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Abstract
Background: Increasing evidence suggests improved time metrics leading to better clinical 
outcomes when stroke patients with suspected large vessel occlusion (LVO) are transferred 
directly to the angiography suite (DTAS) compared with cross-sectional imaging followed by 
transfer to the angiography suite. We performed a systematic review and meta-analysis on the 
efficacy and safety of DTAS approaches.
Methods: We searched Embase, Medline, Scopus, and clinicaltrials.gov for studies comparing 
outcomes of DTAS and conventional triage. Eligible studies were assessed for risk of bias. 
We performed a random-effects meta-analysis on the differences of median door-to-groin 
and door-to-reperfusion times between intervention and control group. Secondary outcomes 
included good outcome at 90 days (modified Rankin Scale ⩽ 2) rate of symptomatic intracranial 
hemorrhage (sICH) and mortality within 90 days.
Results: Eight studies (one randomized, one cluster-randomized trial and six observational 
studies) with 1938 patients were included. Door-to-groin and door-to-reperfusion times in the 
intervention group were on median 29.0 min [95% confidence interval (CI): 14.3–43.6; p < 0.001] 
and 32.1 min (95% CI: 15.1–49.1; p < 0.001) shorter compared with controls. Prespecified 
subgroup analyses for transfer (n = 1753) and mothership patients (n = 185) showed similar 
reductions of the door-to-groin and door-to-reperfusion times in response to the intervention. 
The odds of good outcome did not differ significantly between both groups but were 
numerically higher in the intervention group (odds ratio: 1.38, 95% CI: 0.97–1.95; p = 0.07). 
There was no significant difference for mortality and sICH between the groups.
Conclusion: DTAS approaches for the triage of suspected LVO patients led to a significant 
reduction in door-to-groin and door-to-reperfusion times but an effect on functional outcome 
was not detected. The subgroup analysis showed similar results for transfer and mothership 
patients.
Registration: This study was registered in PROSPERO (CRD42020213621).
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Introduction
Mechanical thrombectomy (MT) after intrave-
nous thrombolytic treatment with recombinant tis-
sue plasminogen activator (iv-rtPA), which has 
been shown to be superior to iv-rtPA alone,1 is 
now standard of care for acute ischemic stroke due 
to large vessel occlusion (LVO). Clinical outcome 
is highly dependent on fast restoration of blood 
flow, and as such, the benefit of MT rapidly 
decreases with treatment delays.2 Hence, current 
guidelines emphasize workflow speed as a key 
component of acute stroke care.3,4 The Stroke 
Treatment Academic Industry Roundtable identi-
fied the shortening of time to reperfusion to the 
minimum possible as an important variable in 
stroke treatment and as a priority target in stroke 
research.5 While the time from symptom onset to 
admission can only be influenced at a policy level, 
door-to-groin and door-to-reperfusion times are 
highly dependent on intra-hospital procedures and 
structures.6 Standard procedure in most hospitals 
is to triage suspected stroke patients by multidetec-
tor computed tomography (MDCT) or magnetic 
resonance imaging (MRI). If a target occlusion for 
MT is identified, the patient is then transported to 
the angiography suite for emergent MT. One pos-
sible approach to reduce door-to-groin and door-
to-reperfusion times are so-called ‘one-stop 
management’ or ‘direct to angiography suite’ 
(DTAS) approaches, with diagnostic imaging and 
MT both performed in the angiography suite and 
bypassing an extra diagnostic imaging stop.7 
However, the effect of DTAS approaches on 
reducing time to treatment and clinical outcomes 
is a matter of debate, and results of recent rand-
omized trials have shown conflicting results.8,9 We 
therefore performed a systematic review and meta-
analysis in order to examine the efficacy and safety 
of DTAS approaches for rapid initiation of MT.

Methods
This systematic review and meta-analysis was 
registered at PROSPERO (CRD42020213621). 
All analyses are reported according to the 
Preferred Reporting Items for Systematic Review 
and Meta-Analysis guidelines (PRISMA).10 All 
data and supporting materials are available within 
the article and an online-only Data Supplement.

Search strategy
We developed the search strategies in collabora-
tion with an information specialist (C.A.-H.). It 

was peer-reviewed by a second information spe-
cialist. We searched the bibliographic databases 
Embase (via embase.com excluding conference 
abstracts), Medline (via Ovid), Scopus, and clini-
caltrials.gov (Primary search 31 August 2020; last 
update 18 August 2021). Search strings around 
the concepts stroke, MT, and DTAS were com-
posed of database-specific subject headings 
(where applicable) and text word synonyms. The 
complete search strategies are deposited in the 
online-only Data Supplement. To complement 
the results of direct database searching, we 
screened the bibliographic references of all 
included articles and the citing articles of those 
indexed in Scopus or the Web of Science.

Eligibility
Studies were included if they compared DTAS 
triage approaches with conventional triage 
approaches of suspected acute ischemic stroke 
patients and reported effect on door-to-groin and 
door-to-reperfusion times. Studies had to report 
either the median and interquartile range (IQR) or 
the mean and standard deviation (SD) of door-to-
groin and door-to-reperfusion times for a DTAS 
workflow and for a control group. All types of 
studies (including observational and case-matched 
studies) were included. Only studies from peer-
reviewed journals were included to safeguard the 
quality of data. Reviews, conference abstracts, 
editorials, and guidelines were excluded. We 
included all articles that had an English title and 
abstract. For manuscripts written in other lan-
guages, we contacted the corresponding author, 
asking for the results in English. We restricted our 
search to studies published in 2010 or later, since 
DTAS approaches were not feasible in earlier 
years (the first patient triaged via a DTAS 
approach was reported in 201711) nor was MT 
established as routine care before 2010.

Screening, data extraction, and outcomes
The search results were exported to Endnote X9 
and de-duplicated using the Bramer method.12 
Two reviewers (A.B. and I.T.) screened refer-
ences based on titles and abstracts. Selected refer-
ences were retrieved in full-text. Two authors 
(A.B. and I.T.) independently assessed the eligi-
bility of all retrieved studies. In case of disagree-
ment, a third author (M.N.P.) made the final 
judgment. Data were extracted by two authors 
(A.B. and I.T.). In case of publications from the 
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same study with overlapping time periods, the 
publication with the larger number of patients 
was chosen. The filled-in data extraction forms 
can be found in the supplement. In case of miss-
ing data, the corresponding authors were con-
tacted at least twice by e-mail and missing data 
were obtained for all studies.

The primary outcome variables of interest were 
the median differences (including IQR) of door-
to-groin and door-to-reperfusion times between 
the intervention and control group. The second-
ary outcome variables of interest were the rates of 
72-h symptomatic intracranial hemorrhage 
(sICH),13 90-day good functional outcome [i.e. 
modified Rankin Scale (mRS) ⩽ 2], and 90-day 
mortality for both groups. Predictors of interest 
were prehospital screening methods, type of pre-
interventional imaging, and study characteristics 
such as study design, the year of the study, and 
sample size.

Risk of bias assessment
Risk of bias assessment was done independently 
by two authors (A.B. and I.T.). Risk of bias of 
nonrandomized studies was assessed with the 
ROBINS-I tool, which was developed by the 
Cochrane Collaboration and categorizes risk of 
systematic bias as low, moderate, serious, and 
critical.14 If a study was rated critical, that is, did 
not provide useful data in at least one domain, it 
was excluded from the meta-analysis.14 For rand-
omized studies, the ROB 2 tool was used. The 
risk categories were low risk, some concerns, and 
high risk.15

Statistical analyses
All analyses were performed in R version 4.0.3 
(2020-10-10). To perform a meta-analysis on the 
primary outcomes of interest, we used the quan-
tile estimation method proposed by McGrath 
et al.16 as implemented in the R package ‘meta-
median’. After estimating the variance of the dif-
ference in medians in each study, studies were 
meta-analyzed using random-effects model per 
the inverse variance method. For the binary sec-
ondary outcome measures of good functional 
outcome (mRS ⩽ 2), 72-h sICH, and 90-day 
mortality, we calculated odds ratio estimates 
using random-effects models with the R package 
‘metafor’ and the DerSimonian-Laird estimator 
for the amount of heterogeneity.17

A prespecified subgroup analysis on the primary 
outcome measures was performed for mothership 
patients (patients presenting directly to the com-
prehensive stroke center) and transfer patients 
(patients presenting first to a primary stroke 
center from which they were transferred for MT 
to a comprehensive stroke center).

Results
Our literature search identified 4414 potentially 
relevant unique articles out of which 33 were 
retained for full-text review (Figure 1; a detailed 
overview of excluded studies can be found in the 
Supplemental Material under part 5). Five stud-
ies had to be excluded because of potentially 
overlapping patients.7,18–21 All of these studies 
were from the same author groups and contained 
overlapping time periods. Out of these studies, we 
chose those with the longest time periods to 
include the largest number of patients possible. 
As Sarraj et al.22 included for the endpoint door to 
groin the data from the transfer patients from 
Requena et al.,23 we chose to only include Sarraj 
et  al. in this analysis. However, the mothership 
patients (n = 79) from Requena et al.23 were used 
in all other analyses and the transfer patients for 
the analysis of door-to-reperfusion times.

A total of eight studies met our inclusion criteria 
and were included in the meta-analysis on effects 
of DTAS approaches (Table 1). Additional data 
were obtained for five of these eight studies to 
perform meta-analysis on subgroups.8,9,23–25 In 
addition, two ongoing randomized controlled 
studies (NCT03969511 and NCT04701684) 
were identified on clinicaltrials.gov, but results 
were not available at the time of analysis.

Eight studies with 1938 patients (704 intervention 
group, 1234 control group) reported the effect of 
DTAS approaches on door to groin and seven 
studies with 1068 patients (517 intervention group, 
551 control group) on door-to-reperfusion times.

We were able to perform subgroup analysis for 
transfer patients in seven studies (n = 1753; 626 
intervention and 1127 control) on door-to-groin 
times and in seven studies (n = 883, 439 interven-
tion and 444 control) on door-to-reperfusion 
times. Subgroup analysis for mothership patients 
was done in all four studies, which included 
mothership patients (n = 185 mothership patients; 
78 intervention group and 107 control group).

https://journals.sagepub.com/home/tan
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Studies differed in design with one randomized 
study, one cluster-randomized study, two studies 
that reported results from case-matched patients 
[with different criteria although all used baseline 
National Institute of Health Stroke Scale 
(NIHSS) and age] and three studies that reported 
on consecutive patients. Seven of eight studies 
were monocentric. Detailed assessment of risk of 
bias is available in the online-only supplement. 
The most common source of bias was selection 
bias or possible confounding due to the retrospec-
tive nature of most studies. Risk of Bias was rated 
serious in three of eight (37.5%) studies.

Primary analysis: time from door to groin  
and door to reperfusion
Time from door to groin and door to reperfusion 
was significantly shorter in the DTAS group in 
seven of eight (87.5%) studies. Random-effects 

meta-analysis of eight studies showed a signifi-
cant difference of median door-to-groin times of 
29.0 min [95% confidence interval (CI): 14.3–
43.6; p  < 0.001] and of median door-to-reperfu-
sion times of 32.1 min (95% CI: 15.1–49.1; 
p  < 0.001) in favor of DTAS (Figure 2; Table 2). 
High I2 values indicated considerable heterogene-
ity among studies for both primary endpoints 
(door to groin and door to reperfusion). As pre-
specified (PROSPERO entry CRD42020213621), 
we performed subgroup analysis for both primary 
endpoints for transfer and mothership patients. 
In transfer patients, both door-to-groin and door-
to-reperfusion times were significantly shorter. 
The median difference of door-to-groin times was 
22.5 min (95% CI: 7.9–37.1) and of door-to-rep-
erfusion times was 34.3 min (95% CI: 18.0–50.7) 
in favor of the DTAS group (Figure 3(a) and 
(b)). Also, in mothership patients both door-to-
groin and door-to-reperfusion times were 

Figure 1.  Flowchart of included and excluded articles, following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analysis guidelines.
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Table 1.  Overview over studies included in systematic review/meta-analysis.

Author Country Study design Study 
period

Intervention 
group (n)

Control 
group (n)

Mothership / 
transfer

Included in 
meta-analysis

Aoki et al.24 Japan Retrospective, 
consecutive patients, 
single center

2012–2018 40 27 Only transfer Yes

Bouslama 
et al.26

USA Retrospective, case-
control, single center

2016–2017 49 49 Only transfer Yes

Jadhav 
et al.27

USA Retrospective, 
consecutive patients, 
single center

2013–2016 111 150 Only transfer Yes

Pfaff et al.8 Germany Prospective, 
cluster-randomized, 
nonblinded, per-
protocol analysis

2017–2019 26 34 Mothership (30%) 
/ transfer (70%)

Yes

Psychogios 
et al.25

Germany Retrospective, case-
control, single center

2016 -2018 43 43 Mothership (56%) 
/ transfer (44%)

Yes

Requena 
et al.23

Spain Retrospective, case-
control, single center

2016–2019 174 175 Mothership (23%) 
/ transfer (77%)

Yes

Requena 
et al.9

Spain Randomized, blinded 
endpoint evaluation, 
single center

2018–2020 74 64 Mothership (29%)/ 
transfer (71%)

Yes

Sarraj 
et al.22

USA, Spain Retrospective, cohort 
study, multicenter

2014–2020 327 813 Only transfer Yes

Figure 2.  Forest plots of the median differences on door-to-groin times (a) and door-to-perfusion times (b) between DTAS and 
traditional triaged patients.
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significantly shorter in DTAS patients with a 
median difference of 30.7 min (95% CI: 8.1–
53.3) and 26.6 min (95% CI: 4.8–48.4) (Figure 
4(a) and (b)).

Secondary analysis: clinical outcomes  
and safety endpoints
Random-effects meta-analysis on secondary end-
points did not detect any significant differences 
(Table 3). Numerically the odds of a good func-
tional outcome were higher in the intervention 
group than in the control group [odds ratio (OR): 
1.38, 95% CI: 0.97–1.95; eFigure 1 in the 
Supplemental Material]. However, the difference 
did not reach statistical significance, and overall, 
the evidence for an effect of the intervention on 
the probability of a good outcome is only moder-
ate. The incidence of 72-h sICH (OR: 0.84; 95% 

CI: 0.58–1.24) and 90-day mortality (OR: 0.74; 
95% CI: 0.48–1.15) appeared not to differ 
between groups (eFigure 2 and 3).

Discussion
This systematic review and meta-analysis included 
eight studies with a total of 704 patients in the 
DTAS and 1234 patients in the control group. 
Our findings show that DTAS approaches for the 
triage of acute stroke patients with a suspected 
LVO lead to a significant reduction in both door-
to-groin and door-to-reperfusion times [median 
reduction of 29.0 min (95% CI: 14.3–43.6) and 
32.1 min (95% CI: 15.5–49.1)]. Although we are 
uncertain about the impact on functional out-
come at 90 days, the pooled estimates favored the 
intervention. We did not find any difference in 
mortality within 90 days and the occurrence of 

Table 2.  Random-effects meta-analysis of differences in median door-to-groin and door-to-reperfusion times.

No. of studies No. of patients (intervention/
control group)

Weighted median 
difference, min (95% CI)

Door-to-groin time

  All patients 8 1938 (704 / 1234) 29.0 (14.3–43.6)

  Transfer only 7 1753 (626 / 1127) 22.5 (7.9–37.1)

  Mothership patients only 4 185 (107 / 78) 30.7 (8.1–52.3)

Door-to-reperfusion time

  All patients 7 1068 (517 / 551) 32.1 (15.1–49.1)

  Transfer only 7 883 (439 / 444) 34.3 (18.0–50.7)

  Mothership patients only 4 185 (78 / 107) 26.6 (4.8–48.4)

CI, confidence interval.

Table 3.  Random-effects meta-analysis of secondary outcomes.

No. of studies No. of patients (intervention/
control group)

Odds ratio (95% CI)

Good functional outcome 
(mRS ⩽ 2 at 90 days

8 1938 (704 / 1234) 1.38 (0.97–1.95)

Symptomatic intracranial 
hemorrhage

8 1938 (704 / 1234) 0.84 (0.58–1.24)

Mortality at 90 days 8 1938 (704 / 1234) 0.74 (0.48–1.15)

CI, confidence interval.
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sICH. These findings should be interpreted with 
caution due to the small number of studies and 
the different design approaches, which have 
resulted in substantial heterogeneity in both the 
intervention and control group.

All eight studies in this meta-analysis included 
transfer patients, in whom DTAS was associated 
with shorter door-to-groin and door-to-reperfu-
sion times. A possible explanation might be that 
staff and other resources could be prepared prior 
to patient’s arrival. Furthermore, in these patients 
the LVO was confirmed at the referring hospital 
in most cases, leading to a clear indication for 
performing MT. These processes can be further 
optimized if the primary stroke centers and com-
prehensive stroke centers are integrated in a net-
work and use tools such as teleconsulting and 
teleradiology.28 Our results support a recent 
expert statement, recommending repeated imag-
ing in transfer patients only in cases of clinical 
deterioration or improvement,29 as this can sig-
nificantly reduce door-to-treatment times in these 
patients.

In mothership patients (extracted from four stud-
ies), we observed similar effects. The lower cer-
tainty of the effect might be attributable to low 
statistical power due to a substantially lower 
number of patients (145 mothership versus 1753 
transfer patients). Since there are often long dis-
tances between the emergency department, CT/

MRI suite, and angiography suite,30 one would 
expect greater time savings with a DTAS approach 
in mothership patients. However, there might be 
other structural factors limiting the effect of 
DTAS in mothership patients. Due to the absence 
of a reliable prehospital screening tool in stroke 
patients, the first focused neurological exam in 
mothership patients is often done in the emer-
gency room, possibly leading to a later activation 
of the angiography team. This is especially prob-
lematic during off-hours when interventionalists 
are on call and have to reach the hospital from 
home. One possible approach to overcome this 
limitation is the utilization of prehospital scales 
for in the field detection of LVOs, such as the 
Rapid Arterial Occlusion Evaluation (RACE) 
scale,31 the Los Angeles Motor Score (LAMS),32 
the Prehospital Acute Stroke Severity (PASS) 
scale,33 and the Field Assessment Stroke Triage for 
Emergency Department (FAST-ED) scale.19,20,23 
All these scales have limited accuracy for the 
identification of LVOs, with sensitivity ranging 
from 38% to 62% and specificity ranging from 
80% to 93%.34,35 A further validation of the 
RACE scale with a threshold of ⩾5 in a sample of 
1822 patients showed that 35% of the patients 
presented with an LVO and 20% were eligible for 
MT.36 As recent literature suggests that an LVO 
can be detected with very high sensitivity with  
a flat detector CT (FDCT) angiography, the 
detection within the angiosuite should not pose a 
problem.37 Furthermore, advances with FDCT 

Figure 3.  Forest plots for the subgroup analysis of transfer patients of the median differences of door-to-groin times (a) and door-
to-perfusion times (b) between DTAS and traditional triaged patients.
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perfusion enable the physician to also detect 
smaller, distal occlusions such as M2 or M3 
occlusions.38 However, even under optimal cir-
cumstances the workload of the angiography 
team will increase if DTAS is adopted in mother-
ship patients.29 Another strategy to prevent angio-
suite overload might be to use a specialized 
vascular neurologist team on admission for the 
selection of patients with high probability of LVO. 
A recent study even found the largest effect of 
DTAS on functional outcome in patients present-
ing in the very early (1–3 h) time-window,23 which 
might be explained by a faster stroke lesion growth 
in patients with hyperacute stroke.39 As mother-
ship patients routinely present earlier than trans-
fer patients, future trials on DTAS in mothership 
patients should be a primary focus. This is under-
scored by a recent analysis showing that every 
10 min of earlier treatment initiation in patients 
undergoing MT increases the net monetary ben-
efit of the intervention by $10,915.40

Our study could not show an effect on functional 
outcome (albeit a trend in favor of DTAS was 
apparent). Interestingly, the results of the two 
included randomized studies were conflicted with 
Pfaff et  al. finding no effect on functional out-
come, while Requena et  al. found significantly 
better odds for functional independence in 
patients triaged with a DTAS approach.8,9 This 
might be attributable to specific factors associated 
with a certain center, for example, a specially 
trained ambulance services or stroke network and 
highlights the need for well-designed multicenter 

trials to examine the benefit of DTAS with more 
certainty. The fact that the rate of sICH was not 
higher in the DTAS arm is promising, since reli-
able hemorrhage exclusion on FDCT is still a 
topic of discussion. Our results are in line with a 
prior analysis indicating that hemorrhage detec-
tion can be done with adequate safety on FDCT.41 
As recent studies showed the value of bridging 
therapy in LVO patients, this should be further 
addressed in adequately powered studies.42,43

This study has several limitations. The number 
of studies is small, and we observed considerable 
heterogeneity of the study results. Heterogeneity 
could be attributed to the following reasons: (a) 
While in three studies8,25,26 noncontrast FDCT 
and FDCT angiography were performed prior to 
groin puncture, the remaining studies performed 
only minimal (noncontrast FDCT) or no imag-
ing prior to groin puncture, (b) the distances 
between emergency room, MDCT suite and 
angiography suite varied in all studies,30 (c) the 
usage of prehospital scales was heterogeneous 
among studies and might have influenced door-
to-groin and door-to-reperfusion times as they 
allow to skip the emergency department com-
pletely, and (d) studies differed in designs. 
However, as these variations were consistent 
within the studies, we do not think they influ-
enced the direction of the effect. In addition, 
most data were collected retrospectively in a sin-
gle-center design without blinding of personnel 
and participants, possibly leading to performance 
bias. Furthermore, due to missing data we were 

Figure 4.  Forest plot for the subgroup analysis of mothership patients of the median differences of door-to-groin times (a) and door-
to-perfusion times (b) between DTAS and traditional triaged patients. 
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not able to adjust our meta-analysis for parame-
ters, which also influence clinical outcome such 
as metrics of salvageable tissue, intravenous 
thrombolysis rates, and the success of MT (e.g. 
final modified thrombolysis in cerebral infarction 
scores). As these parameters significantly influ-
ence clinical outcome, our inability to adjust for 
them might potentially account for the lack of 
statistical differences in the present meta-analy-
sis. However, since all but one study8 showed a 
similar effect direction, these results can provide 
valuable insight on the possible effects of DTAS 
approaches. Finally, given that the number of 
included studies was small, and it is a rapid evolv-
ing topic, regular updates are warranted.

Conclusion
Direct to angiography suite approaches for the 
triage of suspected LVO patients lead to a sig-
nificant improvement of in-hospital workflow 
time metrics. However, in our meta-analysis, 
they did not translate into improved clinical out-
comes. This highlights the need for well-designed 
randomized, multicenter trials to evaluate the 
effect of DTAS approaches in different hospital 
settings.
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