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INTRODUCTION 
 

Imagine there are four people in a classroom, with 
three people at the front of the room and the other 
person sitting at the back. A person arrives and 
she randomly chooses one of the four people 
already in the room. If she chooses a person at the 
front of the room, then she will sit at the front. If 
she chooses a person from the back of the room, 
then she will sit at the back. After one minute 
another person arrives and he randomly chooses 
one of the five people already in the room. Again, 
he will sit at the front of the room if the randomly 
chosen person is from the front, and otherwise, he 
will sit at the back. As more people come, this 

 
process repeats. That means people arrive; one 
person at a time. Each new person sits at the front, 
or at the back, depending on whether the new 
person selects someone from the front or the back 
of the room. 

 
This describes a random process of people 
entering the room, and there are many questions 
we could ask about the process. We will direct our 
attention to the following type of question: When 
the room has N people, what is the probability 
that there are a persons at the front and b persons 
at the back? 

 
 

 

* Corresponding Author hbali@depaul.edu 
Research Completed in Autumn 2021 

ABSTRACT Initially, an urn contains 3 blue balls and 1 red ball. A ball is randomly chosen from the 
urn. The ball is returned to the urn, together with one additional ball of the same type (red or blue). 
When the urn has twenty balls in it, what is the probability that exactly ten balls are blue? This is a 
model for a random process. This urn model has been extended in various ways and we consider some 
of these generalizations. Urn models can be formulated as random walks in the quarter plane. Our 
findings indicate that for a specific type of random walk, we can calculate the generating function 
explicitly. Instead of using Markov chains, our approach is to use analytical techniques from differential 
equations. 
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We can formulate this problem in terms of an urn 
that contains red and blue balls. People at the 
front and the back of the room correspond to the 
blue and red balls, respectively. This example, 
when formulated as an urn process, is known as 
the Polya urn model. 

 
An urn process is a model for a random process 
in computer science. It can be a model for random 
allocation for two types of tasks. The balls in the 
urn represent two types of tasks waiting to be 
processed, and each new task that arrives belongs 
to one of the two types, according to the random 
allocation scheme. 

 
In the generalized Polya urn model, the urn 
initially contains a0 blue balls and b0 red balls. 
Balls are drawn at random in succession. If a blue 
ball is drawn, then we return it to the urn, together 
with a blue and b red balls. If a red ball is drawn, 
then we put it back to the urn, together with c blue 
and d red balls. 

 
Below we describe several variations on the urn 
model, which we will return to throughout the 
paper. For each case, we can formulate the 
following problem: When there are N balls in the 
urn, what is the probability that there are a red 
balls and b blue balls? 

 
Example 1  
 
(Polya Urn Model) Initially, an urn contains 3 
blue balls and 1 red ball. A ball is randomly drawn 
from the urn. The ball is returned to the urn, 
together with one additional ball of the same 
color. In this example, (illustrated in Figure 1), 
the probability is 3/4 that a blue ball is drawn. The 
Polya urn model is a particular case of the 
generalized Polya urn model, with parameters a = 
1, b = 0, c = 0, and d = 1. 

 

 
 
 
Figure 1. The urn initially has 3 blue balls and 1 
red ball. A ball is randomly chosen. If it is blue, 
we return it with an extra blue ball to the urn. If it 
is red, we return it with an extra red ball. 

 
Example 2  
 
(Two-chamber Urn Model) Initially, an urn 
contains 4 blue balls and 4 red balls. A ball is 
randomly drawn from the urn. If a blue ball is 
drawn, then we throw it away and replace it by a 
red ball in the urn. Otherwise, if a red ball is 
drawn, we discard it and replace it by a blue ball 
in the urn. Initially, the urn has 8 balls. Each time 
after a ball is drawn and being replaced, there are 
still 8 balls in total. This is also known as the 
Erhenfest model. 
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Figure 2. The urn initially has 4 blue balls and 4 
red balls. A ball is randomly chosen. If it is blue, 
we replace it with a red ball. If it is red, we replace 
it with a blue ball. 

 
The balls represent molecules in a room. Each 
time, a molecule is chosen at random from either 
the left or right chamber and being moved to the 
other chamber. The molecules can be regarded as 
the two types of balls, with blue balls in the left 
chamber and red balls in the right chamber. 

 
We recognize this is a particular case of the 
generalized Polya model, with parameters 
a = −1, b = 1, c = 1, and d = −1. 

 
Example 3  
 
(The coupon-collector’s urn) An urn contains 4 
blue balls and 2 red balls. If a blue ball is drawn, 
then it is taken out, and a red ball is placed back 
into the urn. If a red ball is drawn, then it is placed 
back into the urn. In this example, (illustrated in 
Figure 3), the probability is 4/6 that a blue ball is 
drawn. After we have made N draws, find the 
probability that all the balls are red. 

 
This is a particular case of the generalized Polya 
urn model, with parameters a = −1, b = 1, c = 0, 
and d = 0. 

 
 
 
Figure 3. The urn initially has 4 blue balls and 2 
red balls. A ball is randomly chosen. If it is blue, 
we replace it with a red ball. If it is red, we return 
it to the urn. 

 
This is the Woodbury random allocation model 
analyzed in [4]. This can be a model for contagion 
(the spread of bacteria) in a population. The two 
types of balls represent people in a population: 
some are healthy, and some are infected. Each 
time, if a heathy person is in contact with 
someone infected, the healthy person becomes 
infected. If an infected person is in contact with 
someone infected, there is no change in the 
population because the person is already infected. 

 
Main Contribution  
 
The main contribution of this work is to provide 
an explicit formula for the generating function for 
a specific type of model. The generating function 
encodes all the information needed to compute 
the probabilities for specific number of blue balls 
in the urn. 

 
In the paper by Flajolet, Dumas, and Puyhaubert 
[1], they provide a unifying framework to analyze 
a large class of urn models. In section 1 of their 
paper, they develop a general theory by using 
analytical techniques of differential equations. In 
section 2 of their paper, they apply the theory to 
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seven examples of urn models. Each example is 
a particular instance of the generalized Polya urn 
model. 

 

We will focus on three of these urn models: the 
Polya urn model, Two-chamber Urn Model, and 
the coupon collector’s urn. They are illustrated by 
Example 1, 2, and 3, respectively. 

 
In the next section, we describe the connection 
between urn processes and random walks in the 
quarter plane. Then in section 3 and 4, we will 
summarize the key insight from the theory 
developed in the paper by Flajolet et al. Section 5 
illustrates how the theory applies to three urn 
models. In section 6, we provide our analysis on 
a new example, with details in the Appendix. 

 
Random Walks 

The probability process associated with an urn 
model is called an urn process. There is a 
connection between an urn process and a random 
walk in the quarter plane. Suppose there are x 
blue balls and y red balls in the urn. Consider the 
Two-chamber Urn Model, which is Example 2 
from the Introduction. If a blue ball is drawn and 
replaced with a red ball, there are now x − 1 blue 
balls and y + 1 red balls. If instead, a red ball is 
drawn and replaced with a blue ball, then there is 
x+1 blue balls and y − 1 red balls. We imagine a 
person is walking in the XY-Plane. The location 
of the person is specified by the coordinates (x, 
y). This corresponds to how many blue balls and 
red balls are in the urn. Suppose the current 
location of the person is at (x, y). The next 
location is at (x − 1, y + 1), with probability 𝑥𝑥   , 

𝑥𝑥+𝑦𝑦 

given time n. We will first define what a 
generating function is, in the context of urn 
models. Then we summarize the key insight in the 
first section of the paper by Flajolet et al. 

 
The initial configuration (a0, b0) indicates the urn 
begins with a0 blue and b0 red balls. A history of 
length n specifies the evolution of an urn from 
time 0 to time n. As an illustration, consider the 
Two-Chamber Urn Model (Example 2 from the 
Introduction). Suppose a0 = 1, b0 = 1. This means 
at time n = 0, there is one blue and one red ball. 

 
Using x for blue and y for red, we can write down 
one history from time 0 to 4. 

 
x y → y y → x y → x x  → x y 

 
To indicate which ball is drawn, we underline it. 
The length of a history is the number of arrows 
that it comprises, so that a history of length n 
indicates one possible evolution of an urn from 
time 0 to time n. 

 
Let Gn (a0, b0) be the set of histories of length n 
when the urn has initial configuration (a0, b0). Let 
Gn (a, b; a0, b0) be the subset of those histories 
which, at time n, correspond to an urn with a red 
balls and b red balls. To continue our illustration 
with the Two Chamber Urn Model, we can list the 
set of all histories from n = 0 to 2. There are 4 
possible histories of length 2: 

 
x y → y y → x y 
x y → y y → x y 
x y → x x → x y 
x y → x x → x y 

or is at (x + 1, y − 1), with probability 𝑦𝑦 
𝑥𝑥+𝑦𝑦 

.  
  

There are 8 possible histories of length 3 because 
from xy at time 2, we can either pick blue ball (x) 

Since the number of blue and red balls in an urn 
are never negative numbers, it means the x and y 
coordinates are never negative. The person never 
walks below the horizontal axis or to the left side 
of the vertical axis, i.e., the person is restricted to 
walk in the quarter plane. 

 
Generating Function 

 
The generating function is a mathematical tool 
that determines the composition of the urn at any 

or red ball (y), and there are 4 possible histories 
leading to xy at time 2. We see that there are 2𝑛𝑛 
possible histories from time 0 to n. 

 
Given a set, we can ask: how many elements are 
there in the set? Gn (a0, b0) is a set, where each 
element of the set is one history of length n. The 
number of elements in Gn (a0, b0) is denoted by Hn 

(a0, b0). Since Gn (a, b; a0, b0) is also a set, we can 
ask: how many elements are in this set?
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Let Hn (a, b; a0, b0) be the number of elements in 
Gn (a, b; a0, b0). 

 
We define the generating functions (GFs) for an 
urn model by 

H (z|a0, b0) = ∑ 𝐻𝐻𝑛𝑛𝑛𝑛 (𝑎𝑎0, b0) 
𝑧𝑧𝑛𝑛

𝑛𝑛!
 

and 

H (𝑥𝑥, y, z|a0, b0)  

= ∑ ∑ ∑ 𝐻𝐻𝑛𝑛𝑏𝑏𝑎𝑎  (𝑎𝑎, 𝑏𝑏;  𝑎𝑎𝑛𝑛 0, b0) 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏  𝑧𝑧𝑛𝑛

𝑛𝑛!
. 

 

We use Greek letters for the parameters to 
emphasize the condition of equation (2), i.e., 
 
there is a crucial condition imposed on the 
generalized Polya urn model; the urn must be 
balanced. The condition implies that at any given 
time, the total number of balls in the urn must 
equal  a0 + b0 + nσ.    
 
Proposition. Let An and Bn be the number of blue 
balls and red balls, respectively, of a balanced urn 
process at time n. Then, we have 

 
P (An = a, Bn = b) = [𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧𝑛𝑛] H (𝑥𝑥,y,z)

[𝑧𝑧𝑛𝑛] H (1,1,z)
  (3) 

 
∎ 

 
   

The trivariate GF is also called the complete 
generating function of urn histories. When there is 
no ambiguity, we will write H(z) for H (z |a0, b0) and 
H (x, y, z) for H (x, y, z |a0, b0). In the next section, 
we will see the significance of GFs. If we treat the 
function H (x, y, z) as a power series, then the 
coefficient of the term 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧𝑛𝑛 is denoted by 
[𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧𝑛𝑛] H (x, y, z). 
 

General Theory for Urn Model 
 
 
An urn model is specified by a matrix with the 
integer entries, 

M = �𝛼𝛼 𝛽𝛽
𝛾𝛾 𝛿𝛿� .                          (1) 

 
At time 0, the urn contains a0 blue balls and b0 red 
balls. The urn evolves according to the following 
rule: A ball is chosen from the urn, where each 
ball is equally likely to be chosen. If a blue ball is 
chosen, then α new blue balls and β new red balls 
are placed into the urn; if a red ball is chosen, then 
α new blue balls and β new red balls are placed 
into the urn. We allow negative entries. In 
particular, if α = −1, that means a blue ball is 
removed from the urn. We consider only those 

This proposition shows that the GF’s encode all the 
information that is needed to compute the 
probabilities for an urn process. If the urn is not 
balanced, the conclusion of the proposition can fail 
to hold, because not all paths are equally likely for 
an unbalanced urn. We provide a concrete 
illustration with an example in Appendix C. 
 
Every urn process is associated with a random 
walk in the quarter plane, as we explain in Section 
2 of this article. We can state the proposition in 
terms of GF’s of a random walk. It is a matter of 
personal preference whether to use the language 
of an urn process or a random walk. We explain 
everything in terms of blue and red balls because 
of the colorful language. Finding an explicit 
formula for the generating function of a random 
walk in the quarter plane, in general, is a 
notoriously difficult problem (see, e.g. [2], [3]). 

 
For a balanced urn model with matrix M, we 
associate the system of ordinary differential 
equations (ODEs), 

urns that are balanced, in the sense that the sum 
of entries in both rows of M are equal and we let 
σ be this sum, 

 
σ = α + β = γ + δ. (2) 

 
and 

𝑑𝑑𝑥𝑥 
 

 

𝑑𝑑𝑑𝑑 
 

𝑑𝑑𝑦𝑦 
 

 

𝑑𝑑𝑑𝑑 

= 𝑥𝑥𝛼𝛼 + 1𝑦𝑦𝛽𝛽 (4) 
 
= 𝑥𝑥𝛾𝛾 𝑦𝑦𝛿𝛿+1 (5) 
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0 

 
The insight from [1] is that the solution to the 
system of ODEs is equivalent to the complete 

The associated system of ODE is given by, 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

 =  𝑥𝑥2, 𝑥𝑥(0) = 𝑥𝑥0                                 (7) 
and  

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

 =  𝑦𝑦2, 𝑦𝑦(0) = 𝑦𝑦0.                                (8) 
generating function H (x, y, z) of the urn process, 
in the following sense.  
The following theorem is taken from [1]. 

 
 
 
 

 
 
 
 

 

 
Theorem. (Isomorphism between Systems of
ODEs and Balanced Urns) 

 
Consider a balanced urn with the Matrix M, 
specified by equations (1) and (2), with the initial 
configuration (a0, b0). Let X (t) and Y (t) be the 
solution of the pair of differential equations (4) 
and (5), with the initial conditions X (0) = x0 and 
Y (0) = y0. Then the complete generating function 
of urn histories satisfies the relation, 

 
H (𝑥𝑥, y, z) = 𝑋𝑋(𝑧𝑧)𝑎𝑎0 𝑌𝑌(𝑧𝑧)𝑏𝑏0 , (6) 

 
where the symbols x, y on the left side has the 
association: x = X(t) and y = Y (t). 

∎ 

This pair of differential equations can be solved by 
solving each one individually, using separation of 
variables. By applying equation (6) from the 
theorem, we obtain the complete generating 
function, 

H (𝑥𝑥, y, z) = 𝑥𝑥𝑎𝑎0  𝑦𝑦𝑏𝑏0

(1−𝑧𝑧𝑥𝑥)𝑎𝑎0  (1−𝑧𝑧𝑦𝑦)𝑏𝑏0
 . 

 
 
Model 2. (Two-chamber Urn Model) The model is 
specified by the matrix 
 

M = �−1 1
1 −1� . 

 
We have the associated system of ODE,

 
We stated the theorem slightly differently for the 
clarity. We refer the interested reader to [1] for a 

 
 

and 

 
𝑑𝑑𝑥𝑥 

 
 

𝑑𝑑𝑑𝑑 
= 𝑦𝑦, 𝑥𝑥 (0) = 𝑥𝑥0 

 
(9) 

precise statement of the Theorem and its Proof. 
 
The theorem tells us that the problem of 

𝑑𝑑𝑦𝑦 
 

 

𝑑𝑑𝑑𝑑 
= 𝑥𝑥, 𝑦𝑦 (0) = 𝑦𝑦0 (10) 

calculating the function H (𝑥𝑥, y, z) for a balanced 
urn process becomes the problem of solving a 
system of ODE. If we can solve the pair of 
differential equations (4) and (5), then we can use 
equation (6) to obtain the complete GF for the urn 
model. Then, based on equation (3), to find the 
probability the urn has a blue ball, we compute 
the coefficient of 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧𝑛𝑛 in the series expansion 
of H (𝑥𝑥, y, z) and the coefficient of 𝑧𝑧𝑛𝑛 in the series 
expansion of H (1, 1, z). 

 
Applications to Three Models 

To solve this system of ODE, we first solve for 
y(t) by observing that 
 

𝑑𝑑2𝑦𝑦 = 𝑦𝑦, 𝑦𝑦 (0) = 𝑦𝑦 . 
𝑑𝑑𝑑𝑑 

Once we obtain y(t), we use equation (9) to solve 
for x(t). In the standard interpretation of the model, 
all the balls (molecules) are initially in the left 
chamber, which means a0 = N and b0 = 0. We apply 
equation (6) from the theorem to obtain 

H(x, y, z) = ��𝑥𝑥+𝑦𝑦
2

� 𝑒𝑒𝑧𝑧  + �𝑥𝑥−𝑦𝑦
2

� 𝑒𝑒−𝑧𝑧 �
𝑁𝑁

. 
 
 

 We now illustrate how to apply the theory 
 developed in Section 4 to three balanced urn    
 models described in the introduction. 
 Model 1. The Polya urn model is specified by the   
 matrix M = �1 0

0 1� . 
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Model 3. (The coupon-collector’s urn) The model 
is specified by 
 

M = �−1 1
0 0� . 

 
We have the associated system of ODE, 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

 =  𝑦𝑦, 𝑥𝑥(0) = 𝑥𝑥0 
and  

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

 =  𝑦𝑦, 𝑦𝑦(0) = 𝑦𝑦0. 
 
The solution of this system is 
 

X(t) = 𝑥𝑥0 −  𝑦𝑦0 +  𝑦𝑦0𝑒𝑒𝑑𝑑 , 𝑌𝑌(𝑑𝑑) =  𝑦𝑦0𝑒𝑒𝑑𝑑 
 

and the complete generating function is 
 
H (𝑥𝑥, y, z) = (𝑥𝑥0 −  𝑦𝑦0 +  𝑦𝑦0𝑒𝑒𝑧𝑧)𝑎𝑎0𝑦𝑦𝑏𝑏0𝑒𝑒𝑏𝑏0𝑧𝑧 
 

New Results 
 

In each of the three models presented in the last 
section, we can solve the system of ODE explicitly 
because it is a linear system. In general, we have a 
pair of nonlinear differential equations in (4) and 
(5). Suppose the urn model is specified by the 
matrix 

M = �−1 4
2 1� . 
 

The associated system of ODE is given by 
 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

 =   𝑦𝑦4                               (11) 
and 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

 =   𝑥𝑥2𝑦𝑦2.                          (12) 
 
To deal with those urn models, in which we cannot 
explicitly find the solution of the resulting pair of 
nonlinear DE, we need a new tool. We first 
summarize this tool in the next proposition. Then, 
we apply this technique to two examples. The first 
example is to illustrate the technique with the Two-
chamber Urn Model and confirm that the result 
agrees with the one before. The second example is 
to apply this technique to an urn model, which is 
associated with the system of ODE given by (11) 
and (12). Note that this means the technique allows 
us to obtain the generating function of the urn 
process, without solving explicitly for x(t) and y(t). 
 
 

Proposition. Consider a balanced urn with matrix 
M, with α = −1, δ = 1 or −1, and with initial 
configuration (a0, b0). Define the parameters 

 
𝑝𝑝 = β – δ, λ = 𝛽𝛽

𝑝𝑝
 

and 
σ = α + β, s0 = a0 + b0 

 
Define the integral, 
 
J(u) = ∫ 𝑑𝑑𝑑𝑑

(1+𝑑𝑑𝑝𝑝)𝜆𝜆
𝑢𝑢

0  
 
Let ∆  = (1 − 𝑥𝑥𝑝𝑝)1 𝑝𝑝� . Then, we have 
                               
 H (𝑥𝑥, 1, z) 

= ∆𝑠𝑠0 �𝑆𝑆 �𝑧𝑧∆𝜎𝜎 + 𝐽𝐽 �𝑥𝑥
∆

���
𝑎𝑎0

 

             . �𝐶𝐶 �𝑧𝑧∆𝜎𝜎 + 𝐽𝐽 �𝑥𝑥
∆

���
−𝑏𝑏0

. 
 

The function S and C are defined to satisfy 
 
S (J(u)) = u,  
J (S(u)) = u, 
C (z)−𝑝𝑝  = 1 + S (z)𝑟𝑟 , when δ = 1. 
 
Remark.  When a0 = N and b0 = 0, 

H (𝑥𝑥, 1, z) = ∆𝑠𝑠0 �𝑆𝑆 �𝑧𝑧∆𝜎𝜎 + 𝐽𝐽 �𝑥𝑥
∆

���
𝑁𝑁

  
 
and the function C does not matter. 
 
We include a heuristic for this proportion in 
Appendix B. It provides a motivation of why the 
function J(u) appears. Next, we highlight three 
applications with two examples. We provide full 
detail of all calculations for these two examples in 
the Appendix A. 
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First Example  
H (𝑥𝑥, 1, z) = (1 − 𝑥𝑥 

𝑁𝑁 
3)3 . 

 
1 

𝑁𝑁 . 

Consider the Two-chamber Urn Model. 

 
  Let M = �−1 1

1 −1� with a0 = N, b0 = 0. 

The generating function is, 

[1 – (z (1−𝑥𝑥3) + 𝑥𝑥)3] 3 
 
Remark. For both examples above, we compute 
the bivariate generating function H (𝑥𝑥, 1, z). The 
urn is balanced, so the total number of balls at 
time n is 𝑠𝑠0 + nσ, where 𝑠𝑠0 = a0 + b0. All terms 
that appear in H (𝑥𝑥, 1, z) are of the form 

 
H (𝑥𝑥, 1, z) = (( 

 
𝑥𝑥+1) 𝑒𝑒 𝑧𝑧 

2 
− ( 𝑥𝑥−1) 𝑒𝑒 

2 

𝑁𝑁 
−𝑧𝑧) . 

 
𝑥𝑥a𝑦𝑦 

 
b𝑧𝑧𝑛𝑛 

 
= 𝑥𝑥 

 
a𝑦𝑦𝑠𝑠0 

 
+ nσ−a𝑧𝑧𝑛𝑛 . 

 

        Second Example This implies we have the relation, 
 

If a blue ball is drawn, then it is removed from the 
urn and 4 red balls are placed into the urn. If a red 
ball is drawn, then it is returned to the urn, 
together with 2 blue balls and 1 new red ball. The 
urn initially has N red balls. The model is 
specified by the matrix 

M = �−1 4
2 1� . 

In the terminology of a random walk in the 
quarter plane, when the current location is at (𝑥𝑥, 
y), the next location is either at (𝑥𝑥 − 1, y + 4) or 
at (𝑥𝑥 + 2, y + 1). The former occurs with 

H (𝑥𝑥, 1, z) =𝑦𝑦𝑠𝑠0 H (𝑥𝑥 ,1, 𝑧𝑧𝑦𝑦σ). 
𝑦𝑦 

 
Therefore, the variable y is redundant, from a 
strictly logical viewpoint, and we may freely set 
y = 1, without loss of generality. For this reason, 
it is sufficient to compute H (𝑥𝑥, 1, z). 

 
 
 

 
 

probability 𝑥𝑥 
𝑥𝑥+𝑦𝑦 

(0, N). 
. The walk begins at the location  

The generating function is 
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APPENDIX 
 
In this appendix, in the first part, we detail the calculations for the two examples in Section 6. In the second 
part, we provide a heuristic for the proposition in Section 6. Then, in the third part, we show an example of 
an unbalanced urn to show that the conclusion of the Proposition in Section 4 can fail to hold if the condition 
of an unbalanced urn is not satisfied. 
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∫ 

APPENDIX A 
Solutions for Two Examples  
 

 First Example  
  

Let M = �−1 1
1 −1� which is a model with σ = 0. 

For this model, the parameters are σ = 0, α = -1, β = 1, p = β - δ = 2. 
 

The integral J(u) is given by  
J(u) = ∫𝑢𝑢

 

 
 
 

𝑑𝑑𝑑𝑑 . 

0 √1+ 𝑑𝑑2 
 

This integral can be evaluated in closed form. Let 𝑑𝑑 = tan 𝜃𝜃, d𝑑𝑑 = 𝑠𝑠𝑒𝑒𝑠𝑠2 𝜃𝜃𝑑𝑑𝜃𝜃, 𝑠𝑠𝑠𝑠 𝑑𝑑ℎ𝑎𝑎𝑑𝑑, 
 

𝑑𝑑𝑑𝑑 
∫ 

√1+ 𝑑𝑑2 
= 𝑠𝑠𝑒𝑒𝑠𝑠2 𝜃𝜃𝑑𝑑𝜃𝜃 = 

𝑠𝑠𝑒𝑒𝑠𝑠𝜃𝜃 ∫ 𝑠𝑠𝑒𝑒𝑠𝑠𝜃𝜃𝑑𝑑𝜃𝜃 = 𝑙𝑙𝑛𝑛(𝑠𝑠𝑒𝑒𝑠𝑠𝜃𝜃 + 𝑑𝑑𝑎𝑎𝑛𝑛𝜃𝜃) 

 

This implies J(u) has the closed-form expression, 
 

J(u) = 𝑙𝑙𝑛𝑛 (√1 + 𝑢𝑢2 + 𝑢𝑢). 
 
Let a0= N and b0 = 0. That means initially all the balls are blue. By definition, we have S(J(z)) = z. 

Let 𝑥𝑥 = ln√1 + 𝑦𝑦2 + 𝑦𝑦 
 

⇒ 𝑒𝑒𝑥𝑥 = √1 + 𝑦𝑦2 + 𝑦𝑦 ⇒  (𝑒𝑒𝑥𝑥 – y)2 = 1 + 𝑦𝑦2 
 

⇒ 𝑒𝑒2𝑥𝑥 + 𝑦𝑦2 − 2𝑦𝑦𝑒𝑒𝑥𝑥  = 1 + 𝑦𝑦2 
 

⇒ 𝑒𝑒2𝑥𝑥 − 2𝑦𝑦𝑒𝑒𝑥𝑥  = 1 

⇒ 𝑒𝑒𝑥𝑥  − 𝑒𝑒−𝑥𝑥  = 2y ⇒ 𝑦𝑦 = 𝑒𝑒
𝑥𝑥 − 𝑒𝑒−𝑥𝑥

 
2 

 

The above calculation shows that, 
 
 
 
We want to calculate 
 
H (𝑥𝑥, 1, z) 

 = ∆𝑠𝑠0 �𝑆𝑆 �𝑧𝑧 +  𝐽𝐽 �𝑋𝑋
∆

���
𝑎𝑎0

   (13) 

 
 

S(z) 

 
= 1 (𝑒𝑒 

2 

 
 
𝑧𝑧− 𝑒𝑒−𝑧𝑧 ). 
 
 
  

 
 

 
 

Now, to determine the function H (𝑥𝑥, 1, z), we need to expand the expression 
𝑥𝑥 

S (𝑧𝑧 + 𝐽𝐽 ( 
∆ 
)). 
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From the formulas for J(u) and S(z), we now expand, 
1
2
 exp �𝑧𝑧 + 𝐽𝐽 �𝑥𝑥

∆
�� 

 
 
 

= 1
2

�𝑒𝑒𝑥𝑥𝑝𝑝(𝑧𝑧) 𝑒𝑒𝑥𝑥𝑝𝑝 �𝑙𝑙𝑛𝑛 ��1 + �𝑥𝑥
∆

�
2

  +  𝑥𝑥
∆

��� 

= 1
2

�𝑒𝑒𝑧𝑧 ��1 +  �𝑥𝑥
∆

�
2

  +  𝑥𝑥
∆

��. 

 
The expression in the square bracket can be simplified. 
 

�1 +  �𝑥𝑥
∆

�
2

 +  𝑥𝑥 
∆

 = �1+𝑥𝑥
1−𝑥𝑥

 . 
 

We provide the detail for the calculation of the function H (x, 1, z). From (∗), we have 
 

H (𝑥𝑥, 1, z) = (1 −  𝑥𝑥2 )𝑁𝑁
2�  ∙ 1

2
� � 1+𝑥𝑥

1−𝑥𝑥
�

1
2�

𝑒𝑒𝑧𝑧  −  � 1−𝑥𝑥
1+𝑥𝑥

�
1

2�
𝑒𝑒−𝑧𝑧�

𝑁𝑁

 

 
This implies that, 
  
H (𝑥𝑥, 1, z) 

= 1
2

� (1 −  𝑥𝑥2 )1
2�  ∙  � 1+𝑥𝑥

1−𝑥𝑥
�

1
2�

 𝑒𝑒𝑧𝑧 −  (1 −  𝑥𝑥2 )1
2�  ∙  � 1−𝑥𝑥

1+𝑥𝑥
�

1
2�

 𝑒𝑒−𝑧𝑧�
𝑁𝑁

 

= 1
2

� (1 +  𝑥𝑥  )1
2�  (1 −  𝑥𝑥  )1

2� ∙ � 1+𝑥𝑥
1−𝑥𝑥

�
1

2�
𝑒𝑒𝑧𝑧  −  (1 + 𝑥𝑥  )1

2�  (1 −  𝑥𝑥  )1
2� ∙ � 1−𝑥𝑥

1+𝑥𝑥
�

1
2�

 𝑒𝑒−𝑧𝑧�
𝑁𝑁

 

= � � 1+𝑥𝑥
2

�  𝑒𝑒𝑧𝑧  −  � 1−𝑥𝑥
2

� 𝑒𝑒−𝑧𝑧�
𝑁𝑁

 

= � � 𝑥𝑥+1
2

�  𝑒𝑒𝑧𝑧  −  � 𝑥𝑥−1
2

� 𝑒𝑒−𝑧𝑧�
𝑁𝑁

 
 
Compare this to the model when, 
 

M = �−1 1
1 −1� we have σ = 0, α = -1, β = 1, p = 2 and s0 = N. 

 
The previous calculation from Section 5 gives the complete generating function, 
 

H (𝑥𝑥, 1, z) = � � 𝑥𝑥+𝑦𝑦
2

�  𝑒𝑒𝑧𝑧 + � 𝑥𝑥−𝑦𝑦
2

�  𝑒𝑒−𝑧𝑧�
𝑁𝑁

; 
 

when a0 = N, b0 = 0. Note that this agrees with our above calculation for H (𝑥𝑥, 1, z). This 

completes the example. 
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Second Example 
 
 

 
Let M = �−1 4

2 1� which is a model with σ = 3. 

 

For this model, the parameters are σ = 3, β = 4, p = β - δ = 3, λ = 𝛽𝛽 
𝑝𝑝 

= 4. 
3 

 

The integral J(u) is given by  
J(u) = ∫𝑢𝑢

 

 
 
 

𝑑𝑑𝑑𝑑 

0 (1+𝑑𝑑3)
4⁄3 

 

and the function S(z)) is defined by J(S(z)) = z, i.e., S is the inverse function of J. 
 
By applying the Fundamental Theorem of Calculus, 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑢𝑢

 = 1

(1+𝑢𝑢3)
4

3�  
 

We note that J (0) = 0. Let  
 
g(u) = 𝑢𝑢

(1+𝑢𝑢3)
1

3�  
 

 We express this as g(u) = u(1 + 𝑢𝑢3)−1
3�  and calculate the derivative of g. 

 
g’(u) = (1 + 𝑢𝑢3)−1

3�  + (− 1
2
) (1 + 𝑢𝑢3)−4

3�  * 3𝑢𝑢2 𝑢𝑢 

                                                           = (1 + 𝑢𝑢3)−1
3�  −  𝑢𝑢3(1 + 𝑢𝑢3)−4

3�  
    = (1 + 𝑢𝑢3)−4

3�  (1 + 𝑢𝑢3)  −  𝑢𝑢3 (1 + 𝑢𝑢3)−4
3�  

    = (1 + 𝑢𝑢3)−4
3�  [(1 + 𝑢𝑢3)  −  𝑢𝑢3] 

    = (1 + 𝑢𝑢3)−4
3� . 

Our calculations show that J’(u) = g’(u). Note that J (0) = 0 and g (0) = 0. Therefore, we conclude that 
J(u) = g(u). 

 
 

   Let ∆ = (1 − 𝑥𝑥3)1
3� . We next determine an expression for the inverse function of J. 

 
J(S(z)) = z 

 
J(u) = 𝑢𝑢

(1+𝑢𝑢3)1
3�    ⇒ 𝑆𝑆

(1+𝑆𝑆3)1
3�  = z 

 
⇒ S = z(1 + 𝑆𝑆3)1

3�  
 

                                      ⇒𝑆𝑆3  =  𝑧𝑧3(1 + 𝑆𝑆3)   ⇒ 𝑆𝑆3 = 𝑧𝑧3 + 𝑧𝑧3𝑆𝑆3   
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( 3  ⁄3 

⇒ 𝑆𝑆3(1 − 𝑧𝑧3) = 𝑧𝑧3 ⇒ S(z) = 𝑧𝑧
 

(1−𝑧𝑧3)1⁄3 
 

Using the relation,  
 

C (𝑧𝑧)−3 = 1 + S (𝑧𝑧)3, 
 

We can write,  
 
 

1 
C(z) = 1 − 𝑧𝑧 ) . 

 

  Let a0 = 0 and b0 = N. 
C (𝑧𝑧∆𝜎𝜎 +  𝐽𝐽 (𝑥𝑥

∆
))𝑁𝑁 

 

= C � z (1 − 𝑥𝑥3)  +  
𝑥𝑥
∆

[1+�𝑥𝑥
∆�

3
]
1

3�
�

𝑁𝑁

 ; 1 + �𝑥𝑥
∆

�
3

=  1
1−𝑥𝑥3 

 

                                                = C � z (1 − 𝑥𝑥3)  + 
𝑥𝑥
∆

( 1
1−𝑥𝑥3)

1
3� �

𝑁𝑁

 ;  𝑥𝑥
∆

(1 − 𝑥𝑥3)1
3�  = 𝑥𝑥 

 
                                                = C (z (1 − 𝑥𝑥3) +  𝑥𝑥) 𝑁𝑁 
                                                = [1 – (z (1 − 𝑥𝑥3)  +  𝑥𝑥)3]

𝑁𝑁
3  

 
   That means, 

C(𝑧𝑧∆3 +  𝐽𝐽 (𝑥𝑥
∆

))− 𝑁𝑁 = [1 – (z (1 − 𝑥𝑥3)  +  𝑥𝑥)3]
−𝑁𝑁

3  

 Finally, putting all the terms together, the generating function is, 
 

H (𝑥𝑥, 1, z) = (1 − 𝑥𝑥 
𝑁𝑁 

3)3  ∙ 
1 

𝑁𝑁 . 
[1 – (z (1−𝑥𝑥3) + x)3] 3 

 

 This completes the example. 
 
 

APPENDIX B 

  Heuristic for the Proposition 
 
Let us recall that we let X (t) and Y (t) be the solution of the pair of differential equations (4) and (5), 
with initial conditions X (0) = 𝑥𝑥0 and Y (0) = 𝑦𝑦0. 

Let ∆ = (𝑥𝑥0
𝑝𝑝 − 𝑦𝑦0

𝑝𝑝)1⁄𝑝𝑝, where we define p = γ - α = β – δ and assume p > 0. 

We think of 𝑥𝑥0 ≈ 0 and 𝑦𝑦0 ≈ 1. 

It can be shown that 𝑋𝑋𝑝𝑝 − 𝑌𝑌𝑝𝑝 = 𝐶𝐶1 (for some constant 𝐶𝐶1), which means we can write 
 

𝑋𝑋 (𝑑𝑑)𝑝𝑝 − 𝑌𝑌 (𝑑𝑑)𝑝𝑝 = 𝑥𝑥0
𝑝𝑝 − 𝑦𝑦0

𝑝𝑝 
 
 and moreover, 
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𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

 =  𝑥𝑥𝛼𝛼 + 1𝑦𝑦𝛽𝛽 

                                         = 𝑥𝑥𝛼𝛼 + 1(𝑥𝑥𝑝𝑝  − 𝑥𝑥0
𝑝𝑝 + 𝑦𝑦0

𝑝𝑝)
𝛽𝛽

𝑝𝑝�  
 

                          = 𝑥𝑥𝛼𝛼 + 1(𝑥𝑥𝑝𝑝 + ∆𝑝𝑝)
𝛽𝛽

𝑝𝑝� . 
 

Let X (t, 𝑥𝑥0, 𝑦𝑦0) = ∆𝑑𝑑(𝑑𝑑∆𝛼𝛼) and Y (t, 𝑥𝑥0, 𝑦𝑦0) = ∆𝜂𝜂( 𝑑𝑑∆𝛼𝛼  ). 
 
Then the transformed system of pair (δ, η) is 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 = ζ𝛼𝛼 + 1(ζ𝑝𝑝 + 1)
𝛽𝛽

𝑝𝑝� , where ζ (0) = 𝑥𝑥0
∆

 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 = η𝛼𝛼 + 1(η𝑝𝑝 − 1)
𝛾𝛾

𝑝𝑝� , where η (0) = 𝑦𝑦0
∆

. 
 
By hypothesis, α = -1. We can express t formally as 
 

t = ∫  𝑑𝑑𝑑𝑑

(1+𝑑𝑑𝑝𝑝)
𝛽𝛽

𝑝𝑝�

𝑑𝑑(𝑑𝑑)
𝑥𝑥0/∆ . 

We introduce two parameters λ = 𝛽𝛽
𝑝𝑝
 and r = −𝑝𝑝

𝛼𝛼
. 

 
Define the function 

J(u) = ∫  𝑑𝑑𝑑𝑑
(1+𝑑𝑑𝑟𝑟)𝜆𝜆

𝑢𝑢
0 . 
 

Then,  
 

t = J (ζ(t)) – J � 𝑥𝑥0
∆

 � . 
 
We can write ζ(t) formally as 

⇒ ζ(t) = S�𝑑𝑑 +  J � 𝑥𝑥0
∆

 �� ;  where S(J(u)) = u. 
 

This completes our heuristic, which illustrates the role of the function J(u). The heuristic is a series of 
formal calculations and is not intended to be a proof of the proposition. 
 

H(X(t), Y(t)) = X(𝑑𝑑)𝑎𝑎0 Y (𝑑𝑑)𝑏𝑏0 .
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APPENDIX C 
 
  Example of an Unbalanced Urn 
 
We require our urns to be balanced. Here, we give a counterexample to show that the conclusion of the 
Proposition in Section 4 can fail to hold if the urn is not balanced. 
 

Let M = �−1 1
0 2� . 

 

 

The condition of a balanced urn is not satisfied because the first-row sums to zero, but the second-row 
sums to 2. It can be shown that there are 11 histories for time n = 2. Using the notation Hn (x, y, z) for the 
terms that involve zn in H (x, y, z), we have 
 

H2 (x, y, z) = 2𝑦𝑦3𝑧𝑧2 + 6𝑥𝑥𝑦𝑦4𝑧𝑧2 + 3𝑥𝑥2𝑦𝑦5𝑧𝑧2. 

This is consistent with having 11 histories for n = 2 since the sum of the coefficients is 2 + 6 + 3 = 11. 
Ignoring the 1 term in this discussion, since it plays no role, we can write 

n! 
 

[𝑥𝑥𝑦𝑦4𝑧𝑧2] H (x, y, z) = 6. 
 
Since there are 11 histories for n = 2, if we apply the Proposition, then we have 
 

P (An = 1, Bn = 4) = 6
11

. 
 

However, a detailed calculation reveals that when n = 2, 
 

P (An = 1, Bn = 4) ≠ 6
11

. 
 

When the urn model does not satisfy the balanced condition, it is not true that each history occurs equally 
likely, with probability of 1

11
. By enumerating all possible cases, we find that 

 
P (An = 1, Bn = 4) = 2 � 1

3
 � � 1

5
 �  + 4 � 1

3
 � � 1

3
 �  = 26

45
. 

 
This completes our counterexample to the Proposition in Section 4.
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