
Résumé – Lors de l’évaluation de modèles d’apprentissage automatique supervisé, on considère généralement le rendement 
de prédiction moyen obtenu sur les tests individuels comme mesure de choix. Toutefois, lorsque le modèle est destiné à 
prédire quels produits du bois seront obtenus lors du sciage de certains billots, c’est généralement la performance pour un 

lot complet qui importe. Dans cet article, nous montrons l’impact de cette nuance en termes d’évaluation du modèle. En 
fait, la qualité d’une prédiction (globale) s’améliore considérablement lorsque l’on augmente la taille des lots, ce qui offre 
un solide soutien à l’utilisation de ces modèles en pratique. 

 

Abstract – When comparing supervised learning models, one generally considers the average prediction performance 
obtained over individual test samples. However, when using machine learning to predict which lumber products will be 
obtained when sawing logs, it is usually the performance over the entire lot that matters. In this paper, we show the impact 
of this by evaluating a model performance for various batch sizes. The quality of a (global) prediction improves 
tremendously when batch size increases, which offers a strong support for the use of such models in practice.  

 

Mots clés - Simulation de débitage, évaluation de modèles d’apprentissage supervisé, application d’apprentissage 
automatique, industrie des produits forestiers. 
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1 INTRODUCTION 

For many reasons, the forest product industry needs forecasting 
what its inventory would allow producing. There exist needs for 
performance forecasting, configuration decisions and wood 
allocation between several plants. It has been shown that 
accurately forecasting sawmills output can improve profitability 
due to better decision-making [Morin et al. 2020]. Tools for 
such evaluations include sawmill simulators, such as the Optitek 
[FPInnovations, 2014]. These tools are designed to simulate the 
transformation process of a log at a given plant [Lin et al. 2011]. 
However, simulation is computationally expensive with large 
volume of woods, for companies owning multiple plants or 
when testing multiple sawmill configurations. As a result, 
supervised learning has been recently proposed to improve or 
replace slow simulators by a fast relation from the space of the 
logs characteristics to the space of the sawmill outputs, i.e. 
lumbers [Morin et al. 2015].  

Morin et al. (2020) showed that, although supervised learning 
models produced for that particular problem are only 

approximate, they remain more than useful for decision-making, 
e.g. to make decision regarding wood allocation between 
sawmills. In this paper, we explain why seemingly low 
performance on individual logs does not hinder a models’ 
usefulness for decision-making. As demonstrated by our 
experiments, the errors in the prediction for some given logs are 
partially compensated by the errors on other logs as the batch 
size increases. In addition, sophisticated models, i.e. models 
trained using a machine learning procedure, proved useful and 
more accurate than a simple average for all batch sizes and 
especially for smaller batches. This explains the good 
performance of such models for decision-making, especially on 
the wood allocation problem [Morin et al. 2020]. It makes these 
models especially promising in the specific use cases where a 
simulator tends to be too slow, i.e. on large amount of data.  

The paper is organized as follows. We first review the related
literature and concepts in Section 2. In Section 3, we present the 
experimental process and data supporting our contributions, 
interpret the precision, the recall and the F1-score performance 
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measure in the context of our machine learning problem, and 
present the results. We conclude in Section 4. 

2 RELATED CONCEPTS AND LITERATURE 

In the following subsections, we introduce general notions 
regarding sawing simulation as well as supervised learning for 
sawing simulation.  

2.1 Sawing Simulators 

Sawing simulators make it possible to anticipate which products 
a log will generate when processed at a given sawmill. These 
tools generally take three inputs, namely a sawmill model 
(described in a suitable formal language), a feasible product list, 
and a virtual description of the log.  

The sawmill model details the equipment, the links between the 
machines as well as their capacities. The feasible product list 
describes the lumbers that can be produced by the factory along 
with their value. Log sawing by-products, such as sawdust and 
shavings, are also associated with values. A product value can 
either be based on its true market value, or it can reflect its 
importance w.r.t. the current needs of the company. Finally, a 
virtual log is a representation of a log that needs to be cut, often 
a three-dimensional scan. It is generally modeled as a point 
cloud approximating the surface of the log [Thomas 2013].  

Simpler representations, such as parametric descriptions, might 
be used in some studies. Parametric descriptions are vectors of 
characteristics such as the length of the log, its strong diameter, 
its weak diameter, its curvature, its tapering, and its volume. 
Other characteristics, such as the log species, could be 
introduced in the parametric description. 

Given a sawmill model, a feasible product list and a virtual log, 
the sawing simulator performs a simulation of all the feasible 
cuts to choose the one leading to an optimal yield for this log, 
i.e. the simulator finds a set of lumbers maximizing the total 
value of the transformed log [Todoroki 1990]. An example of a 
sawing simulation result can be seen in Figure 1. 

 

Figure 1. A virtual log and the optimal basket of products 
obtained by the sawmill simulation. 

 

2.2 Supervised Learning for Sawing Simulation 

Although there exist some machine learning model using the 
three-dimensional log scans as input (e.g. [Selma 2018]), we 
focus in this paper on models using the parametric description 
of a log. Both types of models provide as output a vector of 
counts for each feasible lumber products. This vector of counts 
describes the basket of products one should obtain if processing 
the log at the modeled sawmill. 

Supervised learning algorithms aims to build a mapping from a 
feature vector space to a label space using a training set of 
examples consisting of pairs of inputs and outputs. In our 
context, the features are the logs parametric descriptions, and 

the labels are the vectors of counts representing the baskets of 
products. 

In supervised learning, there are two main types of output labels, 
namely discrete (and finite), and continuous. The former leads 
to what we call a classification problem whereas the latter leads 
to a regression problem. In what follows, we describe how 
basket of products, which are vectors of counts, can be encoded 
as labels in both the classification and the regression cases. 

2.2.1 Classification for Sawing Simulation 

A class is a discrete label. For classification purposes in the 
sawing simulation context, it is possible to consider each 
individual basket of products encountered in the training set, i.e. 
combination of lumber products, as a specific class.  

The drawback of this approach is that each specific combination 
needs to be encountered in the data. Therefore, it is possible that 
some feasible combinations of products, i.e. some feasible 
baskets, cannot be predicted by the model. One example would 
be a class that is present in the test dataset and not in the training 
dataset. Conceptually, one of the main benefits of the approach 
is that all the predictions are guaranteed to be feasible for at least 
one existing log (as they have been seen at least once in the 
data). 

2.2.2 Regression for Sawing Simulation 

When performing a regression in our context, a regression 
model individually predicts the number of products of each 
feasible lumber from the feasible product list (i.e. each position 
in the vector count). 

Contrary to classification it is now possible to predict any basket 
of products even if they were not part of the train set. For each 
of the feasible product, the model provides a real number. The 
drawback of the approach is that there are no such things as 
decimal lumber counts in practice. This might be a problem 
when using the model for applications that need predictions for 
individual logs. However, in many applications, there is few 
need to obtain precise counts and we aim at evaluating a global 
prediction, i.e. the prediction on a batch of logs. As a result, we 
are using the real values provided by the model directly to 
compute the performance on a batch of logs. 

This approach comes with some challenges. One way to address 
the problem would be to create one model per product output. 
The problem with this approach is that it assumes independent 
outputs. In the case of our application, individual entries in the 
count vector are related to one another. That is, each predicted 
product might take the space needed for another. For that 
reason, we used a single model trained to predict the entire 
vector of counts. The specific procedure depends on the chosen 
learning algorithm. 

2.2.3 Learning Algorithms for Sawing Simulation 

In the literature, multiple learning algorithms have been 
evaluated in the context of sawing simulation. In this paper, we 
focus on three machine learning algorithms that were proved 
efficient for that problem by Morin et al. (2015), namely k-
nearest-neighbors (KNN) [Fix and Hodges Jr. 1951], decision 
tree [Breiman 1996], and random forest [Breiman 2001]. We 
experiment with both the regression and the classification 
version of these algorithms. 

2.2.3.1 k-Nearest-Neighbors 

The KNN algorithm is based on the idea that similar logs should 
have similar product baskets. During training, the algorithm will 



 

 

use a data structure that makes it easy to compare the distance 
between two logs. In this study, we use the Euclidian distance 
between the parametric description of two logs. The algorithm 
chose the k nearest logs.  

In classification mode the algorithm performs a majority vote to 
determine the class whereas in regression mode it averages the 
basket of the nearest k logs. Although we tested multiple values 
of k, a value of one allowed us to achieve good results in training 
while maintaining a good generalization for examples that were 
not seen in the training phase. Recent applications of KNN has 
shown that it performs well on unbalanced data, e.g. [Cai 2020]. 
Since our dataset is highly unbalanced, it made the algorithm a 
promising choice in the context of our application. 

2.2.3.2 Decision Tree 

The decision tree learning algorithm uses the training examples 
to generate a tree-based model where the nodes are simple 
decision rules based on the input features. For prediction, an 
unseen example is passed through the tree and the model output 
is determined when it reaches a leaf.  

In classification mode, each leaf represents the class to be 
predicted which is determined by the examples the training set 
that reached that leaf during training (by a majority vote). In the 
case of regression, we use a variation of the algorithm to predict 
multiple output values. Although, it would be possible to create 
a set of independent trees, product counts in the basket are 
dependent. We therefore used a single tree that can predict the 
entire basket at once such as described in [Borchani 2015]. 
Recent applications of the decision tree algorithm assessed it as 
a simple, efficient, and easy to interpret model [Lan 2020]. 

2.2.3.3 Random Forest 

The random forest algorithm builds multiple decision trees. It 
does so by sampling the training set N times. Each sample is 
used to create a single tree [Schonlau 2020]. For prediction, the 
data are passed through each tree and the predictions are 
combined. In the case of classification, a majority vote is 
performed whereas in regression the trees outputs are averaged.  

3 EXPERIMENTS 

Our experiments are intended to show the impact of the size of 
the lot on the quality of the prediction for the prediction models 
using the KNN, the decision tree and the random forest learning 
algorithms. 

In this section, we present the industrial data used for this study 
(3.1), the details of the model-building phase (3.2), and the 
evaluation metrics we use to compare the quality of the models 
(3.3). Finally, we analyze and compare the performance of our 
models on three aspects. First, by exploring the average 
prediction quality on individual logs (3.4). Second, by 
comparing the performance on batches of increasing size (3.5). 
Third, by highlighting the most common source of error in 
predictions (3.6). 

3.1 Data 

Data was provided by FPInnovations. Our dataset contains a 
total of 2235 logs. All the logs from this dataset are known to 
produce a non-empty basket of products. To train the supervised 
learning models, we used the following log characteristics: 
length, strong diameter, weak diameter, curvature, taper, and 
volume.  

We used the Optitek sawing simulator [FPInnovations, 2014] to 
virtually transform each of these 2235 logs and obtain the actual 
basket of products. A total of 85 different sawing products are 
present in those vectors leading with 85 entries.  

We obtained 1188 different baskets of products which leads to 
1188 classes when considering the classification version of the 
problem. Considering the high number of classes relative to the 
number of examples in our dataset, it is expected that several 
classes will have a low representation. For example, there are 
roughly 30% of classes that are only present once in the dataset 
while one of the classes is present 58 times. This particularity of 
the dataset implies that certain classes in the training set will not 
be present in the test set (and vice-versa). 

This class distribution is particularly complex for classification 
models because it is expected that these models do not try 
predicting classes that have not been seen in training. However, 
models should predict similar classes that are present at training. 
In this situation even if the classes are different, it is possible 
that these two classes have several common elements. 

It is important to mention that the logs were not chosen for the 
purpose of having a balanced input or output. This means that 
some lengths or diameters are more common than others and 
some only appear once. The same thing is true for the basket of 
products, hence the classes. 

Figure 2 shows a histogram of the length of the logs in the 
complete dataset. The figure allows us to see that some lengths 
are much more frequent and that some lengths are very rare and 
have only 1 example (5.43 meters). Furthermore, we see that 

around 800 logs have a length of 3.76 meters. This distribution 
is expected to complicate the task of fitting a model on the data. 

3.2 Model Training 

To carry out the experiments, the logs in the dataset is randomly 
separated so that 85% of the logs are used for training, i.e. to fit 
a model, and 15% are used to form a test dataset to evaluate the 
performance of the model on unseen data. We created 10 such 
partitions which will allow the experiments to be repeated 10
times for each of the algorithms.  

For all splits, we first trained models using the KNN, the 
decision tree, and the random forest algorithms on the training 
set. Furthermore, to establish a base case reference, we also 
consider a dummy model which systematically predicts the 

Figure 2. Distribution of logs by length (m) in the dataset 



 

 

average basket of products as seen in the train set. It should be 
noted that the dummy model prediction procedure is akin to 
simple forecasting heuristics such as using the historical average 
of the production. 

3.3 Performance Measure  

To evaluate the performance of the learned models, we need to 
assess how the basket of products they predict (vector y) 
compares to the actual basket of products (vector b) generated 
by the simulator. Vectors y and b may either correspond to the 
quantities obtain from the sawing of a given log or of a whole 
batch of logs.  

In what follows, we use the well-known precision, recall and 
F1-score metrics to evaluate the models [Van Rijsbergen 1979, 
Powers 2020]. We recall that precision and recall are calculated 
using the number of true positives (TP), the number of false 
positives (FP), and the number of true negatives (TN) [Van 
Rijsbergen 1979]. In our context, we define TP, FP, and TN as 
follows: 

• TP represents the number of lumbers that are present in 
both vectors.  

• FP is the number of lumbers predicted but not actually 
produced.  

• FN is the number of lumbers that were manufactured but 
not predicted.  

Given a predicted basket y and an actual basket b, the precision 
is defined as 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑦, 𝑏) =
𝑇𝑃(𝑦, 𝑏)

𝑇𝑃(𝑦, 𝑏) + 𝐹𝑃(𝑦, 𝑏)
, 

and the recall is defined as 

𝑟𝑒𝑐𝑎𝑙𝑙(𝑦, 𝑏) =
𝑇𝑃(𝑦, 𝑏)

𝑇𝑃(𝑦, 𝑏) + 𝐹𝑁(𝑦, 𝑏)
 .  

Finally, the F1 score is computed as the harmonic mean between 
precision and recall which leads to the following equation: 

F1(𝑦,𝑏) =
2𝑇𝑃(𝑦, 𝑏)

2𝑇𝑃(𝑦, 𝑏) + 𝐹𝑃(𝑦, 𝑏) + 𝐹𝑁(𝑦, 𝑏)
 . 

It should be noted that by evaluating a set of models built using 
a learning algorithm and comparing their average results to the 
average results of models built using another learning 

algorithms we are able to determine which algorithm generates 
the best models either for individual logs or for a batch of logs. 

3.4 Performance on Individual Logs 

This section is used to demonstrate the quality of our prediction 
for individual logs. In the case of individual log predictions, we 
present the performance metrics for individual predictions 
averaged on a batch of unseen logs and multiple replications 
where a replication consists of the following three steps (as 
described in Section 3.2). First, we partition the dataset into a 
training set and into a test set. Second, we use each learning
algorithm to build a model based on the data of the training set. 
Third we evaluate each of the generated models on the test set 
by using it to make a prediction of the basket of each individual 
log it contains. The quality of the prediction for individual logs 
in terms of a specific metric, e.g. the F1-Score, is then averaged. 

Figure 3 reports the average F1-Score for the different models 
we are using in this research. We are comparing the decision 
tree, KNN and random forest models to the dummy predictor.  

All models perform much better than the dummy prediction. 
This result can be explained by the large variety of feasible 
basket of products in our dataset and their uneven distribution. 
This characteristic of the dataset proves to be problematic for 
the dummy model. 

Among all the tested learning algorithms, KNN shows the worst 
performance. As it was shown by Selma et al. (2015), similar 
logs could have very different basket of products which hinders 
nearest neighbors approaches efficiency. Although, the 
difference between KNN and the dummy predictor is 28%. 

Tree-based machine learning algorithms (decision tree and 
random forest) performed best. This is in line with the result of 
Morin et al. (2015). What is interesting is that the regression and 
classification models have similar performance. This result 
highlights the possibility to achieve good prediction even if the 
training dataset does not contain at least one example of each 
feasible basket of products. 

Using regression also provides an advantage over classification. 
For our experiments, the number of classes is defined by the 
number of different basket of products present in our dataset. 
One problem with classification is that small training datasets 
are very likely not to contain all feasible classes. As a result, a 
classification model output is likely to be wrong on at least some 
of the products in the baskets. In regression, this is less of an 
issue since the model can output an unseen basket. 

Figure 3. Average F1-score for individual predictions on the test set (95% confidence intervals; 10 replications;  
individual replication scores are shown in blue) 



 

 

Finally, the model with the best performance is the random 
forest in classification. In this case the algorithm is performing 
39% better than the dummy predictor. 

3.5 Performance for Batches 

In this section, we explore the effect of the size of the batches 
on the quality of the forecasts. We also validate our initial 
hypothesis that the errors made by a model when predicting the 
output of a sawmill for an unseen log is compensated for by 
errors made on other logs. Finally, we confirm that sophisticated 
models are useful for all tested batch sizes and especially on 
smaller batches where a simple average does not achieve a 
sufficient performance. 

Figure 4 reports the F1-score for the prediction of the global 
basket of products associated with the whole test dataset. We 
can see a significative improvement for all models. All models 
improve by at least 40% in terms of F1-score. The dummy 
predictor has the largest improvement (approx. 76%). This 
result is not surprising because with a large enough sample the 
average should improve to be closer to a perfect prediction. This 
establishes a base case for the other algorithms.  

It should be noted that the random forest algorithm in 
classification is no longer the best performer and the accuracy 
of its prediction is only 89%. Not only is this model no longer 
the best performer, but it is now our worst performer. KNN has 
a F1-score of about 90%, which is lower than that of the dummy 
predictor. The best performer is random forest in regression 
with a F1-score of 93%.    

Figure 5 illustrates more precisely how the performance is 
affected by the size of the batch. We kept the same test dataset 
but report global results for randomly chosen subsets of 
different sizes.  

We notice that the performance curve is logarithmic. The batch 
size does not need to be huge to see dramatic performance 
improvement. This renders the models useful for a wide range 
of applications involving small batches of logs such as log piles, 
e.g. for wood allocation purposes. Companies can therefore 
achieve interesting results in decision-making on such problems 
using such models although they appeared to be only 
approximate for individual predictions. 

In classification all models perform better than dummy for 
smaller batch size; the smaller the batch is, the greater the 

difference. For example, decision tree will perform 42% (in 
terms of F1-score) better than dummy for batch size of 1. At 
batch size of 50, we can see that dummy is beating the KNN 
algorithm and will do better than random forest at batch size of 
110. With our experiment dummy never reach the level of 
prediction of the decision tree, but with a larger test dataset it is 
possible that dummy would yield better result than the decision
tree classifier. 

For regression, the picture is different. Again, for small batches 
all our algorithms perform better than the dummy predictor and 
again the dummy predictor performs better than KNN (starting 
at a batch size of 50). However, this time decision tree and 
random forest are doing better than dummy for batch size of 
330. Not only do these models perform better, but random forest 
has a prediction that is 3% over the dummy in terms of F1-score.  

This clearly supports the fact that the regression version of 
random forest dominates the other approaches and would be a 
safe choice whatever is the size of the lot. 

Figure 6 details the F1-score, precision, and recall metrics 
according to the size of the batch for the best classification 
model (decision tree) and the best regression model (random 
forest). Recall and precision are relatively close to each other 
regardless of the size of the lot. For both models, recall and 
precision tends to both increase with batch size. However, we 
can point that the difference is much smaller for decision tree in 
classification mode. The distance between precision or recall 
and the F1 score is of about 0.2%. For random forest in 
regression mode, the spread is larger, and the difference is 
slightly over 1%. We also notice that the difference tends to be 
larger for smaller batch sizes than for larger batch sizes. 

Figure 7 shows the 95% confidence intervals around the F1-
score average for the various batch size. The spread of the 95% 
confidence interval diminishes significantly as batch size 
increases. This is especially true for small batches, e.g. when 
increasing the size of the batch from 1 to 10 logs. Of course, for 
small batches, it is possible to make a prediction that is wrong 
that has a large impact on the overall prediction for the batch. 
The fact that the interval is narrowing as the size of the batch 
increases confirms our hypothesis that errors tend to be 
canceled.  

Figure 4. Average F1-score for global predictions on the test set along (95% confidence intervals; 10 replications; 
 individual replication scores are shown in blue) 



 

 

  

Figure 5. F1-score (in %) for KNN, Decision Tree, Random Forest, and Dummy  
as a function of the size of the batch (number of logs) 

Figure 6. F1-score, precision, and recall (in %) as a function of the size of the batch (number of logs)  
for decision tree in classification and random forest in regression 

Figure 7. 95% confidence intervals for F1-score as a function of  the batch size (number of logs) 



 

 

3.6 Sources of error  

Each given type of lumber product has a length, a width, a 
thickness, and a grade which, taken together, fully define the 
product. We call these characteristics the lumber attributes. By 
artificially ignoring errors on a specific lumber attribute, we 
artificially increase the score of the original model. Let us 
suppose we choose ignoring the length errors. Then, the 
magnitude of  the score increment reflects the number of times 
the original model predicted the wrong length for a lumber 
without making a mistake on the other attributes.  

The idea behind this analysis is to visualize “where” our models 
produce errors, but also to understand how to improve them in 
the long run. If, for instance, a model that predicts products that 
have the right width, length, and thickness is frequently misled 
on the grade, then it may be possible that the parametric data 
does not provide enough information to properly predict the 
grade. In this case it may be necessary to add information in the 
parametric description of the logs to improve the model. 

Figure 8 reports the F1-score when we do not consider a specific 
type of mistakes. It shows that the length is the main source of 
error in our predictions. This is especially true in the case we are 
using a decision tree classifier as the curve without length 
mistakes is clearly above the others.   

The curve representing the errors along the length is the curve 
that detaches most from the other curves. This suggests a higher 
error rate on length compared to other lumber attributes. Of 
course, other attributes also appear as sources of errors when 
inspecting the other curves, but the magnitude of the gain when 
ignoring them is less. 

4 CONCLUSION 

We showed how, in the context of supervised learning for 
sawing simulation approximation, the quality of a model can not 
only be quantified by its performance on individual logs, but 
also by its performance on batches. These results confirm that 
prediction errors on one log can be compensated for by errors 
on other logs, but also shows why more sophisticated models 
are preferable than a simpler model based on the historical 
average, especially for small batches. 

Furthermore, we presented metrics that can be easily interpreted 
in an industrial context in the forest-product industry. Since 
those metrics make it easier to understand what is happening 
with the models in terms of over and under prediction of lumber 
counts, it becomes possible to explore the sources of errors in 
the models and interpret them in the context of the application. 
Those analyses pave the way to further model improvements. 
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