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Critical Reviews in Oral Biology & Medicine

Introduction: The Human Cell Atlas 
Oral and Craniofacial Bionetwork
Oral and craniofacial tissues support the human face and thus 
the concept of our individual and collective identity; biologi-
cally, they coordinate essential functions to sustain life, includ-
ing breathing, feeding, and communication. Though often 
preventable, oral diseases are increasingly burdensome world-
wide, affecting over one-third of the globe with a dispropor-
tionate effect on socially disadvantaged populations. In 
addition, chronic oral inflammatory diseases, such as peri-
odontal disease, have been increasingly associated with >60 
systemic diseases, such as cardiovascular diseases, diabetes, 
cancer, pneumonia, inflammatory bowel diseases, obesity, and 
premature birth (Schifter et al. 2010; Beck et al. 2019; Byrd 
and Gulati 2021). To achieve the goal of improved and precise 
whole-body health will require the creative and dedicated 
application of new toolkits to understand the human body in 
health and disease states in combination with extensive in vivo 
animal studies and in vitro systems.

Recent advances in methods and the resolution of high-
throughput single cell and spatial molecular profiling now 
appear to be the quantum leap that precision medicine has 
required, revolutionizing our ability to study tissue heterogene-
ity at a remarkable resolution and driving the scientific 

community to characterize all cells of the human body 
(Aldridge and Teichmann 2020). While the origins of the mod-
ern single cell revolution can be traced to quantitative poly-
merase chain reaction assays with individual neurons 3 decades 
ago (Eberwine et al. 1992), it was not until 2016 that the 
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Abstract
Oral and craniofacial tissues are uniquely adapted for continuous and intricate functioning, including breathing, feeding, and communication. 
To achieve these vital processes, this complex is supported by incredible tissue diversity, variously composed of epithelia, vessels, 
cartilage, bone, teeth, ligaments, and muscles, as well as mesenchymal, adipose, and peripheral nervous tissue. Recent single cell and 
spatial multiomics assays—specifically, genomics, epigenomics, transcriptomics, proteomics, and metabolomics—have annotated known 
and new cell types and cell states in human tissues and animal models, but these concepts remain limitedly explored in the human 
postnatal oral and craniofacial complex. Here, we highlight the collaborative and coordinated efforts of the newly established Oral 
and Craniofacial Bionetwork as part of the Human Cell Atlas, which aims to leverage single cell and spatial multiomics approaches to 
first understand the cellular and molecular makeup of human oral and craniofacial tissues in health and to then address common and 
rare diseases. These powerful assays have already revealed the cell types that support oral tissues, and they will unravel cell types and 
molecular networks utilized across development, maintenance, and aging as well as those affected in diseases of the craniofacial complex. 
This level of integration and cell annotation with partner laboratories across the globe will be critical for understanding how multiple 
variables, such as age, sex, race, and ancestry, influence these oral and craniofacial niches. Here, we 1) highlight these recent collaborative 
efforts to employ new single cell and spatial approaches to resolve our collective biology at a higher resolution in health and disease, 2) 
discuss the vision behind the Oral and Craniofacial Bionetwork, 3) outline the stakeholders who contribute to and will benefit from this 
network, and 4) outline directions for creating the first Human Oral and Craniofacial Cell Atlas.

Keywords: craniofacial, oral mucosa, palate, saliva, tongue, periodontium, bone, musculoskeletal, single cell genomics, multiomics, 
spatial biology, Human Cell Atlas
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Human Cell Atlas (HCA; https://www.humancellatlas.org) ini-
tiative was officially launched (Fig. 1A). Since then, the HCA 
has established itself as an international and interdisciplinary 
collaborative effort to create reference cellular maps of the 
body across the life span (Regev et al. 2017; Regev et al. 2018).

The HCA consortium sits uniquely among a lineage of ini-
tiatives, networks, groups, and other multiomic-focused con-
sortia that came after the Human Genome Project was 
completed in 2003 (Fig. 1A) as it does not direct its associated 
investigators’ studies. Despite this leadership structure, various 
HCA bionetworks and single cell and spatial biology consortia 
have made landmark scientific advances, including the discov-
ery of new and rare human cell type annotations, referred to as 
“cell subtypes” (Montoro et al. 2018; Park et al. 2018; Aizarani 
et al. 2019; Litvinukova et al. 2020; McDonald et al. 2021), as 
well as disease-associated cell “states” (Kinchen et al. 2018; 
Ledergor et al. 2018; Sade-Feldman et al. 2018; Martin et al. 
2019; Vieira Braga et al. 2019; Reynolds et al. 2021).

To support the investigation and inclusion of healthy oral 
and craniofacial tissues in the first draft of the HCA, the Oral 
and Craniofacial Bionetwork (OCBN) was founded in 2020 as 

a research network focused on postnatal adult oral and cranio-
facial tissues within the HCA (Fig. 1). Additionally, other cra-
niofacial organs and hard tissues, such as the brain, eye, nasal 
cavity, face skin, adipose, and musculoskeletal system 
(Baldwin et al. 2021), are described in allied HCA bionet-
works. Here, we 1) highlight recent collaborative efforts to 
employ new single cell and spatial approaches to resolve our 
collective biology at a higher resolution in health and disease, 
2) discuss the vision behind the OCBN, 3) outline the stake-
holders who contribute to and will benefit from this network, 
and 4) outline directions for creating the first Human Oral and 
Craniofacial Cell Atlas.

A Roadmap for the Human Oral  
and Craniofacial Cell Atlas

Defining Oral and Craniofacial Tissue Heterogeneity

The oral and craniofacial complex is supported by highly 
diverse tissue niches, composed of epithelia, blood and lym-
phatic vessels, cartilage, bone, ligaments, and muscles, as well 

Figure 1. Collaboration opportunity across initiatives, networks, groups, and consortia. The Human Cell Atlas Oral and Craniofacial Bionetwork 
(HCA-OCBN; established 2020) is a collection of aligned investigators with the goal of mapping healthy human tissues of the oral and craniofacial 
complex. This network is using single cell and spatial multiomics to achieve these goals. (A) Since the Human Genome Project was completed in 
2003, there have been several initiatives established that can benefit human oral and craniofacial research. There is enormous potential for fruitful 
collaboration between OCBN and initiatives such as FaceBase (established 2009), CZI Biohub (2016; Chan Zuckerberg Initiative), and HubMAP (2020; 
Human Biomolecular Atlas Program). Some of these groups are already collaborating with the OCBN (blue lines). (B) Collaboration within the OCBN 
can be as focused as sharing tissues and fluid samples or supporting computational analysis. As of May 2022, projects are growing monthly across new 
OCBN teams. Map generated from https://app.datawrapper.de/. AMP, Accelerating Medicines Partnership Program; ENCODE, Encyclopedia of DNA 
Elements; GTEx, Genotype-Tissue Expression project; HTAN, Human Tumor Atlas Network; ImmGen, Immunological Genome Project; sc-EQT, 
single-cell eQTLGen Consortium; TCGA, The Cancer Genome Atlas.

https://www.humancellatlas.org
https://app.datawrapper.de/
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as adipose and peripheral nervous tissue (Nanci 2018). This 
anatomy has been well described for decades (Nanci 2018); 
however, recent genetic and genomics approaches based on 
mouse models have found intra- and interspecific niche hetero-
geneity among the periodontium (Nagata et al. 2021; Zhao and 
Sharpe 2021), tooth (Sharir et al. 2019; Takahashi et al. 2019; 
Chiba et al. 2020; Krivanek et al. 2020), salivary glands (Song 
et al. 2018; Hauser et al. 2020; Sekiguchi et al. 2020), palate 
(Byrd et al. 2019; Li et al. 2019; Han et al. 2021), buccal 
mucosa (Jones et al. 2019), and tongue (Tabula Muris et al. 
2018; Almanzar et al. 2020). Some of these data have recently 
been integrated (Huang et al. 2020; Williams et al. 2021), 
though focused on healthy barrier epithelia, and there appears 
to be common and unique cell types among these niches.

Importantly, oral and craniofacial tissue heterogeneity is 
not defined at just the level of biology (i.e., molecular, cellular, 
tissue, organ) as it is well established that human sex, age, and 
ancestry influence tissue physiology. There is an urgent need to 
increase representation in scientific research, as ~85% of 
today’s genomic data are derived from European ancestry; 
therefore, it is crucial to account not only for tissue heterogene-
ity but also for expanding into human geographic, sex/gender, 
age, ethnic, and ancestral diversity in the donor data sets (Figs. 
2, 3). The OCBN takes this mission seriously among its inves-
tigators and study participants (Fig. 1B) with one funded study 
focused on generating healthy oral and craniofacial multiomic 
reference data from at least 8 global ancestries.

Collecting Oral and Craniofacial Atlases  
as Reference Data Sets

Significant progress has been made by the HCA community 
with the current total of profiled cells to date numbering about 
40 million cells from 15 major organs (Lindeboom et al. 2021) 
(https://data.humancellatlas.org/). While there are an estimated 
40 trillion cells in the human body, we estimate that there are 
about 2 trillion in the oral and craniofacial tissues. Although 
progress in the single cell profiling of human oral tissues has 
been slow in comparison, researchers have made significant 
progress as of 2022, publishing atlases of the oral mucosa, 
including the buccal mucosa, tongue, and gingiva (Caetano  
et al. 2021; Huang et al. 2021; Williams et al. 2021; Tabula 
Sapiens et al. 2022); major and minor salivary glands (Huang 
et al. 2021; Chen et al. 2022; Costa-da-Silva et al. 2022; Tabula 
Sapiens et al. 2022); dental pulp (Krivanek et al. 2020; Pagella 
et al. 2021; Opasawatchai et al. 2022); periodontal ligament 
(Pagella et al. 2021); tonsil (King et al. 2021); and even saliva 
itself (Choudhury et al. 2020; Fig. 2). Additional craniofacial 
niches, such as the temporomandibular joint and skeletal mus-
cle, are planned and being executed as well.

In sum, these and other active studies have already identified 
regional differences in cellular types, proportions, states, pheno-
types, and niche-dependent interactions and highlighted the 
importance of the tissue extracellular microenvironment in shap-
ing the identity of resident epithelial, stromal, and immune cells. 
Within 18 mo (between September 2020 and March 2022), 

OCBN made significant strides forward to the modern age of 
single cell biology (Aldridge and Teichmann 2020), including 
nearly >250,000 cells representing the first cell types from 8 dis-
tinct niches from healthy adults (Fig. 2, Table). Within the 
OCBN, multidisciplinary teams are already conducting experi-
ments incorporating single cell and spatial multiomics in pediat-
ric and adult human subjects. Importantly, the rapid development 
of spatial technologies, such as sequencing- and FISH-based 
technologies, is now permitting the use of fresh-frozen and fixed 
paraffin-embedded samples, opening the possibility for analyz-
ing human tissues from archived biobanks (Fig. 3).

While early efforts have primarily focused on the adult oral 
soft tissues, craniofacial structures such as the cranial ganglia, 
cranial vault, cranial base, nasopharynx, nasal bones and car-
tilages, neck, pinna, and middle ear bones will be essential to 
allow a more detailed investigation into the molecular mecha-
nisms controlling tendogenesis, chondrogenesis, and osteo-
genesis, which support craniofacial function and enhance 
cranial skeletal repair, thereby leading to a better understand-
ing of craniofacial anomalies. Achieving these goals will 
require more collaborative efforts among established and new 
OCBN investigators, other HCA networks, as well as other 
consortia.

Illuminating Intercellular Communication 
Networks between Defined Cell Types

With this reference data set, we aspire to accelerate discoveries 
in the domains of basic and clinically applied research with 
further downstream analyses. Expression profiling of different 
cell types in adult human tissues has shown how intercellular 
communication contributes to tissue function by coordinating 
cell functions in development and homeostasis; thus, when 
there are signaling defects, disease will follow. The study of 
intercellular communication has significantly accelerated with 
advances in the single cell field with several studies discover-
ing novel signaling, mediating cellular differentiation and 
immune responses. Intercellular crosstalk has been investi-
gated in oral tissues, with OCBN studies demonstrating how in 
periodontal disease there is a shift in the transcriptional signa-
tures of stromal and epithelial oral mucosa cells to an inflam-
matory profile (Caetano et al. 2021; Williams et al. 2021). In 
disease, endothelial cells also showed upregulation of path-
ways related to lymphocyte adhesion and chemokine signaling 
(Williams et al. 2021).

Given that most cellular crosstalk is spatially restricted with 
signals working from 0 to 200 µm, spatial transcriptomics data 
are essential to understand intercellular communication in 
healthy and diseased tissues. To investigate how surrounding 
cells may regulate signaling, several computational methods 
have been recently developed to integrate spatial information 
with ligand-receptor analyses (Efremova et al. 2020; Dries  
et al. 2021). However, translating this to the clinic will require 
harmonized and consistent cell type annotation among differ-
ent human atlases to allow for accurate intercellular communi-
cation network modeling, as disease networks consistently are 

https://data.humancellatlas.org/
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sequenced and added to the HCA data sets. Harmonized 
nomenclature and annotation of cell types/states when inte-
grating different source organ atlases is one of the current 
efforts of the HCA to achieve a unified reference cell ontology 
across tissues (Osumi-Sutherland et al. 2021).

Annotated Clinical and Biological Metadata  
for a Common Coordinate Framework

While these initial OCBN projects have started to construct 
high-resolution maps of organs and tissues, there is an unmet 
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Figure 2. A blueprint for the Human Oral and Craniofacial Cell Atlas. Oral and craniofacial tissue niches are incredibly diverse, including 
periodontium, tooth, palate, buccal mucosa, tongue, tonsils, salivary glands, and fluid from the saliva—these do not account for microniches that are 
unaccounted for among these tissue spaces. Each niche is supported by some combination of epithelia, cartilage, bone, ligaments, muscles, adipose 
tissue, blood and lymphatic vessels, and nerves, and these tissues are harmoniously integrated into the vital functions of communication, feeding, 
breathing, defense, sensing, and early digestion. The Human Oral and Craniofacial Cell Atlas, supported by the Oral and Craniofacial Bionetwork 
(OCBN), aims to create comprehensive and integrated cell atlases to understand the common and unique cell types that support these niches in health 
and to uncover which cell types and networks are affected in disease. We will do this using single cell and spatial multiomic approaches (transcriptome, 
epigenomic, proteomic), and we will incorporate additional omics technologies as assays are refined and available. Thus far, most work from the 
OCBN and others has focused on single cell transcriptomic (scRNAseq) and epigenomic (ATACseq) approaches from healthy adults, including 
nearly all major tissue niches and saliva. Work is currently being done with the OCBN for collecting, integrating, visualizing, sharing, and applying the 
knowledge gained from these early studies. The number of studies developed so far and the total number of cells profiled are depicted under each 
tissue. Tissue illustrations inspired by Huang et al. (2021). Credit: Heather McDonald, BioSerendipity, LLC.
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Table. Human Oral and Craniofacial Single Cell and Spatial Multiomic Data Sets (2020–2022).

Study Sample Type Anatomic Information Method Clinical Annotations Cell No. Donors Cell Ontology Class Public Repository

Huang et al. 
(2021)

Gingival mucosa Upper left 
maxillary lingual 
interproximal 
papilla

10x scRNA-seq Gingivitis 6,683 4 Basal keratinocyte 1 / 2 / 3 / 4
Basal cycling keratinocyte
Suprabasal keratinocyte
Melanocyte

https://www.covid19cellatlas.
org/byrd20/

Merkel cell

Langerhans cell

Arterial endothelium

Capillary endothelium

Fibroblast

Lymphatic endothelium

Smooth muscle cell

Macrophage

Dendritic cell 1 / 2

Activated dendritic cell

Plasmacytoid dendritic cell

Mast cell

Mucosal-associated invariant 
T cell

Natural killer cell

Cytotoxic T cell 1

Helper T cell

Regulatory T cell

γδ T cell

T/NK cycling cell

B cell

Caetano et al. 
(2021)

Gingival mucosa Upper right maxillary 
buccal margin

10x scRNA-seq Healthy, periodontitis 12,411 4 Epithelial cell 1 / 2
Basal cycling keratinocyte

GSE152042

Fibroblast 1 / stromal (S0)

Fibroblast 2 / stromal (S1)

Fibroblast 3 / stromal (S2)

Fibroblast 4 / stromal (S4)

Fibroblast 5 / stromal (S6)

Myofibroblasts

Endothelial cell 1 / 2

Perivascular cell

Pericytes

Macrophage 1 / 2

Dendritic cell

Plasmacytoid dendritic cell

Mast cells

T cells

IgG B cells

Follicular B cell

Memory B cell

Williams et al. 
(2021)

Gingival mucosa Upper right/left buccal 
margin, lower right 
buccal margin

10x scRNA-seq Healthy, periodontitis 88,140 21 Epithelial cell 1 / 2 / 3
Melanocyte
Fibroblast 1 / 2 / 3 / 4 / 5

https://oral.cellatlas.io
GSE164241

Smooth muscle cell  

Vasculature endothelium  
cell 1 / 2 / 3 / 4

 

Lymphatic endothelium  

αβ CD4+ T cell  

Helper T cell 17  

Mucosal-associated invariant 
T cell

 

αβ CD8+ T cell  

γδ T cell  

Regulatory T cell  

Natural killer cell  

Neutrophil  

Macrophage  

Migratory dendritic cell  

Mast cell  

Plasmacytoid dendritic cell  

B cell  

Plasma cell  

(continued)

https://www.covid19cellatlas.org/byrd20/
https://www.covid19cellatlas.org/byrd20/
https://oral.cellatlas.io
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Study Sample Type Anatomic Information Method Clinical Annotations Cell No. Donors Cell Ontology Class Public Repository

Williams et al. 
(2021)

Buccal mucosa Left buccal mucosa 10x scRNA-seq Healthy 34,999 8 Epithelial cell 1 / 2 / 3
Melanocyte

https://oral.cellatlas.io
GSE164241

Fibroblast 1 / 2 / 3 / 4  

Smooth muscle cell  

αβ CD4+ T cell  

Helper T cell 17  

Mucosal-associated invariant 
T cell

 

αβ CD8+ T cell  

γδ T cell  

Regulatory T cell  

Natural killer cell  

Neutrophil  

Macrophage  

Migratory dendritic cell  

Mast cell  

Plasmacytoid dendritic cell  

B cell  

Plasma cell  

Tabula Sapiens 
et al. 2022

Major salivary glands Parotid; 
submandibular

10x scRNA-seq; 
Smartseq2

Healthy 27,199 2 Basal keratinocyte cell
Acinar cell

https://tabula-sapiens-portal.
ds.czbiohub.org

Salivary gland cell  

Duct epithelial cell  

Ionocyte  

Myoepithelial cell  

Fibroblast  

Endothelial cell  

Lymphatic endothelial cell  

Pericyte  

Adventitial cell  

Macrophage  

Monocyte  

Neutrophil  

NK cell  

B cell  

Naive B cell  

Plasma cell  

Memory B cell  

T cell  

CD4+ helper T cell  

αβ CD4+ T cell  

αβ CD8+ T cell  

Huang et al. 
(2021)

Minor salivary glands Labial minor 10x scRNA-seq Healthy individuals 7,107 5 Basal keratinocyte
Mucous acinar cell

https://www.covid19cellatlas.
org/byrd20/

Serous acinar cell

Duct epithelial cell

Ionocyte

Myoepithelial cell

Fibroblast

Arterial endothelium

Capillary endothelium

Venule endothelium

Pericyte

Smooth muscle cell

Glial cell

Macrophage 1 / 2

Mast cell

Cytotoxic T cell 1 / 2

Helper T cell 1

Dendritic cell 2

B cell

Plasma cell

Erythrocyte

Table. (continued)

(continued)

https://oral.cellatlas.io
https://tabula-sapiens-portal.ds.czbiohub.org
https://tabula-sapiens-portal.ds.czbiohub.org
https://www.covid19cellatlas.org/byrd20/
https://www.covid19cellatlas.org/byrd20/
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Study Sample Type Anatomic Information Method Clinical Annotations Cell No. Donors Cell Ontology Class Public Repository

Costa-da-Silva 
et al. (2022)

Minor salivary glands Labial minor 10x scRNA-seq Healthy individuals 21,402 4 Serous acinar cell GSE180544

Seromucous acinar cell

Mucous acinar cell

Ductal epithelial cell

Fibroblast

Myoepithelial cell

Pericyte/myofibroblast

Vasculature endothelium

Lymphatic endothelium

Smooth muscle cell

Myeloid immune cell

Plasma cell

T cell

Pagella et al. 
(2021)

Periodontium Periodontal ligament 
third molars

10x scRNA-seq Healthy individuals 2,883 5 Epithelial cell 1 / 2 / 3 / 4 / 5
Mesenchymal stem cell

https://github.com/
TheMoorLab/Tooth

Fibroblast GSE161267

Endothelial cell 1 / 2  

Schwann cell  

Immune cell 1 / 2 / 3  

Erythrocyte  

King et al. 
(2021)

Tonsil Pediatric tonsils scRNA-seq; scVDJ Recurrent tonsilitis; 
obstructive sleep 
apnea

32,607 7 CD4+ NCM T cell
CD4+ T cell
TfH, T cell

https://www.tonsilimmune.org
E-MTAB-8999
E-MTAB-9003

TfR T cell E-MTAB-9005

Regulatory T cell  

CD8+ NCM T cell  

CD8+ cytotoxic T cell  

TIM3+ DN T cell  

Innate lymphoid cell  

NK Cell  

T cell cycling  

Macrophage precursor cell  

Macrophage 1 / 2 / 3  

Dendritic cell 1  

Plasmacytoid dendritic cell  

Follicular dendritic cell  

FCRL4+ marginal B cell  

Activated B cell  

Marginal B cell  

Naïve B cell  

PreGC B cell  

FCRL3-high B cell  

GC B cell  

DZ GC B cell  

B cell cycling  

Pre-plasmablast  

LZ GC B cell  

Plasmablast  

Choudhury  
et al. (2020)

Saliva Adult saliva Smart-seq2 Healthy individuals ~2,000 3 Neutrophil https://data.humancellatlas.org/
explore/projects/60ea42e1-
af49-42f5-8164-d641fdb696bc

Tabula Sapiens 
et al. 2022

Tongue Anterior, posterior 10x scRNA-seq; 
Smartseq2

Healthy individuals 15,020 3 Basal keratinocyte cell
Epithelial cell

https://tabula-sapiens-portal.
ds.czbiohub.org

Keratinocyte  

Fibroblast  

Arterial endothelial cell  

Capillary endothelial cell  

Venule endothelial cell  

Lymphatic endothelial cell  

Pericyte  

Skeletal muscle cell  

Schwann cell  

Immune cell  

Table. (continued)

(continued)

https://github.com/TheMoorLab/Tooth
https://github.com/TheMoorLab/Tooth
https://www.tonsilimmune.org
https://data.humancellatlas.org/explore/projects/60ea42e1-af49-42f5-8164-d641fdb696bc
https://data.humancellatlas.org/explore/projects/60ea42e1-af49-42f5-8164-d641fdb696bc
https://data.humancellatlas.org/explore/projects/60ea42e1-af49-42f5-8164-d641fdb696bc
https://tabula-sapiens-portal.ds.czbiohub.org
https://tabula-sapiens-portal.ds.czbiohub.org
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Study Sample Type Anatomic Information Method Clinical Annotations Cell No. Donors Cell Ontology Class Public Repository

Krivanek et al. 
2020

Dental pulp, apical 
papilla

Third molars 10x scRNA-seq; 
Smartseq2

Healthy individuals 41,673 7 Odontoblast http://pklab.med.harvard.edu/
ruslan/dental.atlas.html

Peri-odontoblastic cell GSE146123

Periodontal ligament cell  

Endothelial cell  

Perivascular cell  

Pulpal cell  

Glial cell  

Macrophage  

Neutrophil  

NK cell  

Lymphocyte  

Cycling cell  

Pagella et al. 
(2021)

Dental pulp Third molars 10x scRNA-seq Healthy individuals 32,378 5 Epithelial cell https://github.com/
TheMoorLab/Tooth

Mesenchymal stem cell 1 / 2 / 3 GSE161267

Fibroblast 1 / 2 / 3 / 4 / 5 / 6  

Endothelial cell 1 / 2 / 3 / 4 / 5  

Odontoblast cell  

Non-myelinating Schwann cell  

Myelinating Schwann cell  

Immune cell 1 / 2 / 3 / 4 / 5  

Erythrocyte  

Opasawatchai  
et al. (2022)

Dental pulp Third molars 10x scRNA-seq Healthy and carious 6,810 4 Naive CD4/CD8 T cell
Early odontoblast
Macrophage

GSE185222
https://github.com/vclabsysbio/

scRNAseq_Dentalpulp

Odontoblast  

CD4 T cell  

CD8 T cell  

Naive B cell  

Erythrocyte  

NK cell  

Granulocyte  

HSCs  

Vascular endothelium  

CD16 mono  

Immature erythrocyte  

Plasmacytoid dendritic cell  

Plasma cell  

Chen et al. 
(2022)

Major salivary glands Parotid 10x scRNA-seq Healthy 16,052 1 B cell
T cell
Fibroblast

GSE188478
https://github.com/miao-OvO/

PG-scRNA-seq

NK cell  

Serous acinar cell  

Myeloid cell  

Plasma cell  

Ductal epithelial cell  

Vascular endothelium  

Myoepithelial cell  

Currently available human data sets contributed to public repositories, including the Human Cell Atlas Data Coordination Portal (Choudhury et al. 
2020; Krivanek et al. 2020; Caetano et al. 2021; Huang et al. 2021; King et al. 2021; Pagella et al. 2021; Williams et al. 2021; Chen et al. 2022; Costa-da-
Silva et al. 2022; Opasawatchai et al. 2022; Tabula Sapiens et al. 2022).

Table. (continued)

need to integrate these atlases to interrogate analogous cellular 
components across tissue niches and to develop a common 
coordinate framework for the healthy oral and craniofacial 
human tissues (Fig. 3). So far, most annotations of OCBN sin-
gle cell genomics data sets have distinct cell type annotations, 
even within the same tissue (Table). This discordance makes it 
difficult to relate findings among studies, highlighting the need 
for a common “language” for cell annotation. This framework 
will aim to address clinical and spatial variability within stud-
ies and allow for more accurate and precise comparisons 

among data sets across the human body. Relevant clinical 
metadata will include but not be limited to donor gender, sex, 
ethnicity, age, tissue type, relevant clinical data, and technol-
ogy used; spatial data will define the position, tissue plane, 
site, and size of anatomic structures (Table).

Furthermore, future work incorporating these clinical and 
biological data will highlight the niche-specific cellular diver-
sity that may help to explain why some oral diseases manifest 
in some oral and craniofacial niches while sparing others. For 
example, understanding niche-specific cellular heterogeneity 

http://pklab.med.harvard.edu/ruslan/dental.atlas.html
http://pklab.med.harvard.edu/ruslan/dental.atlas.html
https://github.com/TheMoorLab/Tooth
https://github.com/TheMoorLab/Tooth
https://github.com/vclabsysbio/scRNAseq_Dentalpulp
https://github.com/vclabsysbio/scRNAseq_Dentalpulp
https://github.com/miao-OvO/PG-scRNA-seq
https://github.com/miao-OvO/PG-scRNA-seq
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Figure 3. Applied spatial multiomics for coordinated and integrated analyses. Coordinated efforts across the Human Cell Atlas are working toward 
building a consensus of the necessary metadata (clinical and biological) to generate a common coordinate framework for the human body. Future work 
including these additional layers of data will highlight the diversity of cell types and states across humans considering age, sex, race, ethnicity, ancestry, 
and oral and systemic health history, as well as the specific niche, tissue orientation, and health status of that niche (healthy, inflamed) at the time of 
sample collection. There is an immense need to interrogate a higher number of molecular dimensions or human tissues—genome, transcriptome, 
epigenetic modifications, proteome, T cell receptor and B cell receptor repertoires (TCR/BCR), and metabolome of the collected sample itself—as 
no single “omics” technology can fully define the complexity of molecular mechanisms, but taken together, these integrated data have the potential 
to provide a more comprehensive landscape of basic biological processes and human disease. Multimodal sequencing has the capacity to move the 
field from descriptive “snapshots” toward a mechanistic understanding of gene regulatory networks and, importantly, to refine sources of cellular 
heterogeneity as already applied to the immune system. The use of multimodal single cell and spatial multiomics is therefore revolutionizing our 
understanding of cellular biology; however, relying on the dissociation of cells from their natural tissue environment limits our ability to understand the 
role of intrinsic and extrinsic factors that underpin cellular communication and organ function. Spatial multiomic approaches, which include information 
on the location of cells, will still need to be integrated with these single cell multiomic maps.

in pediatric tissues from neonatal to infancy, juvenile, and ado-
lescence periods will allow the identification of cell states and 
cell lineages involved in tissue maturation and a better under-
standing of early disease onset in childhood. However, given 
the vast literature on immune training in early development, 
these efforts should also reveal the mechanisms of healthy and 
pathologic aging that may lead to early and accurate prognostic 
tools allowing for early intervention, similar to what is pro-
posed by the LifeTime Initiative (Rajewsky et al. 2020, 2021).

This additional level of annotation is already relevant. For 
example, the concept of structural immunity (i.e., niche spe-
cific) has recently been described across the body, suggesting 
that each tissue’s cell-specific composition can instruct its 
niche-distinct immune response (Krausgruber et al. 2020). This 
lens will provide a new framework for interrogating human dis-
ease by mapping disease risk genes and for predicting cell type–
specific and coregulated gene modules, as recently described in 
periodontitis (Williams et al. 2021). For the long-term success 
of the OCBN, high-quality and widely available single cell and 

spatial multiomic data sets will need to be published with 
detailed metadata for each experiment and study.

Integrated Analyses within and across 
Multimodal Data

A fundamental challenge when constructing biological sys-
tems is the correct definition of cell state, which is achieved by 
applying complementary approaches, such as molecular char-
acterization (transcripts, distribution of chromatin marks and 
proteins) and functional testing (Fig. 3). Understanding cell-
specific activity further requires proteomics, metabolomics, 
and functional assays to provide a direct readout of cellular 
activity. Furthermore, there is a need to interrogate a higher 
number of molecular dimensions. No single “omics” technol-
ogy can fully define the complexity of molecular mechanisms, 
but taken together, these integrated data have the potential to 
provide a more comprehensive landscape of basic biological 
processes and human disease. Multimodal measurements, 
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where distinct molecular parameters can be interrogated in the 
same cell, have been recently developed and are now allowing 
us to characterize cells, cell states, and transitions between cell 
states across multiple levels of regulation.

Multimodal sequencing has the capacity to move the field 
from descriptive “snapshots” toward a mechanistic under-
standing of gene regulatory networks and, importantly, to 
refine sources of cellular heterogeneity as already applied to 
the immune system (Hao et al. 2021). The use of multimodal 
single cell omics is therefore revolutionizing our understand-
ing of cellular biology; however, relying on the dissociation of 
cells from their natural tissue environment limits our ability to 
understand the role of intrinsic and extrinsic factors that under-
pin cellular communication and organ function. Indeed, today 
in clinical settings, histopathology is a standard diagnostic tool 
as many diseases are defined by abnormal cellular organiza-
tion. Additionally, many scientific discoveries rise from the 
understanding that cellular organization in tissues is highly 
connected to biological function. Thus, combining single cell 
molecular measurements with histology and microscopy 
assays will be required to ultimately generate biological 
insights into human health and disease.

Overcoming data set–specific batch effects through data 
integration of such population-level single cell data has 
remained a limitation. New computational tools recently devel-
oped outside the OCBN address this (Sikkema et al. 2022), 
allowing for the integration of multimodal health and disease 
data sets. However, computational tools to integrate high- 
resolution molecular and spatial information are still being 
established; there is no clear method that accounts for ana-
tomic differences among individuals. The advantage of these 
newer integration assays is for the annotation of regional/cell 
molecular identities within the tissue architecture, unravelling 
cell-cell communication with a spatial context and clarifying 
tissue microniches, now referenced as “cell neighborhoods” 
within tissues (Nitzan et al. 2019).

Understanding the cellular context, including extracellular 
components and signaling molecules that contribute to organ 
homeostasis, will help to further identify the functions of spe-
cific cell types and interactions as well as provide mechanistic 
insights into fundamental biological processes in health and dis-
ease. Next, it will be necessary to integrate human multiomics 
data with common model organisms as well as patient-derived 
experimental disease models during the progression from health 
to disease. The interrogation of these in parallel will be essential 
for functional assays for data validation and the development of 
new testable hypotheses, ultimately accelerating targeted follow-
up studies to enter the clinical research space.

Clinically Relevant Innovation, Discovery,  
and Collaboration

For the construction of future oral and craniofacial atlases in 
disease, it remains paramount to assess the functions, gene 
expression, and intercellular interactions of all resident cells in 

healthy tissue as a reference. This level of annotation will 
allow for a clearer understanding of how these processes are 
disrupted in disease states. For instance, small subsets of cells 
are important in the pathogenesis of a variety of complex dis-
eases (Regev et al. 2017), and studying the breakdown of 
immune mechanisms and dysregulated proinflammatory path-
ways on a cell-by-cell basis presents an opportunity to under-
stand how perturbed molecular pathways and processes can 
lead to disease. Understanding these processes may identify 
molecular mechanisms that lead to improved targeted 
therapies—for instance, in human craniofacial birth defects 
such as orofacial clefting or craniosynostosis. This is founda-
tional knowledge that we intend to be publicly available to 
advance oral health across the globe.

The clinical significance of single cell approaches has been 
successfully demonstrated in various human diseases by allow-
ing the identification of disease-associated cell phenotypes—
for example, malignant tumor cells within a tumor’s mass 
(Tirosh et al. 2016) or the identification of immune cells that 
can predict clinical outcomes and enhance treatment strategies 
(Sade-Feldman et al. 2018). In the oral and craniofacial region, 
there are now glimpses of what is possible. For example, stro-
mal cells promoting neutrophil migration in health that expand 
in disease have been identified (Williams et al. 2021), and an 
IgG plasma B cell response was identified as a hallmark of 
periodontitis (Caetano et al. 2021; Williams et al. 2021). The 
impact of single cell approaches in understanding human oral 
disease was further demonstrated during the COVID-19 pan-
demic, when the oral cavity was proved to be an important site 
for infection with saliva as a potential route of transmission 
(Huang et al. 2021). This is a minute sampling of the ever-
growing clinical advances made possible through single cell 
approaches.

Many oral conditions will benefit from the molecular char-
acterization of cellular subpopulations. It will provide valu-
able insights into factors that affect disease progression of 
head and neck tumors, such as oral carcinoma; potentially 
malignant disorders of the oral cavity, such as proliferative 
verrucous leukoplakia (Thompson et al. 2021); oral mucosal 
diseases, such as lichen planus and vesiculobullous diseases; 
salivary gland disorders, such as Sjögren’s syndrome; odonto-
genic and bony pathologies; and trisomy 21. Deepening our 
understanding of molecular characterization of cellular sub-
populations will uncover the processes involved in oral mani-
festations of systemic disease, especially gastroenterology 
diseases such as Crohn’s disease, rheumatologic conditions 
such as lupus and Sjögren’s disease, and systemic hemato-
logic diseases including white and red cell dyscrasias, sickle 
cell anaemia, or leukemia. To succeed in achieving these aims, 
the network actively seeks to engage all stakeholders, includ-
ing patients, oral physicians, researchers, cell biologists, and 
data scientists, all of whom share in the collective vision of 
developing our understanding of oral health and disease—all 
while adhering to our values of transparency and open science 
(Regev et al. 2018).
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Discussion

A Phased Strategy for the OCBN

Organizing such a large-scale project is dependent on a multi-
disciplinary approach relying on the close collaboration 
between oral surgeons and oral health care providers (to devise 
quality metrics to obtain and collect clinical samples), with wet 
laboratory scientists and bioinformaticians (for sample pro-
cessing, data processing, and analysis). From the clinician’s 
view, it is crucial to carefully consider 1) sample collection 
criteria checkpoints, such as medical history screening; 2) the 
recording of the precise anatomic location of each sample; and 
3) review and collection of associated donor and sample meta-
data, including health and disease states. Furthermore, this sort 
of collaboration will accelerate a shift from description to 
knowledge and the solving of complex clinical questions.

While work from the OCBN has just begun to reveal the 
diverse tissues and fluids of the oral and craniofacial complex 
(phase 1), we are already planning to conduct studies that illu-
minate how these niches harmoniously integrate into the vital 
functions of communication, defense, breathing, and digestion 
(phase 2). The OCBN is committed to establishing an initial 
version of the oral and craniofacial atlas within 2 y with phase 
1 of all other HCA bionetwork atlases. As such, the OCBN is 
currently integrating the existing OCBN data sets (Table) with 
new unpublished data using harmonized nomenclature and 
annotation of cell types.

By taking an agnostic approach to tissue and organ physical 
location (e.g., not oral but airway; not skin but stratified squa-
mous epithelia) should allow for shared discoveries to acceler-
ate human health clinical benefit. For example, while the oral 
cavity is an important ecosystem, it is also a crossroads that is 
affected by the condition of other, even distant, body sites. This 
is not a surprise; these tissues are intimately connected to the 
nervous, immune, cardiovascular, and endocrine systems 
(Tirosh et al. 2016). In a bidirectional manner, the condition of 
the oral cavity can affect distant sites as well (Beck et al. 2019). 
Phase 1 (oral and craniofacial atlas) and phase 2 (integration of 
oral and other tissue atlases) of the OCBN will complement 
other consortia and other model organism databases, such as 
FaceBase (Samuels et al. 2020). Furthermore, although the 
OCBN occupies a unique gap within current multiomic initia-
tives (Fig. 1A), partnership with these other groups outside the 
HCA, within the HCA, and within the OCBN (Fig. 1B) is 
essential to the successful integration of the healthy oral and 
craniofacial data and will facilitate clinical applications.

Progress toward comprehensive mapping of oral and cra-
niofacial tissues requires not only careful experimental design 
to robustly capture variation within and across individuals but, 
importantly, a physiologic insight to interpret data and curate 
data sets. To this end, it is essential to increase dialogue among 
biologists, computational data scientists, clinicians, patholo-
gists, and statisticians to achieve a consensus on data curation 
and cell annotation and to deliver data analysis platforms that 
are relevant and user-friendly (Fig. 4). Moreover, public 

engagement involving different communities and research par-
ticipants will be essential to articulate the motivations of the 
project and to raise awareness of its ambitions and research 
priorities. In addition, public data portals and biorepositories 
that enable users to easily access and analyze HCA data are 
essential to the HCA goal of inclusivity, integrity, and data 
sharing (https://data.humancellatlas.org; https://oral.cellatlas.
io; https://www.covid19cellatlas.org/byrd20/).

Finally, the Human Oral and Craniofacial Cell Atlas encour-
ages and supports the participation of scientists and clinicians 
from countries around the globe by recognizing the need to 
integrate different ethnicities, environments, and regional dis-
eases, and we invite any interested stakeholder to join the net-
work, participate in our meetings, and contribute data for the 
integrated atlas (see contact details in Conclusions). We are 
aware of potential challenges and limitations, including avail-
able resources and tissue sampling, but we are committed to 
shared protocols (Greenwell-Wild et al. 2021), open and 
immediate data release, and prioritizing international collab-
orative work. Collective development of research ideas and 
equitable partnerships guided under the HCA Ethics Working 
Group is our priority. To enable the advancement of such large-
scale projects, we will aim to implement ethically responsible, 
socially robust, and legally compliant research from the begin-
ning. Continuous monitoring in the form of yearly consortium 
meetings should be tasked with the analysis of emerging ethi-
cal and societal aspects from the use of these new technologies. 
These meetings will also attempt to identify weaknesses or 
areas of inadequate progress and take actions to flag areas of 
expertise that are missing. The task forces formed during the 
initial meetings should meet regularly to apply concrete 
changes for patient groups, researchers, or data collectors.

Conclusions
In sum, there is an enormous opportunity for integrated and 
precise oral health care initiatives that leverage the accessibil-
ity of this space to improve oral and systemic health. Profiling 
of these conditions from a patient-centered perspective will 
increase our understanding of disease cellular origin, mecha-
nisms, etiology, and diagnostics—rendering them experimen-
tally tractable to test new hypotheses for better diagnosis and 
drug discovery. To achieve this grand vision requires the col-
laboration of a multidisciplinary international team—spanning 
the basic and computational sciences to clinical practice (Fig. 
4). This team science approach will be key to achieving inclu-
sive, ancestrally diverse, open access, multiomic reference 
atlases of the human oral and craniofacial tissues and fluids 
across the life span. This open data resource will provide quan-
titative, multiscale information sufficient to build integrated 
prediction models of key oral and craniofacial cell and tissue 
states to develop breakthroughs in oral health for all. If you 
want to join the network, know more about our work, and col-
laborate with the network either by facilitating access to sam-
ples or by contributing with data sets for the OCBN atlas, 
please contact oral@humancellatlas.org.

https://data.humancellatlas.org
https://oral.cellatlas.io
https://oral.cellatlas.io
https://www.covid19cellatlas.org/byrd20/
mailto:oral@humancellatlas.org
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