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Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is
considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of
hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely
distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and
antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA
has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and
neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its
action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in
the treatment of several human diseases.
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1. Introduction

Ellagic acid (EA) was first discovered in 1831 by the French
chemist and pharmacist Henri Braconnot who named it “acide
ellagique” from the reverse-read word “galle” [1]. However, the
presence of this substance in plants was not clearly understood
until the early 20th century, when it was prepared from various
plant sources such as oak bark, valonea, pomegranate (Punica
granatum L.), divi-divi (Caesalpinia coriaria (Jacq.) Willd.),
myrobalan (Terminalia catappa L.), and algarrobilla (Prosopis
humilis Hook.) [1]. At present, EA is known as a naturally
occurring bioactive and pharmacologically active polyphenolic
compound that is abundant in many taxonomically diverse
plant groups, mainly among eudicotyledons [2–4]. Structurally,
EA constitutes a dilactone of hexahydroxydiphenic acid
(HHDP), which can be considered a dimeric gallic acid deriva-
tive. EA is produced in plants mainly via hydrolysis of ellagi-
tannins, a widely distributed group of plant secondary
metabolites [5–10]. Along with free EA, plants capable of syn-
thesizing ellagitannins contain a range of EA derivatives with
varying structural complexity, which arise as a result of methyl-
ation, methoxylation, glycosylation, and glucuronidation of its
molecule [11–14]. Ellagitannins, hydrolysable derivatives of
EA, can release it in a free form in the human gastrointestinal
tract after consuming plant-based foods.

In recent decades, EA is attracting great attention due to
its pronounced antioxidant [15–23], anti-inflammatory
[24–29], antimutagenic [30–33], and antiproliferative prop-
erties [34–39] and its therapeutic potential in the treatment
of several human diseases. Numerous studies have shown
that EA may be involved in regulating a spectrum of cellular
signaling pathways to prevent, mitigate, or slow down the
progression of chronic disorders, including cardiovascular
[40–43] and neurodegenerative diseases [44–47], diabetes
[48–51], and cancer [38, 52–54]. This compound has also
been shown to exhibit neuroprotective [55–59], hepatopro-
tective [60–68], nephroprotective [69, 70], cardioprotective
[71–73], antifibrotic [74], antiatherosclerotic [75, 76], antial-
lergic [77–79], antinociceptive [80–82], antiestrogenic [83],
skin-protecting [84–87], wound-healing [88–90], osteogenic
[91–93], antimicrobial [20, 37, 94], antiviral [19, 95–97], and
antiparasitic [98–100] effects. In addition, EA has shown a
protective effect against the toxicity of metals and metalloids
[101–106], organic xenobiotics [107–111], and natural toxins
[112–114]. There is also evidence of a positive therapeutic
effect of the combination of EA with other antioxidants,
including selenium (in the form of selenomethionine) [115],
known for its multiple biological activities and therapeutic
potential [116–120]. This review is aimed to reporting the
health-promoting effects of EA, along with possible mecha-
nisms of its action in maintaining the health status, by sum-
marizing the literature related to the therapeutic potential of
this polyphenolic in the treatment of several human diseases.

2. Chemical Properties and Natural
Sources of EA

EA is a thermostable molecule with a melting point of 350°C,
a molecular weight of 302.19 g/mol, almost insoluble in

water and sparingly soluble in alcohol [1, 121]. From a
chemical point of view, EA is identified as 2,3,7,8-tetrahy-
droxy-chromeno [5,4,3-cde]chromene-5,10-dione.

EA has the properties of an amphiphilic molecule; struc-
turally, it consists of a planar biphenyl lipophilic moiety
bridged by two lactone rings and possessing four hydroxyl
groups, which together with lactone groups form a hydro-
philic moiety [122]. The hydrophilic part of the EA molecule
plays an important role in its biological activity due to the
presence of both hydrogen bonding acceptor (lactone) and
donor (–OH) sites (phenolic hydroxyl groups which can dis-
sociate under physiological conditions to negatively charged
phenolate ions) [123].

In plant cells, EA is contained in free and covalently
bound forms, including EA glycosides and ellagitannins,
each having different chemical reactivity, solubility, and bio-
availability [124–126]. To date, a broad spectrum of ellagi-
tannins and EA glycosides have been isolated and studied
from various plant species. EA glycosides contain sugar res-
idues such as glucose, arabinose, xylose, or rhamnose [12].
Both ellagitannins and EA glycosides are hydrolysable com-
pounds and can release EA upon hydrolysis both in plants
and in the gastrointestinal tract of humans and herbivore
animals.

Due to a wide range of biological effects of EA, edible
plants containing this phytochemical and its hydrolyzable
derivatives, mainly ellagitannins, are a valuable source of
EA for humans and belong to functional foods that promote
health and may reduce the risk of disease [127, 128]. Many
species of medicinal plants used in traditional medicine
around the world, including Traditional Chinese Medicine
and Ayurveda, have been found to contain EA and ellagitan-
nins [63, 97, 129–134]. EA is currently used in the pharma-
ceutical and cosmetics industries. Consequently, various
plant species are now being studied for EA content in order
to find novel sources of EA in human nutrition, as well as
sources of raw materials for the preparation of functional
nutritional supplements and nutraceuticals.

Although ellagitannins and EA derivatives are wide-
spread in the plant kingdom, only a limited number of plant
species have been reported with substantially high levels of
these phytochemicals and, consequently, as rich natural
sources of EA in human nutrition. In particular, high con-
centrations of both ellagitannins and EA are found in fruits
(especially berries), in nut kernels, and, in some cases, in
other parts of the plant. Considering the level of conversion
of ellagitannins to EA, the highest concentrations of EA are
found in fruits of plants of the genus Rubus (raspberry,
cloudberry, arctic bramble, blackberry, and boysenberry),
strawberry (Fragaria × ananassa (Duchesne ex Weston)
Duchesne ex Rozier), pomegranate, muscadine grape (Vitis
rotundifolia Michx.), and tropical fruits such as camu-
camu (Myrciaria dubia (Kunth) McVaugh); walnuts
(Juglans spp.) and pecan (Carya illinoinensis (Wangenh.)
K.Koch) have also relatively high EA content (Table 1) [4,
36, 121, 126, 135–139]. These plants are the main sources
of EA in the human diet. Other sources of EA in human
nutrition are juices, jams, and other processed products of
ellagitannin-containing plants in the food industry. In
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particular, pomegranate juice (PJ) may contain a total EA
concentration of 811mg/L [140] and higher [141] due to
the high content of ellagitannins in P. granatum fruits.

It should be noted that despite the fact that early studies
did not show the presence of EA in plants of the Fabaceae
family [11, 142], there is now evidence of relatively high
levels of this phytochemical in several sprouted legumes,
such as sprouted adzuki bean (Vigna angularis), some varie-
ties of bean (Phaseolus vulgaris L.), cowpea (Vigna unguicu-
lata (L.) Walp.), pea (Pisum sativum L.), and soybean
(Glycine max (L.) Merr.) [143]. Sprouted soybeans have been
found to have a considerably higher EA content than other
sprouted legumes (45.6–48.9 and 8.96–18.3mg/100 g dry
weight, respectively) [143].

The ratio between free and bound forms of EA in plant
tissues varies considerably depending on the plant species;
however, the proportion of unbound EA may also depend
on the method chosen for determination. According to some
authors, free EA makes up only a small part of the total EA
pool in plants [144–146], while others suggest that its por-
tion can reach and even exceed 50% of the total content
[147, 148]. Interestingly, in the fruits of Terminalia ferdi-
nandiana Exell, a native Australian plant known as the

Kakadu plum, EA was found to be mostly free form, with
a percentage reaching 70.6% of the total EA pool [125]. By
contrast, the percentage of free EA in strawberries, as shown
by the same study, reaches 7.4% of its total content [125].

It has been shown that storing and freezing fruits, as well
as processing them for the production of beverages and
jams, may have different effects on the content of EA. In par-
ticular, industrial processing of pomegranates for juice pro-
duction increases the concentration of EA in juices; at the
same time, juice prepared from frozen fruits contains two
times less of this compound than juice prepared from fresh
fruits [152]. Significant increases in the content of EA (2–3
times) were observed during the processing of raspberries
for jam production and during 1–6 months of storage of
raspberry jam [144]. However, processing strawberries for
jam production has been shown to reduce total EA content
by 20% [153].

Some tree species have a particularly high EA content in
wood and bark, such as Quercus spp., Eucalyptus spp., and
Castanea spp. [154–157]. Consequently, by-products of the
forestry and wood-processing industries (as well as by-
products of juice production such as pomegranate husk)
are a potential source of industrial production for EA [149].

Table 1: The content of ellagic acid in fruits and seeds of various food plants (taking into account the total level of ellagic acid after
hydrolysis of ellagitannins).

Plant species Common name EA content (mg/kg) References

Carya illinoinensis (Wangenh.) K.Koch Pecan 330a [135]

Castanea sativa Mill. Sweet chestnut

340-500a (leaf)
1410-3210a (bur)

240-900a (outer shell)
800-1370a (inner shell)

[149]

Fragaria × ananassa (Weston) Duchesne ex Rozier Strawberry
630a

683–853b
[135, 145]

Hippophae rhamnoides L. Sea buckthorn 10b [145]

Juglans nigra L. Black walnut 590a [135]

Myrciaria dubia (Kunth) McVaugh Camu-camu
258.5a (pulp)
5657a (flour)

[139]

Psidium guajava L. Guava 57.2–306a [150]

Punica granatum L. Pomegranate
700a (arils)

38700a (mesocarp)
[140]

Rosa rugosa Thunb. Rose hip 1096b [145]

Rubus arcticus L. Arctic bramble (arctic raspberry) 3900b [151]

Rubus chamaemorus L. Cloudberry 3151b [145]

Rubus idaeus L. Raspberry
1500a

2637–3309b
[135, 145]

Rubus ursinus Cham. & Schltdl. Blackberry 1500a [135]

Rubus ursinus × Rubus idaeus Boysenberry
4960a

1684a
[125, 148]

Terminalia ferdinandiana Exell Gubinge (Kakadu plum) 8796a [125]

Vaccinium spp. Cranberry 120a [135]

Vitis rotundifolia Michx. Muscadine grape 360–912b [12]
aDry weight base. bFresh weight base.
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3. Ellagitannins as a Source of Ellagic Acid

3.1. General Characteristic and Biosynthesis of Ellagitannins
in Plants. Ellagitannins represent one of the most diverse
groups of plant phenolics and encompass over 1,000 identi-
fied natural bioactive compounds [8]. These phytochemicals
have a tart taste and pronounced astringent properties and
are capable of forming complexes with proteins and polysac-
charides [158]. Ellagitannins are located in the vacuoles and
cytoplasm of plant cells and play an important protective
role in natural growth conditions, providing a chemical
defense against infection by microbial pathogens and herbi-
vore attack [159].

By their chemical nature, ellagitannins are hydrolyzable
tannins and constitute the largest group among them [8].
These compounds are found in the form of (1) monomers,
(2) C-glycosidic ellagitannins with an open-chain glucose
moiety, (3) oligomers, and (4) complex tannins; the molecu-
lar weight of ellagitannins ranges from 300 to 20,000Da [7,
160]. A characteristic feature of the chemical structure of
all ellagitannins is the presence of at least one HHDP unit,
which is esterified to a polyol, typically β-D-glucose. The
HHDP moiety arises due to the oxidative C–C bond forma-
tion between neighboring galloyl residues within the ellagi-
tannin structure. Another group of hydrolyzable tannins is
represented by gallotannins (polygalloyl esters of glucose or
other polyol carbohydrate), which have a simpler structure
and more restricted distribution in nature than ellagitan-
nins [160, 161]. A molecular precursor of both gallotannins
and ellagitannins in plants is gallic acid (3,4,5-trihydroxy-
benzoic acid), and the initial stages of biosynthesis are com-
mon to both of these groups of phytochemicals [158].

The pathway for the synthesis of a simple ellagitannin
molecule in plants includes several stages, as follows: (1)
the formation of gallic acid via the shikimate pathway with
3-dehydroshikimic acid as an intermediate [162], (2) the
enzymatic formation of 1-O-galloyl-β-D-glucose and its
sequential galloylation to generate 1,2,3,4,6,-penta-O-gal-
loyl-β-D-glucose (the central molecule in the biosynthesis
of all hydrolyzable tannins), and (3) the oxidative coupling
of two neighboring galloyl groups to form the HHDP moiety
[163]. Following the formation of the first HHDP unit, the
formation of the second HHDP unit can occur, as well as
the subsequent cleavage of HHDP or galloyl units from the
rest of the molecule [8].

The diversity of the structure of simple ellagitannins is
mainly associated with various possible variants of the for-
mation of linkages between the HHDP group(s) and the glu-
cose moiety, as well as with the occurrence of axial chirality
on the HHDP group. In this way, the S- or R-configurations
arise depending on bond formation at the O-2,O-3- and/or
O-4,O-6-positions in the glucopyranose core or at the O-
3,O-6-positions, respectively [8, 164]. An additional one or
two galloyl groups can bind to the HHDP moiety via oxida-
tive coupling, resulting in the formation of nonahydroxytri-
phenoyl (NHTP) and gallagyl groups, respectively [164].
Variations in ellagitannin structure also arise due to forma-
tion of C–O bonds between the galloyl and HHDP units,
as well as due to oxidation of the HHDP group. As a

result of intermolecular oxidative processes, other groups
such as sanguisorboyl, tergalloyl, valoneoyl, dehydrohexa-
hydroxydiphenoyl (DHHDP), and chebuloyl, are formed in
ellagitannin structure [8]. Various monomeric forms of
ellagitannins often bind together to form oligomers, which
significantly increases their structural diversity. The oligo-
merization process results in decreased solubility and/or
covalent attachment of ellagitannins to cell wall components
[165]. Ellagitannins can also form complex structures (com-
plex tannins) in which the ellagitannin unit is linked by a gly-
cosidic bond to the catechin unit [160].

3.2. Distribution of Ellagitannins in Plants. Ellagitannins are
synthesized in eudicotyledons, mainly in polypetalous
plants, and have been detected in genera of many plant fam-
ilies, including Anacardiaceae, Betulaceae, Combretaceae,
Cornaceae, Euphorbiaceae, Fabaceae, Fagaceae, Ebenaceae,
Geraniaceae, Juglandaceae, Lythraceae, Melastomataceae,
Myrtaceae, Nymphaeaceae, Onagraceae, Paeoniaceae, Phyl-
lanthaceae, Polygonaceae, Punicaceae, Rosaceae, Sapinda-
ceae, Saxifragaceae, Staphyleaceae, Theaceae, Tamaricaceae,
and Vitaceae [5, 7, 145, 166–172]. Among these plants are
woody, shrub, and herbaceous species, many of which are
traditionally used in medical practice in various countries.

In plants of the genus Rubus (raspberry, blackberry, and
cloudberry), ellagitannins have been shown to represent the
major group of phenolic compounds, while ellagitannins in
Fragaria spp. (strawberry) are the second largest group of
phenolics after anthocyanins [173]. The main ellagitannins
synthesized in Rubus spp. are sanguine H-6 and lambertia-
nine C [174, 175], which are also found as minor compo-
nents in Fragaria spp. [176]. In strawberry, the main
ellagitannin is agrimoniin, which has a structure of α-gal-
loyl-HHPP-glucose dimmer [176, 177]. Typical ellagitannin
of pomegranate (P. granatum) is punicalagin, while walnut
(Juglans regia L.) and pecan (C. illinoinensis) contain pedun-
culagin as the main ellagitannin [178].

Ellagitannins can be found in virtually all parts of plants
capable of synthesizing these compounds, including roots,
leaves, bark, wood, galls, fruits, and seeds. In many plant
species, these compounds occur simultaneously with gallo-
tannins or other groups of tannins. In particular, in pome-
granate, ellagitannins are mainly found in the pericarp,
bark, seeds, and flowers, while gallotannins are contained
mostly in leaves [179]; species of the genera Caesalpinia,
Quercus, Myroxylon, Rhus, Prosopis, and others also contain
both ellagitannins and gallotannins [167]; young oak leaves
contain mostly ellagitannins, and oak bark yields a mixture
of ellagitannins and condensed tannins (proanthocyanidins)
[154]. Ellagitannins are also found in oak-aged wines as a
result of their leakage from the oak barrel into the wine [178].

In oak wood, ellagitannins can represent up to 10% of
the dry material [180]. In pomegranate, the concentration
of its main ellagitannin, punicalagin, ranges from 11 to
20 g/kg in the mesocarp and peel and from 4 to 565mg/L
in juice [181]. Berries such as raspberry and cloudberry have
been shown to contain ellagitannins at concentrations of up
to 330mg/100 g of fresh weight (FW), while rose hips and
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different varieties of strawberry contain, respectively, 110
and around 70mg ellagitannins per 100 g FW; the content
of ellagitannins in jams is 22–32% of those in unprocessed
berries [145].

3.3. Decomposition of Ellagitannins. Ellagitannins can
decompose to yield EA enzymatically or under acidic and
alkaline conditions [182, 183]. Enzymatic hydrolysis of ella-
gitannins, which occurs naturally in plants, as well as their
enzymatic decomposition in the gastrointestinal tract of
humans and animals, when ellagitannin-containing plants
are consumed, leads to the formation of EA. In addition, a
range of microorganisms can degrade these compounds
under natural and laboratory conditions due to possessing
enzymes breaking the ester bonds between the HHDP
groups and glucose [168, 184, 185].

Current evidence based on laboratory studies of the
enzymatic degradation of ellagitannins to form EA suggests
that two alternative enzymes could potentially be involved
in this process. One of these may be tannase (tannin acyl
hydrolase, EC 3.1.1.20), an enzyme found in plants and
microorganisms, which is known to catalyze the breakdown
of hydrolyzable tannins, including ellagitannins [186, 187]
and ellagitannin acyl hydrolase (ellagitannase), an inducible
enzyme that has been reported to be produced by micromy-
cetic fungi [184]. However, recent studies have demonstrated
that EA release is strongly associated to ellagitannase activity
[184, 185, 188]. It has been shown that ellagitannase catalyzes
the hydrolysis of ester bonds between glucose and the HHDP
group of ellagitannins, giving rise to HHDP; the latter
undergoes rapid lactonization with the formation of EA
(Figure 1) [184]. Unlike tannase, ellagitannase does not act
on gallotannins [189].

3.4. Biological Effects of Ellagitannins. Numerous data sug-
gest that ellagitannins exhibit a wide range of biological
and clinically relevant activities and have the potential for
health promotion and medical applications, including can-
cer prevention and treatment [8, 190–197].

However, due to the complexity of their structure, most
of the ellagitannins from various sources are not absorbed
in the human gastrointestinal system. Therefore, the strong

bioactivity of dietary ellagitannins can be explained by their
ability to be hydrolyzed in the digestive system, primarily to
EA and other smaller polyphenols, and also to produce bio-
logically active metabolites in vivo. At the same time, the
health-promoting effects of ellagitannins are also related to
their inherent biological activity in addition to the effects
of their breakdown products. Many of beneficial health
effects of these phytochemicals are considered to be based
on their antioxidant activity, namely on their ability to scav-
enge free radicals and reactive oxygen species (ROS), as well
as on their capacity to participate in complexation processes
with macromolecules [158]. When analyzing the antioxidant
efficacy of EA and its derivatives (taking into account the
correlation of activity with the number of hydroxyl groups
in the molecule [144, 198]), these compounds can be
arranged in the following sequence (from left): ellagitannins,
free form of EA, and EA conjugates [199].

Ellagitannins are also capable of exhibiting potent anti-
microbial [200–203] and antiviral [204, 205], inhibiting
mutagenicity of carcinogens, and stimulating host-
mediated antitumor effects [6, 8, 94, 191, 193–195, 206, 207].

4. Degradation of Ellagic Acid and
Ellagitannins in the Gastrointestinal Tract

In addition to the free form of EA, which enters the body
with plant food, the major portion of this compound can
arise in the digestive tract of humans and animals as a
result of the hydrolytic degradation of ellagitannins pres-
ent in foodstuffs. Therefore, EA content can be used to
indirectly quantify ellagitannins present in plant foods
and also as a biomarker of dietary bioavailability of ellagi-
tannins [178, 208].

Studies on animal models and human volunteers con-
suming ellagitannin-rich food have shown that hydrolysis
of ellagitannins and EA release occurs in the stomach and/
or small intestine [209, 210]. Ester bonds in ellagitannins
are relatively slowly hydrolyzed, resulting in prolonged gas-
trointestinal secretion of EA [211].

In the gastrointestinal tract, EA has a low bioavailability
due to its hydrophobic moiety and very low water solubility
and is only partly absorbed in the small intestine [121].
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Figure 1: Formation of ellagic acid upon hydrolysis of ellagitannin [184].
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Unabsorbed EA molecules are further metabolized by intes-
tinal microorganisms of the large intestine to form a series of
metabolites known as urolithins (urolithins A–D) (Figure 2)
[209, 212]. Urolithins are a subgroup of dibenzo[b,d]pyran-
6-ones, which are formed by removing one of the lactone
groups present in EA via lactonase/decarboxylase activity,
followed by dehydroxylation reactions leading to the
sequential removal of hydroxyl groups with the formation
of urolithins D, C, A and B (tetrahydroxy-, trihydroxy-,
dihydroxy-, and monohydroxy-dibenzopyran-6-one metab-
olites, respectively) [212]. These metabolites are absorbed
into the bloodstream as their lipophilicity increases and
can circulate throughout the body before being excreted in
the urine [212–214].

In enterocytes and hepatocytes, urolithins can undergo
biotransformation with the formation of a combination of
urolithin metabolites [209]. The main metabolites of uro-
lithins found in plasma and urine are their glucuronyl and

sulfate conjugates [215]. The main ellagitannin metabolites
that appear in urine and plasma are urolithin A and B glucu-
ronide and sulfate, while the minor metabolites are urolithin
C and isourolithin A glucuronide [128, 216–218].

Urolithins appear in plasma and urine within a few
hours (5 hours or more) after ingestion of food containing
ellagitannins, being detectable in plasma and urine within
48–72 hours in free and conjugated forms [212, 219, 220].

EA and urolithins can accumulate in the intestine and
prostate [53, 221, 222]. After intraperitoneal and oral
administration of synthesized urolithins to mice, the con-
centrations of these compounds reached higher levels in
the prostate, colon, and intestine tissues compared with
other organs [222].

It is considered that pathway of EA metabolism to uro-
lithins is characteristic of mammals, since birds and insects
that feed on food containing ellagitannins do not produce
urolithins [215]. Ulaszewska et al. [218] point to the
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Figure 2: Absorption and metabolism routes of ellagitannins and ellagic acid.
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potential importance of urolithins as candidate biomarkers
for assessing the consumption of certain food items, such
as ellagitannin-rich berries (especially strawberries and rasp-
berries) in humans.

The presence of urolithins has also been reported in
ellagitannin-rich plants such as pomegranate leaves [223],
in the fruit of water caltrop (Trapa natans L.) [224, 225],
and in Nile tamarisk (Tamarix senegalensis DC.) flowers,
which also contain EA and are known in Egyptian tradi-
tional medicine as antiseptic, antipyretic, and anti-
inflammatory remedy [226]. Urolithins are also important
constituents of shilajit used in Ayurvedic medicine [227].

Urolithins are biologically active compounds exhibiting
strong antioxidant effects [178, 225, 228–230] and posses-
sing potential anti-inflammatory [211, 231], chemopreven-
tive [146], antiproliferative [35, 221], and neuroprotective
[232, 233] properties.

5. Preclinical Pharmacological Activities of
Ellagic Acid

EA is a polyphenol found in diverse fruits and nuts, which
has been associated with a variety of health benefits, many
of them related to oxidative stress [2, 211, 234–236].
Although it has been reported that EA has a low water solu-
bility and poor bioavailability, many efforts have been per-
formed to improve such conditions. Here, we will briefly
describe the experimental data supporting the benefits of
EA consumption in the prevention of oxidative stress and
inflammation, its potential use as a treatment of different
kinds of cancer, metabolic syndrome, as well as the protec-
tive potential of EA for liver, central nervous system
(CNS), and skin related diseases (Figure 3).

5.1. Role of EA against Oxidative Stress. Along with ascorbic
acid and α-tocopherol, EA is considered one of the major
antioxidant molecules [237]. The chemical structure of EA,
containing two lactones and four hydroxyl groups, enables
scavenging a wide variety of ROS. Although at physiological
pH and in aqueous solution EA can deactivate peroxyl rad-
icals, hydroxyl radicals, nitrogen dioxide, and peroxynitrite
[16, 238], better scavenging capacities have been computed
for ROS compared to reactive nitrogen species [239]. EA is
considered an unusual protector against oxidative stress,
due to its predicted capacity to regenerate and not being
reduced after its metabolism, enabling this polyphenolic
compound to provide continuous protection even at low
concentrations [16].

Ionic metals such as copper, iron, nickel, and cadmium
are a potential source of oxidative stress, and EA is able to
chelate these metals providing an additional protection
mechanism against this condition [16, 240, 241]. The impor-
tance of these mechanisms was demonstrated by Ahmed
et al. [242], where the consumption of EA (500μmol/kg
body weight) by female Wistar rats, protected them against
the cadmium-induced oxidative stress in the liver and
kidney.

Oxidative stress can damage DNA, and the production
of 8-oxo-2-deoxyguanosine is a typical marker of this pro-

cess. This can lead to mutations and in consequence to can-
cer and other health conditions. It was shown that EA
significantly decreases the amount of 8-oxo-2-deoxyguano-
sine produced after oxidative DNA damage [243], which
correlates well with the capacity of EA to bind DNA, likely
proving a protection mechanism against free radicals [244,
245]. Moreover, oxidative damage on DNA induced by
dopamine/Cu2+ was alleviated by EA, even when doses as
low as 1μM were used, reaching 50% of DNA decomposi-
tion inhibition [246].

EA is not only able to scavenge prooxidant agents, but
also EA increases the expression/activity of antioxidant
enzymes (superoxide dismutase, glutathione peroxidase, glu-
tathione reductase, and catalase) in Dalton’s lymphoma-
bearing mice treated with this phenolic compound [247]. A
similar regulation of the antioxidant enzymes and regulation
of the Nrf2 redox sensitive transcription factor was observed
in human dermal fibroblast, after UV-B light-induced oxida-
tive stress and treatment with EA [18].

In the initiation and propagation of lipid peroxidation,
hydroxyl and peroxyl radicals are involved. Low concentra-
tions of EA (20μM) have proven effective suppressing lipid
peroxidation induced by γ-radiation in microsomes [238].
Boyuk et al. [248] measured the levels of malondialdehyde
(MDA), a product of lipid peroxidation, in rats after ische-
mia reperfusion, and observed lower levels of this marker
in individuals treated with EA (85mg/kg body weight),
which presumably could be related to EA free radical scav-
enging effect.
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Figure 3: Biological effects of ellagic acid (EA).
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5.2. Anti-inflammatory Effects of EA and Its Consequences in
Associated Pathologies. There is a close relation between oxi-
dative stress and inflammation [249]. As previously
described, EA can provide protection against oxidative stress
via due to its own chemical properties but also modulating
the expression of enzymes involved in this process. Although
these antioxidative properties could help to prevent inflam-
mation, it has been demonstrated that EA has itself potent
anti-inflammatory activities in cell cultures (in vitro) and
in vivo [250].

Inflammation is a process that involves the activation or
inhibition of a number of cytokinins such as interleukins
(IL) and tumor necrosis factor- (TNF-) α, as well as tran-
scription factors, e.g., interferon gamma (IFN-γ) and nuclear
factor- (NF-) κB. On the other hand, the expression of adhe-
sion molecules in endothelial cells is recognized as an early
step in inflammation and atherogenesis. This enables an
interaction between the endothelium and immune cells
[251]. In a study where human aortic cells were treated with
EA (0.1-10μM), an inhibition of TNF-α-induced endothelial
activation and expression of both vascular cell adhesion
molecule- (VCAM-) 1 and intercellular cell adhesion mole-
cule- (ICAM-) 1 was observed [83]. This suggests that EA
has a high antiatherogenic potential and hence can provide
protection against cardiovascular diseases (Figure 4). In a
different study, the effects of EA supplementation were eval-
uated in human umbilical vein endothelial cells (HUVEC)
treated with IL-1β to induce the expression of VCAM-1,
ICAM-1, and E-selectin [252]. The application of EA (25-
50μM) reduced the expression of VCAM-1 and E-selectin
and significantly prevented the binding of monocytes to
IL-1β-induced HUVEC, confirming the anti-inflammatory
properties of EA and its potential role preventing atheroscle-
rosis. Furthermore, this study demonstrated that EA was
able to prevent the nuclear translocation of p50/p65 (both
subunits of NF-κB), which suggest that this polyphenolic
compound avoids the expression of adhesion molecules at
the transcriptional level. In this line, it has been shown that
EA can modulate the expression of proinflammatory media-

tors in vivo. For instance, when EA was administrated
(58.33mg/kg body weight) to an adjuvant-induced arthritis
mouse model, the serum levels of the proinflammatory cyto-
kines IL-1β, TNF-α, and IL-17 were significantly reduced
[253]. EA-mediated reduction in IL-17 (at the mRNA and
protein level) was also observed in C57BL/6 J mice fed with
0.2% cup to induce oligodendrocytes depletion [254]. In this
investigation, a high dose of EA (80mg/kg body weight/day/
i.p., 4 weeks) prevented brain damage via reduction of neu-
roinflammation and toxic effects of cup on mature oligoden-
drocytes, meaning that EA could be a suitable therapeutic
agent for diseases such as multiple sclerosis.

5.3. Potential Chemopreventive and Therapeutic Uses of EA
in Cancer. Several studies have provided evidence of the che-
mopreventive and therapeutic effects of EA either derived
from the diet or administered via different matrices opti-
mized to improve its bioavailability [235, 250]. Since oxida-
tive stress causes multiple damages on DNA, inducing
mutations in the protooncogenes and tumor suppressor
genes, EA could be a potential agent to promote the antiox-
idant response and therefore overcome the carcinogenesis
process. This was evaluated in Dalton’s lymphoma-bearing
mice treated with three different doses (40, 60, and 80mg/
kg body weight) of EA [247]. All doses of EA contributed
efficiently to reduce the Protein C signaling (involved in cell
proliferation and tumor growth) via NF-κB and also
improved the antioxidant defense. These effects could
explain the cancer preventive role of EA.

In vitro studies where different cancer cell lines, includ-
ing Caco-2, breast, and human prostatic cancer cells, were
treated with EA (10-100μM) demonstrated the strong anti-
proliferative activity exerted by this polyphenolic compound
[255]. The best antiproliferative effects were observed in
Caco-2 cells, whereas breast cancer cells where the most
resistant ones to EA application. Another study demon-
strated that EA induces apoptosis on Caco-2 via the intrinsic
pathway, implying mitochondrial release of cytochrome c
and activation of caspases [53]. Furthermore, treatment of
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Caco-2 cells and HCT-116 cells with EA revealed expression
changes in several genes involved in diverse cell functions
such as proliferation, cell cycle, apoptosis, and angiogenesis
[256, 257]. The anticancerous effect of EA against HCT-15
colon adenocarcinoma cells was recently evaluated by Ume-
salma et al. [258]. In this study, the EA treatment decreased
the activity of alkaline phosphatase and lactate dehydroge-
nase, pointing to an antiproliferative and cytotoxic effect,
respectively. Interestingly, EA increased the production of
ROS, induced apoptosis, and decreased cell proliferation of
HCT-15 cells, suggesting that it could act as an efficient
agent against colon cancer. On the other hand, several inves-
tigations have focused on the prevention and therapy poten-
tial of AE on breast cancer. Among the effects of EA in
MCF-7 cells (a model for breast cancer) are (1) prevention
of cell proliferation and migration, (2) apoptosis induction,
inhibition of angiogenesis, (3) inhibition of cell growth,
and (4) decreased cell viability (Figure 5) [259]. In addition,
PJ and three of its components (including EA) are inhibitory
of metastatic processes in breast cancer and modulate the
expression of genes related to cell migration, cell adhesion,
and those that control chemotaxis [260]. Since a major lim-
itation of EA as chemopreventive and therapeutic agent
against cancer relies on its low bioavailability, many efforts
have been directed towards improvements in this direction.
For instance, nanoencapsulation of pomegranate polyphe-
nols including EA and punicalagin resulted in efficient
uptake by MCF-7 cells, and a 2- to 12-fold enhanced effect
on growth inhibition, when compared to free polyphenols
[261]. As important as breast cancer is prostate cancer,
which is responsible for numerous deaths of men worldwide
[262]. In early stages, prostate cancer can be treated with
hormones, but over time, the cancer turns insensitive to hor-
mones and becomes more aggressive and metastasizes [263].
EA along with luteolin and punicic acid were able to inhibit
hormone independent and dependent growth of prostate
cancer cells [264] but also proved to be effective preventing
metastasis in vivo using mouse models [265]. In the same
study, the combination of polyphenols was effective in pre-
venting angiogenesis and inhibiting human endothelial cell
tube formation, thus providing an effective alternative to
inhibit prostate cancer progression and metastasis.

5.4. Positive Effects of EA on Glucose and Lipid Metabolism
and Its Protective Effect on Organs. Elevated lipid and glu-
cose levels, along with abdominal obesity, high blood pres-
sure, and low high-density lipoprotein- (HDL-) cholesterol
levels, are among the factors increasing the risks for heart
disease, diabetes, and stroke and are considered the main
features of metabolic syndrome. Oxidative stress contributes
to the pathogenesis of type 2 diabetes and the concomitant
diabetic vascular complications [266–268]. Among the posi-
tive effects of EA on glucose metabolism and diabetes in
murine models are (a) reduction of glucose levels; (b) anti-
oxidant, antiglycation, and ant-inflammatory effects; and
(c) prevention of micro- and macrovascular diabetic compli-
cations [51]. In a recent study, free EA and EA nanoparticles
were administrated to diabetic rats fed a high-fat diet. The
results demonstrated that EA nanoparticles improved glu-
cose levels and body weight for longer periods compared
to regular EA [269]. Moreover, better results for EA nano-
particles were also observed on lipid profile markers, such
as total cholesterol, triglycerides, low-density lipoprotein
(LDL), and very-low-density lipoprotein (VLDL), and insu-
lin production levels. Resistin is an adipocytokine consid-
ered to act as a link between obesity and type 2 diabetes.
When EA was supplemented to a mouse model for obese
type 2 diabetes fed a high-fat diet, improved serum lipid pro-
file and hepatic steatosis were observed [270]. Furthermore,
reduced serum resistin levels were found in adipose tissue,
along with higher mRNA levels of genes that promote lipid
oxidation, suggesting a possible mechanics to improve
obesity-induced dyslipidemia.

Thanks to its efficient antioxidant capacity, EA exhibits
promising activities as a potential organ protective agent
in vitro and in vivo. For instance, some of the main neuro-
protective effects of EA against different stressor compounds
used in rat models are lower levels of DNA damage, IL
downregulation, decreased lipid peroxidation, lower reactive
species production and improvements in memory function,
neuronal function, and antioxidant enzyme production
[271]. Hepatoprotective effects have been attributed to EA
since it improves the hepatic functions against toxic and
pathological conditions, due to its antioxidant, antihepato-
toxic, antisteatotic, anticholestatic, antifibrogenic, antihepa-
tocarcinogenic, and antiviral properties [64]. Several
experiments on murine models have shown that the molec-
ular mechanisms of EA to exert its hepatoprotective role
include the scavenging of free radicals, regulation of antiox-
idant enzymes, modulation of proinflammatory cytokines
synthesis, the regulation of lipids synthesis, and degradation,
among others (Figure 6) [64]. Interestingly, EA has potential
antiviral properties against hepatitis B [272] and hepatitis C
[273] virus, both able to lead in the long term to fibrosis, cir-
rhosis and hepatocellular carcinoma [274].

UV-B radiation induces of collagen breakdown and
inflammation in skin cell [275, 276]. To test the potential
protective effect of EA on keratinocytes and human dermal
fibroblast, Bae et al. [84] exposed these cells to UV-B radia-
tion and treated them with the phenolic compound (1-
10μM). An attenuation of the UV-B damage in both types
of cells was observed, along with a decrease in collagen
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degradation because of lower levels metalloproteinase pro-
duction. Additionally, the same authors found that topical
application of EA (10μM) protected hairless mice from skin
wrinkle formation when they were exposed to UV-B. This
positive response was associated with lower production of
proinflammatory cytokines (IL-1β and IL-6) and mitigation
of ICAM-1 expression. The use of EA as functional ingredi-
ent in cosmetic products has been proposed due to its anti-
oxidant, skin-lightening, and sunscreen properties. In this
line, efforts have been made to improve EA solubility and
stability through the preparation of gold nanoparticles
wrapped with chitosan to absorb EA [277]. Good and prom-
ising results were obtained when the above-mentioned prop-
erties were evaluated and highlight as well that the
nanoparticles were produced according green chemistry
principles.

6. Ellagic Acid in Clinical Trials

In this review, we included clinical trials that test the efficacy
of EA in itself (Table 2). However, we also considered studies
that evaluated primary EA sources, i.e., pomegranate (P.
granatum). The reader should interpret those results consid-
ering that said primary sources contain other compounds
besides EA. Thus, we cannot evaluate its effect directly. Also,
where applicable, we focused on clinical/patient-centered
endpoints and not surrogate endpoints.

6.1. Exercise Performance and Postexercise Recovery. A 2018
systematic review with eleven studies and 230 participants
concluded that pomegranate supplementation might
improve strength performance and endurance and accelerate
postexercise recovery. PJ should contain at least one gram of
polyphenols per 750mL (recommended amount), taken at

least one hour before exercise and within 48 hours after
exercise. It is also most effective in resistance training in
well-trained populations [278].

6.2. Cognitive Function. Liu et al. [279] performed a ran-
domized clinical trial (RCT) that evaluated EA’s efficacy on
cognitive improvement in middle-aged men using the
Wechsler Adult Intelligence Scale-Revised (WAIS-R) and
Montreal Cognitive Assessment test (MoCA). Patients were
randomly assigned to receive 50mg EA or placebo daily
for 12 weeks. While the EA arm obtained statistically signif-
icant higher scores in overweight men, there were no differ-
ences in patients with normal body mass index (BMI) [279].
However, the reader should interpret these results with cau-
tion. The average scores in each group are not present. Still,
a rough estimate based on graphs hints that the difference
between groups might not be clinically significant, as
WAIS-R scores in both groups were within normal limits.
More recent WAIS versions are preferred as a measurement
scale [298]. Also, there is no fixed cut-off point for the
MoCA test to understand if there was a clear difference in
cognitive function between groups. Furthermore, twelve
weeks is a relatively short time to consider significant cogni-
tion improvements.

An additional RCT with a 12-month follow-up assessed
PJ’s memory effects (8 oz daily, 29mg EA) on middle-aged
and older adults. The authors used the Brief Visuospatial
Memory Test-Revised (BVMT-R) and Buschke Selective
Reminding Test (SRT) as primary outcome instruments. In
general, there were no significant differences between the
intervention and placebo groups. Nevertheless, visual learn-
ing remained the same since baseline in patients that drank
PJ while it declined in the placebo group. Overweight or
obese status did not interact with the treatment effect [299].
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6.3. Skin Conditions. A systematic review focused on the effi-
cacy of natural ingredients in managing hyperpigmentation
disorders found two RCTs that evaluated EA use [280].
One study assessed using a preparation of 0.5% EA and
0.1% salicylic acid and compared it to 4% hydroquinone in
patients with hyperpigmentation and dark spots. After 12
weeks of treatment, the EA and salicylic compound per-
formed similarly to the benchmark agent. Additionally, the
sensory analysis seems to give the novel combination an
edge. The second study compared the efficacy of 1% arbutin,
synthetic 1% EA, and synthetic 1% EA combined with plant
extracts containing natural EA in treating 30 patients with
melasma. All three treatment groups showed significant
improvement after treatment. However, both studies have
limitations. The first study did not consider EA in itself
but as a combination with salicylic acid [281]. The second
study did not compare the extracts independently [282].

Henning et al. [283] randomized 74 women to receive
8 oz of PJ (23mg EA), 1000mg of pomegranate extract
(same dose of EA as juice), or placebo for twelve weeks. They
found that either the liquid or the placebo significantly
increased the minimal erythema dose. Therefore, it may lead
to increased UV damage protection [283].

Platycarya strobilacea Siebold & Zucc. extract, mainly
containing EA, also seems to have antiwrinkle activity,
increasing the expression of type I collagen mRNA and more
significant visual differences compared to placebo [284].

6.4. Insulin Resistance and Diabetes. A 2020 systematic review
on the hypoglycemic effect of pomegranate by Virgen-Carrillo
et al. [300] revealed that the evidence’s methodology is hetero-
geneous, including study design and intervention characteris-
tics. The studies’ patients varied widely in clinical features:

healthy, obese, diabetic people, metabolic syndrome, cardio-
vascular pathologies, and women with polycystic ovarian
syndrome [300].

Of the twelve studies considered in this review, two
report a significant reduction in glucose levels after PJ inges-
tion, one after 3 hours, and the second after six weeks after
exposure [285, 286]. However, these are pretest-posttest
studies; there is no placebo or standard care group used as
a comparison. Additionally, these studies on patients with
type 2 diabetes do not report the use of hypoglycemic drugs.
The studies that indicate that used hypoglycemic drugs did
not find a positive effect with PJ [289, 301, 302]. Amor
et al. [51] also suggest that the impact of EA on glucose man-
agement is inconclusive.

6.5. Weight and Body Composition. “Functional foods” such
as pomegranate have been considered a tool in managing
overweight and obesity. Yet, Gheflati et al. [287] report on
their systematic review that there was no significant effect
of pomegranate consumption on body weight, BMI, waist
circumference, or body fat percentage.

6.6. Cardiovascular Disease Risk Factors

6.6.1. Carotid Artery Intima-Media Thickness (CAIMT).
This is a surrogate marker of atherosclerosis and is consid-
ered a strong predictor for stroke and myocardial infarction.
Aviram et al. [288] investigated whether the CAIMT
changes by consuming PJ in patients with asymptomatic
carotid artery stenosis. There were a total of 19 patients in
the study; 10 of them received the intervention. After one
year of treatment, there was a statistically significant
decrease in CAIMT (p < 0:01). The authors do not specify

Table 2: Ellagic acid in clinical trials.

Clinical trials Results References

Exercise performance Improves strength performance and endurance and accelerates postexercise recovery [278]

Cognitive function Cognitive improvement in overweight men; improves visual learning [279]

Skin conditions Induce improvement in patients with hyperpigmentation and dark spots [280]

Patients with melasma showed significant improvement after treatment [281, 282]

Lead to increased UV damage protection [283]

Have antiwrinkle activity, increasing the expression of type I collagen mRNA [284]

Insulin resistance and diabetes Induce reduction in blood glucose levels [285, 286]

Weight and body composition
No significant effect on body weight, body mass index, waist circumference, or

body fat percentage
[287]

Cardiovascular disease risk factors
Decrease carotid artery intima-media thickness; decrease in mean peak systolic

velocity and end-diastolic velocity of carotid arteries
[288]

Reduction in stress-induced ischemia [289]

Significant reductions in systolic and diastolic blood pressure [290, 291]

No effect on plasma concentrations of cholesterol, LDL-C, HDL-C, or triglycerides [292, 293]

Osteoarthritis Significant decrease in WOMAC stiffness and physical function scores [294]

Fatigue, insomnia Improvement in fatigue and insomnia questionnaire scores [295]

Prostate cancer
Ellagic acid effects as adjuvant therapy for chemotherapeutic treatment: less risk

of developing neutropenia than patients receiving chemotherapy alone; PSA reduction;
reduction gastrointestinal side effects

[296]

Human fertility Increase in total number of motile spermatozoa [297]
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the mean CAIMT nor confidence intervals, but from the
graphs, we can estimate that the CAIMT reduces from
1.5mm to 1.1mm, approximately. The mean CAIMT and
the standard deviation were, however, reported for patients
in the placebo group. There was a statistically significant
increase, from1:52 ± 0:03 to1:65mm + 0:04mm (p < 0:01)
after a year of follow-up. However, there is no report of
head-to-head comparisons between groups. Additionally, a
subgroup of patients received the treatment for three years,
and there is no data about the final mean CAIMT for those
patients [288].

Davidson et al. [291] evaluated PJ’s effects on CAIMT in
patients at moderate risk for coronary heart disease. After 18
months of treatment, participants in the intervention group
(n = 146) showed no significant difference in mean CAIMT
(0.79 vs. 0.80, p = 0:168) or the overall CAIMT progression
rate between PJ and control treatments (0:005 ± 0:004mm,
p = 0:654) [291].

6.6.2. Peak Systolic Velocity (PSV) and End-Diastolic Velocity
(EDV). In [288], there was a statistically significant decrease
in mean PSV and EDV of both left and right carotid arteries
after PJ consumption (p < 0:01) after one year of treatment.
There is no report of exact mean values or confidence inter-
vals for either the control or intervention group either before
or after treatment; there is only a graph that roughly hints at
the mean changes in the PJ group. Therefore, there are no
data on comparisons between groups. Again, as with
CAIMT, they do not report data on patients that received
treatment for three years [288].

6.6.3. Stress-Induced Ischemia. In [289], patients with sta-
ble coronary heart disease were randomly assigned to a
PJ group or a placebo group. Participants underwent
electrocardiographic-gated myocardial perfusion single-
photon emission computed tomographic technetium-99m
tetrofosmin scintigraphy at rest and during stress at baseline
and three months after. There was a significant reduction
(p < 0:05) in stress-induced ischemia in the PJ arm (summed
difference score:−0:8 ± 2:7) compared to the placebo group
(SDS1:2 ± 3:1) [289].

6.6.4. Blood Pressure. The antioxidant activity of pomegran-
ate and some evidence in animals that show it can inhibit the
angiotensin-converting enzyme has made pomegranate an
attractive compound for managing hypertension. However,
Gbinigie et al. [303] indicate that there is conflicting evi-
dence to support these benefits. The authors included eight
RCTs in the review, and three studies reported significant
reductions in systolic blood pressure. Two reported a signif-
icant decrease in diastolic blood pressure in patients receiv-
ing pomegranate. The writers expressed their concerns
about the quality of the study design and the studies’ short
duration [291].

A different systematic review concluded significant blood
pressure differences between those receiving pomegranate
and controls [290]. However, there are some differences
between these reviews. Although the second summary of the
evidence includes an additional study that shows a significant

decrease in systolic blood pressure, it does not consider a study
in hemodialysis patients that shows no differences. Also, an
RCT by Sohrab et al. [301], not included in [290], does not
preestablish blood pressure as an outcome. Therefore, it
should not be considered. Something concerning is that the
second review recognizes two studies as evidence of a statisti-
cal difference between those receiving pomegranate and con-
trols, when, in fact, those studies report no difference. For
this reason, this review inclines to agree with [303].

6.6.5. Lipid Profile. Although polyphenols seem to provide
antioxidant activity and positively affect cardiovascular risk
factors, it might not effectively manage lipid levels. A 2016
systematic review focused on twelve RCTs evaluating pome-
granate consumption’s benefits on the lipid profile found no
significant effect of pomegranate consumption on plasma
concentrations of cholesterol, LDL-C, HDL-C, or triglycer-
ides [293]. These results are supported by a 2020 systematic
review focused on the same subject [292].

6.7. Osteoarthritis. A randomized controlled trial without a
placebo published in 2016 examined PJ’s effects on clinical
signs, inflammation, and antioxidant status in patients with
knee osteoarthritis. After six weeks of treatment, patients
who drank PJ had a statistically significant decrease in
WOMAC stiffness and physical function scores (fewer
symptoms) than baseline. However, there were no differ-
ences between the intervention and control groups [294].

6.8. Fatigue and Insomnia. A small nonrandomized con-
trolled trial without a placebo evaluated the benefits of
Robuvit® (extract from wood of Quercus robur L. containing
ellagitannins roburin A-E, EA and gallic acid) on fatigue and
insomnia. Patients chose which group to enter, and the
Fatigue Severity Scale assessed fatigue while the Regensburg
Insomnia Scale and Pittsburgh Sleep Quality Index assessed
insomnia. Though there was a statistically significant
improvement in fatigue and insomnia questionnaire scores
after eight weeks of taking Robuvit®, the study does not
report comparisons between the intervention and control
group [295].

6.9. Prostate Cancer. Falsaperla et al. [296] evaluated EA
effects as an adjuvant therapy for chemotherapeutic treat-
ment in men with hormone-refractory prostate cancer
(HRPC). Patients receiving EA had less risk of developing
neutropenia than patients receiving chemotherapy alone
(33.3% vs. 74.9%, respectively, p < 0:05). Gastrointestinal side
effects seemed lower in the intervention group, although
results were not statistically significant. Other positive out-
comes in the EA group, though statistically nonsignificant,
were as follows: PSA reduction, cases with complete response
to chemotherapy, pain control, and quality of life. There were
no differences in overall survival and progression-free survival
between groups [296]. It is worth mentioning that the chemo-
therapy used was vinorelbine and estramustine phosphate,
and other medications are more effective in this type of cancer,
i.e., docetaxel [304]. Therefore, studies using first-line thera-
pies should be considered when conducting new clinical trials.
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6.10. Human Fertility. A 2014 Danish RCT evaluated the
effects of tablets’ consumption with P. granatum extract
and A. galanga powder’s standardized content on the total
number of motile spermatozoa (TMSC) and sperm mor-
phology defined by strict criteria in adult men with reduced
semen quality. After three months of treatment, there was a
statistically significant increase in TMSC after three months
of the intervention (p = 0:026). However, the difference in
follow-up TMSC between groups was not statistically signif-
icant. There were no differences in sperm morphology after
treatment. The study size was small (n = 66), which might be
one reason why no statistically significant differences were
found. There is a need for larger RCTs, preferably evaluating
EA with no combination [297].

7. Conclusions

Known as a naturally occurring bioactive and pharmacolog-
ically active polyphenolic compound, EA possesses a
remarkable broad spectrum of therapeutic activities in addi-
tion to pharmacological potentials to treat numerous dis-
eases and ailments. Findings from this review indicate EA
may be involved in regulating a spectrum of cellular signal-
ing pathways to prevent, mitigate, or slow down the progres-
sion of chronic disorders, including cardiovascular and
neurodegenerative diseases, diabetes, and cancer. In addi-
tion, there is also evidence of a positive therapeutic effect
of the combination of EA with other antioxidants, known
for their multiple bioactivities and therapeutic potential.
Due to a wide range of biological effects of EA, edible plants
containing this phytochemical and its hydrolyzable deriva-
tives, mainly ellagitannins, are a valuable source of EA for
humans and belong to functional foods that promote health
and may reduce the risk of disease. EA is also currently used
in the pharmaceutical and cosmetics industries; conse-
quently, various plant species are now being studied for EA
content in order to find novel sources of EA in human nutri-
tion, as well as sources of raw materials for the preparation
of functional nutritional supplements and nutraceuticals.
In modern medicine, natural substances represent an unlim-
ited source of active molecules whose medical applications
may increase in the near future. For this reason, it is very
important to clarify the molecular mechanisms underlying
the observed beneficial activities. Currently for EA, as for
many other natural compounds, it is not completely clear
whether for some observed beneficial effects, such as anti-
neoplastic activity, a transcriptional action is necessary or
whether they are mainly related to epigenetic action. There-
fore, a large number of nutraceutical and therapeutic interven-
tions can be designed, considering the possible mechanisms of
this active agent and its precursors.
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