
Journal of Critical Care 67 (2022) 44–56

Contents lists available at ScienceDirect

Journal of Critical Care

j ourna l homepage: www. journa ls .e lsev ie r .com/ journa l -o f -c r i t i ca l -ca re
Diagnostic and prognostic prediction models in ventilator-associated
pneumonia: Systematic review and meta-analysis of prediction
modelling studies
Tuomas Frondelius a, Irina Atkova b, Jouko Miettunen c,e, Jordi Rello d,f,g, Miia M. Jansson a,⁎
a Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
b University of Oulu, Oulu, Finland
c Center for Life Course Health Research, University of Oulu, Oulu, Finland
d CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Barcelona, Spain
e Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
f Clinical Research/Epidemiology In Pneumonia & Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
g Clinical Research, CHU Caremeau, Nimes, France
⁎ Corresponding author.
E-mail addresses: juha.frondelius@oulu.fi (T. Frondeliu

(I. Atkova), jouko.miettunen@oulu.fi (J. Miettunen), jrello
miia.jansson@oulu.fi (M.M. Jansson).

https://doi.org/10.1016/j.jcrc.2021.10.001
0883-9441/© 2021 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Purpose: Existing expert systems have not improved the diagnostic accuracy of ventilator-associated pneumo-
nia (VAP). The aim of this systematic literature review was to review and summarize state-of-the-art predic-Keywords:
tion models detecting or predicting VAP from exhaled breath, patient reports and demographic and clinical
characteristics.
Methods: Both diagnostic and prognostic predictionmodels were searched from a representative list ofmultidis-
ciplinary databases. An extensive list of validated search termswas added to the search to cover papers failing to
mention predictive research in their title or abstract. Two authors independently selected studies, while three au-
thors extracted data using predefined criteria and data extraction forms. The Prediction Model Risk of Bias As-
sessment Tool was used to assess both the risk of bias and the applicability of the prediction modelling studies.
Technology readiness was also assessed.
Results: Out of 2052 identified studies, 20 were included. Fourteen (70%) studies reported the predictive perfor-
mance of diagnostic models to detect VAP from exhaled human breath with a high degree of sensitivity and a
moderate specificity. In addition, themajority of themwere validated on a realistic dataset. The rest of the studies
reported the predictive performance of diagnostic and prognostic predictionmodels to detect VAP fromunstruc-
tured narratives [2 (10%)] as well as baseline demographics and clinical characteristics [4 (20%)]. All studies,
however, had either a high or unclear risk of bias without significant improvements in applicability.
Conclusions: The development and deployment of prediction modelling studies are limited in VAP and related
outcomes. More computational, translational, and clinical research is needed to bring these tools from the
bench to the bedside.
Registration: PROSPERO CRD42020180218, registered on 05-07-2020.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Lifesaving, mechanical ventilation (MV) also predisposes patients to
numerous resource-intensive, morbid, and lethal complications such as
ventilator-associated pneumonia (VAP), acute respiratory distress syn-
drome, sepsis, and atelectasis. Infection-related complications increase
s), irina.atkova@oulu.fi
@crips.es (J. Rello),

. This is an open access article under
the number of ventilator-days by 5, the Intensive Care Unit (ICU) length
of stay (LOS) by 11 days, and hospital LOS by 12 days [1,2]. Part of the
costs, however, have arisen from the current inability to systematically
diagnose the disease at an early stage, potentially leading to delayed
treatment or overuse of broad-spectrum antimicrobials.

Current diagnostic approaches (e.g., signs and symptoms, microbio-
logical cultures, and visual output of plain radiographs) and conven-
tional surveillance methods (e.g., manual chart reviews, prevalence
surveys, discharge codes, electronic surveillance algorithms) are insen-
sitive [1,3], time-consuming [4,5], and frequently expensive [5]. In
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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addition, they are unable to identify an individual who would benefit
from a certain type of treatment based on the predicted disease course.

Artificial Intelligence (AI) is transforming medical practice and
precision medicine in ICUs [6,7]. Emerging technologies (e.g., image-
based and biochemical approaches, sequencing technologies) usingma-
chine learning (ML) techniqueswill overcome the constraints of current
diagnostic approaches [4,5,8]; these data-intensive system will inte-
grate and analyze various structured and unstructured data from differ-
ent sources tomonitor temporal trends, identify risk factors, and predict
morbidity andmortality, and thus, facilitate fast clinical decisionmaking
for infectious diseases [9] in a timely manner [4].

Since 2014, researchers have developed automated methods for ob-
jective VAP detection [10-16]. These expert systems, however, have not
improved the diagnostic accuracy of VAP [17]. In addition, automation
without AI techniques does not predict the probability or risk of the fu-
ture occurrence of complications in individuals at risk. For that reason,
we reviewed and summarized state-of-the-art prediction models
(e.g., local ecology and/or respiratory surveillance culture based AI or
ML algorithms, defined as computational models able to learn from
data gathered in the ICU) to generate patient-specific predictions of
VAP [18]. Due to the lack of a consensus on a “gold standard” definition,
all diagnostic criteria were taken into account. We hypothesized that
the probability or risk of VAP and related outcomes could be predicted.
Our primary objective was to evaluate the predictive performance of
existing diagnostic and prognostic models. Our secondary objective
was to assess both the risk of bias (ROB) and the applicability of the pre-
dictionmodels, and the level of clinical readiness as part of thematurity
definition.

2. Material and methods

2.1. Study design

This systematic review and meta-analysis was conducted in accor-
dancewith the guide to systematic reviews andmeta-analysis of predic-
tion model performance [19] and the statement of Preferred Reporting
Items for a Systematic Review and Meta-analysis of Diagnostic Test Ac-
curacy Studies [20]. The study protocol was registered in the interna-
tional prospective register of systematic reviews (PROSPERO) before
the start of the study (CRD42020180218).

2.2. Information sources

A preliminary search for existing reviews on the topic was con-
ducted in the JBI Database of Systematic Reviews and Implementation
Reports, Cochrane Database of Systematic Reviews, and the PROSPERO
Database of Systematic Review Protocols by two reviewers (IA, MMJ)
in April 2020 to assess the volume of relevant studies and to identify
existing reviews. An actual search was conducted in several multi-
disciplinary databases (ACM Digital Library/ ACM Guide to Computing
Literature, Astrophysics Data System, arXiV, IEEE Xplore Digital Library,
Academic Search Ultimate, Cumulative Index to Nursing and Allied
Health Literature [CINAHL], CT.gov, PubMed [Medline], Scopus, Web of
Science) with the assistance of an information specialist in June 2020.
The controlled (MesH in Medline Ovid and PubMed) and free-text
terms were used to build sensitive search strategy (Appendix A). In ad-
dition, an extensive list of validated search terms was added to the
search to cover papers failing to mention predictive research in their
title or abstract [21].

2.3. Study selection

The study selection was carried out independently by two re-
searchers (IA, MMJ) on titles and abstracts and then on the full text.
All prediction modelling studies with and without external validation
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as well as external validation studies with and without model updating
were included if they met the predefined inclusion criteria (PICOTS):

• Population: adult patients undergoing MV.
• Index: diagnostic and prognostic prediction models using classical
methodologies (e.g., logistic regression or survival models) and
deep learning (e.g., random forests, neural networks, and support
vector machines).

• Comparator: no comparator.
• Outcome(s): VAP with and without clinical outcomes (e.g., ICU
mortality, duration of MV, ICU length of stay).

• Timing: Models to be used prior to VAP and at the moment of
diagnosis.

• Setting: ICUs in high-income countries.

We included all original and peer-reviewed development and vali-
dation studies written in English. In addition, preprints, scientific re-
ports, and studies included in the previous systematic reviews were
included if they reported psychometric properties of the primary pre-
diction modelling studies. We did not apply any restrictions on the
date or publication status to the searches. We excluded studies related
to animals, non-human samples, and expert systems. Manual searches
of the reference lists, citations, and related articles (PubMed function)
of the included studies were undertaken to identify additional studies
missed from the original electronic searches (Appendix B).

2.4. Assessment of methodological quality

The Prediction Model Risk of Bias Assessment Tool (PROBAST) was
used to assess both the ROB and the applicability of the predictionmodel-
ling studies [22]. The PROBAST includes 20 signalling questions across
four key domains (e.g., participants, predictors, outcome, analysis),
while each domain is judged for a risk of bias (e.g., low, high, or unclear).
Three reviewers (TF, IA, MMJ) assessed the quality and disagreements
were resolved by consensus. We also assessed the overall certainty of ev-
idence (e.g., inconsistency, imprecision, indirectness, and publication
bias) in the prognostic studies using the GRADE framework [23].

2.5. Data extraction

The Critical Appraisal and Data Extraction for Systematic Reviews of
Prediction Modelling Studies checklist was used to guide the data ex-
traction [24]. Three authors (TF, IA, MMJ) extracted the data
(e.g., source of data, participants, outcomes, predictors, sample size,
missing data, model development, model performance, model evalua-
tion, results) from the included studies. AI level of readiness (range
1–9) was assessed by applying the general concept of technology read-
iness levels [25].

2.6. Statistics

The forest plot includes statistics for accuracy, the area under curve
(AUC), sensitivity, specificity, positive predictive value (PPV), the nega-
tive predictive value (NPV), and their 95% confidence intervals (CIs). A
meta-analysis was conducted to estimate the effect of model perfor-
mance. In these analyses only the best model from each study was in-
cluded, resulting in pooled estimates of two or three models in each
set of statistics.

3. Results

3.1. Study selection process

We identified 3688 records. After exclusion of duplicates, 2052 re-
cords were identified for screening. Following screening, 67 records
were considered eligible for full-text evaluation. Based on the full-text
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Fig. 1. Flow diagram showing the literature search and results. The flow of information
through the different phases of our systematic review was recorded according to the
PRISMA reporting guidelines. We identified 1496 records by searching the Scopus, Web
of Science and Academic Search Ultimate databases, 688 records by searching the
PubMed database, and 340 records by searching the CINAHL database. We identified a
further 1059 records by searching the ACM Guide to Computing Literature, arXiV,
Astrophysics Data System, CT.gov, and IEEE Xplore Digital Library databases. This
literature search resulted in a total of 2052 records for our systematic review. In
addition, manual searches of the reference lists, citations, and related articles of included
studies revealed eleven references.
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evaluation, 46 recordswere excluded, resulting in 20unique studies (18
full and 2 conference abstracts) that met our inclusion criteria for the
systematic review. The PRISMA flow diagram of the study selection is
presented in Fig. 1.

3.2. General characteristics of included studies

Seventy percent (n = 14) of the included studies used a sensor-
based electronic (e) nose [26-36], an acoustic wave based e-nose [37],
and gas chromatography–mass spectrometry (GC–MS) based [38,39]
assays to predict VAP and/or a causative pathogen from exhaled
human breath (Appendix C). Two (10%) studies [40,41] used Natural
Language Processing (NLP)-based techniques to detect VAP from un-
structured narratives (Appendix D). The rest [4 (20%)] of the included
studies predicted VAP with [42] and without related outcomes [43-45]
from baseline demographics and clinical characteristics (Appendix E).

The definition of VAPwas not uniform [18]; eight of included studies
used clinical criteria with microbiological confirmation [30,33,35,38,39,
41,42,41]. In four studies, clinical criteria were used in conjunction with
[30,38] and without a Clinical Pulmonary Infection Score [27,28]. In ad-
dition, nine studies used solely microbiological [29,31,32,34,36,37,45]
and CT-based diagnoses [26], and Ventilator Associated Event (VAE)
surveillance criteria [40].

3.3. Predictive performance of diagnostic prediction models

The sensitivity of the prediction models varied from 56% to 100% for
the e-nose based assays [29,30,33-36], from 67% to 92% for the NLP-
based techniques [40,41], and from 78% to 90% for the risk models
[44,45]. The pooled sensitivity of the e-noses in the prediction of clini-
cally defined VAP (Table 1) and P. aeruginosa infections (Table 2) were
0.90 (95% CI 0.85–0.94; I = 17.2%; p = 0.299) and 0.91 (95% CI
0.79–1.04; I = 72.9%, p = 0.055), respectively (Figs. 2 and 3).

The specificity of the prediction models varied from 56% to 100% for
the e-nose based assays [29,30,33-35], from 97% to 100% for the NLP-
based techniques [40,41], and from 0.06% to 96% for the risk models
[44,45]. The pooled specificity of the e-noses in the prediction of clini-
cally defined VAP was 0.75 (95% CI 0.58–0.91; I = 83.1%; p = 0.015).

The accuracy of the prediction models varied from 68% to 100% for
the e-nose and GC–MS based assays [26,29,31,32,34-36,39]. The pooled
accuracy of the e-noses to predict P. aeruginosa infectionswas 0.93 (95%
CI 0.89–0.98; I = 0.0%; p = 0.889). The accuracy of NLP-based tech-
niques was 98% [40].

The PPV of the prediction models varied from 64% to 93% for the e-
nose based assays [30,34-36], from 90% to 100% for the NLP-based tech-
niques [40,41], and from 6% to 86% for the risk models [44,45]. The
pooled PPV of e-noses in the prediction of clinically defined VAP and
P. aeruginosa infections were 0.89 (95% CI 0.83–0.95; I = 0.0%; p =
0.415) and 0.87 (95% CI 0.76–0.99; I= 54.4%; p= 0.138), respectively.

The NPV of the prediction models varied from 77% to 92% for the e-
nose based assays [30,35] and from66% to 100% for the riskmodels [45].
The pooledNPV of the e-noses in the prediction of clinically definedVAP
was 0.84 (95% CI 0.77–0.91; I= 0.0%; p=0.780). The NPV for NLP was
98% [40,41].

The AUC of the prediction models varied from 0.62 to 0.98 for the e-
nose based assays [30,33,35,36] and from 0.51 to 0.86 for the risk
models [44,45]. The pooled AUC of the e-noses in the prediction of clin-
ically defined VAP and P. aeruginosa infections were 0.83 (95% CI
0.77–0.89; I = 0.0%; p = 0.625) and 0.96 (95% CI 0.91–1.02; I =
30.3%; p = 0.231), respectively.

3.4. Predictive performance of prognostic prediction models

Only one study predicted the risk of VAP and death in patients with
and without VAP demonstrating moderate accuracy [42]. Further anal-
ysis was not possible due to lack of studies.
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3.5. AI level of readiness

Eighty percent (n = 16) of the included studies were validated on
realistic dataset (level 5) other than the original training and testing
population (Appendix C–E). Studies reporting real-time testing (level
6), workflow integration (level 7), clinical outcome evaluation (level
8), and model integration (level 9) were not identified.

3.6. Methodological quality of included studies

The majority of the included studies were prospective cohort [26-
28,30,33,39,44,45] or non-nested case-control studies [29,31,34-36,38];
while only one clinical trial [32] and three register studies [40,42,43]
were identified. All studies had either a high [26-30,33,35,38,39,42,
44,45] or unclear [31,32,34,36,37,40,41,43] risk of biaswithout significant
improvements in applicability (Table 3). High ROBmost often originated
in the domain “participants” and “analysis”. In addition, it was unclear
which variables were eventually used by the AI model.

3.7. Overall certainty of evidence

In general, the body of evidence is low due to the lack of randomized
controlled trials. The overall certainty of evidence was difficult to esti-
mate due to the low number of prognostic studies and heterogenous
results [42,43].

4. Discussion

Our study reports the development of diagnostic and prognostic pre-
diction models in this at-risk population of VAP. The majority of the in-
cluded studies reported the predictive performance of diagnostic
models to detect VAP from various sources. However, only one study
predicted a clinical prognosis. Although the majority of them were val-
idated on a realistic dataset, there was a high or unclear risk of bias
without significant improvements in applicability.

The studies most often reported the predictive performance of diag-
nostic models to detect VAP and/or its causative pathogen from exhaled
human breathwith a high degree of sensitivity and amoderate specific-
ity. Overall, Pseudomonas aeruginosa was found to be the most studied
pathogen, themanagement of which requires prompt and adequate an-
timicrobial exposure [46] due to increased mortality [47] and duration
of mechanical ventilation. According to a recent report from EU/EEA
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Table 1
Meta-analysis results of the e-nose predictions of clinically defined ventilator-associated pneumonia from exhaled human breath.

Outcome Model ES (95% CI) Weight (%)

Sensitivity
Bos et al., 2014 [30] In-set analysis (SPLS) 0.94 (0.87–1.01) 36.91
Schnabel et al., 2015 [33] In-set analysis (RF with PCA) 0.88 (0.81–0.95) 37.53
Chen et al., 2020 [35] In-set analysis (Decision tree) 0.86 (0.77–0.95) 25.56
Subtotal (I-squared = 17.2%, p = 0.299) 0.90 (0.85–0.94) 100.0

Specificity
Schnabel et al., 2015 [33] In-set analysis (FR with PCA) 0.66 (0.56–0.76) 49.42
Chen et al., 2020 [35] In-set analysis (Decision tree) 0.83 (0.74–0.92) 50.58
Subtotal (I-squared = 83.1%, p = 0.015) 0.75 (0.58–0.91) 100.0

Positive predictive value
Bos et al., 2014 [30] In-set analysis (SPLS) 0.91 (0.83–0.99) 51.62
Chen et al., 2020 [35] In-set analysis (Decision tree) 0.86 (0.77–0.95) 48.38
Subtotal (I-squared = 0.0%, p = 0.415) 0.89 (0.83–0.95) 100.0

Negative predictive value
Bos et al., 2014 [30] In-set analysis (SPLS) 0.85 (0.75–0.95) 44.54
Chen et al., 2020 [35] In-set analysis (Decision tree) 0.83 (0.74–0.92) 55.46
Subtotal (I-squared = 0.0%, p = 0.780) 0.84 (0.77–0.91) 100.0

Area under curve
Schnabel et al., 2015 [33] In-set analysis (RF with PCA) 0.82 (0.74–0.90) 54.51
Chen et al., 2020 [35] In-set analysis (Decision tree) 0.85 (0.76–0.94) 45.49
Subtotal (I-squared = 0.0%, p = 0.625) 0.83 (0.77–0.89) 100.0

CI: Confidence Intervals; ES = Effect Size; I-squared = Heterogeneity; PCA = Principal Component Analysis; RF = Random Forest; SPLS =
Sparse Partial least square.
NOTE: Weights are from a random effects analysis.
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countries, 32.1% of P. aeruginosa isolates have been resistant to at least
one of the antimicrobial groups whereas 19.2% have been resistant to
two or more antimicrobial groups [48] highlighting the potential of sur-
veillance culture based algorithms to restrict the use of broad-spectrum
antimicrobials [18].

The analysis of volatile organic compounds (VOCs) in exhaled
human breath appears to be a promising means for noninvasive detec-
tion andmonitoring of infectious diseases [49]. In this study, the pooled
sensitivity of e-noses to predict clinically defined VAP and/or its causa-
tive pathogen demonstrated a high level of sensitivity. The pooled spec-
ificity of the e-noses, however, demonstrated onlymoderate specificity.
Some of these technologies (e.g., GC–MS) require bulky instruments,
complex sampling methods, and qualified personnel, which have lim-
ited their application in on-site testing [38,39]. For this reason,
Table 2
Meta-analysis results of e-nose predictions of P. Aeruginosa infections fro

Outcome Model

Accuracy
Chiu et al., 2014 [31] In-set analys
Liao et al., 2019 [34] In-set analys
Liao et al., 2020 [36] In-set analys
Subtotal (I-squared = 0.0%, p = 0.889)

Sensitivity
Liao et al., 2019 [34] In-set analys
Liao et al., 2020 [36] In-set analys
Subtotal (I-squared = 72.9%, p = 0.055)

Positive predictive value
Liao et al., 2019 [34] In-set analys
Liao et al., 2020 [36] In-set analys
Subtotal (I-squared = 54.4%, p = 0.138)

Area under curve
Liao et al., 2019 [34] In-set analys
Liao et al., 2020 [36] In-set analys
Subtotal (I-squared = 30.3%, p = 0.231)

CI: Confidence Intervals; ENN = Ensemble Neural Network; ES = Effect
NOTE: Weights are from a random effects analysis.
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commercial e-noses (e.g., Cyranose® 320, DiagNose, BreathSpec®,
ChemPro100i) with analytical platforms have been applied for on-site
testing [50], but they have suffered from laborious pre-treatment, rela-
tively low sensitivity, and incapability to detect unknown targets. In ad-
dition, elaborated techniques have been limited inmolecular selectivity,
and have suffered from high moisture sensitivity and power demands
[50].

NLP-based techniques have been found to be a more timely, cost-
effective, and accurate alternative to manual surveillance [41]. In this
study, NLP-based techniques were used to extract unstructured data
from electronic health records in order to classify patients with and
without clinically defined VAP [41]. In addition, these techniques were
used to detect sepsis and ventilator-associated events from the MIMIC
II dataset [40]. Both included studies demonstrated moderate to high
m exhaled human breath.

ES (95% CI) Weight (%)

is (RAW) 0.93 (0.87–0.99) 50.59
is (ENN) 0.95 (0.86–1.04) 23.81
is (SVM) 0.92 (0.84–1.0) 25.61

0.93 (0.89–0.98) 100.0

is (ENN) 0.97 (0.90–1.04) 56.35
is (SVM) 0.84 (0.73–0.95) 43.65

0.91 (0.79–1.04) 100.0

is (ENN) 0.93 (0.83–1.03) 53.94
is (SVM) 0.81 (0.69–0.93) 46.06

0.87 (0.76–0.99) 100.0

is (ENN) 0.98 (0.93–1.03) 65.72
is (SVM) 0.93 (0.84–1.01) 34.28

0.96 (0.91–1.02) 100.0

Size; I-squared = Heterogeneity; SVM = Support Vector Machine.



Fig. 2. Forest plot of sensitivity, specificity, positive and negative predictive values, and
area under the ROC curve of e-nose analyses to predict clinically defined Ventilator-
Associated Pneumonia from exhaled human breath.

Fig. 3. Forest plot of accuracy, sensitivity, positive predictive value, and area under the ROC
curve of e-nose analyses to predict P. aeruginosa infection from exhaled human breath.
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sensitivity (67–92%) and specificity (97–100%) but failed in the external
validation. The relatively low sensitivity in the study by Daza et al. [40]
might be due to the low incidence of VAP patients in their dataset and
relatively small number of patients.

A moderate predictive performance was observed within the
existing diagnostic and prognostic prediction models, possibly due to
the limited amount of data used to train the models. The development
of breath analysis tools and models requires manual data collection
from patients, which is time consuming and expensive, which severely
48
limits the availability of training data for the models. The limited
amount of data may lead to biases in the models and the patients may
also suffer from comorbidities, which can also lead to errors and reduce
the model performance. Datasets containing electronic healthcare re-
cords and physiological signals are more readily available, but they
may lack appropriate annotations. Because of this, the data needs to
be annotatedmanually which is time consuming and limits the amount
of usable data for model development. In the literature, the use of mul-
timodal data has improved the predictive performance. Utilizing multi-
modal data to train automatic diagnostic and prognostic ML models
allows the models to learn more contextually relevant features and sig-
nificantly improves the model performance.

According to our findings, the development and deployment of AI is
limited in critical care settings although more than half of healthcare
leaders expect that the widespread adoption of AI will take less than
five years [51]. The limited clinical relevance, lack of suitable data and
infrastructures, costs, as well as legal and ethical considerations have
hampered the clinical integration and implementation of AI-solutions
[52,53]. While AI may enable the development of accurate tools, their
introduction must follow careful consideration of real-world clinical
utility, efficiency, and existing workflows [54]. Future studies using AI
should focus on the benefits of preventive interventions of infectious
and non-infectious complications [55]. It is still unclear, however,
what kind of evidence will be needed to recommend the widespread
adoption of new AI systems [56].

According to our best knowledge, this is the first review reporting
the development of diagnostic and prognostic prediction models in
patients at risk of VAP. This review comes at an important time in
the pandemic, highlighting the risk-based prevention of complica-
tions occurring in individuals at risk. This systematic review has sev-
eral limitations. First, explorative prediction research is difficult to
find in Medline, using any of the currently available search filters
[21]. The lack of studies in our systematic review may also be related
to the search strategy and screening criteria that focused solely on
VAP; we did not systematically examine other complications occur-
ring during MV which could potentially have provided additional in-
formation on risk factors. Second, we did not extract the predictive
performance of other clinical outcomes in patients with VAP due to
the lack of studies [42]. Third, the definition of respiratory infections
was not uniform in the included studies. Moreover, quantitative cul-
tures and/or CT-based confirmation alone are insufficient to distin-
guish patients with and without VAP. In addition, the inter-observer
agreement in calculating the Clinical Pulmonary Infection Score
(CPIS) has been shown to be poor [56]. Fourth, e-noses show promis-
ing results in VAP diagnosis, but so far, these devices have been
trained using small breath sample datasets collected from limited
number of patients. For this reason, theML algorithms used to analyze
the sensor array data may not be generalized to other datasets of pa-
tients. In future, the predictive performance of these devices should
be validated with multiple datasets before clinical applications. Fifth,
there is a lack of consistency between different statistical measures.
In addition, the lack of studies reduces the reliability of pooling. Lastly,
prognostic models are rarely developed although the knowledge of
prognosis is critical in the planning of diagnostic interventions and
predicting the likely effect of treatment. In addition, a clear definition
of risk factors is highlighted.

An ideal diagnostic test should have a high level of accuracy, and
be low cost, noninvasive, easily repeatable at specific intervals, non-
technical, and clinically available at the bedside. Advanced methods
for early and accurate diagnoses are urgently needed to distinguish
patients with VAP and ventilator-associated tracheobronchitis from
airway colonization. Infection-related VOC profiles require further
research, however; there is a lack of clinically approved VOC bio-
markers.



Table 3
The Prediction Model Risk of Bias Assessment Tool was used to assess both the risk of bias and the applicability of prediction modelling studies (Wolff et al., 2019).

Study ROB Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Bos et al., 2014 [30] + + + − − − + − −
Chen et al., 2020 [35] + + − ? + + − ?
Chiu et al., 2014 [31] − + ? − ? − ? ? ?
Gao et al., 2016 [38] − + + − + + + − +
Hanson et al., 2005 [27] + + − − − + + − −
Hockstein et al., 2004 [26] + + − − − + − − −
Hockstein et al., 2005 [28] + + − − − + + − −
Humphreys et al., 2011 [29] − + – − − + + − −
Liao et al., 2019 [34] − + ? − − + − ? −
Liao et al., 2020 [36] − + ? − − + ? ? ?
Schnabel et al., 2015 [33] + + + − + + + − +
Shih et al., 2010 [37] ? ? ? − + ? ? ? ?
Tang et al., 2014 [32] − + ? ? − ? ? ? ?
van Oort et al. 2017 [39] + + + − + + + − +
Daza et al., 2016 [40] − ? − − − ? + ? ?
Ding et al., 2019 [33] ? ? + ? ? ? + ? ?
Liquet et al., 2012 [42] − + + + + + + − +
Pearl et al., 2012 [43] − + ? + − + ? ? ?
Schurink et al., 2007 [44] + + + − + + + − +
Visscher et al., 2008 [45] + + + − + + + − +

ROB= risk of bias.
+Indicates low ROB/low concern regarding applicability.
-Indicates high ROB/high concern regarding applicability.
?Indicates unclear ROB/ unclear concern regarding applicability.
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5. Conclusion

The development and deployment of prediction modelling studies
are limited concerning VAP and related outcomes. Our findings suggest
that computational, translational, and clinical research to bring these
tools from the bench to the bedside is an unmet clinical need. In addi-
tion, advanced methods for early and accurate diagnosis are urgently
needed to distinguish ventilated patients with andwithout lower respi-
ratory infections. Our findings may inform the development of diagnos-
tic and prognostic prediction models in this at-risk population of lower
respiratory infections in the future and suggest the need to improve the
specificity of exhaled breath tests for intubated patients.
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Appendix A

An extensive list of validated search termswas used to the search to cover papers failing to mention predictive research in their title or abstract [20]
(Geersing et al., 2012).
Databases
 PI(COT)S
 MesH in Medline Ovid and PubMed
 No. of
references
copus, Web of Science and Academic
Search Ultimate (17.6.2020)
Population
 ((TITLE-ABS-KEY (“respiration, artificial” OR “artificial respiration” OR “ventilator-associated” OR
“ventilator-induced” OR “mechanical ventilation”))
1496
Intervention
 (TITLE-ABS-KEY (stratification OR “ROC curve” OR discriminat* OR “c-statistic” OR “area under the curve” OR
auc OR calibration* OR algorithm* OR multivariable OR “multi-variable” OR diagnos* OR prognos*)) AND
((TITLE-ABS-KEY (“Artificial Intelligence” OR “Machine Learning” OR “Artificial Learning” OR “Bayesian
Learning” OR “Deep Learning” OR “Knowledge Representation” OR “Neural Network*”) OR TITLE-ABS-KEY
(“Probabilistic Network*” OR “Statistical Learning” OR “Support vector machine*” OR “Generalized linear
model*”) OR TITLE-ABS-KEY (“Naive bayes*” OR “Ensemble method*” OR “Neural network model*” OR
“Decision tree*”) OR TITLE-ABS-KEY (“Proportional hazards model*” OR “Long short term memory” OR
“Natural language processing” OR “Speech recognition” OR robotics OR sensor* OR gamification OR “Auto-
mated planning”))))
Separate search: (TITLE-ABS-KEY (“multivariable prediction model*” OR “multi-variable prediction model*”))
Setting
 hospital* OR “operation theatre*” OR “emergency department*” OR “recovery room*” OR”tertiary care cen-
ter*” OR”intensive care unit*” OR”operation room*” OR”Clinical Decision Unit*” OR”Clinical Observation
(continued on next page)
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(continued)
Databases
P

C

A

a

A

C

PI(COT)S
 MesH in Medline Ovid and PubMed
50
No. of
references
Unit*” OR”respiratory care unit*” OR”Trauma Center*”

ubMed (Medline) (17.6.2020)
 Population
 (((“Respiration, Artificial”[Mesh]) OR “Pneumonia, Ventilator-Associated”[Mesh]) OR

(”ventilator-associated”[Text Word] OR”ventilator-induced”[Text Word] OR”mechanical
ventilation”[Text Word] OR”artificial respiration”[Text Word])))
688
Intervention
 ((((((“Artificial Intelligence”[Mesh]) OR (“Artificial Intelligence”[Text Word] OR “Machine Learning”[Text
Word] OR “Artificial Learning”[Text Word] OR “Bayesian Learning”[Text Word] OR “Deep Learning”[Text
Word] OR “Knowledge Representation”[Text Word] OR Neural Network*[Text Word] OR Probabilistic Net-
work*[Text Word] OR “Statistical Learning”[Text Word] OR Support vector machine*[Text Word] OR Gener-
alized linear model*[Text Word] OR Naive bayes*[Text Word] OR Ensemble method*[Text Word] OR Neural
network model*[Text Word] OR Decision tree*[Text Word] OR Proportional hazards model*[Text Word] OR
“Long short term memory”[Text Word] OR “Natural language processing”[Text Word] OR “Speech
recognition”[Text Word] OR Robotics[Text Word] OR Sensor*[Text Word] OR Gamification[Text Word] OR
“Automated planning”[Text Word])))) AND (((“ROC Curve”[Mesh]) OR (stratification[Text Word] OR “ROC
curve”[Text Word] OR discriminat*[Text Word] OR “c-statistic”[Text Word] OR “c statistic”[Text Word] OR
“area under the curve”[Text Word] OR AUC[Text Word] OR calibration*[Text Word] OR algorithm*[Text
Word] OR multivariable [Text Word] OR”multi-variable”[Text Word] OR diagnos*[Text Word] OR prognos*
[Text Word]))))
Separate search: multivariable prediction model* OR multi-variable prediction model*
Setting
 (((((((“Hospitals”[Mesh]) OR “Clinical Observation Units”[Mesh]) OR “Intensive Care Units”[Mesh]) OR
“Operating Rooms”[Mesh]) OR “Emergency Service, Hospital”[Mesh])) OR (hospital*[Text Word] OR opera-
tion theatre*[Text Word] OR emergency department*[Text Word] OR recovery room*OR tertiary care center*
[Text Word] OR intensive care unit*[Text Word] OR operation room*[Text Word] OR Clinical Decision Unit*
[Text Word] OR Clinical Observation Unit*[Text Word] OR respiratory care unit*[Text Word] OR Trauma
Center*[Text Word]))
INAHL (17.6.2020)
 Population
 ((MH “Respiration, Artificial+”) OR (MH “Pneumonia, Ventilator-Associated”)) OR (”respiration, artificial”
OR”artificial respiration” OR “ventilator-associated” OR “ventilator-induced” OR “mechanical ventilation”)
340
Intervention
 (MH “Artificial Intelligence+”) OR (“Artificial Intelligence” OR “Machine Learning” OR “Artificial Learning” OR
“Bayesian Learning” OR “Deep Learning” OR “Knowledge Representation” OR “Neural Network*” OR “Proba-
bilistic Network*” OR “Statistical Learning” OR “Support vector machine*” OR”Generalized linear model*”
OR”Naive bayes*” OR”Ensemble method*” OR”Neural network model*” OR”Decision tree*” OR”Proportional
hazards model*” OR”Long short termmemory” OR “Natural language processing” OR “Speech recognition” OR
Robotics OR Sensor* OR Gamification OR “Automated planning”) AND (MH “ROC Curve”) AND (stratification
OR”ROC curve” OR discriminat* OR”c-statistic” OR”area under the curve” OR AUC OR calibration* OR algo-
rithm* OR multivariable OR “multi-variable” OR diagnos* OR prognos*)
Separate search: multivariable prediction model* OR multi-variable prediction model*
Setting
 ((TITLE-ABS-KEY (hospital* OR “operation theatre*” OR “emergency department*” OR “recovery room*” OR
“tertiary care center*” OR “intensive care unit*” OR “operation room*” OR “Clinical Decision Unit*” OR
“Clinical Observation Unit*” OR “respiratory care unit*”) OR TITLE-ABS-KEY (“Trauma Center*”)))
CM Guide to Computing Literature
(26.6.2020)
Population
 [[All: “respiration, artificial”] OR [All: “artificial respiration”] OR [All: “ventilator-associated”] OR [All:
“ventilator-induced”] OR [All: “mechanical ventilation”]]
193
Intervention
 [[All: “artificial intelligence”] OR [All: “machine learning”] OR [All: “artificial learning”] OR [All: “bayesian
learning”] OR [All: “deep learning”] OR [All: “knowledge representation”] OR [All: “neural network*”] OR [All:
“probabilistic network*”] OR [All: “statistical learning”] OR [All: “support vector machine*”] OR [All: “gener-
alized linear model*”] OR [All: “naive bayes*”] OR [All: “ensemble method*”] OR [All: “neural network
model*”] OR [All: “decision tree*”] OR [All: “proportional hazards model*”] OR [All: “long short term mem-
ory”] OR [All: “natural language processing”] OR [All: “speech recognition”] OR [All: robotics] OR [All: sensor*]
OR [All: gamification] OR [All: “automated planning”]] [[All: stratification] OR [All: “roc curve”] OR [All:
discriminat*] OR [All: “c-statistic”] OR [All: “area under the curve”] OR [All: auc] OR [All: calibration*] OR [All:
algorithm*] OR [All: multivariable] OR [All: “multi-variable”] OR [All: diagnos*] OR [All: prognos*]]
Separate search: multivariable prediction model* OR multi-variable prediction model*
Setting
 [[All: hospital*] OR [All: “operation theatre*”] OR [All: “emergency department*”] OR [All: “recovery room*”]
OR [All: “tertiary care center*”] OR [All: “intensive care unit*”] OR [All: “operation room*”] OR [All: “clinical
decision unit*”] OR [All: “clinical observation unit*”] OR [All: “respiratory care unit*”] OR [All: “trauma
center*”]]
rXiV (20.8.2020)
 Population
 “respiration, artificial” OR “artificial respiration” OR “ventilator-associated” OR “ventilator-induced” OR
“mechanical ventilation”
43
Intervention
 “multivariable prediction model*” OR “multi-variable prediction model*”

strophysics Data System (20.8.2020)
 Population
 (“respiration, artificial” OR “artificial respiration” OR “ventilator-associated” OR “ventilator-induced” OR

“mechanical ventilation”)

190
Intervention
 (“Artificial Intelligence” OR “Machine Learning” OR “Artificial Learning” OR “Bayesian Learning” OR “Deep
Learning” OR “Knowledge Representation” OR “Neural Network*” OR “Probabilistic Network*” OR “Statistical
Learning” OR “Support vector machine*” OR “Generalized linear model*” OR “Naive bayes*” OR “Ensemble
method*” OR “Neural network model*” OR “Decision tree*” OR “Proportional hazards model*” OR “Long short
term memory” OR “Natural language processing” OR “Speech recognition” OR Robotics OR Sensor* OR
Gamification OR “Automated planning”) AND (stratification OR “ROC curve” OR discriminat* OR “c-statistic”
OR “area under the curve” OR AUC OR calibration* OR algorithm* OR multivariable OR “multi-variable” OR
diagnos* OR prognos*)
Setting
 (hospital* OR “operation theatre*” OR “emergency department*” OR “recovery room*” OR “tertiary care
center*” OR “intensive care unit*” OR “operation room*” OR “Clinical Decision Unit*” OR “Clinical Observation
Unit*” OR “respiratory care unit*” OR “Trauma Center*”)
T.gov (20.8.2020)
 Population
 (“respiration, artificial” OR “artificial respiration” OR “ventilator-associated” OR “ventilator-induced” OR
“mechanical ventilation”)
277
Setting
 “intensive care unit”

http://CT.gov
http://CT.gov
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(continued)
Databases
IE

B

C

C

PI(COT)S
 MesH in Medline Ovid and PubMed
51
No. of
references
EE Xplore Digital Library (20.8.2020)
 Population
 “respiration, artificial” OR “artificial respiration” OR “ventilator-associated” OR “ventilator-induced” OR
“mechanical ventilation” AND multivariable prediction model* OR multi-variable prediction model*
356
Intervention
 “Artificial Intelligence” OR “Machine Learning” OR “Artificial Learning” OR “Bayesian Learning” OR “Deep
Learning” OR “Neural Network” OR stratification OR “ROC curve” OR discriminat* OR “c-statistic” OR “area
under the curve” OR AUC OR calibration* OR algorithm* OR multivariable OR “multi-variable” OR diagnos* OR
prognos*
Setting
 “intensive care unit”
Appendix B

The list of sources of “grey literature”.
• The System for Information on Grey Literature in Europe (www.opengrey.eu)
• The DART-Europe E-theses Portal (www.dart-europe.eu)
• The EThOS e-theses online service (https://ethos.bl.uk)
• WorldCat (https://www.worldcat.org/)
• MedNar (http://allcatsrgrey.org.uk/wp/knowledgebase/mednar/)
• The Netherlands Trial Register (https://www.trialregister.nl/)
• The International Clinical Trials Registry Platform (https://www.who.int/ictrp/search/searchtips/en/)
• The GSK Study Register (gsk-clinicalstudyregister.com)
• Regulatory agencies: FDA/EMEA
Appendix C

Data extraction of diagnostic prediction models to predict VAP and its causative pathogen from exhaled human breath.
Author(s)
 Source of
data
Participants
 Outcome(s) to
be predicted
Candidate
predictors
(or index
tests)
Sample size
 Missing
data
Model
development
Model
performance
Model
evaluation
Result(s)
 Level of
readiness
os et al.,
2014
Cohort study
 More than 7 days
ventilated
patients
Clinical criteria
of VAP with
microbiological
confirmation,
CPIS for VAP
The sensor
array
response
data
28 cases and
17 controls
Patients
with
missing
data
were
excluded
SPLS
 ROC
 Internal
validation
(cross--
valida-
tion)
eNose: AUC for
non-colonized
controls 0.84
(0.68–1.0); SEN
94%; SPE 79%; PPV
84%; NPV 92%.
eNose: AUC for
colonized-controls
0.85; SEN 92%; SPE
79%; PPV 81%; NPV
92%
CPIS: AUC 0.89
(0.80–0.99); SEN
87%; SPE 86%; PPV
72%; NPV 92%
CPIS + eNose: AUC
0.95 (95% CI
0.88–1.0); SEN
94%; SPE 86%; PPV
81%, NPV 92%
5

hen et al.,
2020
Case-control
study
Mechanically
ventilated
patients, National
Taiwan Univer-
sity Hospital
02/2017–06/2019
Clinical criteria
of VAP with
microbiological
confirmation
(P. aeruginosa)
The sensor
array
response
data
33 cases and
26 controls
NR
 KNN Naive
Bayes,
Decision
Tree, ANN,
SVM, RF
Confusion
matrix, ROC
Internal
validation
(bootstra-
pping)
Mean ACC 81%;
SEN 79%; SPE 83%;
PPV 85%; NPV 77%;
Kappa 0.85; AUC
0.62 (0.08)
5

hiu et al.,
2014
Case-control
study
Mechanically
ventilated
patients, Taipei
Medical
University.
Pathogens
causing VAP
(P. aeruginosa.
Klebsiella
pneumoniae,
S. aureus)
The sensor
array
response
data
76 cases and
41 controls
NR
 CRBM
 Classification
accuracy
Normal vs
infected: RAW ACC
87%; CFI 27.80,
CRBM ACC 92%; CFI
15.30
P. aeruginosa:
RAW ACC 93%; CFI
8.53, CRBM ACC
100%; CFI 4.81
K. pneumoniae:
RAW ACC 95%; CFI
6.71, CRBM ACC
5

(continued on next page)

http://www.opengrey.eu
http://www.dart-europe.eu
https://ethos.bl.uk
https://www.worldcat.org/
http://allcatsrgrey.org.uk/wp/knowledgebase/mednar/
https://www.trialregister.nl/
https://www.who.int/ictrp/search/searchtips/en/
http://gsk-clinicalstudyregister.com
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(continued)
Author(s)
G

H

H

H

H

L

Source of
data
Participants
 Outcome(s) to
be predicted
Candidate
predictors
(or index
tests)
Sample size
52
Missing
data
Model
development
Model
performance
Model
evaluation
Result(s)
 Level of
readiness
100%; CFI 2.89
S. aureus: RAW
ACC 92%; CFI 9.92,
CRBM ACC 100%;
CFI 5.43
Candida: RAW ACC
96%; CFI 5.09,
CRBM ACC 100%;
CFI 3.07
ao et al.,
2016
Case-control
study
Mechanically
ventilated
patients, the Sir
Run Shaw
Hospital China,
2014–2016
Clinical criteria
of VAP with
microbiological
confirmation
(Acinetobacter
baumannii), CPIS
for VAP
GC–MS
data
40 cases
(infection
and
colonization
groups) and
20 controls
NR
 PCA, PLS dis-
criminant
analysis
ROC
 Internal
validation
0.89 and 0.88
 5
anson
et al.,
2005
Cohort study
 Mechanically
ventilated
patients with
surgery, Hospital
of the University
of Pennsylvania
CPIS for VAP
 The sensor
array
response
data
19 cases and
19 controls
NR
 Linear and
nonlinear
PLS regres-
sion
Classification
measures
Internal
validation
(cross--
valida-
tion)
r2 0.81
(p = 0.0001);
mean bias 0.0
(limits ±2.6)
5

ockstein
et al.,
2004
Cohort study
 Mechanically
ventilated
patients with
surgery,
University of
Pennsylvania
Hospital,
08–10/2003
CT confirmed
VAP
The sensor
array
response
data
13 cases and
12 controls
NR
 SVM
 PCA
 Internal
validation
(cross-
valida-
tion)
ACC 91.6–100.0%
 5
External
validation
(cross-
valida-
tion)
ACC >80%
ockstein
et al.,
2005
Cohort study
 Mechanically
ventilated
patients with
surgery,
University of
Pennsylvania
Hospital,
08–12/2003
CPIS for VAP
 The sensor
array
response
data
15 cases and
29 controls
Records
with
missing
data
were
excluded
KNN
 Classification
accuracy
Internal
validation
(cross-
valida-
tion)
ACC 70%
 5
umphreys
et al.,
2011
Case-control
study
Mechanically
ventilated
patients,
Cheltenham
General and
Gloucestershire
Royal Hospitals
Bronchoalveolar
lavage
The sensor
array
response
data
44 cases and
6 controls
NR
 PCA, LDA
 Classification
accuracy
Internal
validation
(LOO
cross-validation)
 Group 1:
ACC 83%;
SEN
74–95%;
SPE
77–100%
Group 2:
ACC 68%;
SEN
67–69%;
SPE
67–69%
Group 3:
ACC 77%;
SEN
56–84%;
SPE
81–97%
Group 4:
ACC 76%;
SEN
60–100%;
SPE
81–100%
5

iao et al.,
2019
Case-control
study
Mechanically
ventilated
patients with
neurosurgery,
Taipei Medical
University Hospi-
tal
Pathogen
causing VAP (P.
aeruginosa)
The sensor
array
response
data
12 cases and
12 controls
NR
 SVM
 Classification
measures
Internal
validation
(cross-
valida-
tion)
ACC 0.87; SEN 93%;
PPV 86%; AUC 0.94
(0.0301)
5

ENN
 ACC 0.947
(0.0135); SEN 97%;
PPV 93%; AUC 0.98
(0.0058)
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Author(s)
L

S

S

T

v

D

D

Source of
data
Participants
 Outcome(s) to
be predicted
Candidate
predictors
(or index
tests)
Sample size
53
Missing
data
Model
development
Model
performance
Model
evaluation
Result(s)
 Level of
readiness
iao et al.,
2020
Case-control
study
Mechanically
ventilated
patients with
cardiopulmonary
surgery, Taipei
Medical Univer-
sity Hospital
Pathogen
causing VAP (P.
aeruginosa)
The sensor
array
response
data
20 cases and
20 controls
NR
 ANN
 ROC
 Internal
validation
(cross-
valida-
tion)
ACC 0.86 (0.02);
SEN 68%; PPV 64%;
AUC 0.87 (0.05)
5

SVM
 ACC 92%; SEN 84%;
PPV 82%; AUC 0.93
(0.017)
chnabel
et al.,
2015
Cohort study
 Mechanically
ventilated
patients,
Maastricht
University
Medical Centre,
2009–2011
Clinical criteria
of VAP with
microbiological
confirmation
The sensor
array
response
data
72 cases and
53 controls
NR
 RF with PCA
 ROC
 Internal
validation
(out-of-
bag-error)
Group 1: AUC 0.82
(0.73–0.91); SEN
88%; SPE 66%
Group 2: AUC 0.69
(0.57–0.81); SEN
76%; SPE 56%
5

hih et al.,
2010
Unclear
 ICU pneumonia
patients
Most common
pathogens
causing
respiratory
infection (P.
aeruginosa, A.
baumannii, K.
pneumoniae, S.
aureus,
Acinetobacter
lwoffi)
Acoustic
wave
based
electronic
nose
system
96 patients,
128 breath
samples;
106 single
bacteria; 11
multiple
bacterial
infections;
11 normal
samples
NR
 MDA
 χ2
 Internal
validation
ACC: 98%; χ2: 166
(p-value 0.0034),
χ2: 83.4 (p-value
0.7269)
5

ang et al.,
2014
Clinical trial
 NR
 Pathogens
causing VAP (K.
pneumoniae, P.
aeruginosa)
The sensor
array
response
data
74 cases and
43 controls
NR
 KNN
 Classification
accuracy, CFI
Internal
validation
ACC 100%; CFI 0.73
for infected
patients
5

an Oort
et al.
2017
Cohort study
 Clinical criteria
of VAP with
microbiological
confirmation
VOCs
identified
from
GC–MS
data
25 cases
(infection
and
colonization
groups) and
68 controls
NR
 PCA, PLS dis-
criminant
analysis
ROC
 Internal
validation
(LOO
cross-validation)
 In-set
analysis:
ACC 87%
LOO: ACC
73%
5

ACC = Accuracy; ANN= Artificial Neural Network; AUC = Area Under Curve; BN= Bayesian Network; CFI = Clustering Fisher Index; CRBM= Continuous Restricted Boltzmann Ma-
chine; CI=Confidence Intervals; CPIS= Clinical Pulmonary Infection Score; CT= computed tomography; ENN=Ensemble Neural Network; GC–MS=gas chromatography–mass spec-
trometry; KNN= K-Nearest Neighbors; LOO= Leave one out cross-validation; MDA=Multiple discriminant analysis; NLP = Natural Language Processing; NPV = Negative Predictive
Value; NR=Not Reported; LDA= Linear discriminant analysis; PCA= Principal Component Analysis; PLS= Partial Least Squares; PPV= Positive Predictive Value; ROC= Receiver Op-
erating Characteristics; SEN=Sensitivity, SPE=Specificity; SPLS=Sparse partial least square; SVM=Support VectorMachine; RF=RandomForest; VAP=Ventilator-Associated Pneu-
monia, VOC = Volatile Organic Compound; χ2 = Chi-squared test.

Appendix D

Data extraction of the diagnostic prediction models to predict VAP from unstructured narratives.
Author
(s)
Source
of data
Participants
 Outcome(s) to be
predicted
Candidate
predictors
(or index
tests)
Sample
size
Missing
data
Model
development
Model
performance
Model
evaluation
Result(s)
 Level of
readiness
aza
et al.,
2016
Register
study
MIMIC II
database
Sepsis, VAE sur-
veillance criteria
NR
 60
 NR
 A framework for
knowledge-based
temporal abstrac-
tion
Classification
accuracy,
F-measure
Internal
validation
ACC 98%; SEN 67%; SPE
100%; PPV 100%; NPV
98%; F-measure 0.8;
Kappa 0.93
One VAP patient missed
by ClinicalTime.
4

ing
et al.,
2019
Unclear
 NR
 Clinical criteria of
VAP with microbi-
ological confirma-
tion
NR
 223
 NR
 NR
 Classification
accuracy
Internal
validation
SEN 92%; SPE 97%; PPV
90%; NPV 98%
4

ACC=Accuracy; ANN=Artificial Neural Network; AUC=Area Under Curve; NPV=Negative Predictive Value; CI= Confidence Intervals; PPV= Positive Predictive Value; SEN= Sen-
sitivity, SPE = Specificity; VAE = Ventilator-Associated Event; VAP = Ventilator-Associated Pneumonia.
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Appendix E

Data extraction of the diagnostic and prognostic predictionmodels to predict VAP and/or a causative pathogen from the baseline demographics and
clinical characteristics.
Author
(s)
L

P

S

V

Source
of data
Participants
 Outcome(s) to
be predicted
Candidate
predictors
(or index
tests)
Sample
size
Missing
data
54
Model
development
Model
performance
Model evaluation
 Result(s)
 Level of
readiness
iquet
et al.,
2012
Register
study
Outcomera
database,
1996–2007
Clinical criteria
of VAP with
microbiological
confirmation,
discharge, and
death in the ICU
13
variables
2871
 NR
 Markov
models
LCV
 Internal
validation
(cross-validation)
Semi-Parametric LCV
4.04;
Non-homogenous
LCV 4.06; Parametric
LCV 4.46
4

earl
et al.,
2012
Register
study
National
Trauma Data
Bank,
2001–2005
VAP (undefined
criteria)
9 variables
 1,438,035
 Records
with
missing
data
were
excluded
ANN
 Gini values
 Internal
validation
(cross-validation)
True 85%; false 87%;
gini 0.80
4

churink
et al.,
2007
Cohort
study
Patients with
neurosurgery,
University
Medical
center Utrecht
2000–2003
Clinical criteria
of VAP with
microbiological
confirmation
7 variables
 872
 NR
 BN
 Classification
measures
Internal
validation
Approach 1: VAP:
AUC 0.86 (0.83–0.89),
optimal cut-off point
46% with a SEN and
SPE of 80% (PPV 6%,
NPV 100%)
Possible VAP: AUC
0.89 (0.84–0.93),
optimal cut-off point
53%
Probable VAP: AUC
0.88 (0.80–0.95),
optimal cut-off point
53%
Approach B: VAP:
AUC 0.85 (0.79–0.90),
optimal cut-off point
78% with a SEN and
SPE of 79% (PPV 86%,
NPV 66%)
Possible VAP: AUC
0.85 (0.79–0.92),
optimal cut-off point
78%
Probable VAP: AUC
0.88 (0.80–0.95),
optimal cut-off point
53%
5

isscher
et al.,
2008
Cohort
study
Patients with
neurosurgery,
University
Medical
center Utrecht
2000–2003
Pathogens
causing VAP
NR
 157
 NR
 BN
 AUC
 Internal
validation
Analysis 1: AUC 0.51
(0.39–0.63) to 0.77
(0.64–0.91); SEN
85–90%; SPE
0.06–66%; PPV
13–33%; NPV 70–97%
Analysis 2: AUC 0.83
(0.68–0.98) to 0.92
(0.85–0.982); SEN
78–86%; SPE 78–84%;
PPV 38–61%; NPV
90–97%
Analysis 3: AUC 0.6
(0.74–0.98) to 0.93
(0.88–0.98); SEN
78–86%; SPE 77–96%;
PPV 22–64%; NPV
86–97%
5

ACC=Accuracy; ANN=Artificial Neural Network; AUC=AreaUnder Curve; BN=Bayesian Network; NPV=Negative Predictive Value; CI=Confidence Intervals; ICU= Intensive care
unit; LCV = Likelihood cross-validation; PPV = Positive Predictive Value; SEN = Sensitivity, SPE = Specificity; VAP = Ventilator-Associated Pneumonia.
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