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Featured Application: The possible application of the work is in the forecast of the stability of
masonry or concrete structures. The result is very useful in addressing the restoration and inter-
preting the results of the experimental monitoring of the structures during their lifetime. The
nonlinear analysis conducted by means of the upper-bound theorem of the limit design allows
for evaluating the response to different randomly variable and unknown load paths giving the
overall safety factor. In this way, the real-life behavior of the structures can be addressed by
practitioners that must monitor and restore the art structures.

Abstract: The calculation of the collapse load of spherical domes is addressed using a semianalytical
approach under the hypothesis of small displacements and perfect plasticity. The procedure is
based on the numerical approximation of the self-stress that represents the projection of the balance
equilibrium null space on a finite dimensional manifold. The so-obtained self-equilibrated stress
span is superimposed onto a finite-element linear elastic solution to the prescribed loads yielding to
the statically admissible set accordingly to Melan’s theorem. The compatibility of the stress with the
constitutive law of the material was enforced using a linearized limit domain in terms of generalized
stress, namely, axial force and bending moment along the local spherical curvilinear coordinates.
The procedure was tested with reference to numerical and experimental data from the literature,
confirming the accuracy of the proposed method. A comparison with the literature confirms that the
buckling load was much greater than the two plastic collapse loads calculated through the proposed
procedure and reported in the quoted literature.

Keywords: limit analysis of domes; concrete caps; experiment comparison; not tensile-resistant
materials; finite element

1. Introduction

Spherical-shell safety to applied loads is related to the loss of equilibrium consequent
to geometric- or constitutive-limit attainment. The geometric limit trespass consists of
the buckling or snapping phenomenon insurgence, while constitutive limits involve the
plastic collapse of the structure. The two phenomena are connected, since plastic collapse
occurs when the buckling limit is attained because of the great stress level consequent to
large deflections arising when the structure buckles. Analogously, the buckling occurs
when, due to plastic collapse, large deflections appear. Combined limit evaluation implies
coupled formulation that can generally be resolved only through a path following analysis.
In the following, we refers to limit analysis only in order to obtain the collapse loads and
mechanisms under the hypotheses of small displacement plasticity. To calculate the limit
load for the plastic collapse of the structures, limit analysis results in one of the tools that
have received major interest. A complete survey and the proposal of a finite-element
approach for domes and shells using cylindrical hinges between element interfaces where
the dissipation is localized are in [1]. Recently, static analysis has received renewed interest
in the masonry structure framework due to the trust-line method and limit equilibrium
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application [2–5]. Limit analysis is used for the safety assessment of concrete domes and
achesfor large structures, as shown in [6–8]. In particular, the authors in [9,10] investigated
concrete vessels’ composite structures considering collapse and buckling load evaluation.
In [11], an application of the kinematic method was presented for a first-order assessment
strategy of the structure safety. Size effects and the corresponding influence on the structural
limit behavior is addressed differently by [12] considering dome stability under spreading
supports. Experimental and analytical results using limit analysis were presented in [13],
where the results were compared with those obtained by the experimental campaign
reported in [14]. In particular, the authors in [13] highlighted that the collapse load of
concrete caps is calculated through crack-line development balance using an analytical
formulation that applies the upper-bound kinematic approach of limit analysis. Moreover,
the collapse formula was compared to the experimental campaign from [14] and to the
buckling load calculated in [15]; the accuracy of the proposed limit analysis is addressed.
In particular, the authors in [13] reported that the collapse load from the experimental
campaign was predicted by the limit analysis rather than buckling theoretical formulas.
In [16–18], a more comprehensive study can be found.

In the present paper, we discuss an application of the semianalytical formulation that
presents the lower-bound theorem of the limit analysis to assess dome collapse load on the
basis of the self-equilibrated solution of the balance equations. The present work applies
the procedure that is reported in [16,18] to slender concrete caps studied by [14] with the
scope of comparing the proposed semianalytical formulation to the experiments and the
theoretical formulation from [13]. The limit analysis lower-bound proposed formulation is
rather general, can deal with any structure for which an analytical balance equation exists,
and can be solved numerically for calculating the self-equilibrated stress set. The load can
vary in time both monotonically and randomly, provided that the time variation is slow
enough to prevent inertial effects. The procedure recalls Melan’s theorem; hence, it requires
knowledge of a linearly elastic solution due to the applied loads. Such an elastic solution
was obtained through a homemade APDL routine written for finite-element program
ANSYS© Multiphysics (ANSYS Inc., Canonsburg, PA, USA). The use of a finite element to
obtain the elastic solution allows for freeing the particular solution from the knowledge
of actual elastic stress. The compatibility condition was formulated according to Melan’s
theorem in the stress space [19], and the eigensolution was discretized to be handled in
a numerical optimization program that finds the load multiplier. The results from the
proposed formulation showed good agreement with the experiments by Vandepitte and
Lagae [14], and with the analogous calculation presented in [13,20] that had been obtained
with a somewhat different application of the limit analysis formulated in terms of collapse
lines and the upper-bound theorem.

This work starts with reporting a brief outline of the general formulation. First, the
spherical domes equilibrium equations are recalled, and the eigensolution, i.e., the solution
of the homogeneous equation, is introduced in discretized form. In the subsequent section,
the constitutive and compatibility equations of the unreinforced concrete that constitute the
cap material are described, and the limit domain is derived in linearized form. Furthermore,
the case study and the linear elastic solution derived using finite-element linear analysis
are presented. Lastly, the optimization program used to obtain the collapse load multiplier
is described, and the results are discussed. The result depends on the parameters of the
eigensolution, which were the design variables that represent the Melan’s residuals of the
structure at the incoming collapse.

2. Equilibrium and Self-Equilibrium of Domes

This section briefly recalls a spherical shell equilibrium equation; the complete treat-
ment can be found in [21]. The formulation used generalized stress as mechanical parame-
ters; hence, the stress is described through internal forces N, T, and M that are the resultant
components, axial, and shear forces, respectively, and the resultant bending moment of the
stress acting on the section; see Figure 1. Only the axial force and bending moment were
assumed to influence the structure’s safety, since the shear effects were negligible due to
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the small thickness of the caps. The internal forces were statically equivalent to a single one
of magnitude N acting on point C called the center of thrust of the section (Figure 2). The
line connecting all the centers along the structure’s axis is called the structure’s thrust line,
depending on the actual load condition.

The procedure that follows was widely described in [16,18]. The solution of the
homogeneous form of the balance equations represents the domain of the eigenstress of the
shell. The set of equilibrium equations of a spherical dome had the following expression,
with the symbols summarized in Figure 3:

d(N1R1sinθ)
dθ − N2R1cosθ − T1R1sinθ = −XR2

1sinθ

N1R1sinθ + N2R1sinθ + d(T1R1sinθ)
dθ = ZR2

1sinθ
(M1R1sinθ)

dθ −M2R1cosθ − T1R2
1sinθ = 0

(1)

Figure 1. Stress resultants on the dome infinitesimal element.

Figure 2. Center of thrust at a cross-section.

Figure 3. (a) Geometric parameters; (b) infinitesimal element of the dome.

Due to the symmetry of the loads and shell, the stress depended only on colatitude
angle θ. Hence, self-equilibrated generalized stress set C =

{
N0

1 , M0
1, T0

1 , N0
2 , M0

2
}

satisfies
the following equations: 

d(N0
1 r)

dθ − N0
1 R1cosθ − T0

1 r = 0

N0
1 r + N0

1 R1sinθ +
d(T0

1 r)
dθ = 0

d(M0
1r)

dθ −M0
2R1cosθ − T0

1 R1r = 0

(2)
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A set of polynomial shape functions of degree n are used to the numerical approxima-
tion of the solution of Equation (2).

Sn(θ) =
[
θ0, θ1, . . . , θn/n!

]
(3)

whose derivatives are:

dSn(θ) =

[
0, 1, θ, . . . ,

θn−1

(n− 1)!

]
= [0] ∪ Sn−1(θ) (4)

Five nodal parameters sets were used to approximate the five unknown self-equilibrated
stresses. Using the same approximation for all stress functions results in the following expressions:



N0
1 = Sn(θ)N1

N0
2 = Sn(θ)N2

M0
1 = Sn(θ)M1

M0
2 = Sn(θ)M2

T0
1 = Sn(θ)T1

,



N1 = [n10, n11, . . . , n1n]
T

N2 = [n20, n21, . . . , n2n]
T

M1 = [m10, m11, . . . , m1n]
T

M2 = [m20, m21, . . . , m2n]
T

T1 = [t10, t11, . . . , t1n]
T

,



d(N0
1 r)

dθ = dSn(θ)N1
d(N0

2 r)
dθ = dSn(θ)N2

d(M0
1r)

dθ = dSn(θ)M1
d(M0

2r)
dθ = dSn(θ)M2

d(T0
1 r)

dθ = dSn(θ)T1

(5)

By substituting Equation (5) into Equation (2), and collecting the unknown param-
eters into a single vector x = [N1, N2, M1, M2, T1], the self-equilibrium equations can be
rewritten in compact matrix form:

Ax = 0 (6)

where A is:

A(θ) =

 ( dr
dθ Sn(θ)+rdSn(θ)) −Sn(θ)R1cos(θ) 0 0 −rSn(θ)

rSn(θ) Sn(θ)R1cos(θ) 0 0 dr
dθ Sn(θ)+rdSn(θ))

0 0 dr
dθ Sn(θ)+rdSn(θ)) −Sn(θ)R1cos(θ) −rSn(θ)

 (7)

Equation (6) has no unique solution since the number of unknowns is greater than
the number of equations. Consequently, it is possible to find only three of the unknown
variables as a function of the 5n− 3 leftover ones, represented by vector c, namely, the basis
that spans the set of self-equilibrated stress:

x =

[
K
I

]
c (8)

Moreover, Equation (6) is numerically solved through shape functions S. Vector c con-
tains the subset of the independent coefficients of the polynomial approximation resulting
from the self-equilibrium equations’ solution:

N0
1

N0
2

M0
1

M0
2

T0
1

 =


K0

N1
K0

N2
K0

M1
K0

M2
K0

T1

c (9)

where matrices K0
N1,K0

N2,K0
M1,K0

M2, and K0
T1 collect the shape functions reassembled to

fulfil the solution of the Equation (6).
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3. Constitutive Equations

The constitutive equation governs the compatibility constraints of the optimization
program that calculates the limit load multiplier. In the actual application, we refers to
not-tensile-resistant (NTR) material, namely, uniaxial tensile strength σ0

t is:

σ0
t = 0 (10)

and compression strength limit σ0
c belongs to the bounds

−∞ ≤ σ0
c < 0 (11)

where the lower-bound limit σ0
c = −∞ corresponds to the hypothesis of Heyman [22].

The limit domain was derived for the rectangular cross-section with the unit width
of the concrete cap. The limit domain is described in terms of the generalized stress, N,
and M considering that Bernoulli’s hypothesis of plane cross-sections holds true as in [20].
The compression strength was considered to be finite, and the admissible domain was
obtained with the balance equation regarding the neutral axis of the section. This furnished
the limit-bending moment for any coupled axial force. The domain is described by the two
relations giving the bending moment as a function of the axial force.

M = ∓N(N − bhσ0
c )

2bσ0
c

(12)

where h and b are the height and width of the section, respectively. Figure 4 shows the
resulting domain obtained using the data reported in [20].

Figure 4. Cap limit domain per unit width cross-section; blue and orange curves correspond to +/−
sign in Equation (12).

The limit domain governs the compatibility constraints of the optimization program
that furnishes the collapse load multiplayer. In the following, a linear programming
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technique is employed. Consequently, a linearization of the domain is introduced. Starting
from the maximal bending moment My in an absolute value that corresponds to the
stationary points of the domain boundary curves in Figure 4, four linear interpolations of
the curved domain were obtained. The set of linearized inequalities that represent the limit
domain approximation are: 

M < − h
4 N

M > h
4 N

M < + h
4 N + 2My

M > − h
4 N − 2My

(13)

Figure 5 depicts the shape of the linearized domain.

Figure 5. Linearization of the limit domain; blue, orange lines correspond to the sign of Equation (13).

Following Melan’s theorem, the limit multiplier of prescribed load paths either mono-
tonically increasing or randomly varying is obtained by maximizing the load multiplier
under the constraint that the sum of the elastic response to the loads and a self-equilibrated
time-independent stress belongs to the admissible domain. The procedures consist of
constrained maximal research where the objective function is the load multiplier. The
optimization constraints are Linear Inequalities (13). The linearized domain is a proper
subset of the original one. Consequently, the admissible stress state satisfying the linearized
compatibility constraint constitutes an admissible stress state for the nonlinear domain too.
The numerical results that had been obtained introducing the self-equilibrated solution (9)
were collocated on discrete points of the domes corresponding to a mesh of parallels and
meridians that were individuated. The same mesh was used to obtain the elastic solution
and the collocation points of the representation (5) of the self-equilibrated solution. The
case study concerned axial symmetrical structure under axial symmetrical loads, so only
one meridian was studied where a finite number of the colatitude angle was set.
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The constrained maximal program had the following numerical form:

sup
c

k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k ∈ R+ :


4(M0

ij + kMe
ij ) ≤ −h(N0

ij + kNe
ij )

4(M0
ij + kMe

ij ≥ h(N0
ij + kNe

ij )

4(M0
ij + kMe

ij ) ≤ h(N0
ij + kNe

ij ) + 8My

4(M0
ij + kMe

ij ) ≥ −h(N0
ij + kNe

ij )− 8My )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

j

(14)

In Program (14), Ne
ij, Me

ij are the elastic solution, and N0
ij, M0

ij are the self-equilibrated
stress; subscript i refers to discrete angles θi where the inequalities in (14) were collocated
that defined the sampling point set and j = 1, 2 corresponds to the meridian or parallel
directions; see Figure 1. Formulation (14) has a general form, since the representation of
the self-equilibrated stress was complete for the structures described by Equation (1). The
elastic solution characterizes the load applied on the domes; hence, a very general load
case, provided it is axial-symmetrical, can be applied. Consequently, the method has a
valuable advantage compared to the step-by-step numerical method, and is more general
than simple analytical methods calculating collapse loads using analytical closed-form
approaches. The proposed method has simplicity, which suggests being able to use it for
directly evaluating the collapse load joined with the generality due to the possibility of
handling rather complicated load time histories of both monotonical or random variables.

4. Case Study: Concrete Caps Collapse Load

To validate the method with respect to the experimental data, a numerical campaign
was developed. The analysis concerned slender spherical domes of unreinforced concrete
clamped at the base and loaded by uniform radial pressure. The geometry data of the
domes are depicted in Figure 6; the base diameter was set to 1900 mm and the opening
angle is equal to 45 degrees for all the specimens. The thickness varied from 6.76 to 8.12 mm.

Figure 6. Geometry of the slender spherical domes. The origin of the reference frame is the center of
the sphere, and its radius was in the range of 2428–2560 mm.

The concrete caps were calculated to obtain the limit uniform radial pressure trigger-
ing the collapse. The load program consisted of monotonically increasing radial pressure
through a scalar multiplier k superimposed to a fixed uniform self-weight. The calculation
searches for the collapse value of k, say sc, for which the compatibility conditions hold.
The routine calculating the semianalytical solution of the self-equilibrium equation was
implemented in a Mathematica® (Wolfram, Champaign, IL, USA) environment. The struc-
ture’s geometry was obtained from [14], so that it could be compared with the experimental
results. In particular, several different domes were calculated, considering the reported
experimental data where slight differences in the shells’ radius and thickness, strength, and
elastic properties were considered. The detailed dimensions of the specimens are reported
in Table 1.
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Table 1. Specimen data and result comparison.

Specimen Thickness Radius Strength Young’s
Modulus (Ex) BL (CL) SAM (Ex)/SAM

K4 7.12 2431 60 30,356 142 305 128 147 1.035
K6 7.07 2438 46 25,667 118 254 97 113 0.958
K7 6.91 2428 59 22,799 113 217 122 111 0.982
K9 6.98 2450 66 29,013 137 276 137 127 0.927

K33 6.91 2469 51 33,652 119 310 104 120 1.008
K36 6.9 2479 76 31,527 132 286 154 145 1.098
K38 6.86 2524 65 29,269 113 255 129 121 1.071

KN12 7.07 2538 64 26,126 116 240 130 125 1.078
KN15 6.94 2554 66 26,537 118 230 131 125 1.059
KN19 6.99 2537 71 34,230 129 304 143 136 1.054
KN24 7.1 2560 65 32,176 126 296 132 128 1.016
KN26 7.06 2546 59 26,766 102 242 119 105 1.029
KN27 7.09 2557 62 30,523 119 276 125 122 1.025
KN28 7.01 2540 61 30,033 118 269 123 118 1
KN29 6.76 2535 58 31,449 118 263 113 105 0.89
KN30 6.98 2515 58 32,958 126 298 132 111 0.881
KN31 7.04 2500 65 33,825 135 306 119 126 0.933
KN32 6.93 2500 58 26,904 104 236 111 110 1.058
KN33 7.02 2500 55 26,888 121 243 127 106 0.876
KN34 6.94 2500 62 28,962 131 254 128 118 0.901
KN35 6.83 2500 63 34,208 149 292 122 146 0.98
KN36 6.98 2500 61 34,760 155 310 124 147 0.948
KN37 6.89 2500 61 33,326 118 290 119 114 0.966

FEM Elastic Solution

The elastic response of the structures to the radial uniform pressure was calculated
numerically using the finite-element Ansys© program. The elastic solution was collected
in the matrix of elastic stresses containing parameters F∗ = {Ne

ij, Me
ij, Te

i1} calculated at
discrete points on the meridian curve; see Figure 7. The FEM results were introduced into
the semianalytical procedure described by Equation (14).

Figure 7. Cap discretization: (a) Whole model; (b) single meridian element selection.

The caps were modeled using eight-node shell elements with 6 degrees of freedom for
each node and quadratic shape functions. The axial forces and the bending moments acting
on each shell element cross-section perpendicular to the parallels and meridians were col-
lected. The numerical finite-element elastic solution and the semianalytical self-equilibrated
solution were superimposed to obtain the statically admissible stress to introduce into the
compatibility inequality constraints of the optimization program in Equation (14). The
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elastic solution was obtained at little computational cost, since only a linear elastic solution
was calculated.

5. Results and Discussion

The obtained and literature results are summarized in Table 1. In particular, for each
specimen besides the identifier, we indicate the thickness and radius of the dome, the
compression stress limit, and Young’s modulus as reported in [14] and in [13,20]. The
results of the present analysis are reported in comparison with the cited references. In
particular, the table shows the collapse multiplier from the experiments of Vandepitte and
Lagae [14] (EXP), the analytical value of the buckling load from [15] (BL), the numerical
results obtained through the collapse line mechanism reported in [20] (CL), and the collapse
load obtained from the present semianalytical method (SAM).

The SAM output consists of the load collapse multiplier and Melan’s residual stress
representing the self-equilibrated stress that was summed to the elastic solution with respect
to the compatibility constraints. Consequently, it was possible to calculate eccentricity e of
the Melan compatible stress as follows:

eij =
Mc

ij

Nc
ij

(15)

where Mc
ij and Nc

ij are the resulting stress from the optimization procedure.
Eccentricity is the distance along with the thickness of the cross-section of the center

of trust C from the centroid of the section; hence, the line connecting the eccentricity of the
sections is the trust line of the structure at the incoming collapse. Figure 8 shows the thrust
line of the KN37 specimen meridian cross-section and the amplitude of the structure’s core
and thickness. Such a line lies within the thickness of the structure. A three-dimensional
representation of the trust locus is depicted in Figure 9 for the same sample, KN37.

Figure 8. Thrust line along with meridian and thickness.
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Figure 9. (a) Three-dimensional representation of the locus of the centers of axial forces: thrust
surface; (b) axonometric section with the indication of the core thickness.

Figure 10 shows a comparison of different models and experiments as a function of
the specimen identifier. The calculation from CL and the experimental result by Ex were
comparable, and the experimental results were lower than the calculated ones almost ev-
erywhere. Moreover, the theoretical buckling load, as reported by [20], deduced from [23],
was always much greater than the experimental collapse load, which confirms that the
collapse of the observed specimens occurred without meaningful geometric nonlinearity
occurrence. The comparison shows that the proposed method gave accurate results with
respect to the experimental and CL ones. Moreover, SAM results were almost everywhere
between Ex and CL. The behavior of different procedures can be interpreted by considering
that the proposed method applies the static approach; hence, it gives the lower bound of
the actual collapse load. The analytical approach of [13] is based on the use of crack-line
development and mechanism balance, so it consists of the application of a kinematic the-
orem. As a consequence, it furnishes an upper bound of the collapse load, as Figure 10
shows, where the CL results were higher than the experimental results almost everywhere.
As was expected because of the theoretical statements, the proposed method produced
results that were lower than those of CL almost everywhere. The semianalytical method,
however, overestimated the experimental results of several specimens, since it is a dis-
cretized application of the lower bound theorem of the limit analysis; hence, it did not
guarantee that the compatibility condition was enforced in the entire structure, but only
at the sampling points. As a consequence, the calculated limit load had to decrease at the
increase in the number of sampling points, i.e., the number of discrete colatitude angles
where the inequalities in Equation (14) were enforced [16].

Figure 10. Collapse load from EXP, CL, and present SAM procedure.
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6. Conclusions

This work presented a comparison between the semianalytical method developed
in [18] with experiments reported in [14] and numerical calculations in [13,20]. The SAM,
whose formulation was developed for spherical domes of a general shape under a generic
load pattern, was particularized to slender caps to compare the strategy with the experimen-
tal results and theoretical methods on the basis of fracture lines and the kinematic approach.
The constitutive law and the corresponding limit domain of the structural material were
derived considering the not-tensile-resistant material model of the unreinforced concrete,
such as that used for the reference concrete caps in [13,14,20]. The collapse multiplier was
determined by evaluating the existence of a statically admissible state of stress under loads
of prescribed intensity. The statically admissible stress state consisted of the sum of the
semianalytical solution of the balance equation of spherical domes and the simple linearly
elastic solution under the prescribed load, obtained through a finite-element linear solution.
The comparison between the experimental results and the simplest closed-form solution
of domes under radial pressure shows that the method could accurately predict the col-
lapse load. The method can be applied to spherical domes under axial–symmetrical loads;
moreover, it can be applied to randomly variable loads to obtain the shakedown limit of
the structures without any complications. The method requires the knowledge of a linearly
elastic solution under the prescribed loads; this solution can be derived from a closed-form
one if it exists or from any numerical solution obtained through well-established methods.
However, the required elastic solution is obtained by only using linearly elastic methods
and does not require any iterative ultraelastic calculation. When the collapse multiplier for
a prescribed load path must be numerically calculated, one must apply an iterative strategy
and nonlinear plasticity constitutive laws, with the latter consisting not only of a limit
domain, but also of the flow rule that influences the calculation effort and the computational
time [24]. Lastly, the proposed procedure also calculates the structure’s Melan residuals
and the compatible stress distribution at the incoming collapse that can be used to calculate
the upper bounds of the plastic dissipation at the collapse [19].

In [17,18], the procedure was applied to domes of revolution of different shapes and
under several load conditions. In particular, parabolic and conical domes were analyzed
with the geometry setup inspired by Santa Maria del Fiore and Saint Paul domes, respec-
tively. The domes were loaded with uniform radial pressure, radial outward load, radial
inward load, and vertical load on a generic parallel. The obtained outcomes were compared
to FE-based commercial code ones. In the present work, the results were compared to
experimental data, confirming the proposed procedure’s feasibility.

In conclusion, the results obtained in the present work were first compared with the
analytical solution proposed by [20], and then with the numerical experiment proposed
by [14]. The proposed method demonstrates its ability to obtain the load multiplier with
no assumptions about the collapse mechanism. Independence from collapse-mechanism
knowledge is another relevant advantage of such a static approach that allows for formu-
lating the limit equilibrium of the structures with no a priori intuition of kinematics and
collapse shape.

The proposed strategy will be applied to a broader set of geometry and load conditions,
paving the way to a standard procedure for collapse-load multiplier evaluation.

Author Contributions: Conceptualization, R.Z. and V.M.; methodology, V.M.; software, V.M. and
R.Z.; validation, R.Z., V.M. and L.E.; formal analysis, V.M.; investigation, R.Z., S.P., L.E., E.T. and
V.M.; resources, V.M.; data curation, R.Z., S.P. and L.E.; writing—original draft preparation, R.Z.;
writing—review and editing, R.Z. and V.M.; visualization, R.Z., V.M. and L.E.; supervision, V.M.;
project administration, V.M.; funding acquisition, V.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Università degli Studi della Campania ‘L Vanvitelli’, grant
Programma VALERE: ‘VAnviteLli pEr la RicErca’, DDG n. 516-24/05/2018.

Institutional Review Board Statement: Not applicable.



Appl. Sci. 2022, 12, 9155 12 of 12

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Milani, E.; Milani, G.; Tralli, A. Limit analysis of masonry vaults by means of curved shell finite elements and homogenization.

Int. J. Solids Struct. 2008, 45, 5258–5288. [CrossRef]
2. Block, P.; Ciblac, T.; Ochsendorf, J. Real-time limit analysis of vaulted masonry buildings. Comput. Struct. 2006, 84, 1841–1852.

[CrossRef]
3. Block, P.; Ochsendorf, J. Thrust network analysis: A new methodology for three-dimensional equilibrium. J. Int. Assoc. Shell Spat.

Struct. 2007, 48, 167–173.
4. Block, P.; Lachauer, L. Three-dimensional (3D) equilibrium analysis of gothic masonry vaults. Int. J. Archit. Herit. 2014, 8, 826301.

[CrossRef]
5. Avelino, R.M.; Iannuzzo, A.; Mele, T.V.; Block, P. Assessing the safety of vaulted masonry structures using thrust network analysis.

Comput. Struct. 2021, 257, 106647. [CrossRef]
6. Save, M. Limit analysis and design of containment vessels. Nucl. Eng. Des. 1984, 79, 343–361. [CrossRef]
7. Moncarz, P.D.; Griffith, M.; Noakowski, P. Collapse of a Reinforced Concrete Dome in a Wastewater Treatment Plant Digester

Tank. J. Perform. Constr. Facil. 2007, 21, 4–12. [CrossRef]
8. Teng, J.G.; Rotter, J.M. Geometrically and materially nonlinear analysis of reinforced concrete shells of revolution. Comput. Struct.

1992, 42, 327–340. [CrossRef]
9. Zingoni, A.; Enoma, N. Strength and stability of spherical-conical shell assemblies under external hydrostatic pressure. Thin-

Walled Struct. 2020, 146, 106472. [CrossRef]
10. Zingoni, A. Stress and buckling resistance of dual-purpose concrete shells. Thin-Walled Struct. 2022, 170, 108596. [CrossRef]
11. Stockdale, G.; Milani, G. Diagram based assessment strategy for first-order analysis of masonry arches. J. Build. Eng. 2019,

22, 122–129. [CrossRef]
12. Mercuri, M.; Pathirage, M.; Gregori, A.; Cusatis, G. Masonry vaulted structures under spreading supports: Analyses of fracturing

behavior and size effect. J. Build. Eng. 2022, 45, 103396. [CrossRef]
13. Chang, Z.T.; Bradford, M.A.; Gilbert, R.I. Short-term behaviour of shallow thin-walled concrete dome under uniform external

pressure. Thin-Walled Struct. 2011, 49, 112–120. [CrossRef]
14. Vandepitte, D.; Lagae, G. Buckling of Spherical Domes Made of Microconcrete and Creep Buckling of Such Domes Under

Long-term Loading. In Proceedings of the Inelastic Behaviour of Plates and Shells, Rio de Janeiro, Brazil, 5–9 August 1985 ;
Bevilacqua, L., Feijóo, R., Valid, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 291–311.

15. Zoelly, R. Uber ein Knickungs Problem an der Kugelschale. Ph.D. Thesis, ETH Druck von Zurker & Furrer, Zürich,
Switzerland, 1915.

16. Palladino, S.; Esposito, L.; Ferla, P.; Totaro, E.; Zona, R.; Minutolo, V. Experimental and numerical evaluation of residual
displacement and ductility in ratcheting and shakedown of an aluminum beam. Appl. Sci. 2020, 10, 3610. [CrossRef]

17. Zona, R.; Esposito, L.; Ferla, P.; Palladino, S.; Totaro, E.; Minutolo, V. Lower bound limit analysis of parabolic domes based on
spherical analytical solution. Int. J. Adv. Res. Eng. Technol. 2020, 11, 59–79. [CrossRef]

18. Zona, R.; Ferla, P.; Minutolo, V. Limit analysis of conical and parabolic domes based on semi-analytical solution. J. Build. Eng.
2021, 44, 103271. [CrossRef]

19. Lubliner, J. Plasticity Theory; Macmillan Pub Co.: New York, NY, USA, 1990.
20. Chang, Z.T.; Bradford, M.A.; Gilbert, R.I. Limit analysis of local failure in shallow spherical concrete caps subjected to uniform

radial pressure. Thin-Walled Struct. 2010, 48, 373–378. [CrossRef]
21. Timoshenko, S.P. Theory of Plates and Shells, 1st ed.; McGraw-Hill: New York, NY, USA, 1964; Volume 1.
22. Heyman, J. The stone skeleton. Int. J. Solids Struct. 1966, 2, 249–279. [CrossRef]
23. O’Dwyer, D. Funicular analysis of masonry vaults. Comput. Struct. 1999, 73, 187–197. [CrossRef]
24. Clementi, F.; Gazzani, V.; Poiani, M.; Lenci, S. Assessment of seismic behaviour of heritage masonry buildings using numerical

modelling. J. Build. Eng. 2016, 8, 29–47. [CrossRef]

http://doi.org/10.1016/j.ijsolstr.2008.05.019
http://dx.doi.org/10.1016/j.compstruc.2006.08.002
http://dx.doi.org/10.1080/15583058.2013.826301
http://dx.doi.org/10.1016/j.compstruc.2021.106647
http://dx.doi.org/10.1016/0029-5493(84)90048-7
http://dx.doi.org/10.1061/(ASCE)0887-3828(2007)21:1(4)
http://dx.doi.org/10.1016/0045-7949(92)90029-Y
http://dx.doi.org/10.1016/j.tws.2019.106472
http://dx.doi.org/10.1016/j.tws.2021.108596
http://dx.doi.org/10.1016/j.jobe.2018.12.002
http://dx.doi.org/10.1016/j.jobe.2021.103396
http://dx.doi.org/10.1016/j.tws.2010.08.012
http://dx.doi.org/10.3390/app10103610
http://dx.doi.org/10.34218/IJARET.11.6.2020.007
http://dx.doi.org/10.1016/j.jobe.2021.103271
http://dx.doi.org/10.1016/j.tws.2010.01.014
http://dx.doi.org/10.1016/0020-7683(66)90018-7
http://dx.doi.org/10.1016/S0045-7949(98)00279-X
http://dx.doi.org/10.1016/j.jobe.2016.09.005

	Introduction
	Equilibrium and Self-Equilibrium of Domes
	Constitutive Equations
	Case Study: Concrete Caps Collapse Load
	Results and Discussion
	Conclusions
	References

