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Purpose: Relationships between diffusion-weighted MRI signals and hepato-
cyte microstructure were investigated to inform liver diffusion MRI modeling, 
focusing on the following question: Can cell size and diffusivity be estimated at 
fixed diffusion time, realistic SNR, and negligible contribution from extracellular/
extravascular water and exchange?
Methods: Monte Carlo simulations were performed within synthetic hepato-
cytes for varying cell size/diffusivity L/D0, and clinical protocols (single diffusion 
encoding; maximum b-value: {1000, 1500, 2000} s/mm2; 5 unique gradient dura-
tion/separation pairs; SNR = {∞, 100, 80, 40, 20}), accounting for heterogeneity in 
(D0,L) and perfusion contamination. Diffusion (D) and kurtosis (K) coefficients 
were calculated, and relationships between (D0,L) and (D,K) were visualized. 
Functions mapping (D,K) to (D0,L) were computed to predict unseen (D0,L) val-
ues, tested for their ability to classify discrete cell-size contrasts, and deployed on 
9.4T ex vivo MRI-histology data of fixed mouse livers
Results: Relationships between (D,K) and (D0,L) are complex and depend on 
the diffusion encoding. Functions mapping (D,K) to (D0,L) captures salient 
characteristics of D0(D,K) and L(D,K) dependencies. Mappings are not always 
accurate, but they enable just under 70% accuracy in a three-class cell-size clas-
sification task (for SNR = 20, bmax = 1500 s/mm2, � = 20 ms, and Δ = 75 ms). MRI 
detects cell-size contrasts in the mouse livers that are confirmed by histology, but 
overestimates the largest cell sizes.
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1   |   INTRODUCTION

Diffusion-weighted (DW) MRI relies on the self-diffusion 
of water residing in biological tissues to probe cellular mi-
croarchitecture. In classical pulsed gradient spin echo,1,2 
two diffusion gradients sensitize the acquisition to diffu-
sion. The first gradient tags spin phases according to spa-
tial position, whereas the second one, played out after a 
certain interval (known as diffusion time), cancels such 
tags for stationary spins. In the presence of diffusion, 
water molecules change their position during the diffu-
sion time, and the tag removal is incomplete. This leads to 
MRI signal attenuation, which carries a signature of tissue 
microstructure.3

Model-based methods offer practical solutions to the 
estimation of microenvironment properties from MRI by 
adopting geometric models of microstructure.4 This leads 
to tractable expressions that parametrize the signal as a 
function of sequence and microstructural parameters.5 
So far, model-based methods have found several clinical 
applications,6–13 in spite of potential biases occurring as a 
result of modeling oversimplifications.14,15 Modeling has 
focused on neural16–22 and prostate23–25 tissue characteri-
zation, as well on cell-size measurements,26–29 relevant in 
oncology. However, less attention has been paid to other 
organs, such as the liver.30–33 Biologically specific DW 
MRI methods are urgently required in liver diseases, such 
as liver cancer, a leading cause of cancer-related death.34 
Liver cancer (either primary or metastatic35) shows a va-
riety of microstructural characteristics. Quantitative liver 
MRI methods offer sensitivity to cancer pathology,36 but 
still fail to distinguish key pathological differences (e.g., 
substitution of either sinusoidal endothelial cells or liver 
hepatocytes by neoplastic cells35,37). There is a pressing 
need for new clinically viable liver MRI readouts; these 
could help reduce the use of invasive biopsies, which 
sparsely sample the tissue, are prone to false negatives, 
and can result in complications for the patient,38 and 
could support diagnosis and treatment selection.

A key step in diffusion MRI development is the identi-
fication of microstructural features that can be estimated 
from clinical-like (i.e., intermediate b-values and limited 
scan time) measurements.5 To our knowledge, such a 

characterization for hepatocytes, which account for up 
to 85% of liver volume,39 is still lacking. Here we consid-
ered realistic hepatocyte sizes and diffusion protocols that 
could be feasible in the clinic (single diffusion encoding, 
maximum b-value up to 2000 s/mm2, fixed diffusion time 
with gradient separation/duration Δ/� in the range of [25; 
75] ms and [10; 40] ms, SNR as low as 20 at b = 0). Through 
Monte Carlo simulations and co-localized 9.4T ex vivo 
MRI and histology of fixed mouse livers, we specifically 
investigated the following question: Can cell size and diffu-
sivity be estimated from signal cumulants at fixed diffusion 
time and realistic SNR, under the assumption of negligible 
contributions from extracellular/extravascular water and 
water exchange? While experiments performed at varying 
diffusion times are ideal for cell-size measurement,26–29,33 
techniques providing summary cell-size indices with min-
imal acquisitions have the potential of bringing quantita-
tive MRI one step closer to the clinic.

2   |   METHODS

We simulated intracellular signals at fixed diffusion time 
and processed them to estimate cell size L and cell diffu-
sivity D0. The approach was also tested on 9.4T ex vivo 
MRI scans of fixed mouse livers. All analysis code is made 
available (https://github.com/fragr​ussu/MChepato), and 
was executed on two Ubuntu 20.04.2 machines (18-core, 
3.00-GHz Intel® Core i9-10980XE CPU).

2.1  |  Cell generation

We simulated hepatocytes (polygonal cells39) by perturb-
ing regular prisms with square/pentagonal/hexagonal 
bases. Prisms were described by triangular meshes and 
featured a characteristic length L (base-to-base height and 
diameter of the circumcircle relative to each base). We 
considered 33 values of L in [11; 60] μm (increment: 1.5 
μm), obtaining S = 15 unique cell shapes for each value 
of L. The S cells at fixed L were obtained by perturbing 
each prism base shape 5 times, displacing vertices at ran-
dom (displacements drawn from a normal distribution, 
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Conclusion: Salient information about liver cell size and diffusivity may be re-
trieved from minimal diffusion encodings at fixed diffusion time, in experimen-
tal conditions and pathological scenarios for which extracellular, extravascular 
water and exchange are negligible.
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σ = 0.1L). The range for L covers sizes seen in healthy 
mammal livers (e.g., 20–30 μm in humans,39 30–40 μm in 
mice40) and in pathology (e.g., swollen hepatocytes in ste-
atosis37; hepatocyte substitution by smaller cancer cells41). 
Supporting Information Figure S1 shows synthetic cells.

2.2  |  Intracellular spin dynamics

We generated random walks with the MCDC simulator,42 
distributing N = 1000 spins uniformly inside each cell 
(elastic reflection at walls; impermeable walls). We sim-
ulated Ts = 140 ms (3000 steps) and varied the intrinsic 
cell diffusivity D0 in [0.20; 2.40] μm

2

ms
 (45 values; increment: 

0.05 μm
2

ms
).

2.3  |  Magnetic resonance imaging 
signal synthesis

For each fixed (D0, L) value, we pooled together spin tra-
jectories rn,s,k(t) simulated within a neighborhood Ω of (
D0, L

)
 (i.e., 

Ω
(
D0, L

)
≜
{
D0−0.10, D0−0.05, D0, D0+0.05, D0+0.10

}

μm2

ms
× {L−3.0, L−1.5, L, L+1.5, L+3.0 } �m)

 . 

This introduces heterogeneity expected in realistic vox-
els,15,43 leading to 1189 

(
D0, L

)
 pairs. Above, n = 1, …, N is 

the index of a spin within a cell; s= 1, …, S is the cell-shape 
index for fixed cell size; and k = 1,⋯, Kenumerates the 
elements of Ω

(
D0, L

)
, with K = dim

(
Ω
(
D0, L

))
. For MRI 

signal synthesis, we considered single diffusion encoding2 
gradient waveforms G(t), with five unique clinically real-
istic gradient duration/separation δ/Δ ([10 ms, 50 ms], [20 
ms, 25 ms], [20 ms, 50 ms], [20 ms, 75 ms], and [40 ms, 50 
ms]). For any fixed (δ, Δ), we synthesized measurements 
corresponding to seven nonzero b-values, uniformly 
spaced in (bmin;bmax), where bmin = 100 s mm–2, a value 
used to suppress intravoxel incoherent motion (IVIM)–
like components44,45; and bmax = (1000, 1500, 2000) s 
mm–2, as the volume-weighted46 sum:

For each b-value, we generated signals for three mutu-
ally orthogonal gradients (as common in liver MRI44,45), 
averaged them, and introduced random slow-flow 

(intravoxel incoherent motion, or IVIM)44,47 contamina-
tion as follows:

In this equation, 0.05 ≤ f ≤ 0.50 controls the IVIM 
contamination, and 15 μm2

ms
≤ Dv ≤ 60

μm2

ms
.44,45 Rician noise 

was injected at an SNR of (∞, 100, 80, 40, 20), where ∞ 
denotes no noise added; SNR = 1∕�, �2 denotes the noise 
variance.

2.4  |  Analysis

We estimated apparent diffusion/kurtosis coefficients 
D/K  for any (D0, L), diffusion protocol, and SNR by 
fitting5,48

through constrained nonlinear least-squares fitting ini-
tialized by linear fitting (0 ≤ s0 ≤ 1; 0 μm2

ms
≤ D ≤ 2.4

μm2

ms
; 

− 5 ≤ K ≤ 10). The value of s0 is the non-DW signal.
We tested whether 

(
D0, L

)
 can be estimated from D 

and K when the contribution of extracellular, extravas-
cular water and transcytolemmal water exchange are 
negligible. To this end, we related (D, K) to (D0, L) using 
color-coded scatter plots, and studied paired (D, K)→ D0 
and (D, K)→ L observations estimating smooth function 
(D0 (D, K), L (D, K)) mapping (D, K) to (D0, L) at a fixed 
protocol and SNR. The estimation was based on the fol-
lowing polynomial functions:

where m indicates D0 and L in turn. We refer to the estima-
tion of D0(D,K) and L(D,K) via Equation 4 as PolyMap. 
Coefficients ai were estimated on 700 randomly selected 
(D0, L) training pairs out of 1189, and then deployed to pre-
dict the 489 unseen (D0, L) values. We assessed the quality 
of the prediction by visualizing errors against ground-truth 
values. For reference, PolyMap was compared with fitting of 
a biophysical model of the intracellular DW signal (SigFit 
estimation) as follows:

(1)
sintra

�
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�
=

K�
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L3
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N
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Equation 5 relies on an approximate expression of 
the apparent diffusion coefficient for spins diffusing in 
a bounded medium (wide-pulse limit).49–51 The values 
of c0 and c1 are constants that depend on the geometry: 
Analysis of intracellular diffusion coefficients from 400 
unique coefficients (D0, L, Δ, �) provides c0 ≈ 1.342 ∙ 10−3 , 
c1 ≈ 1.259 ∙ 10−5 for our synthetic cells. Note that D0 and 
L in Equation 5 are fitted jointly to sets of signal measure-
ments performed at varying b-value (but fixed Δ and �). 
This implies that we do not get a single number for the ap-
parent diffusion coefficient value first, and derive D0 and 
L from it afterwards.

Finally, we tested whether it is possible to resolve 
cell-size contrasts with the minimal protocols consid-
ered here, being that D0 and L are difficult to disentan-
gle. We discretized L as small (L ≤ 28�m), medium 
(28𝜇m < L ≤ 42𝜇m ), large (L > 42𝜇m), and fitted a 
multinomial logistic regression model (Python stats-
models) in the same form of Equation 4 (m = {0, 1, 2}: 
discretised L). The model was fitted to the training set for 
all diffusion protocols and SNR = 20, and deployed on the 
validation set. We calculated classification accuracy and 
estimated 95% accuracy ranges compatible with chance 
by training on 1000 random permutations of the m labels.

2.5  |  Magnetic resonance imaging - 
histology comparison

Two formalin-fixed NOD.Cg-Prkdcscid IL2rgtm1WjI/SzJ 
mouse livers from an approved, ongoing study (wild-type 
[WT] and patient-derived xenograft (PDX), subcutaneous 
implantation of prostate cancer bone biopsy) were scanned 
in phosphate-buffered saline on a 9.4T Bruker Avance sys-
tem (room temperature) to test whether our approach can 
detect histologically meaningful cell-size differences due 
to pathology. The DW spin-echo scans (Δ = 30 ms; � = 10 
ms; TE = 45 ms; TR = 2700 ms; 10 b-values in [0; 4500] s/
mm2; two slices, 1-mm thick; 349 × 273 μm2 resolution) 
were acquired and preprocessed.52–54 Images acquired at 
b > 1700 s/mm2 (i.e., with negligible phosphate-buffered 
saline contamination) were analyzed with PolyMap and 
SigFit. For PolyMap computation, the (D,K)→ (D0,L) 
mapping was learned on signals synthesized for the spe-
cific protocol used ex vivo, and corrupted at an SNR equal 
to the sample median SNR at b = 0, estimated through 
Marchenko and Pastur principal component analysis.52,55 
SigFit fitting was instead performed by either (1) estimat-
ing jointly D0 and L, or (2) fixing D0 to {0.5, 0.75, 1.0, 1.25, 
1.50} μm

2

ms
 in turn to all voxels and then estimating L, as in 

some model-based approaches.26

One 4-μm-thick histological section was obtained for 
each MRI slice, stained with hematoxylin and eosin, and 

digitized (Hamamatsu C9600-12 scanner; resolution: 
0.227 μm). Cells were segmented with QuPath,56 obtain-
ing cell-wise diameters l. These were analyzed within 
patches matching the in-plane MRI resolution, deriving 
per-patch histological cell size

Equation 6 is justified by noting that the total in-
tracellular MRI signal sintra is approximately pro-
portional to < l7>

< l3>
, being that sintra =

< l3s(l) >

< l3 >
 is 

the volume-weighted sum57 of individual cell sig-
nals and that s (l) ≈ e−�l

4
≈ 1 − �l4 ,49 implying that 

sintra ≈ 1 − 𝛼
< l7>

< l3>
.Lhisto was warped to MRI (symmetric 

diffeomorphic registration58 of specimens’ manual out-
lines), and metric distributions were evaluated.

3   |   RESULTS

The computation time required to process one MRI pro-
tocol was approximately 700 seconds for each (D0,L) pair 
on one CPU.

Plots in Figure 1 scatter D against K. Points in the (D, K) 
plane correspond to a unique (D0,L) combination, and are 
colored according to D0 (top) and L (bottom). The figure 
refers to maximum b-value of 2000 s/mm2, SNR = 20, and 
multiple combinations of (δ,Δ). The values of D and K 
exhibit a wide range of variation (e.g., negative K values 
are seen), depending on protocol δ and Δ. Nonetheless, 
a trend in the D0/L coloring can be seen (more apparent 
as SNR increases). In absence of noise, a non-monotonic 
relationship between (D, K)and both D0 and L is seen, 
with points distributed according to complex patterns in 
the (D, K) domain (Supporting Information Figure S2). 
For some specific combinations of (D, K), no experimen-
tal points are observed. The position of the points in the 
(D, K) plane changes depending on (δ,Δ). For example, 
when bmax = 2000 s/mm2, the median/95% range of D are 
0.76/[0.27; 1.57] μm

2

ms
 for δ/Δ = 20/25 ms and 0.52 [0.16; 

1.20] μm
2

ms
 for δ/Δ = 20/75 ms. For the same gradient tim-

ings, median/95% ranges of K are 0.44 [0.29; 1.53] and 
0.40 [0.07; 2.99]. Results for smaller maximum b-values 
follow similar trends, although numerical values of (D,K) 
depend on bmax, both in absence or presence of noise (e.g., 
SNR = 20) (Supporting Information Figure S3 for bmax = 
1000 s/mm2). In absence of noise and when bmax = 1000 
s/mm2, the median/95% range of D values are 0.79 [0.28; 
1.61] μm

2

ms
 for δ/Δ = 20/25 ms and 0.55 [0.17; 1.25] μm

2

ms
 for 

δ/Δ = 20/75 ms, whereas it is 0.58 [0.29; 3.12] and 0.78 
[0.14; 6.33] for K, larger than what is seen when bmax = 
2000 s/mm2.

(6)Lhisto =

(
< l7>

< l3>

) 1
4

.
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Figure 2 shows (D, K) scatter plots color-coded by D0 
and L for observations belonging to the validation set 
(bmax = 2000 s/mm2, δ = 20 ms, Δ = 75 ms, SNR = 20). 
It also shows D0 and L predicted in correspondence of 
the same (D, K) values with both PolyMap and SigFit. 
Similar plots for the noise-free case and different proto-
cols (e.g., bmax = 1000 s/mm2, δ = 20 ms, Δ = 25 ms) are 
reported in Supporting Information Figures S4 and S5. 
Overall, PolyMap does not necessarily predict accurately 
the values of D0 and L on unseen data, especially at high 
noise level. Nonetheless, it captures the salient charac-
teristics of the D0(D,K) and L(D,K) relationships, which 
appear unique to each diffusion-encoding protocols and 
SNR. The SigFit estimation also captures D0 and L con-
trasts, although predictions are less smooth than those 
from PolyMap.

Figure 3 plots PolyMapD0 and L prediction errors 
(prediction – ground truth) against ground-truth D0 and 
L for different protocols (bmax = 2000 s/mm2, SNR = 20). 
The same plots corresponding to SigFit are reported in 

Supporting Information Figure S6. Further PolyMap 
and SigFit prediction errors for the noise-free case 
and for bmax = 1000 s/mm2, SNR = 20, are included in 
Supporting Information Figures S7 and S8. The charts 
reveal that D0 and L are overestimated/underestimated 
at the lower/upper end of their ranges. This trend is 
observed for different gradient timings and in absence 
of noise, although to a lesser extent. Higher SNR and 
longer diffusion times lead to smaller errors. The D0∕L 
PolyMap errors are slightly smaller/larger than those 
from SigFit.

Table 1 reports validation-set accuracies for the cell-
size classification task. Accuracy values can be as high 
as almost 70%, such as when bmax = 1500 s/mm2, δ = 
20 ms, and Δ = 75 ms, corresponding to 86%, 46%, and 
61% correctly classified small, medium, and large cells. 
Accuracies are above accuracy ranges compatible with 
chance.

Figure 4 reports MRI histology results. Unlike the 
WT, the PDX features widespread infiltration of smaller 

F I G U R E  2   Examples of predictions of intrinsic cell diffusivity D0 and cell size L on the validation set. (A–C) Scatter plots colored by cell 
diffusivity D0. (D–F) Scatter plots colored by cell size L. Left: Signal cumulants (D,K) at fixed diffusion time colored by underlying ground 
truth D0 and L. Middle: Signal cumulants (D,K) at fixed diffusion time colored by predictions of D0 and L as obtained with PolyMap. Right: 
Signal cumulants (D,K) at fixed diffusion time colored by predictions of D0 and L as obtained with SigFit. The figure refers to the case when 
the minimum/maximum protocol b-values is equal to b = 100/2000 s/mm2 and the diffusion gradient duration/separation is δ = 20 ms/Δ = 
75 ms, for SNR of 20 and in presence of IVIM contamination
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cells (likely leukocytes) in between larger hepatocytes. 
This leads to between-sample Lhisto contrast (Lhisto higher 
in WT than PDX), replicated in PolyMap and SigFitL. 
The value of D0 is lower in PDX than WT in PolyMap, 
whereas no D0 differences are seen for D0 SigFit. The 
SigFit metrics feature salt-and-pepper variations and are 
less smooth than PolyMap. Distributions (Supporting 
Information Table S1) confirm that L agrees well with 
Lhisto for both PolyMap and SigFit in PDX. In WT, L is 
larger than Lhisto, especially for PolyMap. The value of 
SigFit D0 is more variable than PolyMap D0 in both spec-
imens. Supporting Information Figure S9 reports signal 
predictions from fitted parameters for both WT and PDX 
livers, highlighting that both SigFit and PolyMap pro-
vide good quality of fit. Supporting Information Figure 
S10 reports alternative SigFit cell-size estimates L ob-
tained when D0 is fixed to a specific value for all vox-
els, and not fitted. The value of L obtained at fixed D0 
is highly dependent on the value used for D0: For some 
specific values, the between-sample cell-size contrast is 
even reversed, with larger L in the PDX than in the WT, 
a finding that disagrees with histology.

4   |   DISCUSSION

4.1  |  Summary and key findings

We performed simulations to relate DW signal features 
(i.e., apparent diffusion/kurtosis coefficients, D and K) 
to cell microstructure (cell diffusivity/size, D0 and L) at 
fixed diffusion time, under the hypothesis of negligible 
sensitivity to extracellular/extravascular water and ex-
change. We also used cell-size mappings learned from 
simulations on 9.4T ex vivo MRI of fixed mouse livers, 

comparing results to histology. Our work is motived 
by the fact that estimating summary cell-size contrasts 
with minimal protocols may be useful in hospital set-
tings, where scan time is limited and the latest technolo-
gies are not available.

Our main finding is that D and K offer sensitivity to D0 
and L even when computed at realistic SNR levels, so it 
appears feasible to establish a mapping (D,K) →

(
D0,L

)
 . 

Although the mapping does not estimate accurately D0 
and L for the studied range, it captures salient cell-size 
contrasts at fixed diffusion time. On the 9.4T MRI data, 
(D,K) →

(
D0,L

)
 mappings provide cell-size contrasts that 

are confirmed by histology, but overestimate L, especially 
for larger cells. The overestimation of L is less strong when 
this is estimated through biophysical models of restricted 
diffusion, which were considered as a potential alternative 
to (D,K) →

(
D0,L

)
 mappings, at the price of more vari-

able parametric maps (especially D0).

4.2  |  Simulations

We used state-of-the-art Monte Carlo simulations42 to 
study DW MRI protocols that could be implemented in 
the clinic (i.e., intermediate b-values, fixed diffusion time, 
short scan time). Our results demonstrate that associa-
tions between D and K from such protocols and cell dif-
fusivity D0 and size L, exist. The relationship is complex 
and non-monotonic, with relatively small changes in D0 
and L causing large variations of K and D. This may imply 
that biophysical liver models may benefit from intra-
compartmental kurtosis in the hepatocyte compartment, 
to better capture departures from Gaussian diffusion.

We also used paired (D, K) and (D0,L) to compute 
polynomial functions that estimate D0 and L from D and 

bmax = 
1000 s/
mm2

bmax = 
1500 s/
mm2

bmax = 
2000 s/
mm2

δ = 20 ms, Δ = 25 ms, Δ 
– δ/3 = 18.3 ms

Accuracy 0.54 0.54 0.55

95% random interval [0.23; 0.42] [0.22; 0.43] [0.22; 0.43]

δ = 40 ms, Δ = 50 ms, Δ 
– δ/3 = 36.7 ms

Accuracy 0.60 0.61 0.61

95% random interval [0.21; 0.46] [0.21; 0.46] [0.19; 0.48]

δ = 20 ms, Δ = 50 ms, Δ 
– δ/3 = 43.3 ms

Accuracy 0.58 0.56 0.60

95% random interval [0.21; 0.45] [0.21; 0.45] [0.20; 0.46]

δ = 10 ms, Δ = 50 ms, Δ 
– δ/3 = 46.7 ms

Accuracy 0.57 0.56 0.54

95% random interval [0.22; 0.43] [0.21; 0.45] [0.23; 0.42]

δ = 20 ms, Δ = 75 ms, Δ 
– δ/3 = 68.3 ms

Accuracy 0.61 0.67 0.63

95% random interval [0.21; 0.45] [0.19; 0.47] [0.20; 0.48]

Note: The table also includes the estimated 95% interval of accuracies that can be expected due to chance. 
An accuracy of 1.00 implies that all validation observations have been correctly classified; an accuracy of 
0.00 implies instead that none have been correctly classified.

T A B L E  1   Accuracies obtained on the 
validation set for the three-class cell-
size classification task performed using 
multinomial logistic regression at SNR = 
20 and for all diffusion-encoding protocols
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K (PolyMap). Such functions offer sensitivity to the under-
lying D0 and L, even when computed on noisy data (SNR 
= 20). Although the estimates are not accurate for the 
smallest and largest values of D0 and L, they may suffice to 
characterise large cell-size variations, such as distinguish-
ing discrete cell-size contrasts, as demonstrated through 
multinomial logistic regression. For reference, PolyMap 
was compared with fitting D0 and L based on a biophysi-
cal model of the DW signal (SigFit approach). Results from 
SigFit are in line with those from PolyMap. Although SigFit 
enables slightly more accurate L estimation than PolyMap 
for the low-intermediate values L, PolyMapL estimates are 
closer to ground-truth values for L of the order of 40 µm 
to 50 µm, plausible in pathological processes such as he-
patocyte ballooning.59 Moreover, PolyMap exhibits higher 
precision (smoother D0 [D,K) ] and L[D,K] ) and better 
resolves D0. These results suggest that the relative perfor-
mances of PolyMap and SigFit depend on the diffusion 
regime, and, more importantly, that overall it may be fea-
sible to obtain summary descriptors of cell size from clin-
ical acquisitions at fixed diffusion time, if analyzed with 
appropriate techniques. Such an approach could have ap-
plication in high-risk populations, such as patients with a 
history of hepatitis (at risk of hepatocellular carcinoma60) 
or primary colorectal cancer (at risk of liver metastases61), 
and in contexts in which implementing rich acquisitions is 
not possible. Moreover, mappings (D,K) →

(
D0,L

)
 tuned 

for specific diffusion encodings may help mitigate inter-
scanner variability. In that respect, they may prove useful 
in the retrospective analysis of multicenter clinical data 
featuring a variety of acquisition protocols. Nonetheless, 
we remark that acquiring prospective data at varying diffu-
sion weightings and times should be the preferred way to 
perform cell-size estimation, when possible.

4.3  |  Magnetic resonance imaging and  
histology

We estimated D0 and L on 9.4T ex vivo DW images of two 
formalin-fixed mouse livers (one WT, one PDX), acquired 
at fixed diffusion time (Δ = 30 ms; � = 10 ms). The MRI 
indices were related to co-localized histological cell size 
Lhisto, confirming results from simulations. Both PolyMap 
and SigFit provide good signal quality of fits, suggesting 
that they both are good representations of the diffusion 
MRI signal. Moreover, they both detect diffuse cell size L 
alterations in the PDX liver that are confirmed by Lhisto, 
despite overestimating actual cell-size values (Lhisto is con-
sistently lower than L from MRI). This finding agrees with 
the overestimation seen in simulations for ground-truth 
sizes of up to 35 μm to 40 μm, and may also result, at least 
in part, from histological tissue shrinkage and biases from 
neglected extracellular/extravascular water. Nonetheless, 
we acknowledge that the overestimation of L is higher 
for PolyMap than for SigFit, especially for the WT liver. 
For PolyMap, we used a (D,K) →

(
D0,L

)
 mapping evalu-

ated at a single, fixed SNR. It is possible that more accu-
rate results could be obtained learning a (D,K) →

(
D0,L

)
 

mapping for each voxel, tailored to spatially variant noise, 
or using more sophisticated (D,K) →

(
D0,L

)
 mapping 

strategies beyond polynomial fitting (e.g., random for-
ests).62 These are likely to outperform PolyMap, while also 
providing clearer biological interpretations than polyno-
mial expansions, whose optimal degree is challenging to 
determine.

Notably, PolyMap detects PDX-WT differences in D0 , 
unlike SigFit. While it is challenging to verify this on the 
type of histological data at hand (routine hematoxylin and 
eosin staining), we speculate that it is possible that some of 

F I G U R E  4   Estimation of intrinsic cell diffusivity D0 and cell size L from the 9.4T ex vivo MRI scans of fixed mouse livers, with co-
localized hematoxylin and eosin (HE) histology. Top: Wild-type (WT) case. Bottom: Patient-derived xenograft (PDX) case (subcutaneous 
implantation of bone biopsy from metastatic prostate cancer). From left to right: Non-DW image; co-localized HE; example of cell 
segmentation on HE; histology-derived cell size index Lhisto; MRI cell size L estimates through PolyMap and SigFit estimation; MRI cell 
diffusivity D0 estimates through PolyMap and SigFit estimation
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these between-sample D0 differences may exist. Supporting 
Information Figure S11 provides examples of the strikingly 
different cellular composition characterizing the two livers. 
On visual inspection, hepatocytes in the WT liver contain 
more fat than those in the PDX. Moreover, the PDX liver 
is characterized by a nonspecific, lymphoma-like process, 
in which cells that are much smaller than normal hepato-
cytes invade vascular and extravascular spaces. Such cells 
may feature a distinct intracellular microenvironment as 
compared with normal hepatocytes, resulting in per-cell D0 
heterogeneity. Taken as a whole, these findings suggest that 
differences in terms of intrinsic intracellular diffusivity D0 
between the two specimens cannot be ruled out a priori. In 
future work, we aim to perform richer immunohistochemi-
cal analyses to gain insight into the tortuosity of the intracel-
lular space, and thus derive histological counterparts of D0 
to confirm our MRI findings.

Regarding our 9.4T diffusion MRI acquisition, we used 
a maximum b-value of 4500 s/mm2. This is considerably 
higher than in simulations, where it never exceeds 2000 s/
mm2, as in some clinical studies.63 This can be justified by 
considering that reductions of up to three times of the av-
erage apparent diffusion coefficient can be expected when 
scanning fixed liver tissue, as compared with the in vivo 
case.64 Therefore, b = 4500 s/mm2 is expected to cause a 
signal attenuation somewhat comparable to approxi-
mately 1500 s/mm2 in vivo. Also, on the ex vivo data we 
perform PolyMap and SigFit analyses using a minimum 
b-value of 1700 s/mm2. This is done to suppress partial-
volume effects with vessels and capillaries, which are 
filled at least in part with phosphate-buffered saline. The 
diffusivity of phosphate-buffered saline (1.8–2.0 μm

2

ms
) is at 

least 8–10 times lower than the pseudo-diffusion coeffi-
cient of the IVIM water pool in vivo (15–60 μm

2

ms
), justifying 

the use of a minimum b-value of 1700 s/mm2 against 100 
s/mm2 as done in simulations.

We acknowledge that in this study we tested whether 
mappings learned on simulated MRI signals could be de-
ployed on actual MRI measurements, performed on fixed 
ex vivo tissue at 9.4 T. In future work we aim to test such 
mappings on actual clinical MRI scans of the human liver, 
and investigate the performance of the approach in the 
presence of lower SNR, motion, and perfusion.

4.4  |  Methodological considerations

We used a simple geometric model based on perturbations 
of regular prisms65 to capture restricted diffusion. Although 
it sufficed to introduce variability in cell shape and to avoid 
overly simplistic representations (e.g., cubes), different 
models (e.g., meshes from histological images) could have 
been used. We plan to explore them in future work.

Another aspect is that our simulations focused on 
hepatocytes. We included heterogeneity in cell size/
diffusivity, and accounted for partial volume with inco-
herent perfusion,32,47,66,67 effectively relying on a two-
compartment model, under the hypothesis that the 
sensitivity to extracellular, extravascular water and tran-
scytolemmal exchange are negligible. This assumption 
may be reasonable in the healthy liver, as hepatocytes are 
tightly packed within hepatic lobules, and account for 
70%–85% of the liver volume.39 They are surrounded by 
networks of fluid-filled conduits (sinusoidal capillaries, 
whose walls embed endothelial, stellate, dendritic, and 
Kupffer cells; and bile ducts68), whose signal fraction is 
expected to be on the order of 10%–20%.44 Interestingly, 
this two-compartment model may capture the essence 
of the DW signal even in some pathological tissues, such 
as metastases.69 Nonetheless, extracellular, extravascular 
water may be relevant in the presence of other patholog-
ical processes, such as in fibrosis.70 In those cases, an ad-
ditional compartment may be needed33: While (D,K) may 
still retain sensitivity to (D0,L), they would not be specific. 
Finally, we neglected transcytolemmal water exchange. 
Known intracellular water residence times for hepatocytes 
and cancer cells of [40 ms; 150 ms]33,71 imply that neglect-
ing exchange may be reasonable in the short/intermedi-
ate diffusion times considered here. Nonetheless, further 
biases72 may be expected for longer diffusion times. Our 
work represents a first exploratory characterization of the 
main components of the liver parenchyma and in specific 
measurement conditions. In future work, we will general-
ize our analysis to more complex tissue models.

We explored relationships between (D,K) and cell mi-
crostructure (D0,L), and tested whether information de-
rived from Monte Carlo simulations enables a mapping 
(D,K)→ (D0,L). Linking cumulants to microstructure 
is a powerful approach that has shown promise in the 
brain.18,21,73 Nonetheless, (D,K) depend strongly on the 
diffusion-encoding protocol used for acquisition. Therefore, 
one would need to learn a mapping (D,K)→ (D0,L) for the 
specific diffusion protocol at hand (i.e., δ, Δ and b-values). 
Moreover, (D,K) may be difficult to measure accurately on 
noisy data (e.g., K can be unstable when D is low, being com-
puted by dividing the second cumulant by D).74 In the fu-
ture, more advanced signal-to-microstructure mappings will 
be explored (e.g., machine learning75–77).

Moreover, we limited our analysis to clinical single 
diffusion encoding with moderate b-values. We acknowl-
edge that more advanced encodings may provide more 
accurate cell-size figures, such as combining pulsed/oscil-
lating gradients,33 b-tensor encoding,19,78 and power law 
modeling.57 In particular, fitting biophysical models of re-
stricted diffusion on measurements performed at varying 
diffusion time is likely to outperform cell-size estimation 
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at fixed diffusion time. However, we note that considering 
such protocols goes beyond the scope of this paper: Our 
main focus is on simple diffusion encodings at a fixed dif-
fusion time. Our results quantify how much information 
on cell size can be retrieved with such minimal schemes, 
being these routine in hospital settings. However, when 
cell-size estimation is sought in prospective studies, we 
recommend that diffusion protocols probe multiple diffu-
sion times—scan time and hardware allowing.

We compared (D,K)→ (D0,L) mappings (PolyMap) 
against fitting a biophysical model of intracellular re-
stricted diffusion (SigFit) on protocols including a single 
diffusion time. We acknowledge that analyses such as 
SigFit would normally be performed on measurements 
performed at variable diffusion times,26,29,33 given the 
challenge of resolving D0 and L. A common way to re-
duce the number of tissue parameter unknowns in such 
model-based approaches is to fix D0 to a specific value 
across all voxels, and estimate only L. While this would 
likely stabilize the fitting, it may lead to unphysical 
solutions if inappropriate values are used for D0. This 
is demonstrated in Supporting Information Figure S10 
(the PDX-WT cell-size contrast can even be reversed 
depending on D0), warning against the risks of using 
overly simplified analytical models in conjunction with 
minimal diffusion encodings.

Finally, our simulated MRI protocols were based on 
averaging over three gradient directions, common in 
liver MRI,44,45 and included seven nonzero b-values, cor-
responding to a tolerable 5/10-minute scan. Additional 
analyses (Supporting Information Figure S12) show that 
three-direction averaging suffices to account for anisot-
ropy, and provides D∕K that are consistent with mean 
diffusivity/kurtosis from tensor fits58 on richer directional 
schemes.79 Supporting Information Figure S13 suggests 
that using seven nonzero b-values may be a reasonable 
compromise between accuracy/precision and scan time.

5   |   CONCLUSIONS

In experimental conditions for which extracellular, ex-
travascular signal sources and transcytolemmal exchange 
can be neglected, salient but potentially relevant informa-
tion on liver cell size and diffusivity may be retrieved from 
simple diffusion encodings at a fixed diffusion time, pro-
vided that these are analyzed with appropriate computa-
tional techniques.
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FIGURE S1 Synthetic hepatocytes used in this study for 
Monte Carlo simulations (water diffusion was simulated 
within such synthetic cells), obtained by perturbing the 
position of the vertices of triangularly meshed regular 
prisms. Top to bottom: Different shapes of the prism bases 
(square, pentagonal, hexagonal). Left to right: Different 
unique perturbations. The figure also illustrates L, which 
is equal to the base-to-base height as well as the diameter 
of the circumcircle relative to each base
FIGURE S2 Scatter plots of (D,K) color-coded by the 
underlying average intrinsic cell diffusivity D0 (A–E) and 
cell size L (F–J), as obtained when no noise is added to 
the synthetic MRI signals. From left to right: Different 
diffusion times (δ/Δ = 20/25 ms in [A] and [F]; δ/Δ = 40/50 
ms in [B] and [G]; δ/Δ = 20/50 ms in [C] and [H]; δ/Δ = 
10/50 ms in [D] and [I]; and δ/Δ = 20/75 ms in [E] and 
[J]). The figure refers to a minimum/maximum protocol 
b-value of b = 100/2000 s/mm2. Noise-free intracellular 
diffusion-weighted (DW) signals are contaminated by 
intravoxel incoherent motion (IVIM)–like partial volume
FIGURE S3 Scatter plots of (D,K) color-coded by the 
underlying average intrinsic cell diffusivity D0 (A–E) and 
cell size L (F–J), as obtained when noise is added to the 
synthetic MRI signals at an SNR at b = 0 of 20. From left 
to right: Different diffusion times (δ/Δ = 20/25 ms in [A] 
and [F]; δ/Δ = 40/50 ms in [B] and [G]; δ/Δ = 20/50 ms 
in [C] and [H]; δ/Δ = 10/50 ms in [D] and [I]; and δ/Δ = 
20/75 ms in [E] and [J]). The figure refers to a minimum/
maximum protocol b-value of b = 100/1000 s/mm2. Noise-
free intracellular DW signals are contaminated by IVIM-
like partial volume
FIGURE S4 Examples of predictions of intrinsic cell 
diffusivity D0 and cell size L on the validation set. (A–C) 
Scatter plots showing prediction of average intrinsic cell 
diffusivity D0. (D–F) Scatter plots showing prediction of 
average cell size D0. Left: Signal cumulants (D,K) at fixed 
diffusion time colored by underlying ground-truth D0 and 
L. Middle: Signal cumulants (D,K) at fixed diffusion time 
colored by predictions of D0 and L as obtained with the 
PolyMap approach, which relies on using smooth functions 

D0 (D,K) and L (D,K) from polynomial interpolation. 
Right: Signal cumulants (D,K) at fixed diffusion time 
colored by predictions of D0and L as obtained with the 
SigFit approach, which relies on the estimation of D0 and 
L via routine nonlinear least-squares fitting on the MRI 
signal. The figure refers to the case when the minimum/
maximum protocol b-values are equal to b= 100/2000 s/
mm2 and the diffusion gradient duration/separation is δ = 
20 ms/Δ = 75 ms for SNR → ∞ (no noise injected to the DW 
measurements) and in presence of IVIM contamination
FIGURE S5 Examples of predictions of intrinsic cell 
diffusivity D0 and cell size L on the validation set. (A–C) 
Scatter plots showing prediction of average intrinsic cell 
diffusivity D0. (D–F) Scatter plots showing prediction of 
average cell size D0. Left: Signal cumulants (D,K) at fixed 
diffusion time colored by underlying ground truth D0 and 
L. Middle: Signal cumulants (D,K) at fixed diffusion time 
colored by predictions of D0 and L as obtained with the 
PolyMap approach, which relies on using smooth functions 
D0 (D,K) and L (D,K)from polynomial interpolation. 
Right: Signal cumulants (D,K) at fixed diffusion time 
colored by predictions of D0 and L as obtained with the 
SigFit approach, which relies on the estimation of D0 and 
L via routine nonlinear least-squares fitting on the MRI 
signal. The figure refers to the case when the minimum/
maximum protocol b-values are equal to b= 100/1000 s/
mm2 and the diffusion gradient duration/separation is δ 
= 20 ms/Δ = 25 ms for SNR = 20 and in the presence of 
IVIM contamination
FIGURE S6 SigFit prediction errors for D0 and L scattered 
against ground-truth values of D0 and L for different 
diffusion gradient timings at a fixed maximum b-value of 
2000 s/mm2 and SNR = 20. From left to right: Different 
gradient timings (δ/Δ = 20/25 ms in [A] and [F]; δ/Δ = 
40/50 ms in [B] and [G]; δ/Δ = 20/50 ms in [C] and [H]; 
δ/Δ = 10/50 ms in [D] and [I]; and δ/Δ = 20/75 ms in [E] 
and [J]). Plots on top (A–E) refer to D0; plots on the bottom 
(F–J) refer to L. For each fixed value of D0 (on top, or L on 
the bottom), median errors with interquartile ranges for 
varying L (on top, or varying D0 on the bottom) are also 
reported
FIGURE S7 PolyMap and SigFit prediction errors for 
D0 and L scattered against ground-truth values of D0 
and L, for different diffusion gradient timings at a fixed 
maximum b-value of 2000 s/mm2 and SNR →∞ (no 
noise injected to the data). Top (A-J, rows one and two): 
PolyMap results (estimation from cumulants (D,K) via 
smooth polynomial functions), with D0 errors on row one 
and L errors on row two. Bottom (K-T, rows three and 
four): SigFit results (direct fitting on the MRI signal), with 
D0 errors on row three and L errors on row four. From left 
to right: Different gradient timings (δ/Δ = 20/25 ms in [A] 
and [F]; δ/Δ = 40/50 ms in [B] and [G]; δ/Δ = 20/50 ms 
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in [C] and [H]; δ/Δ = 10/50 ms in [D] and [I]; and δ/Δ = 
20/75 ms in [E] and [J]). In rows one and three, median 
errors with interquartile ranges for varying L and fixed D0 
are reported. In rows two and four, median errors with 
interquartile ranges for varying D0 and fixed L are reported
FIGURE S8 PolyMap and SigFit prediction errors for D0 
and L scattered against ground-truth values of D0 and L for 
different diffusion gradient timings at a fixed maximum b-
value of 2000 s/mm2 and SNR = 20. Top (A-J, rows one and 
two): PolyMap results (estimation from cumulants (D,K) 
via smooth polynomial functions), with D0 errors on row 
one and L errors on row two. Bottom (K-T, rows three and 
four): SigFit results (direct fitting on the MRI signal), with 
D0 errors on row three and L errors on row four. From left 
to right: Different gradient timings (δ/Δ = 20/25 ms in [A] 
and [F]; δ/Δ = 40/50 ms in [B] and [G]; δ/Δ = 20/50 ms 
in [C] and [H]; δ/Δ = 10/50 ms in [D] and [I]; and δ/Δ = 
20/75 ms in [E] and [J]). In rows one and three, median 
errors with interquartile ranges for varying L and fixed D0 
are reported. In rows two and four, median errors with 
interquartile ranges for varying D0 and fixed L are reported
FIGURE S9 Examples of DW images obtained ex vivo on 
the two fixed mouse livers. (A) Images from the wild-type 
(WT) liver, alongside image predictions based on fitted 
model parameters for PolyMap and SigFit. (B) Similar 
information as in (A) but for the patient-derived xenograft 
(PDX) liver. (C,D) Examples of MRI measurements (i.e., 
logarithm of measured signals) from one representative 
voxel alongside PolyMap and SigFit fittings for the WT (C, 
left) and PDX (D, right) livers
FIGURE S10 SigFit cell size map L in the two fixed liver 
samples scanned at 9.4 T: WT (top) and PDX (bottom). 
From left to right: Full SigFit estimation (cell size L and 
cell diffusivity D0 are estimated jointly at fixed diffusion 
time); L estimation when D0 is fixed and not estimated 
(values used for D0: 0.5, 0.75, 1.0, 1.25, 1.25, and 1.5 μm2/
ms, as shown from left to right). Median values of L across 
the entire samples are reported for each specimen and 
SigFit configuration
FIGURE S11 Image patches illustrating the different 
microstructural environments observed in the two fixed 
mouse livers studied in this paper. Top: Patches from 
the WT liver, showing healthy hepatocytes surrounded 
by stellate cells and sinusoidal capillaries. Bottom: 
Patches from the PDX liver. On visual inspection, 
hepatocytes in the PDX appear to contain less fat than 
in the WT. Moreover, the PDX liver is characterized by a 
nonspecific, lymphoma-like process, in which cells that 
are much smaller than hepatocytes invade vascular and 
extravascular spaces
FIGURE S12 Investigation on the impact of the 
number of gradient directions used to compute 
directionally averaged signals. The figure shows results 
obtained for fitting performed on seven nonzero 

b-values in the range 
[
100 s

mm2 ; 2000
s

mm2

]
; δ = 20 

ms, Δ = 75 ms; intrinsic cell diffusivity and cell size 
(
D0, L

)
∈

[
2.20

μm2

ms
; 2.40

μm2

ms

]
× [11�m; 17�m]; {3, 9, 

21, 30, 61} isotropically distributed gradient directions 
for each nonzero b-value; no IVIM contamination. (A) 
Directionally averaged DW signals obtained at SNR →∞

for {3, 9, 21, 30, 61} gradient directions. (B,D) Distribution 
of apparent diffusion coefficient D and apparent 
kurtosis coefficient K calculated by fitting Equation 3 to 
directionally averaged signals over 1000 random noise 
instantiations with 20 ≤ SNR ≤ 100, for {3, 9, 21, 30, 61} 
gradient directions per b-value. C,E, Distribution of 
diffusion tensor mean diffusivity MD and kurtosis tensor 
mean kurtosis MK calculated by fitting a full diffusion 
kurtosis tensor representation to all measurements over 
1000 random noise instantiations with 20 ≤ SNR ≤ 100, 
for {3, 9, 21, 30, 61} gradient directions per b-value. For 
full kurtosis tensor fitting we used the freely available 
DiPy package (https://dipy.org/docum​entat​ion/1.4.1./
examp​les_built/​recon​st_dki/#examp​le-recon​st-dki). 
Gradient directions were generated according to Cauryer 
et al (Magn Res Med. 2013; doi: 10.1002/mrm.24736; free 
download from http://www.emman​uelca​ruyer.com/q-
space​-sampl​ing.php)
FIGURE S13 Investigation on the impact of the number 
of b-values used for apparent diffusion coefficient D 
and apparent kurtosis coefficient K computation from 
Equation 3. The figure shows results obtained for {19, 
10, 7, 4, 3} nonzero b-values and δ = 20 ms, Δ = 75 ms; 
maximum b-values of 1000 s/mm2 and 2000 s/mm2; 
(
D0, L

)
∈

[
2.20

μm2

ms
; 2.40

μm2

ms

]
× [11�m; 17�m]; no 

IVIM contamination. (A,C) Distribution of ADC D over 
1000 random noise instantiations with 20 ≤SNR ≤ 100, {19, 
10, 7, 4, 3} nonzero b-values, maximum b-value of 1000 s/
mm2 (A), and 2000 s/mm2 (C). Each plot also indicates 
the value of D obtained with 19 nonzero b-values and SNR 
→∞ for reference. (B,D) Distribution of apparent kurtosis 
coefficient K over 1000 random noise instantiations with 
20 ≤ SNR ≤100, {19, 10, 7, 4, 3} nonzero b-values, maximum 
b-value of 1000 s/mm2 (B), and 2000 s/mm2 (D). Each plot 
also indicates the value of K obtained with 19 nonzero b-
values and SNR →∞ for reference
TABLE S1 Median and interquartile range (within 
brackets) of histology-derived cell-size index Lhisto and 
MRI metrics from the PolyMap and SigFit estimation 
procedures investigated in this work (average cell size L 
and average intracellular diffusivity D0)
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