, namely the extracted power
versus the load resistance, and then analyze the time correlation functions of the current
and the fluctuations of the extracted work over finite time intervals. We find that the
linear model with effective parameters can reproduce very well both the time decay of the
correlation function and the work fluctuations at different times.

2. Experimental Setup

A typical electromagnetic vibration energy harvester, schematically shown in Figure 1,
is based on a permanent magnet, which is attached to the housing by means of a spring
system and can move relative to a coil fixed to the housing when a vibration is applied.
The coil is connected to an electrical load, and the relative displacement between the
magnet and the coil leads to the conversion of the mechanical energy of vibrations into
electrical energy. The maximization of the energetic performance can be carried out on the
basis of mechanical tuning techniques, acting on the mechanical characteristics, or on the
basis of maximum power point tracking techniques, acting on power electronic converters
connected to the coil terminals [34–37].

Figure 1. Schematic representation of an electromagnetic vibration energy harvester.

The experimental setup that has been employed in all the tests is shown in Figure 2.
In particular, the considered harvester is the Model-D by Revibe. It is an electromagnetic
vibration energy harvester characterized by a mechanical resonance frequency of about
100 Hz. The harvester is placed on a shaker, the VT-500 by Sentek, used as the source
of desired vibrations. In order to generate the shaker vibrations, its driving current is
provided by an LA-800 power amplifier. The Spider-81 controller by Crystal Instruments
implements a closed loop vibration control by providing the driving signal to the power
amplifier on the basis of the acceleration of the shaker vibrations measured by the Dytran
3055D2 accelerometer. It is worth noting that, as shown in Figure 2(right), the considered
electromagnetic harvester comes as a black box that, apart from the forcing by the input vi-
bration, is accessible only at the electric terminals. Therefore, even if its detailed mechanical
structure cannot be accessed, it will be shown that a linear model with effective parameters
can well reproduce the measured dynamics.
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Figure 2. (Left panel) Experimental setup employed for the tests; (Right panel) zoom of the harvester,
the accelerometer and the load resistance.

The harvester Revibe Model-D was forced by broadband vibrations of Gaussian type
with a sampling rate f = 5 kHz and different standard deviations (0.25 g, 0.5 g and 0.75 g),
which were generated with MATLAB software and provided to the shaker controller. In
Figure 3, the waveforms of the input acceleration, of the voltage and of the power across
the load resistance recorded during one of the experimental tests are shown as an example.

Figure 3. (Left panel) Waveforms of the input acceleration, of the voltage and the power across the
load resistance (for R = 490 Ω) recorded during the experimental test with a Gaussian noise input
signal with a standard deviation 0.5 g. (Right panel) Zoom on a small time window of 0.5 s.

3. Theoretical Model

In order to reproduce the dynamics observed in the experimental systems, we consider
the following underdamped linear Langevin equation

ẋ = v (1)

Mv̇ = −ksx− γv− θ I + Mξ (2)

Lc İ = θv− (Rc + R)I, (3)

where ξ is white noise with zero mean and variance 〈ξ(t)ξ(t′)〉 = 2D0δ(t− t′). In the above
equations, x represents the position of the magnet with respect to the coil, v represents its
velocity, M represents the mass, γ represents the viscous damping due to the air friction,
ks is the elastic constant of the spring effective system, I is the current at the electrical
terminals, Lc and Rc are the coil inductance and resistance, respectively, R is the load
resistance and θ is the effective electromechanical coupling factor. In particular, during its
movement, the permanent magnet, apart from the viscous damping force of the medium
and the elastic force of the spring, is subject to the electromagnetic (Lorentz) force due to
the interaction between the current I flowing into the coil and the induction field of the
magnet. As shown in detail in [38], θ takes into account the coil geometrical properties,
its number of turns and the magnetic field strength. It is the coefficient that, in the linear
model expressed by Equation (2), links the electromagnetic force and the current at the
electrical terminals. This current is due to the electromotive force induced in the coil that,
as shown in Equation (3), is proportional to the magnet speed through θ.

In our experimental setup, noise is introduced through the vibrations applied by the
shaker to the energy harvester. The role of the shaker mimics the effect of real broad-band
vibrations that can be measured for instance in a car or in an aircraft. In our model, such
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fluctuations are treated as white noise, affecting the dynamical equation for the mass
velocity.

The linear model can be solved (see below and the Appendix A for details) to obtain
the mean extracted power as a function of the parameters

Pharv = 〈I2〉R =
D0θ2M2R

[γ(R + Rc) + θ2][γLc + M(R + Rc)] + γksL2
c

, (4)

where 〈. . .〉 represents an average over the stationary state.

Fitting Parameters

Using Equation (4), we can fit the parameters of the linear model to the experimental
data. Because of the large number of parameters, we also exploit the temporal decay of
the correlation function of the current signal (see next section) in order to better estimate
some of them (in particular the effective viscosity γ). We also impose a constraint on the
parameters ks and M, such that ks = (2π ∗ 100)2M, dictated by the mechanical resonance
of the harvester. We obtain the following values: γ = 1.80± 0.05 Kg/s, M = 0.048± 0.005
Kg, ks = 18811± 50 Kg/s2, θ = 29.9± 0.5 N/A, Rc = 227.6± 0.5 Ω, Lc = 0.124± 0.005 H,
which give the analytical curve reported in Figure 4.
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Figure 4. Pharv (rescaled by D0 = a2∆t/2, where ∆t = 1/ f ) as a function of the load resistance R, for
different values of the input acceleration a, measured in units of gravity acceleration g. Symbols are
experimental data, while the line corresponds to the best fit obtained from Formula (4).

4. Temporal Autocorrelation Function

Beyond the study of the mean extracted power, we are interested in exploring the
possibility that the model could also well reproduce other features observed in the experi-
mental system. Therefore, in this section, we focus on the autocorrelation function of the
measured current I(t), namely the quantity CI I(t) = 〈I(t)I(0)〉 in the stationary state. This
provides information on the characteristic time-scales in the system.

An analytical expression for CI I(t) can be obtained explicitly due to the linear nature
of the model. In particular, we introduce the column vector X = (x, v, I)T and define the
coupling matrix

A =

 0 −1 0
ks
M

c
M

θ
M

0 − θ
Lc

Rc+R
Lc

, (5)

so that the Equations (1)–(3) can be rewritten in vectorial form as

Ẋ = −AX + η, (6)

where η = (0, ξ, 0)T . Then, defining the covariance matrix σ = 〈XTX〉 as

σ =

 σxx σxv σxI
σvx σvv σvI
σIx σIv σI I

, (7)
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at stationary, one has the constraint [39]

D =
Aσ + σAT

2
, (8)

where D is the noise matrix

D =

 0 0 0
0 D0 0
0 0 0

. (9)

The solution of Equation (8) provides the covariance matrix as a function of the model
parameters (see Appendix A). In order to compute the correlation function CI I(t), we first
introduce the response matrix

G(t) = e−At. (10)

Then, the correlation CI I(t) can be expressed in terms of the matrix elements of G(t)
and of the covariance matrix as follows [39]:

CI I(t) = GIx(t)σxI + GIv(t)σvI + GI I(t)σI I , (11)

where the symbols Gij(t) denote the response of the variable i ∈ {x, v, I} to a perturba-
tion on the variable j ∈ {x, v, I}. This algebraic computations have been handled with
Mathematica. The general form of CI I(t) is an exponential decay, modulated by sinusoidal
oscillations.

The autocorrelation from the experimental data is obtained by averaging the whole
recorded temporal signal (excluding initial and final transient regimes) on a sliding window
of 0.1 s. We then compare the results from experiments with the correlations obtained
analytically and with numerical simulations of the model Equations (1)–(3), as reported
in Figure 5, for several values of the load resistance R and for acceleration a = 0.25 g
(other values of a show the same behaviors). First, we observe that analytical predictions
and numerical simulations perfectly agree, confirming the correctness of the analytical
approach. More interestingly, the comparison with experimental data shows that the model
very well reproduces the characteristic frequency of the signal, and the amplitude decay of
the oscillations, with small discrepancies for larger values of the load resistance R.
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Figure 5. Autocorrelation function of the current signal CI I(t) = 〈I(t)I(0)〉measured in the experi-
ments (dashed black line), theory (thin black line) and numerical simulations (red dots) for different
values of the load resistance R at driving acceleration a = 0.25 g.
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5. Stochastic Energetics

We now analyze the system from a stochastic thermodynamics [7] approach. In partic-
ular, we focus on the work fluctuations at finite times, comparing the model predictions
obtained from numerical simulations, with experimental data. According to the prescrip-
tion of stochastic energetics [40], we define the heat exchanged along a trajectory in a time
interval [0, τ] with the surrounding medium as

Qex(τ) = −
∫ τ

0
γv(t)2dt, (12)

and the energy fed into the system from the external driving as the integral of the injected
power Pinj = Mξ(t)v(t)

Einj(τ) = M
∫ τ

0
ξ(t)v(t)dt, (13)

where the product is meant according to the Stratonovich definition. Here, we consider
these two contributions separately, at variance with standard Brownian systems where the
two terms arise from the coupling of the particle with the fluid. Indeed, in our system,
thermal fluctuations are completely negligible, whereas Qex is the heat dissipated to the
environment due to the viscosity γ. The injected power is instead due to the white noise
introduced by the (macroscopic) shaker.

Next, using the Langevin equation (2), we can rewrite these two terms as follows

Qex(τ) + Einj(τ) =
∫ τ

0

[
−γv(t)2 + Mv(t)ξ(t)

]
dt

=
1
2

M[v(τ)2 − v(0)2] +
1
2

ks[x(τ)2 − x(0)2] + θ
∫ τ

0
v(t)I(t)dt

= ∆E + W ′(τ), (14)

where
∆E =

1
2

M[v(τ)2 − v(0)2] +
1
2

ks[x(τ)2 − x(0)2] (15)

is the mechanical energy variation, and

W ′(τ) = θ
∫ τ

0
v(t)I(t)dt (16)

can be interpreted as the electromechanical work, which allows us to read Equation (14) as
the first law for stochastic thermodynamic quantities. The effective work extracted by the
harvester is defined as the difference between W ′(τ) and the heat dissipated in the parasite
resistance RC

W(τ) = W ′(τ)− RC

∫ τ

0
I(t)2dt. (17)

Next, exploiting Equation (3), the work W can be related to the dissipated heat in the
load resistance R in the time interval [0, τ]

Qdiss(τ) = R
∫ τ

0
I(t)2dt, (18)

via the relation
W(τ) = Qdiss(τ) +

Lc

2
[I(τ)2 − I(0)2]. (19)

The difference between the two quantities is given by a term non-extensive in time, that
can be neglected for long trajectories.

In our experimental setup, we have direct access to the current I in the load circuit
and, thus, to the work W, according to Equations (18) and (19). Therefore, we can compare
the behavior of the fluctuations of these quantities with those obtained from the numerical
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simulations of the linear model, where the parameters have been fixed through the fitting
procedure described above. Let us note that here, the extracted power is directly related to
the dissipated heat by the Joule effect in the load resistance. Therefore, by definition, since
it involves a square of the electrical current, the work is always positive. This rules out the
possibility of observing negative fluctuations, even at small times, and thus the validity of
a work fluctuation relation cannot be explored.

In Figure 6 we compare the power fluctuations measured in the experiments for
different times and several parameters, with the results of numerical simulations of the
linear model. A very good agreement is found in all cases. This shows that the effective
linear model provides an accurate description of the real system, not only for average
values, but even at the fine level of fluctuations.
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Figure 6. Probability distribution of the workW in a time interval τ for different values of the load
resistance R at driving acceleration a = 0.25 g. Symbols represent experimental data, whereas lines
represent numerical simulations.

Let us also comment on the functional forms of the work distributions at finite times.
We observe that, before converging towards a Gaussian distribution, the probability density
function shows very long tails at large values of W/τ. This means that, over small time
intervals, there is a finite probability to extract a work much larger than the average value
even if the most probable value is smaller than the average.

Finally, we observe that the efficiency of the system can be defined as the ratio
η = Pharv/〈Pinj〉, where, from Equation (13), 〈Pinj〉 = MD0. Due to the linearity of the
model, the dependence on D0 appears as a prefactor in both the expressions and thus
cancels out in the ratio. This results in a behavior of η as a function of the load resistance
R similar to the one reported in Figure 4, with a peak around R = 500 Ω. As a func-
tion of the other parameters, as expected, we find that the efficiency increases with the
electromechanical coupling θ and decreases with the parasite resistance Rc.

6. Conclusions

We have shown that a linear model of an underdamped Langevin equation with an
electromechanical coupling can very well reproduce the behavior of a real electromagnetic
energy harvester, not only with respect to the average values of the measured current,
but also with respect to its temporal correlations and fluctuations. The analysis of these
quantities and the comparison between analytical prediction and experimental data allow
one to obtain a better estimate of the effective parameters for the model.
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The study of the stochastic energetics of the system could be extended to other relevant
quantities, such as entropy production. In order to address this issue from an experimental
perspective, however, a more complete access to the dynamical variables is necessary. In
particular, this requires the measurements of the position and velocity of the mass, which
are not directly accessible with the actual experimental setup. Indeed, for instance, as
illustrated in Ref. [32,33] for a similar linear model, the contribution of the medium entropy
production takes the form ∆sm = −1/T

∫ τ
0 dt[Mv̇(t) + θ Ĩ(x, v) + ksx(t)]v(t), where T is

related to the noise amplitude D0 and Ĩ(x, v) is obtained from a projection over the current
distribution probability [33] and explicitly involves the variables x and v. We plan to
address the study of entropy production in future works, in particular for a piezoelectric
energy harvester [27], where direct access to all the dynamical variables is possible, and
therefore, an experimental measurement of entropy production can be compared to theory
and simulations.

Appendix A

The solution of the linear system of Equation (8) provides the elements of the covari-
ance matrix

σxx =
D0M2((R + Rc)(γLc + M(R + Rc)) + ksL2

c
)

γks((R + Rc)(γLc + M(R + Rc)) + ksL2
c ) + θ2ks(γLc + M(R + Rc))

σxv = σvx = 0

σxI =
D0θLc M2

γ((R + Rc)(γLc + M(R + Rc)) + ksL2
c ) + θ2(γLc + M(R + Rc))

σvv =
D0M

(
γLc(R + Rc) + ksL2

c + θ2Lc + M(R + Rc)2)
γ((R + Rc)(γLc + M(R + Rc)) + ksL2

c ) + θ2(γLc + M(R + Rc))

σvI =
D0θM2(R + Rc)

γ((R + Rc)(γLc + M(R + Rc)) + ksL2
c ) + θ2(γLc + M(R + Rc))

σIx =
D0θLc M2

γ((R + Rc)(γLc + M(R + Rc)) + ksL2
c ) + θ2(γLc + M(R + Rc))

σIv =
D0θM2(R + Rc)

γ((R + Rc)(γLc + M(R + Rc)) + ksL2
c ) + θ2(γLc + M(R + Rc))

σI I =
D0θ2M2

γ((R + Rc)(γLc + M(R + Rc)) + ksL2
c ) + θ2(γLc + M(R + Rc))

. (A1)

From the last term σI I = 〈I2〉, we get Equation (4).
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