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Abstract: Despite advances in its treatment, heart failure remains a major cause of morbidity and
mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial
hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk
factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent
studies performed in preclinical animal models support the contribution of the Ca’*-dependent
cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their
long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence
implicating calpains in the development of cardiac hypertrophy, as well as the latest advances
in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain
inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress
made in developing new compounds that may serve for testing the efficacy of calpain inhibition in
the treatment of pathological cardiac hypertrophy.
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1. Introduction

Despite significant advances in therapeutic management, heart failure (HF) is still
a major public health problem, with high prevalence, poor clinical outcomes, and large
healthcare costs [1]. Cardiac hypertrophy, defined as the absolute increase in ventricular
mass, is among the most robust markers of increased risk for developing HF, independently
of the underlying cause [2,3]. It is proposed that hypertrophy initially develops as an
adaptive response to increased biomechanical stress, serving to minimize wall stress and
maintain contractile function. However, sustained hypertrophic stimulation in the setting of
a disease results in the disruption of this physiological adaptation to stressors and evolves
into a progressive development of pathological or maladaptive hypertrophy, triggering the
transition to a state of decompensation and clinical HF [4].

Cardiac hypertrophy as a clinical entity is observed in a broad range of pathologies
linked to sustained pressure and volume overload, as well as ischemic disease and genetic
disorders [5]. From a population standpoint, the most common cause of hypertrophy is sys-
temic hypertension, which is considered the single most important predictor of ventricular
hypertrophy, but it is also related to a number of other conditions, including myocardial
infarction, aortic stenosis, and regurgitant valvular heart disease. Other common comor-
bidities, such as obesity, diabetes, or hypercholesterolemia, may play a synergistic and
potentially independent role in the development of hypertrophy.

Despite some discrepancies [6], preclinical and epidemiological studies indicate that
the prevention of hypertrophy constitutes a meaningful clinical objective [7-11]. Therefore,
a greater understanding of the molecular mechanisms governing the development of
hypertrophy and the transition from adaptive to pathologic hypertrophy would help to
identify novel targets and strategies aimed at preventing its progression to HF [12].
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Hypertrophic transformation of the cardiomyocyte is a complex process that involves
the alteration of multiple cellular mechanisms controlling both protein synthesis and
degradation. On the one hand, enhanced protein synthesis results from a wide range of
transcriptional and post-transcriptional events, with the activation of a pattern of gene
expression reminiscent of that observed during fetal development being the most relevant
(“fetal gene program”) [13-17]. On the other hand, variations in the rate of protein degra-
dation affect the activity of the main cellular proteolytic systems: ubiquitin proteasome,
autophagy, and the calpain/calpastatin system.

Hypertrophy has been largely associated with aberrant ubiquitin-proteasome system
(UPS) activity resulting from changes in the expression of ubiquitin ligases and deubiquiti-
nating enzymes or abnormal UPS post-translational modifications [18]. However, the litera-
ture analyzing the role of these changes in the development of hypertrophy is contradictory.
Ablation of ubiquitin ligases has been associated with the attenuation of cardiomyocyte hy-
pertrophy and diastolic dysfunction [19-21] and also with more severe hypertrophy [22-24].
Similarly, while in some studies, pharmacological inhibition of proteasome components
resulted in the regression or prevention of cardiomyocyte hypertrophy [25-27], others have
shown that the chronic treatment with proteasome inhibitors caused hypertrophy and HF
under baseline conditions [28]. Thus, it remains unclear whether the inhibition of the UPS
is protective or detrimental in the context of cardiac hypertrophy.

The contribution of autophagy to cardiac hypertrophy has recently been reviewed [29,30].
Autophagy induction has been observed in several pathological conditions, including hy-
poxia, endoplasmic reticulum stress, oxidative stress, and nutrient starvation [31], and
was initially suggested to be also enhanced in models of hypertrophy induced by pressure
overload [29,32]. However, recent reports support that myocardial autophagic activity
is depressed during the progression from adaptative cardiac hypertrophy to HF [33-36].
This autophagy insufficiency has been proposed to be caused by either inadequate au-
tophagosome formation or impaired autophagosome clearance [29,37]. From these studies,
it is suggested that those strategies enhancing both the formation and the removal of
autophagosomes will ameliorate cardiac hypertrophy and HF [29].

Finally, increasing evidence consistently demonstrates that the calpain/calpastatin
system, which includes a family of calcium-dependent, non-lysosomal cysteine proteases
and their endogenous inhibitor calpastatin, is involved in the development of maladaptive
hypertrophy triggered by numerous pathologic stimuli [38—41]. Chronic cardiac stress
induces calpain overexpression and overactivation, resulting in the proteolysis of a broad
spectrum of substrates, some of them with important functions as regulators of intracellular
pathways classically associated with the development of hypertrophy. However, despite
the solid preclinical evidence demonstrating that pharmacological calpain inhibition is
feasible and may be an effective therapeutic intervention for treating hypertrophy [38,40,41],
translation of these studies into the clinic is still at an early development stage. This review
aims to summarize the most recent evidence supporting the contribution of calpains to
cardiac hypertrophy and to overview the advances and limitations in the design of calpain
inhibitors for their use in patients.

2. The Conventional Calpain/Calpastatin System

Calpains are a cysteine protease family directly activated by Ca?* and regulated by
their endogenous specific inhibitor calpastatin [42]. Until now, 15 isoforms have been
described in humans [43]. Among them, the most ubiquitous and well-known calpain
isoforms are calpain-1 and calpain-2, which along with calpastatin, conform to the conven-
tional calpain/calpastatin system. Unconventional calpains are generally expressed in a
tissue-specific manner and/or present a non-classical protein structure [44]. In the current
review, the term calpain refers to calpain-1 and calpain-2 isoforms. They are both consti-
tuted by a large 80-kDa catalytic subunit (CAPN1 and CAPN2) and a common 30-kDa
regulatory subunit CAPN4 [45]. The catalytic subunit comprises four major domains.
Domain I (N-terminal anchor helix domain) contains a site for autolysis in response to
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Ca?*. Domain II (cysteine protease domain) is divided into two sub-domains, Ila and
ITb, each containing one conserved Ca?* binding site. This domain harbors the catalytic
triad residues formed by Cys, His, and Asn. These two domains conform the most con-
served region of the protein and define the calpain family [44]. Domain III (3-sandwich
domain) is suggested to be the primary phospholipid binding site of calpain [46]. Domain
IV (C-terminal domain) includes five penta-EF-hands (PEF) Ca2+—binding sequences [47].
The regulatory subunit is composed of two domains and also contains five PEF binding
sequences [47]. Non-classical or tissue-specific members of the calpain family are often
monomeric and lack both the N-terminus and the PEF domain.

Calpain-1 and calpain-2, also known as p and m-calpain, are activated by in vitro
micromolar and millimolar Ca2* concentrations, respectively [42], which are above the
physiological levels of Ca?* found in live cells. However, different mechanisms, including
their translocation to the cell membrane, recruitment in Ca2* hotspots, and autoproteolysis,
may contribute to reducing the minimal concentration of Ca?* required for their activation
in vivo [43].

Calpains have been commonly involved in all those physiological processes that are
regulated by Ca?*, including embryonic development, cytoskeletal remodeling, cell cycle
progression [48], cell spreading and migration [49], membrane repair [50], and platelet
function [51]. In contrast to other major intracellular proteolytic components, such as
proteasome and lysosomal proteases, calpains do not induce protein digestion but regulate
protein functions through the limited proteolysis of their substrates [52]. The genetic
disruption of calpain-1 or calpain-2 genes has been reported to drive different phenotypes,
and while mice with genetic depletion of calpain-1 appear normal and are fertile [53],
calpain-2 knockout mice die before the blastocyst stage [54]. These studies suggest that
calpains 1 and 2 differ in their physiological functions and/or expression levels, at least
during developmental stages.

It is well established that under pathological conditions resulting in the loss of Ca?*
homeostasis, calpains are overactivated and deregulated [55-57]. Transgenic mouse models
with an altered calpain/calpastatin system and the use of calpain inhibitors consistently
show that calpains play a key or contributory role in the pathology of a variety of cardiac
disorders, including platelet aggregation, myocardial ischemia, and HF [58].

3. Common Murine Models of Hypertrophy

Many different preclinical models of HF have been adopted to study the development
and progression of pathological cardiac hypertrophy, and a detailed description of the
translational relevance and limitations of each one can be found in recent reviews [10,59-61].
The use of mice for this purpose has evident advantages, including their short generation
times and the possibility of using genetically engineered models. Herein, we briefly
describe those mouse models that have been used to examine the link between calpains
and hypertrophy.

3.1. Transverse Aortic Constriction (TAC)

This model mimics the myocardial adaptations associated with hypertension and
aortic stenosis, and it is achieved by the permanent constriction of the aortic arch [62,63].
The chronic left ventricular pressure overload generated triggers concentric cardiac hyper-
trophy, as well as diastolic dysfunction, and ultimately leads to HF with reduced ejection
fraction (HFrEF). TAC is a well-established and reliable model to induce hypertrophy, and
specific cardiac hypertrophic phenotypes can be generated by controlling the degree of
constriction [64,65]. Recently, this model has been adapted to be less invasive [66] and to
allow debanding, facilitating the study of reverse cardiac remodeling [67].

3.2. Pulmonary Artery Constriction (PAC)

Permanent constriction of the pulmonary artery generates a relevant model to study
the right ventricular remodeling and dysfunction that occurs as a consequence of pulmonary
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artery hypertension [68]. The right ventricle (RV) initially adapts to pressure overloading via
concentric hypertrophy. However, as pressure overload persists, it evolves into maladaptive
failing RV with dilation, decreased EF, and impaired ventricular-arterial coupling.

3.3. Myocardial Infarction (MI)

Myocardial infarction can be induced by permanent left anterior descending coro-
nary artery (LAD) ligation or transient LAD ligation (ischemia/reperfusion). Permanent
LAD ligation resembles the clinical situation of a significant fraction of patients that suffer
acute MI without timely revascularization [69]. Transient LAD ligation mimics MI fol-
lowed by successful revascularization, which reflects the clinical course of the majority
of ST-elevation myocardial infarction (STEMI) patients. Both, transient and permanent
LAD ligation models reproduce features of human HFrEF. Although the severity of the
remodeling process in the transient LAD ligation highly depends on the duration of is-
chemia and the extent of the area at risk, it is typically less severe than in the models of
permanent LAD ligation [70]. Viable cardiomyocytes induce cardiac pressure and volume
overload, increasing neurohumoral activation and ventricular wall stretch that induces
cardiac hypertrophy in the remote area of the myocardium [71].

3.4. Angiotensin Il Administration

This model mimics hypertension and the neurohumoral activation observed in patients
with HE which includes the elevation of angiotensin II levels due to the activation of
the renin-angiotensin—aldosterone-system (RAAS) [72]. Mice chronically treated with
angiotensin II show concentric hypertrophy accompanied by diastolic dysfunction, and
thus, they reproduce features of human HF with preserved ejection fraction (HFpEF).
Moreover, depending on the dose and the duration of the angiotensin II treatment, they
can exhibit LV dilatation accompanied by reduced EF and simulate human HFrEF [73,74].

3.5. Isoproterenol Administration

Activation of the sympathetic nervous system is associated with increased levels of
catecholamines, cardiac hypertrophy, and HF in humans [75,76]. Chronic administration of
the synthetic 3-adrenergic agonist isoproterenol represents the most widely used model
to mimic sustained adrenergic stimulation, and the activation of multiple downstream
signaling pathways results in cardiomyocyte concentric hypertrophy and fibrosis without
hypertension [38,77]. As occurs with angiotensin II, isoproterenol effects vary depending
on the mode of administration, the administered dose, and the duration of treatment.

3.6. Streptozotocin-Induced Diabetic Cardiomyopathy

Diabetic cardiomyopathy develops in diabetic patients, and it is defined by the exis-
tence of abnormal cardiac performance preceded by hypertrophy in the absence of other
cardiac risk factors, such as coronary artery disease or hypertension [78]. The most com-
mon and best characterized preclinical model of diabetic cardiomyopathy is based on the
administration of streptozotocin, an antibiotic that induces insulin-dependent diabetes
mellitus by causing the destruction of pancreatic islet 3-cells [79]. Streptozotocin-induced
diabetic mice show many of the features found in human diabetic cardiomyopathy, in-
cluding increased levels of natriuretic peptides [80], inflammatory markers, and eccentric
cardiac hypertrophy [80].

4. Calpain Activation during Cardiac Hypertrophy

Calpain activity is tightly controlled by their specific endogenous calpain inhibitor cal-
pastatin and by variations in the intracellular Ca?* homeostasis [42]. The control of intracel-
lular Ca?* concentration is ultimately maintained through the activity of Na* /K*-ATPase
in a highly energy-consuming process [81]. In those situations associated with reduced
mitochondrial energetic production, as occurs during myocardial ischemia, loss of Ca**
control induces an excessive and dysregulated activation of calpains. Exaggerated cal-
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pain activation in the ischemic myocardium results in altered contractility and cell death
through the cleavage of numerous protein substrates involved in sarcolemmal structure,
cellular contractility, mitochondrial function, and cellular signaling [82]. Although less
characterized than in the context of ischemia, abnormal Ca?* handling has also been de-
scribed in hypertrophic cardiomyocytes isolated from models of pressure overload [83].
There is evidence of the impairment of SERCA and cytosolic Ca?* overload in cardiomy-
ocytes during the transition from adaptive cardiac hypertrophy to pathological cardiac
hypertrophy [84,85]. These changes have been associated with an early reduction in the
activity of Na*/K*"-ATPase and an increase in late Na* current [86], conditions that reduce
the transarcolemmal Na* gradient and favor Ca?* entry through the reverse mode of the
Na*/Ca2* exchanger [60]. More recently, it has been described that the mechanosensitive
ion channels Piezo 1 are upregulated in the hypertrophic myocardium and promote Ca?*
entry [87,88]. Conditional and cardiospecific deletion of Piezol reduced Ca?* overload and
calpain activity and blunted myocardial hypertrophy induced by isoproterenol and aortic
constriction in mice [87].

In addition to Ca®* dysregulation, the overexpression of calpain-1 and calpain-2 is a
common feature of preclinical models of cardiac remodeling and HF, including MI with
transient and permanent LAD ligation, TAC, and chronic administration of isoproterenol
and angiotensin II [14,38,41,89-91], and it has also been confirmed in myocardial samples
from patients with HF [41,57,90,92,93]. Although the mechanism underlying calpain
overexpression during the development of hypertrophy remains to be established, it has
been described that the conditional overexpression of calpain-1 in cardiomyocytes, or
restricted to mitochondria, results in increased global calpain activity and heart remodeling
even in the absence of significant variations in intracellular Ca?* [94].

Finally, it has been suggested that the activation of the stress-activated serine/threonine
kinase p38y MAPK in conditions of pressure overload can phosphorylate calpastatin and
reduce its inhibitory efficiency, resulting in increased calpain activity [95].

Globally, these studies demonstrate that calpain overactivation is a general trait of
myocardial hypertrophy, regardless of the triggering stimulus, and it is a consequence
of calpain overexpression, altered cellular Ca?>* dynamics, and/or reduced calpastatin
inhibitory capacity.

5. Evidence Supporting the Contribution of Calpains to Cardiac Hypertrophy

Mounting evidence obtained from studies using genetic models with altered calpain
systems or calpain inhibitors demonstrates that calpains are involved in cardiac hyper-
trophy triggered by a variety of chronic pathologic stimuli (see Table 1 for details). In
mice, the restriction of calpain-1 and calpain-2 activities by using a cardiomyocyte-specific
deletion of the common subunit Capn4 or by overexpressing calpastatin reduced adverse-
post-infarction remodeling and mortality [89,96,97]. Conversely, the genetic deletion of
calpastatin increased calpain activity and had the opposite effect in the same experimental
model [98]. In addition to post-infarction remodeling, the suppression of Capn4 or the con-
stitutive overexpression of calpastatin attenuated cardiomyocyte hypertrophy and cardiac
dysfunction induced by chronic angiotensin II treatment [39,99]. Providing further evidence
of calpain contribution to myocardial remodeling, the inhibition of calpain by deletion of
Capn4 prevented hypertrophy in a model of pulmonary hypertension [100], and calpastatin
overexpression reduced myocardial hypertrophy and fibrosis in a mouse model of type 1
diabetes [101]. Besides the use of transgenic models, some studies have explored whether
the pharmacological inhibition of calpains prevents cardiac hypertrophy. Among them, our
group has shown that the sustained oral administration of the calpain inhibitor SNJ1945 in
a model of MI with transient LAD ligation attenuates adverse post-infarction remodeling
independently of its cardioprotective effects during the acute phase of reperfusion. These
effects were associated with reduced hypertrophic, fibrotic, and inflammatory responses in
the non-infarcted myocardium [40]. More recently, the same compound was also proven
to be effective in preventing cardiac hypertrophy induced by chronic administration of
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isoproterenol to rats and mice [38]. Furthermore, Wang et al., showed that inhibition of
calpain activity by daily intraperitoneal administration of MDL-28170 protected against
pathological hypertrophy and cardiac dysfunction in multiple rodent models of HF, includ-
ing MI, TAC, and angiotensin II treatment [41]. It is important to note that no signals of
toxicity due to the long-term inhibition of calpains were reported in these studies.

Table 1. Selected studies suggesting the calpain contribution to cardiac hypertrophy in different

preclinical models of chronic stress and in patients with heart failure.

Species Model Calpain Ac_t1v1ty/ Inhibitor/Transgenic Hallmarks Reference
Expression
Ischemia . . MDL: |Hypertrophy,
Mouse TAC TCalpain activity MDL-28170 TLV contractile function, [41]
1TCAPNI1 . .
Isoproterenol JFibrosis
Cardiomyocyte-
Mouse conditional CAPN1 THyperFrophy . [41]
. JLV contractile function
overexpression
TCalpain activity
Mouse TAC +CAPN2 [90]
MDL-28170
Diabetic . .. Cardiomyocyte- JHypertrophy
Mouse cardiomyopathy TCalpain activity specific CAPN4 KO JFibrosis [101]
CAST overexpression
JHypertrophy
JPerivascular
Mouse Angiotensin II TCalpain activity CAST overexpression inflammation, fibrosis [39]
and recruitment of
mononuclear cells
. TCalpain activity . JHypertrophy
Mouse Ischemia +CAPN1 and CAPN2 CAST overexpression I Fibrosis [89]
. . Cardiomyocyte-
Diabetic . . ” JHypertrophy
Mouse cardiomyopathy TCalpain activity spec1f11c< (()ZAPNl IFibrosis [102]
Mouse TAC ~CAPNI1 and CAPN2 Calpeptin JProgrammed cell death [103]
TCalpain activity :
Rat Isoproterenol +CAPN1 and CAPN2 SNJ-1945 |Hypertrophy [38]
Rat Isoproterenol TCalpain activity E64c JHypertrophy [104]
Rat Ischemia TCalpain activity Calpain inhibitor XII ~Hypertrophy [105]
. TCalpain activity
Rat Ischemia +CAPN1 THypertrophy [106]
Rat Ischemia TCalpain activity CAL 9961 |Hypertrophy [107]
. TCalpain activity
Rat Ischemia +CAPN1 and CAPN2 THypertrophy [108]
. TCalpain activity THypertrophy
Rat Ischemia +CAPN1 and CAPN2 +Fibrosis [109]
Rat Ischemia/ TCalpain activity SNJ-1945 iHj’EEﬁg;I:hy [40]
Reperfusion TCAPN1 and CAPN2 .
JInflammation
TCalpain activity THypertrophy
Rat TAC +CAPN1 +Fibrosis [14]
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Table 1. Cont.

Species Model Calpain Ac.t1V1ty/ Inhibitor/Transgenic Hallmarks Reference
Expression
Pig Ischemia TCalpain activity MDL28170 JFibrosis [110]
Rat DOCA-salt TCalpain activity THypertrophy [111]
Ischemia

Rat Angiotensin IT TCAPN1 and CAPN2 [91]
Valvular heart TCalpain activity

Human disease TCAPN1 [92]
Ischemic or dilated TCalpain activity

Human cardiomyopathy TCAPN1 [41]
End-stage heart TCalpain activity

Human failure +CAPN2 [(50]

¥
hypertrophic gene program

CAPNT1: calpain 1; CAPN2: calpain 2; CAST: calpastatin; TAC: transverse aortic constriction.

6. Pro-Hypertrophic Pathways Modulated by Calpains

Development of pathologic cardiac hypertrophy involves a vast network of receptors,
signaling pathways, and effector proteins that result in the activation of transcription
factors, which, in turn, activate pro-hypertrophic gene expression programs. Excellent
reviews covering the general topic have been written [112,113]. Here, instead, we focus on
those signaling pathways that have been proposed to be regulated by calpains (Figure 1).

e \\ e
2 R @sz o> C"'Iw'w

meJ:‘-.cr :%’H:JT GRK2 /_\

) (‘)éin/Cabvi‘ﬁ‘

hypertrophy

Figure 1. Schematic diagram showing the main proposed mechanisms by which calpains promote
cardiac hypertrophy. Red crosses indicate calpain substrates that are involved in hypertrophic sig-
naling pathways. From left to right: Calpain-2-dependent proteolysis of JPH2 generates a JPH2-CT
fragment that translocates to the nucleus and favors hypertrophy. Calpain-1-dependent proteolysis of
JPH2 produces a JPH2-NT fragment that acts as a stress-adaptive transcription regulator preventing
hypertrophy. Calpain-dependent degradation of IkBx activates NF«B. Calpain activity promotes
the upregulation of GRK2 by mechanisms affecting both its stability (degradation of MDM2) and
transcription (activation of NF«B). GRK2 overexpression phosphorylates IkBoe promoting its proteo-
somal degradation and the subsequent activation of NFkB. Proteolysis of cain/cabin or calcineurin
AID induces the activation of NFAT. AID, autoinhibitory domain; JPH2, junctophilin 2; JPH2-CT,
junctophilin 2 C-terminal fragment; JPH2-NT; SR, sarcoplasmic reticulum.
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6.1. Calmodulin/NFAT Pathway

In addition to calpains, intracellular Ca?* dysregulation is secondary to chronic stress,
which also results in the activation of other Ca?*-dependent enzymes, such as calcineurin.
Calcineurin is a Ca®* and calmodulin sensitive phosphatase which, among other func-
tions, plays a master regulatory role in the hypertrophic response of cardiomyocytes to a
chronic stimulus by activating the transcription factor NFAT [114]. Further, activation of
the calcineurin/NFAT pathway has been proposed to participate in pathological but not
physiological forms of cardiac hypertrophy [115]. Interestingly, different studies suggest
that calpain activation can modulate this signaling cascade by acting at different levels. An-
giotensin II stimulation of cardiomyocytes has been shown to produce calpain-dependent
proteolysis of the autoinhibitory domain of calcineurin resulting in a constitutive nuclear
form, which remains active even after removal of the hypertrophic stimulus [116]. In
addition, in vitro studies propose that calpain-1 may also activate calcineurin by cleaving
the calcineurin-binding domain of the endogenous calcineurin inhibitor cain/cabin [117].
Consistent with this scenario, the attenuation of calpain activity by constitutive calpastatin
overexpression or Capn4 genetic deletion reduced the activation of the NFAT pathway
and attenuated myocardial hypertrophy in a mouse model of type 1 diabetes [101]. By
contrast, inhibition of calpain by using the same calpastatin overexpressing mouse strain
prevented cardiac hypertrophy induced by chronic infusion of angiotensin II through a
mechanism independent of NFAT activation but dependent on the translocation to the
nucleus of NF-«B [39].

6.2. NF-xB Activation

A solid body of evidence supports a critical role of the nuclear factor NF-kB in cardiac
hypertrophy induced by a wide variety of chronic pathologic stimuli. Targeted disruption
of the p50 NF-kB subunit reduced cardiomyocyte hypertrophy and improved cardiac
function after MI [118], while deletion of its c-Rel subunit ameliorated cardiac hypertrophy
in response to chronic infusion of angiotensin II [118,119]. In line with these studies, the
administration of the NF-«kB inhibitor, PDTC, reduced cardiac hypertrophy resulting from
angiotensin II [120] or isoproterenol treatments [121].

Accumulating evidence obtained by different groups convincingly demonstrates
that calpain overactivation enhances NF-«B activity. Calpain inhibition by genetic dele-
tion of Capn4 or calpastatin overexpression prevents the nuclear translocation of the
p65 NF-kB subunit and attenuates hypertrophy induced by myocardial ischemia and
angiotensin II [39,89]. Similar results have been obtained by using calpain inhibitors in
models of MI with transient LAD ligation or isoproterenol administration [38,40].

NEF-«B is sequestered in the cytoplasm by the interaction with its inhibitory protein
IkBa. The expression of a mutant IkBa that acts as a super-repressor of NF-kB in transgenic
mice attenuates hypertrophy induced by isoproterenol or angiotensin II infusion [122],
pointing to IkBo degradation as a necessary step for the nuclear translocation of the p65
NEF-«B subunit and the progress of pathological hypertrophy. Although canonical IkBo
proteolysis involves the ubiquitin-proteasome pathway, IkBe is a well-known calpain
substrate [123] and its calpain-dependent cleavage promotes hypertrophy in response to
MI [40], angiotensin II [122], adrenergic stimulation [38], and in streptozotocin-induced
diabetic rats [124]. Altogether, these studies demonstrate that calpains contribute to car-
diomyocyte hypertrophy at least in part by activating NF-kB through the direct proteolysis
of IkBa.

6.3. GRK2 Upregulation

Angiotensin II, endothelin-1, phenylephrine, and isoproterenol are well documented,
showing cardiac hypertrophy by activating pathways linked to G protein-coupled receptors
(GPCRs). G protein-coupled receptor kinases (GRKs) are key modulators of GPCRs in
physiological and pathological conditions and have attracted a lot of attention primarily for
their role in regulating 3-adrenergic receptors in the context of cardiac contraction [125,126].
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In addition, different groups provide evidence of non-canonical roles of the GRK2 isoform,
including its ability to modulate cardiac hypertrophy [127]. GRK2 is upregulated in
patients with HF and preclinical models of chronic stress of either hypertensive or ischemic
origin [38,128]. In H9¢c2 cells, a rat myoblast cell line, the overexpression of GRK2 is enough
to elicit a hypertrophic response [129], while its genetic deletion attenuates hypertrophy
induced by TAC or isoproterenol administration [38,128]. A recent study from our group
demonstrates that calpain activation in response to chronic isoproterenol administration
promotes the overexpression of GRK2 by mechanisms affecting both its stability and
transcription [38]. Isoproterenol treatment induces a calpain-dependent decrease of cardiac
MDM2 levels, the major E3 ligase implicated in the ubiquitination and degradation of
GRK?2 [130], thus enhancing GRK2 stability. Moreover, the GRK2 promoter sequence
has several canonical binding sites for NF-kB. Isoproterenol-induced calpain activation
cleavages IkBx, leading to NF-«kB translocation, which enhances the transcriptional activity
of the GRK2 promoter. Further, it has been proposed that GRK2 can also phosphorylate
IkBa, favoring its proteasomal degradation and the subsequent activation of NF-«B [129],
suggesting that myocardial GRK2 and NF-«B co-regulate each other to trigger hypertrophic
gene transcriptional activation. Remarkably, chronic administration of an oral calpain
inhibitor prevented isoproterenol-dependent GRK2 upregulation, while hemizygous GRK2
mice showed attenuated myocardial hypertrophy. Overall, these studies strongly suggest
that the calpain-dependent modulation of the MDM?2/GRK2 axis is a relevant event in
cardiac hypertrophy downstream calpain overactivation.

6.4. Junctophilin-2 Cleavage

Recently, the calpain-dependent proteolysis of junctophilin-2 (JPH2) has emerged as
a novel mechanism involved in the regulation of cardiomyocyte growth. Junctophilin-2,
a structural protein connecting T-tubules and the sarcoplasmic reticulum, is essential for
maintaining normal T-tubule organization and an efficient excitation—contraction coupling
in adult cardiomyocytes [131]. Different studies demonstrate that calpain activation in-
duced by several models of cardiac stress, including MI with permanent LAD occlusion,
TAC, and isoproterenol infusion, results in the cleavage of JPH2 and the disruption of
the contractile machinery, driving HF progression [41,132,133]. The correlation between
the reduction of JPH2 levels and increased calpain activity has also been confirmed in
failing human hearts [41]. In addition to its effects on contractility, it has been recently
suggested that calpain-1 cleaves JPH2 at a conserved R565/T566 site and the resulting JPH2
N-terminal fragment (JPH2NT) translocates to the nucleus, where it acts as a stress-adaptive
transcription regulator through Mef2 gene repression [134]. Supporting this role of JPH2NT,
the transgenic overexpression of JPH2NT attenuated pathological remodeling in response
to TAC, while genetic mice with a loss of function of JP2NT exacerbated hypertrophy and
cardiac dysfunction. More recently, the nuclear localization of a novel C-terminal fragment
(JPH2CT) generated by the calpain-2-dependent cleavage of JPH2 in preclinical models
of pressure overload and adrenergic stimulation has been described and also observed in
ventricular samples from HF patients [90]. Most interesting, however, is that contrary to the
effects of JPH2NT, the blockade of nuclear localization of JPH2CT protected cardiomyocytes
from isoproterenol-induced hypertrophy. Considering that these two fragments modulate
cardiomyocyte growth in apparently opposite directions and that each one is generated
by a specific calpain isoform, it can be speculated that the intracellular Ca?* concentration
will determine the predominant JPH2 fragment. According to this hypothesis, JPH2CT,
resulting from calpain-2, may have a preferential contribution in pathological conditions,
while JPH2NT, resulting from the calpain-1 activity, in physiological or compensatory
conditions. More recently, it has been suggested that calpain-2 can also cleave JPH2 at the
same site as calpain-1, although with less efficacy [135].
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7. Calpain Contribution to the Progression of Pathologic Hypertrophy

In addition to their direct effect on the genesis of hypertrophy, calpains have also been
proposed to participate in the progression of hypertrophy to HE.

7.1. Proteolysis of Myosin Light Chain Kinase

Evidence from studies conducted in a knockout myosin light chain kinase (MLCK)
mouse model and a cardiac-specific overexpressing MLCK transgenic mouse model sug-
gests an important role for cardiac myosin light chain (MLC) phosphorylation in the
evolution of cardiac hypertrophy to HF [136,137]. Importantly, it has been described that
[-adrenergic stimulation of neonatal cardiomyocytes and pressure overload produced by
TAC induce a calpain-dependent proteolysis of MLCK [138].

7.2. Mitochondrial Damage

Although traditionally considered cytoplasmic proteases, different studies have re-
ported that calpains 1, 2, 4, and 10 are also found in mitochondria [139-141]. Accumulating
evidence, recently reviewed by Zhang et al. [142], suggests that both cytosolic and mi-
tochondrial calpain dysregulation may induce mitochondrial damage. Cardiac energy
deprivation and increased ROS production resulting from mitochondrial dysfunction due
to calpain overactivation during hypertrophy may promote the transition to decompen-
sated hypertrophy and HF [143].

Calpain overactivation was initially linked to the induction of the mitochondrial-
dependent apoptotic program by activating the pro-apoptotic factors Bid [144,145] and
AIF [140]. However, the relevance of apoptotic cardiomyocyte death in the context of acute
reperfusion injury and cardiac remodeling has been questioned due to the repression of the
canonical caspase pathway in post-mitotic cardiomyocytes [146,147].

Instead, more recent studies propose that mitochondrial calpains contribute to the
direct damage of the electron transporter chain (ETC) by targeting the NDUFS7 [148]
and ND6 [141] subunits of complex I. Mitochondrial calpains have also been involved
in the disruption of the mitochondrial FoF1 ATP synthase through the proteolysis of its
ATP5A1 subunit [149]. More recently, by using transgenic mice with calpain-1 upregulation
restricted to cardiomyocyte mitochondria, the same group has demonstrated a causal
association between calpain-mediated cleavage of ATP5A1 and ROS generation, mPTP
opening, and cell death [150].

Finally, mitochondrial calpains have been suggested to alter mitochondrial
dynamics [151,152]. Mitofusin 2, which plays a central role in mitochondrial fusion, has
been identified as a direct substrate of calpains [153]. More recently, cardiac-specific
downregulation of OPA1, a dynamin-related GTPase protein involved in mitochondrial
fusion [154] and in maintaining mitochondrial cristae structure [155], has been associated
with mitophagy inhibition and enhanced cardiomyocyte death in the setting of myocar-
dial infarction [156]. In a recent study, calpastatin overexpression in mice subjected to
myocardial infarction prevented OPA1 degradation and improved mitochondrial fusion
and mitophagy [157]. However, whether calpain directly targets OPA1 or modulates
OPAL1 expression through an indirect mechanism remains to be elucidated. Furthermore,
calpain inhibition has been shown to prevent beclin-1 cleavage, a key component of the au-
tophagy pathway required to form autophagosomes, and improved mitophagy in isolated
hearts subjected to transient ischemia [148]. Altogether, these studies suggest that calpain
overactivation negatively modulates mitophagy by acting at multiple levels.

8. Pharmacological Inhibition of Calpains

Despite the accumulating experimental evidence supporting the contribution of cal-
pains to the development of hypertrophy, myocardial remodeling, and its progression to HE,
no clinical trials have explored the pharmacological inhibition of calpains as a therapeutic
strategy yet. The main reason for this is related to the limitations of most of the available cal-
pain inhibitors, which involve low selectivity, limited membrane permeability, and reduced
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water solubility and metabolic stability [52]. However, the research in the development of
novel calpain inhibitors has been greatly benefited from the increasing evidence demon-
strating the contribution of calpains to pathologic processes involved in adverse myocardial
remodeling other than hypertrophy, including fibrosis and inflammation [158], and non-
cardiac pathologies, such as neurodegenerative disorders [146], ophthalmic diseases [159],
myopathies [160], and cancer [161] (extensively discussed in previous reviews [162]).

E-64 was the first calpain inhibitor used in rats to suggest the involvement of calpains
in cardiac hypertrophy [104]. E-64 and leupeptin constitute the first generation of calpain
inhibitors, and their structure contains a peptidyl backbone and an electrophilic warhead
that covalently interacts with the active site cysteine of calpain. However, although ex-
tensively used, these molecules show limited specificity for calpains and low membrane
permeability [163]. The pharmacological properties of leupeptin were improved by sub-
stituting its amino-terminal for a hydrophobic cap group [163]. The inhibition of calpain
activity using one of these synthetic leupeptin derivatives, MDL-28170 (calpain inhibitor
III), has demonstrated efficacy against pathological hypertrophy and cardiac dysfunction in
multiple rodent models of HF, including MI, TAC, and chronic isoproterenol infusion [41].
However, these compounds show poor drug-like properties due to insufficient bioavail-
ability and unfavorable pharmacokinetics, and, therefore, their progression into the clinic
has been excluded. Advances in the design of new peptidomimetic calpain inhibitors have
provided new molecules with improved water solubility and metabolic stability over previ-
ous inhibitors. Among them, and deriving from the benzoylalanine-derived ketoamide
calpain inhibitor A-705253, A-953227 showed potent calpain inhibitory properties com-
bined with high selectivity versus related cysteine protease cathepsins, other proteases,
and receptors and was effective in reducing infarct size in an in vivo pig model of IR [164].
However, the short effective half-life and low bioavailability caused by the instability
against carbonyl reductases led to the development of a more metabolic stable derivative
Alicapistat (ABT-957) [165]. Alicapistat reached a phase I clinical study that analyzes
its safety and pharmacological properties for the treatment of Alzheimer’s disease [166].
However, although in preclinical models, alicapistat demonstrated efficacy with respect to
the prevention of NMDA-induced neurodegeneration, it failed to induce any measurable
hemodynamic effect in humans. This negative result was attributable to the use of an
inadequate concentration and suggested a moderate inhibitory potency. The ketoamine
derivative SNJ-1945, produced by Senju Pharmaceutical [167,168], shows an appropriate
pharmacological profile, and its chronic oral administration was effective in preventing
calpain activation and attenuating cardiomyocyte hypertrophy and cardiac dysfunction in
a mouse model of transient LAD occlusion [40]. More recently, these favorable effects of
SNJ-1945 have been confirmed in a model of hypertrophy induced by chronic isoproterenol
administration [38]. Currently, a phase Ila clinical trial designed to test the efficacy and
safety of the oral administration of SNJ-1945 in patients with non-arteritic retinal artery
occlusion is in progress (jJRTC2021190013).

The major limitation of calpain inhibitors is still their limited specificity for calpains
over other cysteine proteases, mainly caused by the highly conserved active site among
this type of proteases. A different approach aimed at increasing the specificity for calpains
in the design of molecules that induce the allosteric inhibition of the enzyme by binding to
other positions than the catalytic site. One of these allosteric inhibitors, PD150606, which
is supposed to bind to the Ca?* binding site of calpain, was effective in attenuating the
development of hypertrophy in isolated cardiomyocytes treated with isoproterenol [169]
or angiotensin II [170]. It is important to mention that a PD150606 derivative, PD151746,
is proposed to be more effective in inhibiting calpain-1 than calpain-2 [171]. Considering
that these two main calpain isoforms may display some differences in their substrate
preference [172] and biological function [173,174], this type of compound opens the door to
the development of new isoform-selective inhibitors.

Calpains also seem to show differences in their regulation depending on their in-
tracellular localization. It has been proposed that the activity of mitochondrial but not
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cytosolic calpains is regulated by its binding to chaperons (ERp57 for calpain-1 and Grp75
for calpain-2) [175], and the use of peptides that blocks their interaction inhibits the mito-
chondrial activity of calpain-1 in a specific manner [176]. Considering that mitochondria
play a critical role in the development of hypertrophy [177,178] and that mitochondrial
calpain-1 and/or calpain-2 increase in response to pathological stress associated with
the development of HF [150,179], the potential therapeutic benefits of the compounds
selectively addressed to mitochondprial calpains deserve further investigation.

9. Conclusions

Chronic myocardial stress invariably results in the overexpression and overactiva-
tion of calpains. Several preclinical studies using transgenic models with an altered cal-
pain/calpastatin system and pharmacological inhibitors support the contribution of cal-
pains to the development of cardiac hypertrophy and its progression to adverse remodeling
and cardiac dysfunction. However, although the evidence reviewed herein convincingly
suggests that calpain inhibition is an attractive novel therapeutic strategy, the clinical use
of currently available calpain inhibitors has been hampered by their low selectivity [163]
and inappropriate pharmacologic profile. Therefore, most of the calpain inhibitors tested in
preclinical studies did not meet the requirements to be candidates for use in patients. Fortu-
nately, new advances can overcome these limitations. On the one hand, there is evidence for
the involvement of both cathepsins and calpains in different pathophysiological conditions,
including hypertrophy [180-182]. In fact, the term “calpain—cathepsin” hypothesis has
been used to describe the coordinated and dysregulated proteolytic actions of calpain-1
and cathepsin-B, causing neurodegeneration in multiple disorders [183]. Although this
hypothesis needs to be confirmed in the context of cardiac hypertrophy; it is reasonable to
question whether the design of pure specific calpain inhibitors is the best strategy for the
achievement of optimal clinical results [184]. On the other hand, the increasing number
of studies supporting the involvement of calpains in other non-cardiac pathologies has
served to promote the development of novel calpain inhibitors with more favorable phar-
macologic profiles, and new molecules are constantly being described. Meanwhile, the
safety and pharmacokinetics of SNJ-1945 are currently being tested in a phase II clinical
trial jRTC2021190013). More recently, a novel calpain inhibitor, BLD-2660 (BLADE Thera-
peutics), has been approved for a phase II clinical trial that evaluates its safety and antiviral
activity in hospitalized subjects with COVID-19 (NCT04334460).
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