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Abstract: The hepatitis delta virus (HDV) genome has an autocatalytic region called the ribozyme,
which is essential for viral replication. The aim of this study was to use next-generation sequencing
(NGS) to analyze the ribozyme quasispecies (QS) in order to study its evolution and identify highly
conserved regions potentially suitable for a gene-silencing strategy. HDV RNA was extracted from
2 longitudinal samples of chronic HDV patients and the ribozyme (nucleotide, nt 688–771) was
analyzed using NGS. QS conservation, variability and genetic distance were analyzed. Mutations
were identified by aligning sequences with their specific genotype consensus. The main relevant
mutations were tested in vitro. The ribozyme was conserved overall, with a hyper-conserved region
between nt 715–745. No difference in QS was observed over time. The most variable region was
between nt 739–769. Thirteen mutations were observed, with three showing a higher frequency:
T23C, T69C and C64 deletion. This last strongly reduced HDV replication by more than 1 log in vitro.
HDV Ribozyme QS was generally highly conserved and was maintained during follow-up. The most
conserved portion may be a valuable target for a gene-silencing strategy. The presence of the C64
deletion may strongly impair viral replication, as it is a potential mechanism of viral persistence.

Keywords: hepatitis delta virus; ribozyme; next-generation sequencing; quasispecies; conservation;
variability; viral fitness; persistence; target; gene silencing

1. Introduction

More than 250 million people worldwide are living with the hepatitis B virus (HBV),
and between 15 and 20 million of them are chronically co-infected with hepatitis delta virus
(HDV). HDV coinfection is associated with a higher risk of cirrhosis, hepatocellular carci-
noma (HCC), and liver decompensation, causing the most severe form of viral hepatitis [1].
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Like HBV, HDV is differently distributed in the world, with regions with a high prevalence
such as Central and West Africa, Central Asia, the Pacific Islands, the Middle East, Eastern
Europe, and South America (Amazon basin) [2,3].

HDV is composed of an RNA molecule with high intermolecular self-complementarity,
giving rise to a rod-like structure. This 1.2 kb genome presents only one reading frame
and codes for a protein existing in two isoforms of different length: the short (S-HDAg)
isoform consisting of 195 amino acids (aa) and the long (L-HDAg) delta antigen with 214 aa
(27 kDa) [4]. HDV genomic RNA replicates through a rolling circle process mediated by
cellular RNA polymerase [5], by producing a concatemer of antigenomic monomers. The
individual antigenomic molecules are obtained through a self-cleavage process led by the
viral ribozyme [6,7]. Some of these antigenomic monomers are later circularized by a still
unclear mechanism [8,9] to be used as templates for the genomic RNA synthesis through
another process of rolling circle amplification. The remaining antigenomic molecules enter
the transduction process by producing HDAg.

Therefore, an essential step in the viral life cycle is the co-transcriptional self-cleavage
activity of the viral ribozyme, which generates both genome and coding viral RNAs. The
ribozyme sequence is mainly observed in plant viroids and can catalyze biochemical
reactions involved in RNA splicing, gene regulation and other processes [10]. The hepatitis
delta virus is the only mammalian virus possessing this auto-catalytic 85-nucleotide-long
sequence [10,11]. Notably, its secondary structure is a determining feature for its catalytic
activity [12]. It is characterized by four double-stranded domains (P1, P1.1, P2, P3, and P4),
three single-stranded regions (J1/2, J1.1/4, and J4/2) and 2 loop regions (L3 and L4) [13].
The ribozyme cleavage site resides in the P1 domain (positions 689/688 and 901/900 in
genomic and antigenomic RNA, respectively). The P2 and P4 regions are fundamental for
structure stabilization; P3 and J4/2 are involved in catalytic activity, and L3, part of the
catalytic site, is essential for the correct RNA split [14–16].

Similarly to HBV, HDV shows a high variability and circulates as a population
of closely related genetic variants called quasispecies (QS) [17,18]. A mutation rate of
1.4–3.2 × 10−5 base substitutions/site/year has been reported for HBV [19], mainly caused
by the viral reverse transcriptase which lacks proof-reading capacity. Consequently, a
higher QS diversity has been reported in HBV-DNA related to HBV-RNA [20].

The origin of HDV genome variability, on the other hand, is still unclear [21]. Al-
though the cellular RNA polymerase has proofreading activity with a low transcription
error rate, HDV shows a high rate of evolution (1.2 × 10−3 to 9.5 × 10−3 nt substitu-
tions/site/year) [22,23]. As proof of this variability, eight different genotypes have been
described worldwide [24], with a divergence of up to 16% within the same genotype and
between 20% and 40% between different genotypes [25].

The next-generation sequencing technique (NGS) is a very sensitive technique that
makes it possible to analyze the less frequent polymorphisms within a variant’s population,
providing valuable information on the viral QS and its evolution [26–28].

To date, the therapeutic strategy mainly used against HDV infection is based on
interferon α, which has a limited administration time due to its adverse effects, without
providing long-term suppression of viral replication [29]. Moreover, it has been reported
that treatment with nucleotide analogues (NA) targeting HBV reverse transcriptase did not
provide an improvement of HBV/HDV patients’ clinical outcome [30]. Notably, new and
specific therapeutic options are currently under study or have been recently approved in
Europe, such as the Bulevirtide (BLV) (Hepcludex®), an acetylated fragment that inhibits
viral entry [31].

Gene silencing is another promising antiviral strategy [32]. Silencing HDV and HBV
expression may inhibit viral expression and limit liver disease progression [21]. How-
ever, due to the high viral genome variability, identifying highly conserved regions is
essential to designing a strategy that may be effective in the presence of different viral
genotypes and quasispecies. Notably, the HDAg region is characterized by high variability,
which does not make it an optimal target [33]. On the other hand, due to its essential
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function in HDV replication, the ribozyme may be a valuable candidate for designing
gene-silencing molecules.

We used NGS to analyze the ribozyme region in two longitudinal samples in order
to study QS evolution in this region and identify highly conserved regions that may be
valuable targets of a gene-silencing strategy.

2. Materials and Methods
2.1. Patients and Samples

Patients were selected from those attending the outpatient clinics at Vall d’Hebron
University Hospital, Barcelona, Spain. Enrolled patients presented at least 3log IU/mL
of HDV RNA and presented chronic hepatitis (CHD). Patients with other co-infections
or autoimmune disease were excluded. Two plasma samples were collected per patient:
one sample at the start of the study and the other at the end, with a mean follow-up
of 2.25 years.

2.2. Serologic and Molecular Assays

Quantification of HDV-RNA was performed by means of an in-house one-step quanti-
tative RT-PCR technique using the WHO international standard (1st World Health Organi-
zation International Standard for Hepatitis D Virus RNA for Nucleic Acid Amplification
Techniques-based assays) [34] with linearity ranging from 5.75 × 102 to 5.75 × 105 IU/mL
and a detection limit of 5.75 × 101 IU/mL. HBV DNA was quantified using real-time
PCR with a detection limit of 10 IU/mL (COBAS 6800, Roche Diagnostics, Rotkreuz,
Switzerland). HBV serological markers such as surface antigen (HBsAg) were tested us-
ing commercial chemiluminescent assays on a COBAS 8000 analyzer (Roche Diagnostics,
Rotkreuz, Switzerland).

The virus was genotyped by analyzing the HDAg region (between nt 910–1270)
using next-generation sequencing (Table S1). Genotypes were determined using the
Kimura-80 model and a dendrogram was constructed using the unweighted pair group
method with arithmetic mean (UPGMA).

2.3. Next-Generation Sequencing of the Ribozyme Region

HDV RNA was extracted depending on the sample volume using the automated
MagNA Pure LC system (Roche Applied Science, Indianapolis, IN, USA) or by man-
ual extraction following the QIAamp Viral RNA mini kit protocol (QIAGEN®, Hilden,
Germany). Extracted HDV RNA was denatured at 98 ◦C for 5 min and immediately trans-
ferred to −80 ◦C and successively retro-transcribed using Accuscript HiFi enzyme (Agilent
Technologies, Santa Clara, CA, USA). To amplify the ribozyme (positions 688–771 on the
antigenome), three nested PCRs were performed, as shown in Table 1. The first PCR step
amplified a larger region (between nt 1454–308) that included the ribozyme portion. In the
second amplification, the ribozyme was amplified with the addition of M13 sequences that
were used to include the multiplex identifier (MID) specific to each sample in the third and
last step. PCR products were charged on 1.5% agarose gel diluted in 1× tris-acetate-EDTA
(TAE) buffer (Corning Mediatech Inc., Manassas, VA, USA), analyzed by electrophoresis
and purified using the QIAquick Gel Extraction Kit protocol (QIAGEN®, Hilden, Germany).
Purified samples were fluorometrically quantified with the automated system Freedom
EVO® (Tecan, Mannedorf, Switzerland) coupled to the Infinite 200 Pro (Tecan, Mannedorf,
Switzerland) fluorimeter using the Quant-iTTM PicoGreen® dsDNA Assay Kit (Thermo
Fisher Scientific, Camarillo, CA, USA).
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Table 1. Protocols for ribozyme amplification. The table shows the different steps for ribozyme
amplification, including the retro-transcription and the three nested-PCR (1st PCR; M13 PCR, MID
PCR). The primer sequence and amplification region for each step is shown. The M13 sequence tail is
underlined. Abbreviations: Fw indicates forward; Rv, reverse; MID, multiplex identifier.

Amplification Step Primer Amplified Region Primer Sequence (5′→3′) Protocol

RT RT rv 1435–1454 TGGCTGGGAAACATCAAAGG RT 42 ◦C 60 min; inactivation
70 ◦C 10 min; cooling 20 ◦C ∞

1st PCR
1a fw 1435–1454 TGGCTGGGAAACATCAAAGG 95 ◦C 1 min; (94 ◦C 20 s,

54 ◦C 20 s, 72 ◦C 45 s) ×
40 cycles; 72 ◦C 3 min1a rv 308–326 CCTCCAGAGGACCCCTTCA

M13 PCR
M13-fw 883–900 CACAGGAAACAGCTATGACCTCGGCATGGCATCTCCAC 95◦ C 2 min; (94 ◦C 20 s,

60 ◦C 20 s, 72 ◦C 30 s) ×
35 cycles; 72 ◦C 3 minM13-rv 663–683 GTTGTAAAACGACGGCCAGTCGCGTTCCATCCTTTCTTACC

MID PCR
MID fw - MID-GTTGTAAAACGACGGCCAGT 95 ◦C 2 min; (94 ◦C 20 s,

60 ◦C 20 s, 72 ◦C 45 s) ×
25 cycles; 72 ◦C 3 minMID rv - MID-CACAGGAAACAGCTATGACC

Samples were then normalized to the concentration of 1.00 × 1010 molecules/µL.
Samples were pooled and then processed using NGS according to the Miseq illumina
platform protocol (Illumina, San Diego, CA, USA).

2.4. Quasispecies Analysis and Statistics

The sequences (reads) obtained were bioinformatically filtered (R software [35]). Only
those reads with a complete sequence, a good overlapping between forward and reverse
strands (less than 10% of mismatches), and optimal quality were maintained and demulti-
plexed to obtain the unique QS sequences (haplotypes).

QS conservation was analyzed by calculating the information content (IC) of each
position in a multiple alignment of all haplotypes obtained by means of NGS, followed by
a sliding window analysis, as previously described by our group [36].

Inter-patient and intra-patient sequence distance was studied to evaluate QS variability.
Moreover, different complexity indices were also considered, as previously reported by our
group [37]: number of reads per sample, number of master reads (Mstr), master percentage
(Mpct), number of haplotypes, polymorphic sites, number of mutations, Shannon index,
Gini–Simpson coefficient, functional attribute diversity (FAD), mutation frequency (Mf),
nucleotide diversity (Pi) and Pi to Mf ratio. The mutations in ribozyme sequences were
identified by aligning the QS sequence for each sample and each patient with its specific
genotype consensus. Mutation frequency was obtained by summing the relative frequencies
of each haplotype carrying the specific mutation.

2.5. In Vitro Test of Mutations

To evaluate the effect of the observed mutations in HDV replication capacity, the most
relevant changes were introduced using site-directed mutagenesis (QuickChange Lightning
site-directed mutagenesis kit -Agilent Technologies, Waldbronn, Germany), in a plasmid
(pCMV-HDV-1.2X) containing 1.2 copies of genomic cDNA [38], following the manufac-
turer’s protocol. The correct introduction of the mutation was ensured by analyzing the
plasmid using Sanger sequencing. Mutated plasmids were extracted using the Endotoxin
free NucleoBond Xtra Midi Plus kit (Machery-Nagel, Düren, Germany). The concentration
(ng/µL) of the extracted plasmids was determined by fluorometric quantification using
Qubit fluorometers (Thermo Fisher Scientific-Life Technologies, Waltham, MA, USA).

Hepatocarcinoma Huh7 cells were cultured with Dulbecco Eagle’s minimal essen-
tial medium (DMEM) supplemented by 10% of fetal bovine serum (FBS) and penicillin
(100 U/mL), streptomycin (100 µg/mL), and Glutamax (2 mM). Cells were plated at
160,000 cells/mL and transfected with wild-type (wt) and mutated plasmids using the
Magnetofectamine O2 kit (OZbiosciences, Marseille, France) according to the manufac-
turer’s protocol. To guarantee production of HDV viral particles, a plasmid containing
1.3-length HBV genome (pTriEx-HBV) [39] was included in each condition. The supernatant
was collected 72 h after transfection.



Viruses 2022, 14, 215 5 of 13

To quantify HDV RNA release in vitro, viral RNA was extracted from the cell super-
natant using the automated MagNA Pure LC system (Roche Applied Science, Indianapolis,
IN, USA). To ensure plasmid removal, a DNAse step of the extracted RNA was performed
(DNAse I, Amplification grade, Thermo Fisher Scientific, Camarillo, CA, USA). HDV
RNA was then quantified as reported above for plasma samples. To ensure that trans-
fection did not affect cell viability, control negative cells were transfected with the empty
pCMV backbone.

3. Results
3.1. Patients and Sequencing

Twenty-five patients were included in the study with a total of 50 samples. Most
patients were infected by genotype 1, but 1 patient presented genotype 8 HDV (P04). How-
ever, after applying the quality filters, only 19 patients (38 samples) were later considered.
Notably, all of them were infected by genotype 1 virus. HDV viremia did not change
between the two timepoints (median [IQR] log10 HDV RNA of 5.76 (5.02–5.83) and 5.76
(3.68–5.76), respectively (Table 2).

Table 2. Main clinical and viral characteristics of chronic hepatitis delta (CHD) patients included
in the study. The table shows the clinical and viral characteristics of the patients between the two
timepoints (Sample A and Sample B). P values were obtained by applying the Kruskal–Wallis test.
Abbreviations (normal quantification values): HDV, Hepatitis delta virus, AST, Aspartate aminotrans-
ferase (normal value 12–50 IU/mL); ALT, alanine aminotransferase (normal value 8–50 IU/mL);
platelets (140–400 UI/mL); IQR, interquartile range; HBsAg, hepatitis B virus surface antigen;
IND, indetectable.

Markers Sample A Sample B p

HDV RNA
Median (IQR)

Log10 (IU/mL)
5.76 (5.02–5.83) 5.76 (3.68–5.76) 0.383

AST (UI/L)
Median (IQR) 88 (45–133) 90 (36.25–126) 0.551

ALT (UI/L)
Median (IQR) 100 (58–158.5) 89.25 (44.5–133.75) 0.439

PLATELETS (UI/L)
Median (IQR) 89 (123–212) 79 (118–197) 0.966

HBV-DNA (IU/mL) Low/IND Low/IND

HBsAg
Median (IQR)

Log10 (IU/mL)
3.96 (3.57–4.11) 3.92 (3.39–4.03) 0.827

Among the 38 samples that passed this filter, we obtained a median (IQR) of reads of
4550.5 (1342.24–5892.74) per patient.

3.2. Ribozyme Conservation

QS conservation was analyzed by aligning all the haplotypes, applying a sliding win-
dow analysis, and calculating the information content considering their relative frequency
or not. The ribozyme (between positions 688 and 771) was overall highly conserved and
85% of the nucleotide positions presented 2 bits of information content (100% conservation)
(Figure 1A). No difference was observed between considering or not considering haplotype
frequency. Of the 85 nucleotides included in the ribozyme sequence, just 3 nt positions
(around 3.5% of the total) presented a conservation of less than 1.5 bits (Figure 1B).
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(A) The sliding window analysis is the result of the mean information content (bits) of the 25-nt
windows with a displacement between them of 1-nt obtained by multiple alignments of all the
quasispecies (QS) haplotypes. The analysis was implemented by considering (red line) or not (blue
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(B) Logo representation of the nucleotide sequence corresponding to the entire ribozyme region from
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position 86 in the logo representation). The height of each letter represents the grade of conservation
from a maximum of 2 bits to a minimum of 0. The sequence is shown in the genome sense. The
different structural and functional domains of the ribozyme are reported at the bottom [40].

The most conserved region was between nt 715–745 (Figure 2A), where 100% of
the nucleotide presented a conservation of more than 1.5 bits. The most variable region
encompassed positions 739 and 769, as described previously [41]. In this region, 3 nt
positions presented a conservation of less than 1.5 bits (3/31 nts), although 80% (25/31) of
the nts showed a high level of conservation (Figure 2B).
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3.3. Ribozyme Quasispecies (QS) Evolution and Variability during Follow-Up

The genetic distance between samples was determined to evaluate ribozyme QS
evolution during the patient’s follow-up (Figure 3).
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As expected, considering the high level of conservation, no distance (<0.25) was
observed between the 2 samples for each patient (Figure 3). Although patients 2, 12,
13, 21, and 23 presented a greater distance (>0.50) compared to the others, when their
sequences were examined in greater depth, this greater distance was determined by just
a few nucleotides.

To inspect even more ribozyme QS variability, different complexity indices were
analyzed and compared between sample A and sample B. Notably, no difference was
detected for any tested index (Table S2).

3.4. Analysis of Mutations

Mutations were identified by aligning haplotypes sequences with the corresponding
genotype consensus. Although the ribozyme was conserved overall, when studying each
sample individually, a total of 48 mutations were observed. Of these, 12 were in at least six
patients (Table 3). When looking at mutation type, we observed that the most observed
changes were transitions: C→T (16 mutated positions), G→A (10 mutated positions) and
T→C (9 mutated positions) (Figure S1). Moreover, four of the 12 mutations observed
involved the P4 domain, as reported in previous studies [42].
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Table 3. Most prevalent mutations observed in the ribozyme. Table shows the 12 most prevalent
mutations observed in the ribozyme. The relative frequency of each mutation between sample A and
sample B is reported as mean ± standard deviation. Mutations are numbered starting from the first
nt in the ribozyme (nt 688).

Mutation Sample A (%freq) Sample B (%freq)

G6A 0.84 ± 0.43% 0.83 ± 0.31%
T23C 3.04 ± 2.27% 5.55 ± 8.91%
T27C 0.12 ± 0.3% 0.88 ± 3.5%
G40A 0.25 ± 0.22% 0.41 ± 0.24%
G59A 0.07 ± 0.03% 0.08 ± 0.02%
T60C 6.15 ± 30.64% 6.42 ± 35.01%
C61T 0.15 ± 0.24% 0.14 ± 0.27%
C62T 0.12 ± 0.17% 0.08 ± 0.12%
C64d 47.17 ± 1.66% 48.88 ± 2.47%
T65C 6.02 ± 39.66% 6.29 ± 44.04%
T69C 12.02 ± 21.99% 12.75 ± 44.04%
G76A 0.53 ± 2.49% 0.44 ± 17.68%

Of the observed mutations, only three involved at least eight patients and were
maintained or selected (mutation frequency that changes between the two-time point) in
the follow-up samples: T710C (position 23 if considering the first nt in ribozyme starting
from 688), T756C (T69C) and the deletion in position 751 (C64d). The T23C mutation
involved 17 of the 19 patients in sample A with a mean frequency of 2.99%, and 18/19 of
the patients with a mean frequency of 4.96% in sample B (Figure 4A). The T69C mutation is
found in both samples in 100% of patients, with a relative frequency that was maintained
between the two samples in the follow-up (10.6% and 10.8% in sample A and B, respectively)
(Figure 4C). The deletion in position 64 was observed in eight of the 19 patients in both
samples with a frequency of 98.7% in sample A and 98.3% in sample B (Figure 4B).
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T23C (A), C64d (B) and T69C (C) and how they change between the 2 time points (between sample A
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Although the relative frequency of mutations is generally maintained, in some patients
some mutations were positively or negatively selected, such as the T23C mutation in patient
2 (from 5.29% to 17.07%), and in patient 12 (from 9.52% to 36.97) (Figure S2A) and the
T69C mutation in patients 2 (from 43.88% to 71.85%) and patient 12 (from 2.79% to 24.11%)
retracted in patient 13 (from 91.15% to 39.09%) (Figure S2C).

3.5. In Vitro Test of Mutations

Considering the high degree of ribozyme conservation, the observed mutations may
potentially affect HDV fitness, thus promoting or inhibiting viral expression. To test
the effect of the three detected principal mutations (T23C, C64d, T69C) of HDV expres-
sion, the plasmids carrying the desired mutations will be transfected in the presence of
HBV and the HDV RNA titer was quantified in transfected cell supernatants 72 h af-
ter transfection. We efficiently expressed HDV in vitro, obtaining a mean ± SD titer of
2.86 ± 0.61 IU/mL 72h after transfection. The T69C mutant showed a similar replication
rate than wt (2.78 ± 1.04 UI/mL, p = 0.662). Of note, in the presence of the mutation
T23C (2.7 ± 0.38 IU/mL, p = 1), the HDV titer was reduced around 1.05-fold. The in-
terference with viral expression was even more strong in presence of the deletion in
position 64 (C64d) that caused a reduction in viral expression of around 1.22log (HDV
RNA = 1.63 ± 0.71 UI/mL, p = 0.08) (Figure 5).
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4. Discussion

Due to the lack of a viral polymerase, no specific antiviral therapy is available against
HDV infection. New treatment options against HDV are currently under study, such as
HBsAg release, prenylation and viral entry inhibitors [43]. Among them, the entry inhibitor
BLV has been recently approved for use, alone or in association with peg-IFNα, in CHD
patients with compensated liver disease [44,45].

Notably, a gene therapy approach may be a valuable strategy to promote HDV RNA
elimination and block disease progression. Due to their intranuclear location, the genome
and antigenome seem to be resistant to interfering RNA (siRNA) activity [46], whose
silencing activity is developed in the cell cytoplasm. HDV genomes, however, may be
targeted by antisense oligonucleotides (ASOs), which are active within the nucleus [47].
Although inhibition of the expression of HBsAg through a siRNA may interfere with HDV
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infection [48], a combination of silencing molecules targeting both viruses may represent a
highly valuable therapeutic strategy. To date, however, no silencing HDV-specific molecules
have been reported. The extreme variability of HDV RNA may make it very difficult to
design an effective antisense oligonucleotide. To this end, identifying highly conserved
regions in the HDV genome to use as target may be essential.

Ribozyme activity is crucial to producing the excision of unitary RNA monomers
during viral replication. Given its key role, this region may be a valuable target for antisense
oligonucleotides. Although the HDV genome has been extensively studied using Sanger
sequencing [42,49], this is the first report to focus on studying ribozyme QS conservation
and variability using next-generation sequencing. As expected, the ribozyme was overall
highly conserved, with a hyper-conserved region encompassing positions 715–745. This
region involves the P1 domain, which is essential for ribozyme activity since it is the region
where the self-cleavage site resides [50].

To evaluate ribozyme QS evolution during follow-up, two samples were included per
patient. Notably, when considering sequence distance or complexity indices, no differences
were observed between the two longitudinal samples, suggesting that the QS in this genome
portion did not vary over time.

However, a variable region between nt 739–769 was also identified, although changes
were observed in just a few nucleotide positions (specifically in six positions). This variable
region falls into the P4 structural domain as observed in a previous study that reported
a higher mutations level for both genomic and antigenomic RNA [42]. Although this
domain is not directly involved in the self-cleavage process, it has been reported that the
conservation of the nucleotide sequence is essential for a stable base pairing, which is a
necessary condition for efficient self-cleavage activity [51].

A recently reported study shows that a wt ribozyme sequence guarantees the optimal
ribozyme activity in co-transcriptional conditions [52]. Different mutations were experi-
mentally introduced in ribozyme sequence to study its functional domains, demonstrating
that some positions cover important roles in cleavage activity such as the U23 and C24
in the L3 domain [53] or the T20, C21 and C75 which are involved in coordinating Mg2+

ion and cleavage catalysis [54]. By analyzing the HDV full genome in CHD patients,
different mutations were found in the ribozyme sequence [42]. Notably, many of these
identified mutations were also observed in this study. We identified a total of 48 mutations,
12 of which were found in at least six patients. The identification of mutations in such
a conserved and active region of the HDV genome may indicate that they do not affect
viral fitness. As previously reported [42], the observed mutations mainly involved the
P4 domain (positions 60, 61, 62, 64, 65 and 69). Of these 12 mutations, three presented a
relative frequency of 1% or more and were tested in vitro: T23C (in L3 domain), C64d, and
T69C (both in P4 domain).

In vitro testing of the ribozyme self-cleavage activity in the presence of the T23C
mutations showed a decrease of 103-fold of the cleavage rate [53], however when we tested
the viral replication in vitro in the presence of this mutation, we observed that the change in
position 23 had a limited impact on viral replication. This mutation falls into the L3 domain,
which is an important element in the cleavage activity [16,48]. Of note, as previously
reported, this change is less effective in interfering with ribozyme activity than others (in
positions 20, 21, and 25) that may entail the loss of ribozyme activity [42].

Changes in positions 64 and 69, however, involved the P4 domain. Higher mutation
levels in this domain have been previously reported [42]. As previously mentioned, this
domain shows a stabilizing function of the ribozyme structure, and it is not directly
involved in RNA catalysis. Indeed, it has been observed that its elimination does not
compromise virus replication [15,16]. Although the presence of the T69C change did not
impact viral replication, the deletion in position 64 strongly reduced HDV replication by
more than 1log IU/mL. Considering the non-essentiality of the P4 domain, the presence of
this 1nt-long deletion in this portion could probably alter the ribozyme secondary structure,
thus affecting viral replication. Moreover, this change was observed at a relative frequency
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of around 50%. The fact that it had been observed and maintained at such a high frequency
in viral QS suggests that this mutation may promote viral persistence, as has been reported
for other viruses such as hepatitis C [55] and human immunodeficiency viruses [56].

This is the first study to focus on studying ribozyme QS using NGS, but it does have
some limitations. Although 25 patients were selected, only 19 of them were correctly
amplified and passed the quality filters. In addition, all patients were infected with HDV
genotype 1, which is the main genotype in infected patients in Spain [57]. More patients,
infected with more viral genotypes should be included to confirm these results. Moreover,
in silico modeling should be implemented to highlight the effects of the C64 deletion on
the secondary structure and, consequently, on the function of the ribozyme.

In conclusion, as expected considering its essential role in the viral life cycle, the
ribozyme is overall highly conserved in viral QS and did not change over time. The most
conserved portion involved a domain that plays a direct role in the auto-catalysis process
and may be a valuable target for designing a new gene-silencing strategy against HDV. The
most variable region, however, involves a domain that is not essential from a functional
point of view, but a deletion in this region may strongly impair viral replication. Consider-
ing its relatively high frequency, it may be a potential mechanism of viral persistence.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v14020215/s1, Table S1: Protocols for delta antigen (HDAg) encoding HDV genome region
amplification, Table S2: complexity indexes calculated in samples A and B in the ribozyme region,
Figure S1: Number and type of mutations found in the ribozyme region, Figure S2: Evolution of
mutation frequency between the two follow-up samples (A and B).
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