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Chapter 1

Introduction

Every member of society has their own obligations. These obligations arise from
morality, ethical codes, laws or regulations. According to some norms or rules,
a person is assigned several obligations. For example, a doctor’s professional
norms require them to treat their patients. Therefore, a doctor has the obligation
to treat his/her patients. It is straightforward to see that our obligations are
dependent on the norms that we are following.

Furthermore, norms give rise to obligations towards people in a conditional
manner. It is reasonable to say that a doctor ought to treat a patient if the patient
is in his/her practice. We can imagine that almost all obligations are conditional
even if they are involved in some extreme cases. For instance, we ought not to
kill people. But there is an exception when we are defending ourselves justifiably
or when we are in war as soldiers.

A very natural question is: what is the type of the conditions embedded in
conditional obligations? An answer is fact. If it is a fact that the patient is in
the doctor’s practice, then the doctor ought to treat the patient. However, in
real-life scenarios, we are inclined to judge whether a person has an obligation
to do something by assessing the person’s knowledge in a certain situation. For
example, it makes sense to say that if the doctor knows that the patient is in
his/her practice, then the doctor ought to treat the patient. Relatedly, if the doctor
does not know whether the patient is in his/her practice, it is confusing for us
to tell whether the doctor has the obligation to treat the patient. For another
example, if an employee knows that the documents should be sent by tonight,
then the employee ought to send the documents by tonight. Considering similar
cases, knowledge can also be a suitable candidate for the role of conditions in
conditional obligations in the agent-involved cases. Accordingly, we call them
knowledge-based conditional obligations.

Since conditional obligations can be based on knowledge, does knowledge
change lead to obligation change? The dynamics of knowledge has been widely
investigated and formalized in dynamic epistemic logic for decades, see Van Ben-
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2 INTRODUCTION

them (1997), Gerbrandy and Groeneveld (1997), van Ditmarsch et al. (2007), van
Ditmarsch and Kooi (2008), Wang and Cao (2013). A person’s knowledge can be
updated by new information or actions by performing knowingly. Since there
are growing interests in knowledge-based obligations in recent years (see Pacuit
et al. (2006)), knowledge dynamic naturally gives rise to obligation dynamic.
For example, before a patient is assigned to the doctor’s hospital, the doctor
does not know that the patient is ill and does not have the obligation to treat the
patient. Once the patient arrives in the hospital and the doctor gets to know the
situation, he/she has a new obligation to treat the patient. It is apparent that
obligations can be updated by knowledge change.

Apart from the epistemic factor, norm updates can also change obligations.
As mentioned above, norms fundamentally determine our obligations. Our
obligations can be drastically changed as the norms that we are following are
updated. For instance, an employee is asked to send an email by 9 o’clock. Then
her boss asks her to finish it two hours earlier. Then the employee ought to send
the email by 7 o’clock, rather than 9 o’clock. The original obligation is revoked
and a new obligation takes its place as a result of the new norms given by the
boss.

The relation between norms and obligations is widely known as the distinc-
tion between prescription and description in deontic logic. Norms are some
rules that are to prescribe which states of affairs are better and which are worse
under some conditions. They are not able to have truth values. In contrast, an
obligation describes what state of affairs is good for some particular person. An
obligation is normally formalized as a proposition which can have truth values.
There are growing appeals for treating norms and obligations separately, such
as Makinson and van der Torre (2007b), Hansen et al. (2007), van der Torre and
Tan (1998), Yamada (2006, 2008), Aucher et al. (2009), etc., so as to resolve the
issues due to the discrepancy between prescriptive and descriptive readings of
normative sentences.

This thesis grew out of interests in providing a novel logic of knowledge-
based conditional obligations and different dynamic logics of obligations with
respect to epistemic change or norm updates. The logic of knowledge-based
conditional obligations is a static formalization of agent-based obligations. It
explicitly characterizes the scenarios where agents’ knowledge is embedded in
their conditional obligations. Then we present a dynamic logic of knowledge-
based conditional obligation, which is able to capture agents’ conditional obli-
gation change due to the agents’ epistemic change or factual change. Followed
by norm change, a logic of relativized conditional obligations to normative
systems captures the dynamic obligations as a result of norm change. In the end,
we will jump out of the tradition of ‘ought-to-be’ and establish a new logic of
knowledge-based ‘ought-to-do’, where dynamic epistemic logic plays a different
role from what it does in epistemic and factual changes.

In the remaining part of this chapter, to better understand the background
of this thesis, we give an overview of core ideas behind the related fields. We
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hope readers will be able to figure out the point of departure of our research.

1.1 Standard deontic logic

Deontic logic is a branch of philosophical logic that investigates the formal
representation and reasoning of deontic notions, such as obligations, permission,
prohibition etc. Obligation is normally considered as the most primitive notion
in deontic logic. Von Wright (1951) launched the area and first put forward the
obligation operator O which represents what action ought to be done. In the
following decades, researchers provided various frameworks for deontic logic
so as to conceptualize ‘it ought to be’ and ‘someone ought to do’.

Standard deontic logic (SDL) is the first milestone in deontic logic. Partly
following the idea of Von Wright (1951), standard deontic logic interprets the
objects of obligations as propositions rather than actions, which also made a
great impact on the subsequent research. Prior (1955) and Hintikka (1957) refined
Von Wright’s original system and Von Wright (1970) himself introduced a new
SDL system where the objects of obligations are represented as propositions as
well. In the new system, the term Op is read as ‘one ought to see to the state
of affairs p’. The semantics of the operator O is defined in the same way as the
alethic operator 2 over classical Kripke models, i.e., M = ⟨W, R, V⟩. The relation
R in a model is used for representing the set of the most ideal states with respect
to each state. Consequently, ‘it ought to be ϕ’ (Oϕ) is conceptualized as ‘ϕ is
true over all the most ideal states’. See the below formalism:

M, s |= Oϕ iff M, t |= ϕ for all t such that sRt.

The basic idea of this conceptualization has often been used in formalization
of obligations applied to propositions afterwards, even though many other
deontic logic systems throw away the notion of the most ideal states.

The well-known Kangerian-Andersonian reduction (KA-reduction) provides
a profound understanding on the idea of defining obligations in standard
deontic logic (see Anderson (1958), Kanger (1970)). The reduction shows that an
SDL-style obligation can be expressed by an alethic formula with a propositional
constant. Kanger (1970) claims that “Ought A is true in the universe of discourse
if and only if A is entailed by each non-utopical, complete and true welfare
program for this universe.” In other words, Op is true if and only if all morally
good states satisfy p. Let a propositional constant Ds represent that all normative
demands accepted by the state s are met. Let U be the universal alethic operator.
Accordingly, we have the following equivalence:

M, s |= Oϕ iff M, s |= U(Ds → ϕ).

This indicates that ‘it is obligatory to achieve ϕ in the state s’ can be under-
stood as ‘all ideal states with respect to the state s satisfy ϕ’.
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The approach of Anderson (1958) is equivalent to Kanger’s and he uses a
constant Ss which represents a sanction with respect to the state s. So we can
translate Oϕ based on Anderson’s proposal as follows:

M, s |= Oϕ iff M, s |= U(¬ϕ → Ss).

If we take Ds =de f ¬Ss, it is easily obtained that U(Ds → ϕ) is equivalent to
U(¬ϕ → Ss) in normal modal logic. Kangerian-Andersonian reduction plays
an important role in our research as well. It inspires us to reduce the deontic
operators to some existing modal operators and a constant representing the
ideal situations in Chapter 4 and 5.

1.2 Various deontic logics with different focuses

Standard deontic logic established the most widely used framework for the field
based on Kripke semantics, of which the underlying idea inspires follow-up
studies to characterize a obligation with respect to propositions as ‘all ideal
situations satisfy the state of affairs (denoted by the proposition)’. However, this
imitation of classical alethic modal logic is unsatisfactory because of leading
to several notorious paradoxes, such as Ross’s paradox (disjunction paradox),
Weinberger’s paradox (conjunction paradox), contrary-to-duty paradox, etc. It
is worth noting that these so-called ‘paradoxes’ in deontic logic are not same
as those classical paradoxes in the theory of truth or set theory. Haack (1978)
described paradoxes in the classical sense as ‘contradictory conclusions are
followed by apparently unexceptionable reasoning from apparently unexcep-
tionable premises.’ For example, the sentence ‘this sentence is false’ is true if and
only it is false, and the sentence is false if and only if it is true. This example is
known as the Liar paradox in the theory of truth. The contradiction is obtained
from the clear meaning of the sentence and the unexceptionable semantic rules.
However, the paradoxes in deontic logic does not lead to any contradiction. They
are called paradoxes since some deontic logic systems derive some valid but
counter-intuitive formulas. These paradoxes in deontic logic will be investigated
particularly in Section 6.5.

Besides the paradox issues, standard deontic logic captures obligations in
an extremely general way since it does not take some crucial characteristics
of obligations into account, such as agency, time and knowledge. For lack of
capability in expressing these elements, deontic logic has been developed out of
different problematic concerns.

Deontic stit logic Stit logic originated from Belnap and Perloff (1988) and was
further developed by Belnap et al. (2001). It is famous for being a logic of agency
since it aims for capturing agents’ abilities in choosing some actions to perform.
Comparing several possible English expressions which contain the meaning of
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agency1, ‘see to it that’ (stit) is selected to paraphrase sentences with action-like
verbs. Stit logic formula ‘[i stit : ϕ]’ represents that agent i sees to it that ϕ.

A stit model is established based on a tree-like branching time model. Each
moment is a set of histories whose pre-segments are the same at the moment,
but whose post-segments are different. Moreover, for each particular agent,
every moment is finitely partitioned into subsets of histories to simulate finitely
many available actions for the agent. In other words, taking a specific action is
modelled as choosing its corresponding subset of histories. In this way, an agent
sees to it that ϕ if and only if there is an available action for the agent such that
all the histories included in the action satisfy ϕ.

Deontic logic and stit logic integration was originally provided for rep-
resenting the notion of ‘ought-to-do’, which should be distinguished from
‘ought-to-be’. If obligations are defined with respect to propositions, we call
this type of obligations ‘ought-to-be’ obligations. So standard deontic logic is
one of the deontic logics characterizing ‘ought-to-be’ obligations. As shown in
Von Wright (1951), actions are also appropriate to play the role of obligations
since normative sentences normally express that agents ought to take some
actions. Therefore, stit logic naturally shows the potential to define deontic
logic in a more action-based way involving agency. Belnap and Perloff briefly
mentioned that an obligation of the agent i could be reformulated as O[i stit : ϕ]
which means that it is obliged that i sees to it that ϕ, so as to externalize the
flavor of agency underlying obligations. Belnap (1991) also found that stit logic
can enhance the expressive power of classical deontic logic. He analyzed some
deontic expressions, like ‘could have done otherwise’ and ‘refraining from’.

Horty (1996) investigated deontic stit logic systematically. Assigning values
(natural numbers) to every history in stit models, Horty extends stit models to
utilitarian stit models on which all histories are comparable with respect to their
values. Although there are several possible definitions of obligations in deontic
stit logic, their basic ideas are the same: the agent i ought to see to it that ϕ if
and only if the optimal available action for i guarantees ϕ. Different ways to
define optimal actions lead to different definitions of obligations. But deontic
stit logic provides an original approach to embed agency and actions into the
definitions of obligations.

Preference-based dyadic deontic logic Deontic stit logic focuses on the aspect
of showing the agency behind the obligations. Besides that, as mentioned above,
standard deontic logic is also challenged by many paradoxes, especially the
contrary-to-duty paradox which influenced the development of the studies on
conditional obligations.

Conditional obligations are defined to describe obligations in a conditional
manner, which means that all obligations only come into force when they are

1For instances, bring it about, make it the case, be responsible for the fact that, allow it to be the
case that, take steps in order that, see to it that.
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‘triggered’ by some conditions. For example, a doctor ought to treat someone
under the condition that the person is ill. In standard deontic logic, a superficial
way to formalize a conditional obligation is resorting to a material implication
where the condition is a fact and the consequence is an obligation, e.g., ψ → Oϕ
which represents that ‘it ought to be ϕ given the condition ψ’. This formulation
has been abandoned due to the contrary-to-duty paradox (see page 22 in van der
Torre (1997), Greenspan (1975)). Let us first see an example of contrary-to-duty
paradox:

1. We ought to keep a promise. (Op)

2. It ought to be the case that if we keep the promise, we do not apologize.
(O(p → ¬q) or p → O¬q)

3. If we do not keep the promise, we ought to apologize. (O(¬p → q) or
¬p → Oq)

4. We do not keep the promise. (¬p)

Sentence 1 is an obligation. Sentence 2 is called compatible-to-duty obligation.
Sentence 3 is contrary-to-duty obligation and Sentence 4 is saying that the fact
is a violation of the obligation. According to our intuition, the above four
sentences should be consistent and are independent from each other. However,
any selection of formulations will lead to conflicting obligations by standard
deontic logic: ⃝¬q ∧⃝q, or two non-independent formulas, i.e., O(¬p → q)
can be derived from Op.

The crucial weakness of SDL-style formalization is hidden in contrary-to-
duty obligations. As mentioned in Section 1.1, the monadic obligation Oϕ in
standard deontic logic represents that in all most ideal situations, the proposition
ϕ is true. However, a contrary-to-duty obligation indicates the obligation under
some sub-ideal situations. For example, sentence 3 says that we ought to apologize
if the situation is not the most ideal (the promise has already not been kept),
rather than saying that my apology is always performed in the most ideal
situation where I keep my promise.

Considering the inappropriate formulation, the dyadic deontic operator
comes forth. It normally represents some conditional obligation by formula
⃝(ϕ|ψ) which intuitively denotes that ‘it ought to be ϕ given the condition
ψ’ (see Von Wright (1956), Van Fraassen (1973), Horty (1993), Kooi and Tam-
minga (2008)). One earliest and influential picture for the dyadic obligation
is given by Hansson (1969) where the conditional obligations are interpreted
over preference-based models. The semantics of ⃝(ϕ|ψ) is: the best ψ-states are
ϕ-states.

Hansson realized that a simple dichotomy between ideal and non-ideal
situations results in the failure of standard deontic logic in contrary-to-duty
obligations. Preference-based models can be normally defined as a tuple ⟨W,⩽
, V⟩ where ⩽ is a partial order over the domain W. The relation ⩽ is also called
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betterness relation since s ⩽ t represents that the state t is at least as good as the
state s. In this way, there is a betterness ordering over the realm of states and,
consequently, we can find the most ideal, sub-ideal, sub-sub-ideal · · · states.
The condition ψ in a dyadic obligation O(ϕ|ψ) restricts a model to these ψ-states
and we only need to focus on the best states among this subset, instead of
the whole domain. Therefore, the formula O(ϕ|ψ) successfully captures the
sub-ideal situations by restrictions on the concerning subset.

There has been seen plenty of articles following Hansson’s approach (see
Lewis (1974), Prakken and Sergot (1997), van der Torre and Tan (1999), van Ben-
them et al. (2014)). A full-fledged study on Hansson’s dyadic deontic obligation
can be found in van der Torre (1997). He parsed dyadic obligations O(ϕ|ψ) as
a preference of (ψ ∧ ϕ) over (ψ ∧ ¬ϕ). And then O(ϕ|ψ) can be defined by the
classical modal operator for the binary relation ⩽. In other words, the semantics
of O(ϕ|ψ) is reduced to a formula only consisting of 2 operators.

1.3 Interactions between obligations and knowledge

In the previous section, we introduced the deontic stit logic, which is originally
designed for formalizing the agency in obligations and the dyadic deontic logic
which aims to formalize conditional obligations in a proper way. Another impor-
tant element related to obligations is knowledge. The possible combinations of
knowledge and obligations have been studied for decades from various aspects.
Apart from the notion of knowledge-based obligation which is to be investi-
gated systematically in this thesis, there are many other notions involving both
obligation and knowledge. We will briefly review them in this section, which is
partly inspired by Başķent et al. (2012). We use symbols O and K to represent
obligation and knowledge respectively in this chapter. The letter p denotes a
proposition.

Ought to know The concept of ‘ought to know’ is usually known as epistemic
obligation (OKp). The studies on ‘ought to know’ mainly focus on the solutions
to the famous epistemic obligation paradox. We give an example of this paradox
from one of the earliest works by Åqvist (1967):

1. It ought to be that Smith refrains from robbing Jones.

2. I ought to know that Smith robs Jones.

These two intuitively consistent sentences can be formalized as O¬p and
OKp respectively. However, by standard deontic logic (to be introduced in the
following chapter), they lead to a conclusion Op ∧ O¬p which means that it
ought to be the case that Smith robs Jones and it is also ought to be the case that
Smith refrains from robbing Jones.
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Feldman (1990) gave a simple solution to this paradox by introducing tem-
poral subscripts into obligation operators. Specifically, if we pick too late a time
when Jones has already been robbed by Smith, there should be no possibility
that Smith ought to refrain from robbing Jones. In contrast, if we pick too early
a time before Smith robs Jones, I do not have obligation to know that Smith
robs Jones. Hulstijn (2008) reformulated the paradox with logic of questions
and replaced classical ‘knowing that’ operator with ‘knowing-wh’ operator. ‘I
ought to know that Smith robs Jones’ (OKp) is reformulated as ‘I ought to know
whether Smith robs Jones’ (OK?p). In his logic, the contradiction is no longer
derived.

Besides these studies on the epistemic obligation paradox, Lomuscio and
Sergot (2003) extended classical interpreted systems in computer science into
deontic interpreted systems, where they introduced ‘allowed’ and ‘disallowed’
states to define the obligations. When knowledge is defined classically, epistemic
obligation can be formalized as OKiϕ which means that it ought to be that i
knows that ϕ.

In order to distinguish descriptive and prescriptive use of normative sen-
tences, Aucher et al. (2009) defined an epistemic deontic logic where propositions
and practitions (norms) are treated differently in syntax and semantics. Knowl-
edge (or belief) in their language can be expressed in two ways where Bp in
the propositional form means that ‘the agent knows (believes) that p’ whereas
B′p in practitional form means that ‘to know (believe) that p’. And obligation
operator O is only able to quantify norms. Thus, their language can express
some formula like OB′p which means that it is the obligation for the agent to
know that p.

Know what obligation is Intuitively, the interaction in this category can be
formalized as ‘KOp’ which normally means that the agent knows that p is an
obligation.

Following Lomuscio and Sergot (2003) mentioned above, besides epistemic
obligation, they also defined KiOj p with the normal meaning that i knows that j
is obliged to achieve p.

Broersen (2008) discussed some interactions between ‘obligation to do’ and
‘knowingly doing’ in the framework of stit logic. He defined the agent i’s
obligation as ‘i ensures that p is true over all next moments reached by the
current moment’. Meanwhile, Broersen also defined knowledge in Stit frames in
the classical way. Thus, we can also express ‘i knows that him/herself is obliged
to ensure p’ in his language.

Aucher et al. (2009) used formula BOp to denote that the agent knows that
it is obligatory for him to achieve p. Moreover, as their language introduced
the knowledge operator both in a propositional and a practitional way, it can
constitute two different formulas representing ‘know what obligation is’: BOp
and B′Op. The former one denotes an indicative formula which represents that
‘the agent knows (believes) that it is obligatory to achieve p’. The latter should
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be understood as an imperative which prescribes the agent to know that it is
obligatory to achieve p.

In terms of speech acts, like commanding, requesting, committing, etc. would
affect the agent’s knowledge and obligation. Yamada (2006) focuses on request
and constructed a dynamic logic of knowledge and obligation for characterizing
the acts of requesting. In his multi-agent epistemic deontic logic, there is a type
of formulas which characterizes that after the agent i commands (requests) the
agent j that p, j will know that j has an obligation to i that p. In other words,
i is the obligation addresser and j is the obligation addressee. This formula
shows that after an act of requesting, the request addressee knows his/her new
obligation.

Another paper on deontic logic which introduced dynamic information is
given by van Benthem et al. (2014). After introducing public announcement
operator with the same semantics as the classical PAL, they can capture (make
valid) one important principle in deontic logic: factual detachment by the way of
conditional obligations. Intuitively, if it is obligatory for the agent i to achieve p
under the condition q, then, after announcing q we will know that q is true and
the agent also knows that it is obligatory to achieve p unconditionally.

Knowing-strategy-based responsibility De Lima et al. (2010) distinguished
the notions of obligation and responsibility. The two concepts are not two
sides of one coin anymore. They defined ‘the agent i ought to achieve p’ as
‘over all outcomes (after arbitrary execution), if ¬p is achieved, i will meet a
violation’. It is apparent that no epistemic elements are introduced into this
definition. However, they defined responsibility with knowledge in an inductive
way. Briefly speaking, the inductive definition means that i is (forward-looking)
responsible for p if and only if it is obligatory for i to keep the knowledge of
how to ensure p. In other words, De Lima et al. (2010) declared that some agent
should be responsible for some outcome, only if he/she knows explicitly about
the strategy of achieving this outcome.

Obligation-based knowledge The concept of obligation-based knowledge is not
investigated very broadly. The only paper (as far as I know) that mentions
this concept is from Lomuscio and Sergot (2003). They defined a formula ‘K̂ j

i p’
whose semantics is that the agent i knows that p on the assumption that the
agent j is performing morally. This semantics is also equivalent to ‘i knows that
if j complies with obligation, then ϕ is true’.

In the following section, the background of the core notion of this thesis,
knowledge-based obligations, is to be introduced.
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1.4 Knowledge-based conditional obligation

Among various possible interactions between knowledge and obligation, this
thesis focuses on the notion of knowledge-based obligation. It is a type of
obligations in which knowledge is embedded. The idea of the notion comes
from an observation that an agent’s knowledge (information) may affect the
agent’s obligation. Pacuit et al. (2006) gave an example for knowledge-based
obligation in our real life:

• Uma is a physician whose neighbor is ill. Uma does not know and has
not been informed. Uma has no obligation to treat her neighbor. But once
Uma is informed by her neighbor’s families, Uma is obliged to treat her
neighbor.

They defined a knowledge-based deontic logic on tree-like but history-based
models. The histories in their models consist of events from a set {Ei | i ∈ G},
instead of moments that stit models consist of. For any two global histories H
and H′, if they have the same pre-segment at the moment t, then the agent i
cannot distinguish the pair (H, t) and (H′, t). What makes the approach different
is that Pacuit and his colleagues introduced actions explicitly into the language
and defined G(a) as ‘action a is a morally good action’. With the concept of
‘good action’, ‘the agent i is obliged to perform action a’ is interpreted as ‘i
can perform a and i knows that a is good’. Thus, the authors did not define
obligation directly and make it reducible into other operators. In other words, if
you bear some knowledge-based obligation to take an action, you must know
that the action is morally good.

Broersen (2008) also dealt with some similar examples involving knowledge-
based obligations. Broersen defined the notion based on stit logic following the
idea of Kangerian-Andersonian reduction: OK[i xstit]ϕ =de f 2(¬Ki[i xstit]ϕ →
[i xstit]V) (the constant V is taken for the same purpose as Anderson’s constant
S with the meaning of violation). From Broersen’s point of view, it is (epis-
temically) obligated for the agent i to see to it that ϕ if and only if when the
agent i does not know that he/she ensures ϕ in the current state (although
he/she factually ensures ϕ), the agent i will bring about a violation. It should be
noticed that, although Broersen expressed this knowledge-based obligation with
‘OK[i xstit]’ which looks similar to the expression of ‘epistemic obligation’ (⃝K),
it substantially shows the meaning that the agent cannot bear some obligation
unless he/she knows it. Broersen further proposed an even stronger knowledge-
based obligation as: K ⃝ K[i xstit]ϕ =de f 2(¬Ki[i xstit]ϕ → K[i xstit]V). In this
definition, the agent i will knowingly bring about a violation if he/she does not
comply with his/her obligation.

In the systematic study on the deontic stit logic, Horty (2019) defined a notion
of epistemic oughts by extending utilitarian stit frames to labeled stit semantics
where action types 2 are added. Intuitively, the agent i has an epistemic ought

2Horty and Pacuit (2017) specifically study the notion of action types in stit semantics.
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to see to it that ϕ if and only if i knows that which action type is morally good
and it always leads to ϕ over all epistemically indistinguishable moments.

In summary, Section 1.3 and this section review literature on possible inter-
actions between knowledge and obligation. The following chart shows which
paper investigates which types of interactions.

Paper
Interaction ⃝K K⃝ K-based ⃝ KS-based ⃝ ⃝-based K

Åqvist (1967)
√

Feldman (1990)
√

Hulstijn (2008)
√

Lomuscio and Sergot (2003)
√ √ √

Aucher et al. (2009)
√ √

Broersen (2008)
√ √

Yamada (2006)
√

van Benthem et al. (2014)
√

Pacuit et al. (2006)
√

Horty (2019)
√

De Lima et al. (2010)
√

The column filled by gray color shows the three papers that we found on
knowledge-based obligations. This thesis is also partly motivated by these works,
but we follow a different approach. We will investigate the knowledge-based
obligations in a conditional manner, which means that we will embed epistemic
elements into conditional obligations. As illustrated in Section 1.2, Hansson’s
preference-based dyadic deontic logic established a satisfactory framework as
basis for conditional obligations.

Let us review Hansson’s preference-based models: M = ⟨W,⩽, V⟩. The
partial order ⩽ is a binary relation between states from W where s ⩽ t represents
that the state t is at least as good as the state s. Therefore, in the remaining
part of this thesis, we also call Hansson’s preference-based models betterness
structures to fit in the deontic context. If we only consider the single-agent case,
a betterness structure consists of a set of states for the agent, a valuation on
each world and a betterness relation between worlds with respect to the agent’s
deontic rules. An obligation of the agent is a common proposition satisfied by
all the best worlds with respect to ⩽. Briefly speaking, we have the following
two claims:

• (W, V) provides a set of possible situations.

• ⩽ provides the criteria on the betterness between these situations.

If we want to proceed with our investigation on knowledge-based condi-
tional obligation, how to combine epistemic elements with betterness structures?
In classical epistemic logic, an epistemic model is a tuple ME = ⟨W,∼, V
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(single-agent case) where ∼ is a binary relation to show the epistemic indistin-
guishability of the agent between possible worlds. Similarly, we also have two
claims about epistemic models:

• (W, V) provides a set of possible situations.

• ∼ shows the agent’s epistemic indistinguishability between these situa-
tions.

Therefore, it seems very natural to put all these ingredients together and
construct an epistemic betterness structure i.e., MEB = ⟨W,⩽,∼, V⟩ where our
logic of knowledge-based conditional obligations will be built. The investigation
on this new notion is to to be shown in Chapter 3.

However, an agent’s obligations are not immutable. In terms of knowledge-
based conditional obligation, the changes on knowledge may also bring about
the changes on obligations. Since epistemic betterness structures essentially
are extensions to epistemic models, dynamic epistemic logic should be the
first alternative tool used for capturing epistemic change in the context of
knowledge-based conditional obligations.

Dynamic epistemic logic is famous for action models which can be compo-
nents of both syntax and semantics. On the semantic side, an action model is a
mechanism changing the epistemic relation ∼ or updating the valuation V in an
epistemic model. Changing epistemic relations captures the agent’s information
changes3, whereas updating the valuation characterizes factual changes. Since
the definition of the knowledge-based conditional obligations are decided by
both epistemic relations and valuations, the two kinds of changes might lead to
new obligations. Chapter 4 mainly discusses obligation change due to epistemic
and factual changes.

Figure 1.1 visualizes the whole background of our study on the knowledge-
based conditional obligations as a summary of the previous sections.

1.5 Prescription and norm change

So far we have introduced deontic logics in which only the descriptive aspects
of obligations are concerned. These logics are merely about agents’ obligations.
The obligations belong to a special type of propositions which specially describe
deontic facts. In contrast, it is inappropriate to interpret all normative sentences
to propositions (obligations) since many evaluative sentences prescribe norms
rather than describing deontic facts. See the sentence below:

Due to the COVID-19 pandemic, you ought to keep a good ventilation.

3In this thesis, the two terms ‘epistemic change’ and the term ‘information change’ refer to the
same concepts. The term ‘epistemic change’ will be used more often in technical contexts and the
term ‘information change’ will occur more frequently in informal contexts.
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Epistemic and factual
changes cause obliga-
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Dynamic epistemic logic

factual/epistemic
change

framework

Figure 1.1: Background of knowledge-based obligations studied in this thesis
(each label on arrows represents the factor that leads to the birth of the target
logic)
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The descriptive reading of the sentence implies that there are already some
public rules requiring all people to keep a good ventilation and as a conse-
quence, it is a fact that you ought to follow the rules. Whereas the prescriptive
reading means that the sentence is announced by some authority (maybe a
government health department) to prescribe a new rule that everyone ought to
keep a good ventilation. It is obvious that the prescriptive reading translates
the sentence to an evaluative sentence which is neither true nor false. If an
evaluative sentence cannot be assigned truth values, is it possible to establish a
logic of evaluative sentences? This issue is well-known as Jørgensen’s dilemma.
It actuates the differentiation between description and prescription in deontic
logic. More precisely, they generally denote normative propositions (description)
and norms (prescription) respectively.

As mentioned in Section 1.3, Aucher et al. (2009) defined an epistemic deontic
logic where propositions and practitions (norms) are treated differently in syntax
and semantics to distinguish description and prescription. A more influential
logic is input/output logic which is designed specifically for dividing norms
and normative propositions, the latter of which are actually obligations (see
Makinson and Van Der Torre (2000) and Makinson and van der Torre (2007a)).
Input/output logic actually is not an axiomatization based on some semantics
in the classical sense. It instead provides a very general framework for all logic
systems that treat norms and obligations separately. The input of input/output
logic is a set of propositions which represents several facts. The core of the
logic is a set of conditional norms which is just like an algorithm which can
output obligations based on what facts are input. Therefore, the norms in
input/output logic are not propositions. Rather, they form a transformation
machine to produce obligations from facts.

Hansen (2008) argues that there is no logic of imperatives. But he claims
that “imperatives still can be meaningfully used to determine what obligations
arise in a certain situation”, which leads us to a logic about imperatives. The
concept of prioritized imperative structure is put forward by Hansen (2006) so
as to show an ordered set of imperatives which do not have truth values but
can provide norms for obligations. A prioritized imperative structure is a tuple
⟨I, f ,<⟩ where I is a set of imperatives, f is a function mapping each imperative
to their corresponding descriptive sentences and < is a binary relation to show
which imperative is more important. This structure inspires a key notion in this
thesis – priority structures which was originally proposed by Liu (2008) and
van Benthem et al. (2014). We will use it as the normative system in Chapter 4,
5 and 6. A normative system provides a criteria on which states of affairs are
better or worse. Obligations of agents are dependent on the normative system.

Besides the epistemic change and the factual change mentioned in Section 1.4,
norm change would affect obligations more substantially. Chapter 5 will show
several different updates on priority structures and obligations are changed
accordingly. A logic of conditional obligations relativized to normative systems
is established.
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Figure 1.2 shows the background of our research on prescription and de-
scription to be investigated in Chapter 5.

1.6 Actions and ‘ought-to-do’

It is widely agreed that obligations are descriptive since they merely describe
agents’ deontic states rather than prescribing some new norms. Obligations
themselves are propositions. However, what a deontic operator should be ap-
plied to has been controversial since the beginning of deontic logic. As men-
tioned in Section 1.1, Von Wright (1951)’s first deontic logic takes actions as
primary, which means that his deontic operator O is applied to actions instead
of propositions. But standard deontic logic applies the deontic operator to
propositions, which also makes a great impact on the following deontic logics.
Until Meyer (1988) established a variant of deontic logic based on dynamic
logic, researchers were considering the issue whether obligations should be
proposition-based or action-based. Deontic stit logic was developed out of the
idea that obligations should involve actions performed by agents. But it does
not really make actions explicit in their language and their deontic formula is
still read as ‘some agent ought to see to it that some proposition’.

In the context of knowledge-based obligations, is it possible to construct a
deontic logic based on actions? Dynamic epistemic logic immediately comes
into our mind since action models which are designed specifically for modelling
actions and the epistemic information is also combined. Moreover, action models
in dynamic epistemic logic can be both parts of syntax and semantics, which
means that it is possible to add them into our language to show which actions
ought to be done.

But how to build a deontic logic based on dynamic epistemic logic deserves
an elaboration. Dynamic epistemic logic extends the classical epistemic logic by
introducing action models to show the transitions between two epistemic models.
Each epistemic model is a fully description on the epistemic states of a group of
agents at a certain moment. An action is a transition mechanism to update one
epistemic model to a new epistemic model. This is the underlying strategy of
dynamic epistemic logic to simulate the epistemic and factual changes.

Then we look back on Meyer (1988)’s dynamic deontic logic. From his
perspective, an action ought to be done if and only if all consequences led
to by the action are morally good. So if we graft his idea to the context of
dynamic epistemic logic, we will probably be able to define that an action
ought to be done if and only if all updated epistemic models derived via the
action model are better than the initial epistemic model. Thus, the only problem
left is how to compare two epistemic models and judge which one is morally
better. In this way, priority structures play their role again as the criteria on
betterness. Chapter 6 will mainly focus on these issues and propose a new logic
of knowledge-based ‘ought-to-do’ obligations.
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Figure 1.3 shows the background of our study on the knowledge-based
‘ought-to-do’ obligations which will be investigated in Chapter 6.

1.7 Outline of the chapters

The rest of this thesis is structured as follows.

• In Chapter 2, we present technical preliminaries for reading the rest of the
thesis. The first and also the most important is Hansson’s dyadic deontic
logic which provides the technical basis for our framework. Then classical
epistemic logic will also be shown. Next we introduce the notion of priority
structure. It gives the relative ordering on several states of affairs. Finally,
dynamic epistemic logic is shown to explain how action models change
epistemic models. The approach that how to formalize information and
factual change will play an important role in chapter 4 and Chapter 6.

• In Chapter 3, we present a new dyadic deontic operator to formalize the
notion of knowledge-based conditional obligation in a static manner. Based on
epistemic betterness structures, the agent’s knowledge plays an important
role in the definition of epistemic conditional obligation. By giving an
explicit reading of this new operator and comparing it with objective
conditional obligation, some characteristics of epistemic conditional obli-
gations will be clarified. In the light of epistemic detachment, some real-life
scenarios involving knowledge-based obligations can be described for-
mally with our operator. A sound and strongly complete logic KCDL1
for single-agent knowledge-based conditional obligations is provided. The
strategy for completeness proof comes from Parent (2014). A sound and
strongly complete logic KCDL for multi-agent case is also provided. The
completeness proof is constructed with the help of step-by-step method.
This chapter is an extended version of a joint work with Davide Grossi,
Barteld Kooi and Rineke Verbrugge, which has been published as:

Xingchi Su. Knowledge-based conditional obligation. Short Papers Advances
in Modal Logic (AiML) 2020, pages 112–116, 2020.

• In Chapter 4, we provide a formalism to capture the dynamic interaction
between knowledge and obligations. We introduce the dynamic extension
of the static knowledge-based obligations DKCDL. We motivate the logic
by analyzing several scenarios and by showing how it can capture in an
original manner several fundamental deontic notions such as absolute,
prima facie and all-things-considered obligations. Finally, in the dynamic
epistemic logic tradition, we provide reduction axioms for the dynamic
operator and Kangerian-Andersonian reduction for the dyadic deontic
operator, on which the strong completeness of DKCDL is established.
This chapter has been previously published as:
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Davide Grossi, Barteld Kooi, Xingchi Su, and Rineke Verbrugge. How
knowledge triggers obligation. In International Workshop on Logic, Rationality
and Interaction, pages 201–215. Springer, 2021.

• Chapter 5 temporarily releases the context of knowledge. We provide a
formalization of conditional obligations relativized to normative systems.
The conditional obligation still describes what state of affairs that the
agent ought to see to it that. However, differently from previous work,
each conditional obligation appears in accordance with some certain nor-
mative system. Prescribing norms can be reflected on the updates on the
normative system. In this way, we distinguish the descriptive and prescrip-
tive uses of normative sentences and show the obligation changes due to
norm changes. Based on the notion of successful updates, the Jørgensen’s
dilemma can be conceptualized in a novel and proper way.

• Chapter 6 develops knowledge-based obligation following the approach of
‘ought-to-do’ obligations. Obligations are formalized as compound actions
in dynamic epistemic logic. A compound action can be a pointed action
model or a non-deterministic choice among several action models. An
obligation is able to change the current epistemic situation (the initial epis-
temic model) and bring it about updated epistemic situations where each
consequence models are better than the initial one. A sound and strongly
complete axiomatization AKDL is provided as a logic of knowledge-
based ‘ought-to-do’ obligations. The approach of defining obligations as
actions resolves several notorious paradoxes discussed in deontic logic,
such as Ross’s paradox, Weinberger’s paradox, Forrester’s paradox of
gentle murder, etc.
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Chapter 2

Preliminaries

In order to characterize knowledge-based conditional obligations and possi-
ble dynamics on them, we take Hansson’s betterness structures as the basic
framework. Epistemic logic will also be introduced for formalizing knowledge.
Priority structures from Hansen (2006) are criteria on comparing states and
therefore can determine betterness relations in betterness structures. Dynamic
epistemic logic is to be introduced as a preparation for capturing information
and factual change that would cause obligation change. Each logic or notions
have been investigated adequately in their own fields. We only show the most
standard aspects of these formal works as technical preliminaries for the rest of
this thesis.

2.1 Hansson’s dyadic deontic logic

Some philosophical background and the basic idea of Hansson’s dyadic deontic
logic have been introduced in Section 1.2. We will focus on the technical aspect
in this section and give the semantics and syntax formally.

2.1.1 Language and semantics

The language for Hansson’s dyadic deontic logic is LDDL, where DDL is an
acronym for ‘dyadic deontic logic’. Let P be a countable set of propositional
letters.

Definition 1 (Language LDDL). The language of Hansson’s dyadic deontic logic is
given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2ϕ | ⃝(ϕ|ϕ)

where p ∈ P.

21
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s1 // s2 //

  

s3 // s4

s5 // s6

Figure 2.1: A betterness structure

The formula p is a propositional atom which represents the minimal or
primary state of affairs. The formula ¬ϕ is the negation of ϕ. The formula
(ϕ ∧ ψ) is the conjunction. The formula 2ϕ is the universal formula which
means that ϕ is always true or ϕ is true in all situations. The formula ⃝(ϕ|ψ)
represents the conditional obligation which can be read as ‘it ought to be ϕ
given ψ’.

We mentioned in Section 1.2 that the language is interpreted over so-called
betterness structures. Betterness structures are essentially assessment systems
to order all the states, which can tell which states are ideal and which are
sub-ideal or sub-sub-ideal, etc. The betterness relation ⩽ can be defined based
on different ethical theories, such as consequentialism/utilitarianism (see Mill
(1859)), deontological theory (see Kant (2002, 2005)), social contractarianism (see
Hobbes (1914), Rousseau (1795)), or contractualism (see Scanlon et al. (1998)).

Definition 2 (Betterness structures (Hansson (1969))). A betterness structure M is
a triple of a set of states S, betterness relation ⩽: S × S which is a partial order, and a
valuation V : P → P(S) over S: M = ⟨S,⩽, V⟩.

An example of a betterness structure is figured as Fig. 2.1. In the figure,
si 99K sj denotes si ⩽ sj for any i, j ∈ N, which informally means that sj is at
least as good as si.

Several notations to be used in the rest of the thesis are also given here:

• ∥ϕ∥M= {s | s ∈ S, M, s |= ϕ},

• s < t iff s ⩽ t and t ̸⩽ s.

In Hansson’s tradition, the best states in a particular subset of S with respect
to⩽ are crucial if we want to define the semantics of the dyadic deontic formulas.
The notion of maximal elements in one set with respect to some ordering can be
used for capturing the best states in some subset.

Definition 3 (Maximal elements ). Given a betterness structure M = ⟨S,⩽, V⟩ and
T ⊆ S,

s ∈ max⩽ T iff s ∈ T and ∀t ∈ T(s ⩽ t ⇒ t ⩽ s)

Informally: within T, these are states such that no other state is strictly better
in T. Therefore these states are “as good as it gets” within T.

Now we can give the semantics for Hansson’s conditional obligations.
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Definition 4 (Semantics of LDDL (Hansson (1969))). Let M = ⟨S,⩽, V⟩ be a
betterness structure. The semantics of LDDL is defined as follows:

M, s |= p iff s ∈ V(s).
M, s |= ¬ϕ iff M, s ̸|= ϕ
M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ
M, s |= 2ϕ iff S = ∥ϕ∥M.
M, s |= ⃝(ϕ|ψ) iff max⩽∥ψ∥M⊆ ∥ϕ∥M

Note that here both 2 and ⃝( | ) are global modalities. The intuition of
Hansson’s conditional obligation is: all the best states satisfying ψ in M also sat-
isfy ϕ. We will call it an objective conditional obligation in Chapter 3 to distinguish
it from our epistemic conditional obligation since it does not depend on any
agent’s information.

Given the definition of the betterness relation, there is no guarantee that
the set of maximal elements of some non-empty ∥ϕ∥M is non-empty as well. It
can be the case that one can always find a strictly better state and never reach
a maximal state. In order to exclude these cases, two alternative properties on
betterness structures have been proposed by Parent (2014).

Definition 5. Let M = ⟨S,⩽, V⟩ be a betterness structure. We define two properties
of ⩽ as follows:

• (Limitedness) if ∥ϕ∥M ̸= ∅, then max⩽ ∥ϕ∥M ̸= ∅;

• (Smoothness) if M, s |= ϕ, then either s ∈ max⩽ ∥ϕ∥M or ∃t : t > s and t ∈
max⩽ ∥ϕ∥M.

Limitedness is the most straightforward property that guarantees non-
emptiness. Smoothness guarantees the existence of maximal elements in a
direct way. The idea of smoothness can be found in some early research on
nonmonotonic reasoning where it is originally called minimal modelability by
Bossu and Siegel (1985). Smoothness defined here is identical to the smoothness
condition defined by Kraus et al. (1990). Their original definition of smoothness
is defined only with respect to some particular subset of the model, i.e., ∥ϕ∥M is
smooth, which means that for each t ∈ ∥ϕ∥M, either t itself is maximal in ∥ϕ∥M
or there exists some s > t such that s is maximal in ∥ϕ∥M.1

2.1.2 The axiom system

Since Parent (2014) systematically studied the axiomatization of Hansson’s
dyadic deontic logic, we mainly illustrate Parent’s contributions in this section.

1If both ∥ϕ∥M and ∥ψ∥M are smooth, then ∥ϕ ∨ ψ∥M is smooth. However, if ∥ϕ∥M is smooth, it is
not necessary that ∥¬ϕ∥M is smooth. As a consequence, in Kraus et al. (1990)’s contexts, smoothness
is not closed under the operations of Boolean algebras. Although smoothness is closed under finite
disjunctions, it is not closed under infinite disjunctions.
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Definition 6. The axiom system F+(CM) consists of following axiom schemas and
inference rules:

(TAUT) All instances of tautologies
(S5) S5-schemata for 2
(COK) ⃝(B → C|A) → (⃝(B|A) → ⃝(C|A))
(Abs) ⃝(B|A) → 2⃝ (B|A)
(⃝Nec) 2A → ⃝(A|B)
(Ext) 2(A ↔ B) → (⃝(C|A) ↔ ⃝(C|B))
(Id) ⃝(A|A)
(Sh) ⃝(C|A ∧ B) → ⃝(B → C|A)
(D⋆) ¬2¬A → (⃝(B|A) → ¬⃝ (¬B|A))
(CM) (⃝(B|A) ∧⃝(C|A)) → ⃝(C|A ∧ B)
(MP) If ⊢ A and ⊢ A → B, then ⊢ B
(N) If ⊢ A, then ⊢ 2A

The system F+(CM) given by Parent (2014) extends Åqvist (1987)’s system F.
The axiom (COK) is the distribution axiom for the operator ⃝. The axiom (Abs)
reflects the assumption that the ordering over possible states is not dependent
on any specific states. The axiom (⃝Nec) is the deontic counterpart of the
well-known necessity rule. The axiom (Ext) permits the replacement of the
antecedent of the deontic conditionals with an equivalent antecedent. The axiom
(Id) means that the best cases where A is true, are cases where A is true. The
axiom (Sh), named after Shoham (1988b), corresponds to a weaker version of the
deduction theorem of a nonmonotonic preferential logic mentioned in Shoham
(1988a) and the derived rule (S) in Kraus et al. (1990). The axiom (D⋆) intuitively
means that if A is possible and we also have that under the condition that A,
the best states are B-states, then it is impossible that under the condition that A,
¬B is the best. The axiom (CM) corresponds to the (Cautious Monotonicity) rule
in Kraus et al. (1990).

The system F+(CM) was shown to be complete with respect to reflexive and
smooth betterness structures and it is also complete with respect to reflexive,
total, transitive and smooth (limited) structures.

2.2 Epistemic Logic

Epistemic logic formally studies the reasoning about epistemic notions, such as
knowledge and belief. In a narrow sense, epistemic logic is mainly concerned
with knowledge and its representation. Although there are many different types
of knowledge as indicated by Wang (2018) in recent years, standard epistemic
logic still focuses on ‘knowing that’ which can be paraphrased by propositional
knowledge 2. In other words, epistemic logic treats knowledge as propositions

2There are many non-propositional knowledge. The expression ‘knowing how’ in natural lan-
guage describes the process knowledge discussed in artificial intelligence or epistemology. For example,
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and therefore the reasoning between knowledge can be represented by the
logical inferences on propositions.

Let G be a finite set of agents and let P be a countable set of propositional
variables.

Definition 7 (Language LEL). The language of epistemic logic is given by the following
BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ

where p ∈ P and i ∈ G.

The formula Kiϕ is normally used for denoting ‘agent i knows that ϕ’.
Since LEL is defined in an inductive way, the formula Kiϕ can be a first-order
knowledge Ki p where p is a propositional atom, or a higher-order knowledge
KiKjψ which means i knows that j knows that ψ.

The most widely-used semantics for epistemic logic is the modal approach
where Kripke models play a crucial role.

Definition 8. A Kripke model for epistemic logic is a tuple ⟨S,∼1, · · · ,∼n, V⟩ where

• S is a set of states;

• for each i ∈ G, ∼i⊆ S × S is an equivalence relation over S;

• V ⊆ P → P(S).

We also call these Kripke models epistemic models. The domain S consists
of states. Each state provides the basis for evaluating all propositions that we
are concerned with via their truth values. A state s and the epistemic model
M where s comes from make up a possible world (M, s). In the rest part
of this thesis, we will also call a state s possible world if its model is clear.
In the earliest formal studies on epistemic logic by Hintikka (1962), possible
worlds are also called epistemic alternatives on which the information cannot
be indefensible (p and ¬p cannot hold in one alternative). A possible world can
be regarded as an adequate description on a given situation with respect to a
certain valuation V. Every ∼i represents the indistinguishability relation for the
agent i. Understanding the epistemic relations as indistinguishability relation
was first proposed by Lehmann (1984). The indistinguishability interpretation
brings about that epistemic relations must be reflexive, symmetric and transitive,
thus equivalence relations.

Figure 2.2 is an example of epistemic models. In Figure 2.2, four possible
worlds differ from each other since the two concerned propositions p and q have

‘knowing how to ride the bike’ is a process knowledge about ability, which is obviously not proposi-
tional. The logic of knowing how can be referred to Wang (2015). The expression ‘knowing why’ is
related to the explanation knowledge in philosophy of science. A logical study on ‘knowing why’ is
given by Xu et al. (2021). The expression ‘knowing what’ corresponds to descriptive knowledge. For
example, ‘knowing what the password is’ which is different from ‘knowing that the password is
1234’. The earliest formalization refers to Plaza (2007).
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Figure 2.2: An example of epistemic models

different values over them. In Figure 2.2a, agent i cannot distinguish between
any pair of the worlds, which represents that i neither knows the value of p nor
q. But in Figure 2.2b, i can distinguish s1 from s3 and s4, and also can distinguish
s2 from s3 and s4. It represents that i does know the value of q but i does not
know the value of p.

The standard axiomatization of epistemic logic EL is established entirely
based on the system S5 in classical modal logic since epistemic relations are
equivalence relation.

Definition 9. The axiom system of EL consists of the following axiom schemas and
inference rules:

for each i ∈ G,

(TAUT) All instances of tautologies
(K) Ki(ϕ → ψ) → (Kiϕ → Kiψ)
(T) Kiϕ → ϕ
(4) Kiϕ → KiKiϕ
(5) ¬Kiϕ → Ki¬Kiϕ
(MP) From ϕ and ϕ → ψ, infer ψ
(N) From ϕ, infer Kiϕ

The theories of EL are treated as characterization on principles of knowledge.
The axiom (T) characterized reflexivity in modal logic. It is the only uncontro-
versial interpretation on knowledge: If agent i knows that ϕ, then ϕ is true. This
validity perfectly expresses the condition of truth3 of forming knowledge from the
famous claim in epistemology ‘knowledge is equivalent to justified true belief’.
The axiom (K) says that if agent i knows that an implication is the case and i also
knows that the antecedent is the case, then the consequence is also known by i.
In other words, an agent’s knowledge is closed under distributivity. The axiom
(4) is also known as the principle of positive introspection which means that if

3There is a long-held justified-true-belief account of knowledge. It means that if all three condi-
tions (justification, truth, belief) are met of a claim, we have knowledge of this claim (see Ichikawa
and Steup (2018)).
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agent i knows that ϕ is the case, then i also knows that he/she knows that ϕ. The
negative introspection, the axiom (5), is not accepted by many philosophers since
in most cases, people even cannot realize that he/she does not know something.

The soundness and strong completeness can be proved in the same way
as modal logic S5 following the approach of canonical models (see Blackburn
et al. (2002)). In this thesis, most completeness proofs, however, will not use the
canonical model approach.

2.3 Epistemic plausibility models

As mentioned in Section 1.4, the core notion of this thesis, knowledge-based
conditional obligations, is defined based on epistemic betterness structures,
i.e., MEB = ⟨W,⩽,∼, V⟩ (single-agent case). Coincidentally, in doxastic logic,
the epistemic plausibility models which are very similar to epistemic better-
ness structures, form an alternative semantic apparatus for modelling both
knowledge and beliefs.

Definition 10 (Epistemic plausibility models Baltag and Smets (2006b)). An
epistemic plausibility model is a tuple MEP = ⟨W,⩽P,∼, V⟩ where

• W is a set of states;

• ∼⊆ W × W is the epistemic relation;

• ⩽P⊆ W × W is the plausibility relation;

• V ⊆ P → P(S) is a valuation.

For two states s and t, the relation s ⩽P t holds if and only if s is at least
as plausible as t. But there is a constraint on the plausibility relations: ⩽P⊆∼,
which means that s ⩽P t implies s ∼ t. In other words, only if the agent
cannot epistemically distinguish two possible worlds, their plausibilities are
comparable.

Analogous to the maximal elements in a betterness structure, there is a set of
minimal states in an epistemic plausibility model, i.e., min⩽P S which represents
the set of the most plausible states in S ⊆ W.

Definition 11 (Minimal elements ). Given an epistemic doxastic model M = ⟨W,⩽P
,∼, V⟩ and T ⊆ S,

s ∈ min⩽P T iff s ∈ T and ∀t ∈ T(t ⩽P s ⇒ s ⩽P t)

Baltag and Smets (2006b) defined the notion of conditional beliefs based on
epistemic plausibility models. The unconditional belief is a special conditional
belief when the condition is a tautology. The formula Bψϕ represents that the
agent believes that ϕ after learning ψ. The semantics is given as follows:
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MEP, s |= Bψϕ iff MEP, t |= ϕ for all t ∈ min⩽P([s]
∼ ∩ ∥ψ∥MEP).

The truth condition intuitively means that all the most plausible ψ-states
that the agent epistemically cannot distinguish satisfy ϕ. We will see that this
definition is very similar to our knowledge-based conditional obligation in
Chapter 3.

2.4 Priority structure

The betterness relation in a betterness structure is given a priori. However, a
priority structure is able to make a ranking for a set of states. Priority structures
were originally introduced by Liu (2008) in the context of preference logic. But
the idea of it in deontic logic can be dated back to Hansen (2006). We first
introduce the notion of priority sequence and G-sequence.

Definition 12 (Priority sequence (Liu (2008))). A priority sequence is a finite ordered
sequence of first-order formulas written as follows:

C1 ≫ C2 · · · ≫ Cn (n ∈ N)

According to Liu’s explanations, they only think of finite domains, monadic
predicates, simple formulas, usually quantifier free or even variable free. For ex-
ample, the formula Cn(x) represents that the object x has the property described
by Cn. Based on a certain priority sequence, a preference ordering between
objects can be derived as follows:

Definition 13 (Preference derived from priority sequence (Liu (2008))). Given a
priority sequence of length n, and two objects x and y, pre f (x, y) is defined as follows:

pre f1(x, y) ::= C1(x) ∧ ¬C1(y),
pre fk+1(x, y) ::= pre fk(x, y) ∨ (Eqk(x, y) ∧ Ck+1(x) ∧ ¬Ck+1(y)), k < n,
pre f (x, y) ::= pre fn(x, y),

where the auxiliary binary predicate Eqk(x, y) stands for (C1(x) ↔ C1(y))∧ · · · ∧
(Ck(x) ↔ Ck(y)).

The above definition shows that the preference between two objects is de-
cided by the highest formula for which they have different truth values in the
priority sequence. Liu’s priority sequence is actually very similar to the notion
of ideality sequence to be introduced in Chapter 5. Now let us show a follow-up
notion introduced by Liu which motivates the priority structures in deontic
logic.

Definition 14 (G-sequence (Liu (2008))). A priority sequence C1 ≫ C2 · · · ≫ Cm
gives rise to a G-sequence: R1 ⩾ R2 ⩾ · · · ⩾ R2m of length 2m by the following way:
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(p ∨ q) // p

Figure 2.3: G

R1 : C1 ∧ C2 ∧ · · · ∧ Cm,
R2 : C1 ∧ C2 ∧ · · · ∧ Cm−1 ∧ ¬Cm,
R3 : C1 ∧ C2 ∧ · · · ∧ ¬Cm−1 ∧ Cm,
...
R2m−1 : ¬C1 ∧ ¬C2 ∧ · · · ∧ ¬Cm−1 ∧ Cm,
R2m : ¬C1 ∧ ¬C2 ∧ · · · ∧ ¬Cm−1 ∧ ¬Cm.

It is obvious that for each i, j ∈ N, if i < j, then Ri implies Rj, which is
in line with the constraints of our core notion, priority structures. But priority
structures are extensions of G-sequences since they are not only linear orders,
but can also be any strict orders4.

The domain of a priority structure is a finite set of propositional formulas.
Let LPL be the language for the propositional logic.

Definition 15 (Priority Structures (van Benthem et al. (2014))). A priority structure
is a tuple G = ⟨Φ,≺⟩ such that:

• Φ ⊂ LPL and Φ is finite;

• ≺ is a strict order on Φ such that for all formulas ϕ, ψ ∈ Φ, it holds that:
if ϕ ≺ ψ, then ψ logically implies ϕ in the propositional logic.

An example of a priority structure is shown in Fig 2.3, where a one-way
dashed arrow from ϕ to ψ denotes ϕ ≺ ψ. In Figure 2.3, p is the most ideal
proposition and (p ∨ q) is the sub-ideal proposition, which intuitively means
that if p (the most ideal case) is not the case, then q is the best.

A priority structure supplies a criterion for assessing the relative ideality of
states. Given a priority structure, a betterness relation can be derived from a
domain of a betterness structure. In this way, priority structures serve a similar
purpose to norms in van der Torre and Tan (1998). In this thesis, we follow
the approach of van Benthem et al. (2014) to obtain betterness relations from
priority structures.

Definition 16 (Betterness Structures Based on Priority Structures (van Benthem
et al. (2014))). Given a priority structure G = ⟨Φ,≺⟩ and a betterness structure
M = ⟨S,⩽, V⟩, the relation ⩽ is defined as follows, for any two states s, s′ ∈ S:

s ⩽G s′ ⇐⇒ ∀ϕ ∈ Φ : s ∈ ∥ϕ∥M ⇒ s′ ∈ ∥ϕ∥M

then we say M is a betterness structure based on G.
4A relation ≺ is a strict order on a set S if it is irreflexive, asymmetric and transitive.
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s1 : ¬p,¬q
GG

// s2 : ¬p, q
GG

// s3 : p, q
GG

Figure 2.4: MG

Briefly speaking, the more the formulas in G that a possible world satisfies,
the better the world is. And the betterness relations derived in this way are total
preorders. An example of a betterness structure based on G is shown as MG in
Figure 2.4. According to G, the state satisfying p is the best. So s3 is the best.
The state satisfying (p ∨ q) is better than those not satisfying it. So s2 is better
than s1.

2.5 Dynamic epistemic logic

Dynamic epistemic logic generally covers all formal studies on changes of
epistemic notions by modal logic that follow the approach of model change.
It involves many subfields, such as public announcement logic, belief revision
theory, action models for characterizing information and factual change, etc. In
this section, we mainly introduce the standard system for dynamic epistemic
logic DEL on which epistemic models can be changed by action models. More
details can be referred to Kooi (2007) and van Ditmarsch et al. (2007).

2.5.1 Language LDEL and semantics

The logic DEL is different from other epistemic logics due to action models
which are called ‘models’ but appear both in syntax and semantics. The action
models are capable of changing information or facts in a gentle way. Let us first
introduce the formal definition of action models.

Definition 17 (Action Models (Definition 2.4 in van Ditmarsch and Kooi (2008))).
An action model for a language L is a structure U = ⟨E, R1, R2, · · · , Rn, pre, post⟩
where

• E is a finite non-empty set of events;

• for each i ∈ G, Ri : E × E is i’s indistinguishability relation between events;

• pre : E → L assigns to each event a precondition;

• post : E → (P → L) assigns to each event a postcondition for each atom.
Each post(e) function is required to change truth values of only finitely many
propositions. The finite difference is called its domain: dom(post(e)).
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For each e ∈ E, (U, e) is called a pointed action model.

An action model consists of events, instead of states. An event can be
regarded as an adequate description of all taken-into-account consequences
caused by the action. For example, I flipped a coin on the table but I do not see
which side was originally heads up (See the figure below, htt represents ‘head
to tail’ and tth represents ‘tail to head’).

ehtt
|| i ""

etth

• The action model for the action of flipping the coin therefore contains two
different events: one is that the coin was heads up and I flipped it to tails
up and the other one is that the coin was tails up and I flipped it to heads
up. These two events constitute the action of flipping.

• Binary relation Ri is the epistemic relation which represents that agent i
cannot distinguish these two events. The indistinguishability captures the
fact that I cannot see which side is heads up.

• The function pre is an abbreviation of precondition. For each possible world,
it decides which events are executable on it. In our example, only if the
coin was heads up, the event ehtt can happen on it. Otherwise, the event
etth can happen.

• The function post represents postcondition for each event and each propo-
sitional atom. It is used for modelling factual changes due to the action.
In the example, we have post(ehtt)(h) = ⊥ and post(ehtt)(t) = ⊤, which
means that if the coin was heads up, then the proposition ‘the coin is
heads up’ (h) becomes false and the proposition ‘the coin is tails up’ (t)
becomes true.

A pointed action model (U, e) represents that the event e is specified as the
real event. Action models are not only functions operating on epistemic models,
but also work as parts of syntax to show which actions are done.

Definition 18 (Language LDEL). The language LDEL of dynamic epistemic logic is
given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | [(U, e)]ϕ,

where p ∈ P, i ∈ G, and (U, e) is a pointed action model.

The formula Kiϕ is the classical epistemic formula representing that agent
i knows that ϕ is the case. The formula [(U, e)]ϕ means that after performing
action (U, e), the formula ϕ becomes true.
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The models for DEL are still epistemic models. Since action models can
update epistemic models and the truth condition of [(U, e)]ϕ depends on the
updated epistemic models, we need to introduce the notion of updated epistemic
models.

Definition 19 (Updated epistemic model (van Ditmarsch et al. (2007))).
Given an epistemic model ME = ⟨S,∼1, · · · ,∼n, V⟩ and an action model U =
⟨E, R1, · · · , Rn, pre, post⟩, the result of executing U in ME is the model ME ⊗ U =
⟨S′,∼′

1, · · · ,∼′
n, V′⟩:

• S′ = {(s, e) | s ∈ S, e ∈ E and ME, s |= pre(e)};

• for each i ∈ G, ∼′
i= {((s, e), (t, f )) | (s, e), (t, f ) ∈ S′, (s, t) ∈∼i, (e, f ) ∈ Ri};

• V′(p) = {(s, e) | ME, s |= post(e)(p)}.

The new domain of states is a subset of the cartesian product of the original
domain S and the set of events E. The subset only includes those pairs such that
the state from S in the pair satisfies the precondition of the event from E in the
same pair. And, given two pairs in the new domain, if the agent i can neither
distinguish the states from the two pairs nor distinguish the two events, then i
cannot distinguish these two pairs in the updated epistemic model. The new
valuation is decided by the postcondition function of U.

Definition 19 shows the way to update one epistemic model by a pointed
action model. Then the semantics of LDEL comes naturally.

Definition 20. The truth conditions of propositional atoms, Boolean formulas and
epistemic formulas are identical to EL. Let M be an arbitrary epistemic model.

M, s |= [(U, e)]ϕ iff M, s |= pre(e) implies M ⊗ U, (s, e) |= ϕ.

The antecedent of the truth condition M, s |= pre(e) represents that the event
e is executable on the current possible world s. And the consequence shows that
after performing the action (U, e), the formula ϕ is true on the updated world
(s, e).

2.5.2 Axiom system DEL

The axiom system for dynamic epistemic logic with postconditions is called UM
by van Ditmarsch and Kooi (2008). In order to make terminology unified and
more readable, we name it as DEL in this thesis.

Definition 21. The proof system DEL consists of the following axiom schemas and
inference rules:
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for each i ∈ G,

(TAUT) All instances of tautologies
(K) Ki(ϕ → ψ) → (Kiϕ → Kiψ)
(T) Kiϕ → ϕ
(4) Kiϕ → KiKiϕ
(5) ¬Kiϕ → Ki¬Kiϕ
(U-A) [(U, e)]p ↔ (pre(e) → post(e)(p))
(U-N) [(U, e)]¬ϕ ↔ (pre(e) → ¬[(U, e)]ϕ)
(U-C) [(U, e)](ϕ ∧ ψ) ↔ ([(U, e)]ϕ ∧ [(U, e)]ψ)
(U-K) [(U, e)]Kiϕ ↔ (pre(e) → ∧

e′Rie Ki[(U, e′)]ϕ)
(MP) From ϕ and ϕ → ψ, infer ψ
(N) From ϕ, infer Kiϕ
(RE) From ϕ ↔ ψ, infer χ ↔ χ[ϕ/ψ]

Besides the classical S5-axioms for epistemic operator Ki, the axiom (U-A),
(U-N), (U-C) and (U-K) are reduction axioms for the dynamic operator [(U, e)].
By these reduction axioms and the inference rule (RE), we can reduce every
LDEL-formula to an LEL-formula. In this way, the completeness for DEL can be
reduced to the completeness for EL. The basic proof strategy refers to Chapter
7.4 in van Ditmarsch et al. (2007) and Theorem 11 in Kooi (2007).
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Chapter 3

Knowledge-based Conditional
Obligation

不知者不罪。
No blame attaches to the unconscious doer of the wrong.

—清·钱彩《说岳全传》

3.1 Introduction

The obligations of an agent can be affected by their knowledge. Extensive
studies have already been published that formalize various possible interactions
between obligations and knowledge as mentioned in Chapter 1.3. Motivated by
several real-life scenarios, some of which are taken from literature, this chapter
focuses on the ‘knowledge-based obligation’ and provides a logic for it. These
scenarios are listed below.

Scenario 1, 3 and 4 are given by Pacuit et al. (2006) and Scenario 2 by Horty
(2019).

Scenario 1. Uma is a doctor whose neighbour Sam is ill. And Sam is a patient
at Uma’s practice. But Uma does not know that Sam is ill. We intuitively think
that Uma has no obligation to treat her neighbour.

Scenario 2. Tao places a coin on the table but Chiyo cannot see whether it is
heads up or tails up. Chiyo must risk five euros for the opportunity to bet on
heads or tails, with ten euros to win if Chiyo bets correctly (if the coin lands
heads up and Chiyo bets on heads, or if the coin lands tails up and Chiyo bets
on tails) and cannot get the five euros back if she bets incorrectly; or Chiyo can
choose not to gamble, without any profit or loss.

35
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Scenario 3. Uma is a doctor whose neighbour Sam is ill. Sam’s daughter Ann
comes to Uma and tells her this fact. Now Uma knows that Sam is ill and
intuitively, we think Uma has an obligation to treat her neighbour.

Scenario 4. Uma is a doctor whose neighbour Sam is ill. Uma is working in
her hospital and Sam is in the same hospital at the same time. So we think that
Uma has an obligation to know whether Sam is ill although Sam’s daughter
does not come to tell her.

Scenario 5. Uma is a doctor whose neighbour Sam is ill. Sam’s daughter Ann
knows that Uma is a doctor and Ann also knows that Uma ought to treat Sam if
she knows that Sam is ill.

Scenario 6. Zaha is a patient in hospital. She knows that she has a fatal disease.
Driss, as a doctor in the hospital, is obliged to offer palliative care.

In Scenario 1, one would not say that Uma is obliged to treat Sam as she
does not know that he is ill. Likewise, in Scenario 2, Chiyo knows that there is
a right choice and she ought to bet on the face that the coin lands, but Chiyo
does not know whether the coin lands heads up, which makes Chiyo refrain
from bearing the obligation of betting correctly. But in Scenario 3, Uma ought
to treat Sam since Ann has already told her. It is clear, based on the first three
scenarios, that knowing some fact or not would directly decide whether the
agent’s obligation is triggered.

Scenario 4 emphasizes a special kind of obligation: epistemic obligation,
which means that an agent is obliged to know something. Multiple agents are
involved in Scenario 5 where we can also say that if Sam is ill, Ann ought to let
Uma know that Sam is ill. In Scenario 6, under the condition that Driss knows
that Zaha already knows that she has the disease, Driss ought to offer palliative
care.

In all the scenarios, obligations are in the form of conditionals. In other
words, whether an agent should fulfill their obligation depends on whether
they know the condition (antecedent) of the conditional obligation. Out of this
observation, we will formalize knowledge-based obligations in the form of
conditional. Moreover, as Scenario 3 suggests, under the condition that Sam
is ill, Uma is obliged to treat Sam but Ann is not. So conditional obligations
are generally agent-dependent, which inspires us to introduce agents into the
formal definition of conditional obligations. In what follows we will briefly
review relevant literature.

Conditional obligations It has been illustrated in Chapter 1.2 that the para-
doxes derived from standard deontic logic gave rise to the development of
the notion of conditional obligations. They are defined to describe obligations
that are ‘triggered’ by some conditions. Dyadic deontic operators represent
conditional obligations by ⃝(ϕ|ψ), which intuitively means that ‘it ought to be
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ϕ given the condition that ψ’ (see Von Wright (1956), Van Fraassen (1973), Horty
(1993), Kooi and Tamminga (2008)). Hansson defined his dyadic obligation
operator over preference-based models Hansson (1969), where the semantics of
⃝(ϕ|ψ) is: the best ψ-states are ϕ-states.

Hansson’s conditional obligations are generally thought as nonmonotonic
obligations in the sense that it invalidates the formula ⃝(ϕ|ψ) → ⃝(ϕ|ψ ∧ χ). It
is analogous to nonmonotonic reasoning as well as to variably strict conditionals.
In nonmonotonic reasoning, the inference pattern Left Strengthening, from ψ⇝ ϕ
infer ψ ∧ χ ⇝ ϕ, is invalid shown by Kraus et al. (1990). In Lewis (1973)’s
study on counterfactual, he suggests that counterfactual is a variably strict
conditional, which makes a case possible that |= ψ1 7→ ϕ1 but ̸|= (ψ1 ∧ ψ2) 7→ ϕ.
Nonmonotonicity of Hansson’s conditional obligations suggests that ‘ought to
be ϕ’ can be overridden by a stronger condition.

Conditional obligations are related to the issue of factual detachment which
can be formalized as (⃝(ϕ|ψ) ∧ ψ) → ⃝(ϕ|⊤). It means that unconditional
obligation follows from the truth of the antecedent of conditional obligation.
For example, if there are conditional obligations ⃝(ϕ|ψ1) and ⃝(¬ϕ|ψ2), then,
under different facts, opposite obligations are invoked.

It deserves noting that the upcoming frames for knowledge-based conditional
obligations in this chapter are very similar to epistemic plausibility models in
context of doxastic logic and belief revision theory (see Baltag and Smets (2006a),
van Benthem and Liu (2007), Baltag and Smets (2008) and Chapter 2.3). Given a
well-founded preorder called plausibility relation, the agent’s belief on ϕ is also
interpreted with respect to the preorder.

Obligations involving multiple agents One agent may have some obligations
involving other agents. For example, you could have an obligation to let others
do something. Moreover, different agents have different obligations. It is possible
that different agents ought to act differently, even oppositely sometimes, under
some identical condition. For example, when a house is on fire, the firefighters
ought to rush to the house but other people should keep away from the fire.
These examples indicate that obligations, especially the conditional obligations,
are strongly agent-dependent.

Multi-agent deontic logic has been studied in various approaches, such as
stit logic (see Horty (1996), Lorini (2012)), coalition epistemic dynamic logic (see
De Lima et al. (2010)), non-monotonic reasoning (see Horty (2001), Beirlaen and
Straßer (2014)), deontic interpreted systems (See Lomuscio and Sergot (2001,
2003)), normative systems (see Ågotnes et al. (2007)) and game theory (see
Tamminga and Duijf (2017)). Collective obligations form an important topic in
the realm of multi-agent deontic logic. This thesis will not focus on collective
obligations which is left as future work.

1 7→ is the strict implication.
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Contributions of this chapter The aim of this chapter is to formalize the
notion of knowledge-based obligations as conditional obligations in the multi-
agent case. The semantic apparatus, called epistemic betterness structures, is
defined by adding epistemic relations for each agents to Hansson’s betterness
structures. Hansson (1969) defines a dyadic deontic operator ⃝( | ) to formalize
conditional obligations. We will follow Hansson’s approach to define a dyadic
deontic operator

⊙
i( | ), called epistemic conditional obligation whose defi-

nition involves both i’s epistemic relation and the betterness relation. We also
investigate the new operator by comparing it to objective conditional obligation
and finding its Boutilier form. That is, its translation into a standard modal
language.

Since the motivation of this chapter is mostly rooted in the scenarios given
above, each is modelled by some proper epistemic betterness structure. Over
each structure, we can formalize the knowledge-based conditional obligations
of different agents with the new dyadic deontic operator accordingly. Moreover,
unconditional obligations (all-things-considered obligations) are obtained in the
light of an epistemic version of the factual detachment, called epistemic detach-
ment. Epistemic detachment is an inference pattern which intuitively indicates
that the agent’s uncertainty of the condition decides whether the knowledge-
based conditional obligation is triggered. Therefore, over these structures where
i bears the same knowledge-based conditional obligation, i might have different
unconditional obligations.

The main technical result of this chapter is the axiom system KCDL

for knowledge-based conditional obligations based on Parent (2014)’s system
F+(CM) (see Chapter 2.1). We prove that the system is strongly complete with
respect to an appropriate class of epistemic betterness structures, using the
method known as the step-by-step construction (see Burgess (1984), Blackburn
et al. (2002)).

Several assumptions on knowledge-based conditional obligations studied in
this chapter should be explicitly pointed out:

1. We assume that an agent’s knowledge-based conditional obligations not
only depend on the deontic betterness relation, but also their epistemic
information (and therefore may be different for different agents).

2. We assume that an agent has no uncertainty regarding their own
knowledge-based conditional obligations.

3. We assume that an agent can have uncertainty on the state of affairs that
may trigger conditional obligations.

Outline of this chapter Some formal background will be shown in Section 3.2.
Section 3.3 defines the epistemic betterness structures as the semantics of our
logic and investigates some properties of the new dyadic operator. The epistemic
detachment can be validated over our frameworks and we can model the above
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six scenarios properly with epistemic detachment in Section 3.4. A sound and
strongly complete logic of knowledge-based conditional obligations KCDL will
be given in Section 3.5. We also compare our work with some related articles in
Section 3.6.

3.2 Formal background

We have provided some background on Hansson’s dyadic deontic logic in
Chapter 2.5. This section will recall some key points and give some other new
important notions to be used in the rest of this chapter. The formula ⃝(ϕ|ψ)
represents Hansson’s conditional obligation and

⊙
i(ϕ|ψ) is to denote epistemic

conditional obligation (note the dot). Unconditional obligations are interpreted
as special cases of conditional ones: ⃝(ϕ|⊤) and

⊙
i(ϕ|⊤), respectively. Given

a countable set of propositional letters P, the language of Hansson’s dyadic
deontic LDDL is given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2ϕ | ⃝(ϕ|ϕ)

where p ∈ P.

3.2.1 Betterness structures

The language is interpreted over so-called betterness structures. Betterness struc-
tures are essentially assessment systems to order all the states, which can tell
which states are ideal.

Definition 22 (Betterness structures (Hansson (1969))). A betterness structure M
is a tuple ⟨S,⩽, V⟩, consisting of a set of states S, a betterness relation ⩽: S × S which
is a partial order, and a valuation V : P → P(S).

We write s < t iff s ⩽ t and t ̸⩽ s.

Definition 23 (Maximal elements ). Given a betterness structure M = ⟨S,⩽, V⟩
and T ⊆ S,

s ∈ max⩽ T iff s ∈ T and ∀t ∈ T(s ⩽ t ⇒ t ⩽ s)

Maximal elements in T are these states which no other state is strictly better
than in T. Therefore these states are “as good as it gets” within T.

Now we show the semantics for Hansson’s conditional obligations as a
reminder.

Definition 24 (Hansson’s conditional obligations (Hansson (1969))). Let M =
⟨S,⩽, V⟩ be a betterness structure. The semantics of LDDL is defined as follows:

M, s |= 2ϕ iff S = ∥ϕ∥M.
M, s |= ⃝(ϕ|ψ) iff max⩽∥ψ∥M⊆ ∥ϕ∥M.
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where ∥χ∥M denotes {s | s ∈ S, M, s |= χ}.

We will call Hansson’s conditional obligation as an objective conditional obli-
gation in Section 3.3 to distinguish it from our epistemic conditional obligation
since it does not depend on the agent’s information.

Given the definition of the betterness relation, there is no guarantee that the
set of maximal elements of some non-empty ∥ϕ∥M is non-empty. It can be the
case that one can always find a strictly better state and never reach a maximal
state. In order to exclude this, besides limitedness and smoothness mentioned
in Chapter 2.1, the third alternative property on betterness structures is also
proposed here.

Definition 25. Let M = ⟨S,⩽, V⟩ be a betterness structure. We give three properties
of ⩽ as follows (two of them have been introduced in Definition 5):

• (Limitedness) if ∥ϕ∥M ̸= ∅, then max⩽ ∥ϕ∥M ̸= ∅;

• (Smoothness) if M, s |= ϕ, then either s ∈ max⩽ ∥ϕ∥M or ∃t : t > s and t ∈
max⩽ ∥ϕ∥M.

• (Noetherianness) ⩽ is a reflexive, transitive, converse weakly well-founded order.

Noetherian betterness structures guarantee that there are maximal elements
by ensuring that there are no infinite strictly ascending chains in the model.
Smoothness guarantees the existence of maximal elements in a more direct way.
All three properties guarantee that the subsets of betterness structures have
maximal elements. They are however not equivalent. The following fact captures
how these properties are related.

Fact 1. The relations between limitedness, smoothness and Noetherianness can be shown
as following figure:
Noetherianness // smoothness // limitedness

Proof. It is easy to see that these implications hold from left to right. We only
give the proofs for the two nontrivial cases that show the converse does not
hold: (1) if M is smooth, M can be non-Noetherian. (2) If M is limited, M can
be non-smooth.

(1) We define a betterness structure M1 = ⟨W,⩽∗, V⟩ such that M1 is smooth
but not Noetherian. Let W = S∪ T where S = {si | i ∈ N} and T = {ti | i ∈ N}.
Let ⩽= {⟨si, ti⟩ | i ∈ N} ∪ {⟨si, si+1⟩ | i ∈ N}. Let ⩽∗ be the reflexive and
transitive closure of ⩽. Let V(p) = W for each propositional letter p. See
Figure 3.1 for a picture of this model.

Since all the states in W share the identical valuation, we can show by
induction on ϕ that ∥ϕ∥ = W or ∥ϕ∥ = ∅ for all ϕ. Let r be an arbitrary
state such that r ∈ ∥ϕ∥M. If r ∈ S, there is a state t ∈ T such that r ⩽ t and
t ∈ max⩽ ∥ϕ∥M. If r ∈ T, r ∈ max⩽ ∥ϕ∥M. So M1 is smooth. But it is obvious
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s0
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// s1
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// s2
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// s3

��

// s4

��

// . . .

t0 t1 t2 t3 t4 . . .

Figure 3.1: The model M1 which is smooth but not Noetherian.

s0

��

// s1 // s2 // s3 // s4 // . . .

t . . .

Figure 3.2: The model M2 which is limited but not smooth.

that M1 is not Noetherian since all the states in S form an infinite ascending
chain.

(2) We define a betterness structure M2 = ⟨W,⩽∗, V⟩ such that M2 is limited
but not smooth. Let W = S ∪ {t} where S = {si | i ∈ N}. Let ⩽= {⟨s0, t⟩} ∪
{⟨si, si+1⟩ | i ∈ N}. Let⩽∗ be the reflexive and transitive closure of⩽. V(p) = W
for each propositional letter p. See Figure 3.1 for a picture of this model.

Since all the states in W share the identical valuation, we can show by
induction on ϕ that ∥ϕ∥ = W or ∥ϕ∥ = ∅ for all ϕ. Therefore, for every formula
ϕ such that ∥ϕ∥M2 ̸= ∅, t ∈ max⩽ ∥ϕ∥M2 . But no si (i ≥ 1) is a maximal ϕ-states.
So M2 is limited but not smooth.

3.2.2 Some properties of ⃝(ϕ|ψ)

Nonmonotonicity Extensive literature has discussed the importance of non-
monotonicity in deontic logic (see Nute (2012)). For example, under the condition
that you see a man is shot, you ought to help him. But if the man is a fugitive and
is shot by a policemen trying to arrest him, you no longer have the obligation to
help him. The example indicates that conditional obligations are defeasible in
the sense that a conditional obligation that holds may fail when the condition is
strengthened, i.e. the truth of ⃝(ϕ|ψ) does not imply that ⃝(ϕ|ψ ∧ χ) holds.

In Hansson’s framework, we have ̸|= (2(ϕ → ψ) ∧⃝(θ|ψ)) → ⃝(θ|ϕ)
which shows that Hansson’s conditional obligations are nonmonotonic. However,
Kraus et al. (1990) proposed a weaker version of monotonicity – cautious
monotonicity: |= ⃝(ϕ|ψ) ∧ ⃝(θ|ψ) → ⃝(θ|ψ ∧ ϕ). Cautious monotonicity
expresses that adding a new fact that is already a good consequence of a
condition should not invalidate another good consequence of the condition. This
corresponds to the axiom (CM) in the system F+(CM) in Parent (2014).
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Boutilier form It is worth noting that in several previous studies on conditional
obligations or conditional logic (see Boutilier (1994), van Benthem et al. (2014),
van der Torre (1997)), it is shown that over betterness structures, the definition of
conditional obligations ⃝(ϕ|ψ) is equivalent to a formula which merely consists
of classical modalities:

U (ψ → ⟨⩽⟩(ψ ∧ [⩽](ψ → ϕ))) (⋆)

Here, U is the universal modal operator, while ⟨⩽⟩ and [⩽] are the classical
modalities based on the betterness relation ⩽2. We call (⋆) the Boutilier form of
⃝(ϕ|ψ). Intuitively, the Boutilier form expresses that for all the states satisfying
ψ, there exists one better state satisfying ψ such that all of its better states either
satisfy ¬ψ or satisfy both ψ and ϕ. The Boutilier form not only indicates that
⃝(ϕ|ψ) can be reduced to classical modal operators over smooth structures, but
describes that even on the non-smooth structures, we can always find a better
ψ-state for every ψ-state such that each state better than it satisfies ψ → ϕ. In
Section 3.3, we provide the Boutilier form of our new dyadic obligation operator
as well.

3.3 Epistemic betterness structures

In this section we introduce the new operator for epistemic conditional obliga-
tions. After presenting the language and semantics in Sections 3.3.1 and 3.3.2, we
compare the new operator to Hansson’s conditional obligation in Section 3.3.3.
We consider some validities and invalidities that help us read the new oper-
ator in Section 3.3.4. Finally we give a Boutilier form for the new operator in
Section 3.3.5.

3.3.1 The Language for KCDL

Definition 26 (Language LKCDL). Let P be a countable set of propositional variables
and G be a finite set of agents. The language LKCDL is given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | ⊙i(ϕ|ϕ),

where p ∈ P and i ∈ G.

The formula Kiϕ is read as “agent i knows that ϕ” and
⊙

i(ϕ|ψ) is read as
“if agent i knows that ψ, i ought to see to it that ϕ”.

2For clarification, M, s |= [⩽]ϕ iff for all t such that s ⩽ t, M, t |= ϕ and ⟨⩽⟩ is the dual of [⩽].
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3.3.2 Epistemic betterness structures

In order to interpret this language, we need to define structures in which we
can interpret both the deontic operator and the epistemic operator. We call these
epistemic betterness structures. These combine the betterness structures defined in
the previous section with models for epistemic logic. For the sake of simplicity
we assume that the order of the states is not agent dependent, i.e. we assume all
agents agree on all deontic issues. For each agent we add an equivalence relation
to the model, which indicates which states are epistemically indistinguishable
for that agent.

Definition 27 (Epistemic betterness structures). Given a set of propositional vari-
ables P and a set of agents G = {1, 2, · · · , n}, M = ⟨S,∼1,∼2, · · · ,∼n,⩽, V⟩ is an
epistemic betterness structure where:

• S is the set of states,

• For each i ∈ G, ∼i⊆ S × S is the epistemic equivalence relation for agent i,

• ⩽⊆ S × S is a betterness relation (partial order),

• V ⊆ P → P(S) is the valuation over S.

Let [s]∼i be the set of states accessible from s by the epistemic relation ∼i.

Epistemic betterness structures are very similar to epistemic plausibility
models. When G is a singleton, epistemic betterness structures are almost same
as epistemic-plausibility models that combine epistemic and doxastic logic (see
Baltag and Smets (2006a), van Benthem and Liu (2007), Baltag and Smets (2008),
Van Benthem (2010)). For these models it is required that the ordering of states
is limited to epistemic equivalence classes. For epistemic betterness structures
there is no such constraint.

The semantics of LKCDL can now be defined.

Definition 28 (Semantics of LKCDL). The truth conditions are defined as follows:

• M, s |= p iff s ∈ V(p);

• M, s |= ¬ϕ iff M, s ̸|= ϕ;

• M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ;

• M, s |= Kiϕ iff [s]∼i ⊆ ∥ϕ∥M;

• M, s |= ⊙
i(ϕ|ψ) iff max⩽([s]∼i ∩ ∥ψ∥M) ⊆ ∥ϕ∥M.
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Since max⩽([s]∼i ∩ ∥ψ∥M) denotes these best ψ-states among the set [s]∼i ,
max⩽([s]∼i ∩ ∥ψ∥M)∥ψ∥M ⊆ ∥ϕ∥M means that each state in max⩽([s]∼i ∩
∥ψ∥M) satisfies ϕ. In other words, the semantics of

⊙
i(ϕ|ψ) says that over

all states that are indistinguishable to agent i from s, the best ψ-states also satisfy
ϕ. In order to ensure that the set of maximal states of a non-empty [s]∼i ∩ ∥ψ∥M
not be empty, we require the epistemic betterness structures to be ∼-smooth.
As mentioned in Section 3.2, three properties on betterness relations can be
considered. In this chapter, we choose smoothness because when we prove
soundness and completeness of KCDL, limitedness is too weak since it cannot
guarantee that every ϕ-state is worse than some best ϕ-state. Meanwhile, we
cannot prove the smooth model established in the completeness proof is Noethe-
rian. Moreover, smoothness is more widely used in the field of conditional logic
and nonmonotonic reasoning (see Bossu and Siegel (1985), Kraus et al. (1990),
Parent (2014)). Therefore, we assume that epistemic betterness structures are
∼-smooth whose definition is similar to smoothness.

Definition 29 (∼-Smoothness). An epistemic betterness structure M is ∼-smooth if
for every state s in M = ⟨S,∼,⩽, V⟩, for each i ∈ G and each t ∈ [s]∼i , if M, t |= ϕ,
either statement (1) or (2) holds:

1. t ∈ max⩽([s]∼i ∩ ∥ϕ∥M);

2. ∃v ∈ [s]∼i : v > t and v ∈ max⩽([s]∼i ∩ ∥ϕ∥M).

Note that ∼-smoothness is a generalization of smoothness. It means that for
each [s]∼i , M is smooth when ⩽ is restricted on [s]∼i . When G is a singleton and
the only ∼ is total3, [s]∼ = S and max⩽ ∥ϕ∥M = max⩽([s]∼ ∩ ∥ϕ∥M).

3.3.3 Objective vs. epistemic conditional obligations

We use the term ‘objective’ here to contrast it with ‘subjective’. Given our
assumptions that all agents agree on all deontic issues, which state is better than
which is independent of the agents and in that sense we can view the betterness
relation as an objective measure. Objective conditional obligations try to capture
what is best under some particular condition independently of subjective aspects
of the situation. For example, under the condition that someone is ill, the
best state of affairs is that they are treated by a doctor. Hansson’s definition
of conditional obligations does not depend on the information of the agents
involved either, and so is also not subjective in that sense. Recall Hansson’s
definition:

Definition 30 (Objective conditional obligations). Given an epistemic betterness
structure M = ⟨S,∼1, · · · ,∼n,⩽, V⟩,

M, s |= ⃝(ϕ|ψ) iff max⩽ ∥ψ∥M ⊆ ∥ϕ∥M.
3A binary relation ∼ is total over a set S iff for any t1, t2 ∈ S, t1 ∼ t2 or t2 ∼ t1.
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It is easily seen that the formal semantics of objective conditional obligation
does not involve the epistemic relation ∼i (1 ≤ i ≤ n), which implies that ⃝( | )
is a global operator: it does not depend on the state at which you evaluate it.

Let us consider the example above again. Does the doctor bear an obligation
to treat a certain patient? We would hesitate to say so considering the possibility
that the doctor knows nothing about the person’s health state. The hesitation
indicates the importance of the agent’s information. In standard epistemic
logic, the set of epistemically indistinguishable states for an agent decides
what information the agent has. If we restrict our attention to those states
that the agent considers possible, the information of the agent will affect their
obligations. Therefore, we define epistemic conditional obligations for some
agent i depending on the epistemic relation ∼i, so

⊙
i( | ) is local. We duplicate

the formal definition of epistemic conditional obligations here for explicitness.
In the remaining part of this paper, the term ‘epistemic conditional obligation’
and ‘knowledge-based conditional obligation’ are used interchangeably.

Definition 31 (Epistemic conditional obligations). Given an epistemic betterness
structure M = ⟨S,∼1, · · · ,∼n,⩽, V⟩, for each i ∈ G,

M, s |= ⊙
i(ϕ|ψ) iff max⩽([s]∼i ∩ ∥ψ∥M) ⊆ ∥ϕ∥M.

The following facts capture the logical relations between the above two types
of obligations.

Fact 2. For each i ∈ G, ̸|= ⃝(ϕ|ψ) → ⊙
i(ϕ|ψ) and ̸|= ⊙

i(ϕ|ψ) → ⃝(ϕ|ψ)
It is easy to give two counter-models for these two cases.

Fact 3. For every i ∈ G, if [s]∼i = S, then M, s |= ⃝(ϕ|ψ) ↔ ⊙
i(ϕ|ψ).

Proof. For every formula ψ, by [s]∼i = S, max⩽ ∥ψ∥M = max⩽([s]∼i ∩ ∥ψ∥M).
Therefore, M, s |= ⃝(ϕ|ψ) ↔ ⊙

i(ϕ|ψ).

Fact 4. For every i ∈ G if ⩽ ⊆ ∼i, then |= ⃝(ϕ|ψ) → ⊙
i(ϕ|ψ), but ̸|= ⊙

i(ϕ|ψ) →
⃝(ϕ|ψ).
Proof. Let (M, s) be an arbitrary pointed epistemic betterness structure such
that M, s |= ⃝(ϕ|ψ). Since ⩽ ⊆ ∼i, max⩽([s]∼i ∩ ∥ψ∥M) ⊆ max⩽ ∥ψ∥M.

Consider the epistemic betterness structure M′ in Figure 3.3. There we have
M′, s |= ⊙

i(p|q), but M′, s ̸|= ⃝(p|q).

3.3.4 How to read
⊙

i(ϕ|ψ)
In Section 3.1, we mentioned that the notion of knowledge-based conditional
obligations studied in this chapter is based on three assumptions. Regarding
assumption 1, the semantics of

⊙
i(ϕ|ψ) was defined using the agents’ informa-

tion. As for assumption 2 and 3, the following formulas suggest that
⊙

i(ϕ|ψ) is
in line with those as well.
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t : q, p t′ : q,¬p

s

OO

s′

OO

Figure 3.3: The epistemic betterness structure M′, which shows that epistemic
conditional obligations do not imply objective conditional obligations.

|= ⊙
i(ϕ|ψ) → Ki

⊙
i(ϕ|ψ) and |= ¬⊙

i(ϕ|ψ) → Ki¬
⊙

i(ϕ|ψ)
The first validity indicates the agent’s positive introspection of their epistemic
conditional obligations which means that if there is an epistemic conditional
obligation for the agent i, i knows it. The second one shows the agent’s negative
introspection of their non-obligations which means if the agent does not have
an epistemic conditional obligation, they know that. Therefore, in this chapter,
we only focus on those conditional obligations that are known by the agent.

|= (
⊙

i(ϕ|ψ) ∧ Kiψ) →
⊙

i(ϕ|⊤)
This validity indicates that if the agent knows the antecedent of an epistemic
conditional obligation, they have an unconditional obligation. The formula is
also called ‘epistemic detachment’ which is discussed more elaborately in
Section 3.4. Since ̸|= (

⊙
i(ϕ|ψ) ∧ ψ) → ⊙

i(ϕ|⊤), the epistemic conditional
obligations do not necessarily imply unconditional obligations if the antecedent
is merely a fact.

⃝(ϕ|Kiψ) vs.
⊙

i(ϕ|ψ)
The interpretation of ⃝(ϕ|Kiψ) is quite similar to the interpretation of

⊙
(ϕ|ψ),

which can be read as: under the condition that i knows that ψ, it ought to be
that ϕ. But in our logic they are quite different, as can be seen by noting these
two invalid formulas: ̸|= ⃝(ϕ|Kiψ) →

⊙
(ϕ|ψ) and ̸|= ⊙

i(ϕ|ψ) → ⃝(ϕ|Kiψ).
Let us see the following counter-model N1:

s1 : ¬p, q //

i

s2 : p, q

i

s3 : p,¬q // s4 : p, q

Let s1 be the factual world. We have N1, s1 |= ⃝(p|Kiq) ∧ ¬⊙
i(p|q). See

another counter-model N2:

s1 : p, q //

i

s2 : p, q

i

s3 : p, q // s4 : ¬p, q
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Let s1 be the factual world. We have N2, s1 |= ⊙
i(p|q) ∧ ¬⃝ (p|Kiq).

These two invalid formulas indicate that the epistemic conditional obligations
of agent i cannot be reduced to objective conditional obligations or, vice versa.
The truth value of

⊙
i(ϕ|ψ) is dependent on i’s information.

Therefore, epistemic conditional obligation
⊙

i(ϕ|ψ) can be read as: under
the condition that i knows that ψ is the case, it ought to be the case for i that ϕ.

3.3.5 Boutilier form of
⊙

i(ϕ|ψ)
As mentioned in Section 3.2, we can also find the Boutilier form for

⊙
i(ϕ|ψ).

Although the definition of
⊙

i(ϕ|ψ) is quite similar to ⃝(ϕ|ψ), we still need to
introduce a new operator defined by classical modalities to give the equivalent
Boutilier form of

⊙
i(ϕ|ψ).

Definition 32 ([→A ∩ →B]ϕ). Let →A and →B be different binary relations over a
domain W. Let 2A and 2B be the classical modalities whose semantics are defined by
→A and →B, respectively, as follows:

M, s |= 2Aϕ iff for all t such that s →A t, M, t |= ϕ;
M, s |= 2Bϕ iff for all t such that s →B t, M, t |= ϕ.

We define the semantics of [→A ∩ →B] as follows:

M, s |= [→A ∩ →B]ϕ iff for all t such that both s →A t and s →B t, M, t |= ϕ.

Let ⟨→A ∩ →B⟩ be the dual of [→A ∩ →B].

Proposition 1 (Boutilier form). For all pointed epistemic betterness structure (M, s),
the following two statements are equivalent:

• M, s |= ⊙
i(ϕ|ψ),

• M, s |= Ki(ψ → ⟨∼i ∩ ⩽⟩(ψ → [∼i ∩ ⩽](ψ → ϕ))) (⋆Ki )

where Ki is the classical epistemic operator for ∼i.

Proof. We want to show that for every pointed epistemic betterness structure
(M, s), M, s |= ⊙

i(ϕ|ψ) iff M, s |= Ki(ψ → ⟨∼i ∩ ⩽⟩(ψ → [∼i ∩ ⩽](ψ → ϕ))).
(⇒) Suppose that M, s |= ⊙

i(ϕ|ψ). By the semantics of
⊙

i(ϕ|ψ), it follows
that max⩽([s]∼i ∩ ∥ψ∥M) ⊆ ∥ϕ∥M. Let t ∈ [s]∼i such that M, t |= ψ. There must
be an r ∈ max⩽([s]∼i ∩ ∥ψ∥M) such that t ⩽ r by ∼-smoothness (otherwise
there would be one infinite ascending chain without any maximal element). As
for r, r ⩽ r and M, r |= ψ → ϕ. As for r′ ∈ [s]∼i such that r < r′, M, r′ |= ¬ψ
since r ∈ max⩽([s]∼i ∩ ∥ψ∥M). Therefore, M, r |= ψ → [∼i ∩ ⩽](ψ → ϕ). Since
t is an arbitrary state in [s]∼i , we have M, s |= Ki(ψ → ⟨∼i ∩ ⩽⟩(ψ → [∼i ∩ ⩽
](ψ → ϕ))).
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(⇐) Assume that max⩽([s]∼i ∩ ∥ψ∥M) ̸⊆ ∥ϕ∥M. It implies that there must
be a t ∈ max⩽([s]∼i ∩ ∥ψ∥M) such that M, t ̸|= ϕ. So t is the only state such
that t ⩽ t and M, t |= ψ. Since M, t ̸|= ϕ, M, t ̸|= [∼i ∩ ⩽](ψ → ϕ). So
M, t ̸|= ψ → [∼i ∩ ⩽](ψ → ϕ). Therefore, M, s ̸|= Ki(ψ → ⟨∼i ∩ ⩽⟩(ψ → [∼i
∩ ⩽](ψ → ϕ))).

When we compare this Boutilier form of
⊙

i(ϕ|ψ) to the Boutilier form (⋆)
of ⃝(ϕ|ψ) given in Section 3.2.2, it is easy to find that we only replace the
operators U and 2 in (⋆) with Ki and [∼i ∩ ⩽], so as to restrict the set of states
to these epistemically indistinguishable states.

3.4 Knowledge as the trigger: epistemic detachment

It seems intuitive to conclude that an agent has an unconditional obligation when
the antecedent of a conditional obligation is satisfied. This inference pattern is
called factual detachment. The earliest version of factual detachment in standard
deontic logic is formalized as (ϕ ∧ (ϕ → ⃝ψ) → ⃝ψ) and there is a variant,
called deontic detachment, generally formalized as (⃝ϕ ∧⃝(ϕ → ψ)) → ⃝ψ.
These give rise to the counter-intuitive consequences of the contrary-to-duty
paradox (see page 22 in van der Torre (1997), Greenspan (1975)). For example,
we ought to keep a promise (⃝p) and it ought to be the case that if we keep
the promise, we do not apologize (⃝(p → ¬q)). But when we do not keep
the promise, we should apologize (¬p → ⃝q). Now, it is the case that we do
not keep the promise (¬p). Then the set of formulas above will lead to two
conflicting obligations by standard deontic logic: ⃝¬q ∧⃝q.

As for objective conditional obligation, the validity ⃝(ϕ|ψ)∧2ψ → ⃝(ϕ|⊤)
provided by Prakken and Sergot (1997) describes the detachment of the an-
tecedent due to its necessity. In the tradition of Hansson’s framework, detach-
ment was also studied in other contexts. By introducing the dynamic epistemic
operator of public announcement [!ψ], van Benthem et al. (2014) gave a form
like ⃝(ϕ|ψ) → [!ψ]⃝ (ϕ|⊤) to capture detachment. Here, the public announce-
ment of the antecedent of the conditional obligation leads to an unconditional
obligation.

In our framework, we provide an epistemic version of detachment based on
epistemic conditional obligations as the following formula:

(
⊙

i(ϕ|ψ) ∧ Kiψ) →
⊙

i(ϕ|⊤)

This is in line with our intuitions: if the agent has an obligation that ϕ under
the condition that they know that ψ and they do know that ψ is the case, then
the agent has an unconditional obligation that ϕ. Epistemic detachment is valid
over epistemic betterness structures.

Fact 5. |= ⊙
i(ϕ|ψ) ∧ Kiψ → ⊙

i(ϕ|⊤).
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Proof. Let (M, s) be an arbitrary pointed epistemic betterness structure such that
M, s |= ⊙

i(ϕ|ψ)∧ Kiψ. By Definition 28 and the semantics of Kiψ, max⩽([s]∼i ∩
∥ψ∥M) ⊆ ∥ϕ∥M and [s]∼i ⊆ ∥ψ∥M. So max⩽([s]∼i ∩ ∥ψ∥M) = max⩽([s]∼i ∩
∥⊤∥M). Therefore, max⩽([s]∼i ∩ ∥⊤∥M) ⊆ ∥ϕ∥M implies that M, s |= ⊙

i(ϕ|⊤).

Conditional obligations can be activated by different ‘triggers’ in various
approaches, such as facts, necessity of state of affairs, background assumptions,
knowledge, etc. In order to model Scenario 1, 2, 3 and 4 from Section 1, we
check which triggers transform conditional obligations into unconditional ones
(all-things-considered obligations).

3.4.1 Analysis of the six scenarios

The conditional obligations in all scenarios of Section 1 are activated by the
agent’s knowledge. Using our formalism we can provide novel formalizations
of the six scenarios. We use the following atomic propositions and letters to
denote agents:

q : Sam is ill. U : Uma
p : Uma will treat Sam in two minutes. A : Ann
r : Sam is in the hospital.

H : The coin is heads up. C : Chiyo
T : The coin is tails up.

BH : Chiyo bets heads.
BT : Chiyo bets tails.

NG : Chiyo does not gamble.

c : Zaha is comforted. D : Driss
d : Zaha gets a fatal disease. Z : Zaha

We presuppose that ‘Sam is not ill’ (¬q) is the best state of affairs and ‘if Sam is
ill, then Uma treats Sam’ (¬q ∨ p) is better than those cases where ‘Sam is ill but
Uma does not treat him’ (q ∧ ¬p).

Scenario 1 & 2: no knowledge, no trigger

Accordingly, we can define an epistemic betterness structure M1 as Figure 3.4.
Assume s2 to be the factual world.

In Scenario 1, Uma does not know whether Sam is ill and does not know
whether she will treat Sam in two minutes. So all four states are indistinguishable.
We have M1, s2 |= ⊙

U(p|q), which means that Uma has an epistemic conditional
obligation to treat Sam if she knows that Sam is ill. But M1, s2 ̸|= ⊙

U(p|⊤).
That is to say that Uma’s knowledge-based conditional obligation

⊙
i(p|q) is not

triggered. The reason is Uma does not know that Sam is ill, i.e. M1, s2 ̸|= KUq.
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s1 : q,¬p //

U

s2 : q, p

&&

//

U

s3 : ¬q, p

U
��

s4 : ¬q,¬p

OO

Figure 3.4: M1

s1 : H, BT

C

//

��

C

s2 : H, NG

��

//

C

s3 : H, BH

C

s4 : T, BT

C

s5 : T, NGoo

OO

C

s6 : T, BHoo

OO

Figure 3.5: M2

We can model Scenario 2 with M2 as Figure 3.5. Assume s1 to be the factual
world. In Scenario 2, it is clear that Chiyo knows that under the condition that
the coin lands heads up, she ought to bet heads and she also knows that under
the condition that the coin lands tails up, she ought to bet tails. So Chiyo has two
conditional obligations: M2, s1 |= ⊙

C(BT|T) ∧⊙
C(BH|H). However, we have

M2, s1 |= ¬KCT ∧ ¬KC H. It means that these two obligations are not triggered,
which exactly corresponds to Chiyo’s not bearing two unconditional obligations
in this scenario (also in M2), i.e. M2, s1 |= ¬⊙

C(BT|⊤) ∧ ¬⊙
C(BH|⊤).

Scenario 3: knowledge triggers

In Scenario 3, Uma knows that Sam is ill (Figure 3.6). Here we have M3, s2 |=
KUq ∧⊙

U(p|q), which implies that M3, s2 |= ⊙
U(p|⊤). We can say that Uma’s

knowledge triggers her knowledge-based conditional obligation, assigning her
an unconditional obligation to treat Sam. In this case, the fact q cannot trigger
the epistemic conditional obligation

⊙
U(p|q) although q is true on the factual

world s2. It corresponds to our intuition that the fact that ‘Sam is ill’ cannot
bring (unconditional) obligations to Uma. Instead, the knowledge that q can.

Although the objective conditional obligation ⃝(p|q) is satisfied over M1
and M3, and ⃝(BT|T) and ⃝(BH|H) are satisfied over M2 as well, they can be
triggered neither by the knowledge nor the fact. Therefore, epistemic conditional
obligations have a better performance on modelling these scenarios.

Then we will formalize the epistemic obligation in Scenario 4.
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s1 : q,¬p //

U

s2 : q, p

&&

// s3 : ¬q, p

U
��

s4 : ¬q,¬p

OO

Figure 3.6: M3

s1 : q,¬p, r

��

//

U

s2 : q, p, r

��

))

// s3 : ¬q, p, r
OO

��
U

s4 : ¬q,¬p, r

��
s5 : q,¬p,¬r //

U

s6 : q, p,¬r //

))

U

s7 : ¬q, p,¬r
U

s8 : ¬q,¬p,¬r
��

OO

Figure 3.7: M4

Scenario 4: epistemic obligation

In Scenario 4, ‘Uma knows whether Sam is ill’ is Uma’s obligation under the
condition that ‘Sam is in the hospital’. We capture Scenario 4 with model
M4 shown as Figure 3.7, where Uma has epistemic obligations:

⊙
U(KUq|r)

or
⊙

U(KU¬q|r). If Sam is factually in the hospital and Uma knows that Sam
is in the hospital, the factual world is s1 or s2 or s3 or s4 where we have
M4, s1(s2) |= ⊙

U(KUq|r) and M4, s3(s4) |= ⊙
U(KU¬q|r), which means that

under the condition that Uma knows that Sam is in the hospital, Uma ought to
know whether Sam is ill. On s1 or s2, M4, s1(s2) |= KUr, which triggers Uma’s
epistemic obligation that she ought to know that ‘Sam is ill’. On s3 or s4, likewise,
M4, s3(s4) |= KUr, which triggers Uma’s epistemic obligation that she ought to
know that ‘Sam is not ill’.

Next, we formalize the obligations involving multiple agents in Scenario 5
and 6.

Scenario 5 & 6: obligations involving multiple agents

In Scenario 5, we focus on Ann’s obligations. It is clear that Ann knows that
Uma ought to treat Sam under the condition that Uma knows that Sam is ill.
Moreover, Ann has an obligation to inform Uma that Sam is ill when she knows
that Sam is ill. So we can model the scenario as M5 in Figure 3.8.
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s1 : q,¬p

��

//

U

A

A
s2 : q, p

A

U

��

((

// s3 : ¬q, p
OO

��
U

s4 : ¬q,¬p

��
s5 : q,¬p

A
//

U

s6 : q, p //

((

s7 : ¬q, p
U

A

s8 : ¬q,¬p
��

OO

A

Figure 3.8: M5

s1 //

��

D,Z

D,Z

s2

D,Z
��

s3

D

&&

//

88

s4

OO

D

s5

D,Z

//

88

&&

s6

��
s7

D

//

OO

s8

D,Z

OO

Figure 3.9: M6

In M5, assuming s2 is the factual world, we have M5, s2 |= KA
⊙

U(p|q) ∧⊙
A(KUq|q).
As for Scenario 6, Driss ought to comfort Zaha when Zaha knows that she

has a fatal disease. But Driss ought to not comfort Zaha when Zaha does not
know that she has a fatal disease. We can model Scenario 6 with model M6 as
shown in Figure 3.9.

In M6, we have M6, s3 |= ⊙
D(¬c | ¬KDd ∧ d) ∧⊙

D(c | ¬KZd).

3.5 A logic of knowledge-based conditional obliga-
tion: KCDL

The axiom system of KCDL is mostly based on Parent’s work on Hansson-style
dyadic deontic logic (see a series of articles Parent (2008, 2014, 2015)) and other
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relevant work in conditional logic (see Kraus et al. (1990), Åqvist (1987)). Note
that we are working with a multi-agent logic here.

3.5.1 Axiom system for KCDL

TAUT (PL)
For each i ∈ G: S5-schemata for Ki for each i ∈ G (S5n)⊙

i(B → C|A) → (
⊙

i(B|A) → ⊙
i(C|A)) (

⊙
Ki)⊙

i(B|A) → Ki
⊙

i(B|A) (
⊙

iAbs)
Ki A → ⊙

i(A|B) (
⊙

iNec)
Ki(A ↔ B) → (

⊙
i(C|A) ↔ ⊙

i(C|B)) (
⊙

iExt)⊙
i(A|A) (

⊙
iId)⊙

i(C|A ∧ B) → ⊙
i(B → C|A) (

⊙
iSh)

¬Ki¬A → (
⊙

i(B|A) → ¬⊙
i(¬B|A)) (

⊙
i D⋆)

(
⊙

i(B|A) ∧⊙
i(C|A)) → ⊙

i(C|A ∧ B) (
⊙

iCM)
If ⊢ A and ⊢ A → B, then ⊢ B (MP)
If ⊢ A, then ⊢ Ki A (KiN)

KCDL is almost identical to the system F+(CM) in Parent (2014)’s paper
which extends Åqvist (1987)’s system F. F+(CM) was shown to be complete
with respect to reflexive and smooth betterness structures (or reflexive, total,
transitive and smooth structures). For KCDL we drop the assumption that the
structures are total and adapt the notion of smoothness to ∼-smoothness.

The axiom (
⊙

Ki) is the epistemic conditional obligation counterpart of the
well-known distribution axiom K. Axiom (

⊙
iAbs) reflects our assumption that

we only consider conditional obligations that are known to the agent. Axiom
(
⊙

iNec) indicates that once you know something is the case, it is the best under
arbitrary conditions since its negation is impossible for you. The axiom (

⊙
iExt)

permits the replacement of the antecedent of the epistemic deontic conditionals
with the epistemically equivalent antecedent. Axiom (

⊙
iId) means that the best

cases where A is true, are cases where A is true. Axiom (
⊙

iSh), named after
Shoham (1988b), corresponds to a weaker version of the deduction theorem
of a nonmonotonic preferential logic mentioned in Shoham (1988a) and the
derived rule (S) in Kraus et al. (1990). (

⊙
i D⋆) intuitively means that if the agent

considers A to be possible, then under the condition that A, the best states are
B-states, it is impossible that under the condition that A, ¬B is the best. Axiom
(
⊙

iCM) corresponds to the (Cautious Monotonicity) rule in Kraus et al. (1990).

3.5.2 Soundness of KCDL

Theorem 1 (Soundness). KCDL is sound with respect to the class of epistemic
betterness structures where ⩽ is reflexive, transitive and ∼-smooth.

We just show the validity of (
⊙

iSh) and (
⊙

iCM) as examples. Readers are
referred to Parent (2014) for more details.
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Lemma 1. The axiom (
⊙

iSh)
⊙

i(C|A ∧ B) → ⊙
(B → C|A) is valid over epis-

temic betterness structures where ⩽ is reflexive, transitive and ∼-smooth.

Proof. Let (M, s) be an arbitrary pointed epistemic betterness structure. Suppose
that M, s |= ⊙

i(C|A ∧ B). By the semantics, this means that max⩽([s]∼i ∩ ∥A ∧
B∥M) ⊆ ∥C∥M.

Suppose [s]∼i ∩ ∥A ∧ B∥M ̸= ∅. Let us assume that M, s ̸|= ⊙
i(B → C|A),

which implies that there is a state t such that t ∈ max⩽([s]∼i ∩ ∥A∥M), but
M, t |= B ∧ ¬C. So t ∈ ∥A ∧ B∥M but t ̸∈ max⩽([s]∼i ∩ ∥A ∧ B∥M). By ∼-
smoothness of M, there must be a state r > t such that r ∈ max⩽([s]∼i ∩
∥A ∧ B∥M). But r ∈ ∥A∥M which is better than t. This contradicts that t ∈
max⩽([s]∼i ∩ ∥A∥M). Therefore, M, s |= ⊙

i(B → C|A).
Suppose [s]∼i ∩ ∥A ∧ B∥M = ∅. There are three cases.

1. When [s]∼i ∩ ∥A∥M = ∅, it is trivial that M, s |= ⊙
i(B → C|A).

2. When [s]∼i ∩ ∥A∥M ̸= ∅ and ∥B∥M ∩ [s]∼i = ∅, M, s |= Ki¬B. Therefore,
M, s |= Ki(B → C), which implies that M, s |= ⊙

i(B → C|A) by axiom
(
⊙

iNec).

3. When [s]∼i ∩ ∥A∥M ̸= ∅ and [s]∼i ∩ ∥B∥M ̸= ∅, it follows that M, s |=⊙
i(¬B|A). Then, by propositional logic and (

⊙
iNec), we obtain M, s |=⊙

i(¬B → (B → C)|A). We conclude that M, s |= ⊙
i(B → C|A) by (

⊙
iK).

Therefore, (
⊙

iSh) is sound.

Lemma 2. The axiom (
⊙

iCM) (
⊙

i(B|A) ∧⊙
i(C|A)) → ⊙

i(C|A ∧ B) is valid
over epistemic betterness structures where ⩽ is reflexive, transitive and ∼-
smooth.

Proof. Let (M, s) be an arbitrary pointed epistemic betterness structure. Suppose
that M, s |= ⊙

i(B|A) ∧⊙
i(C|A).

If [s]∼i ∩ ∥A∥M ̸= ∅, it means that max⩽([s]∼i ∩ ∥A∥M) ⊆ ∥B∥M and
max⩽([s]∼i ∩ ∥A∥M) ⊆ ∥C∥M. Assume that M, s ̸|= ⊙

i(C|A ∧ B), which im-
plies that there is a state t ∈ max⩽([s]∼i ∩ ∥A ∧ B∥M) such that M, s |= ¬C.
So t ̸∈ max⩽([s]∼i ∩ ∥A∥M). By [s]∼i ∩ ∥A∥M ̸= ∅ and ∼-smoothness,
there must be a state r, such that r > t and r ∈ max⩽([s]∼i ∩ ∥A∥M). By
max⩽([s]∼i ∩ ∥A∥M) ⊆ ∥B∥M, r ∈ ∥B∥M. So r ∈ ∥A ∧ B∥M and r > t, which
contradicts that t ∈ max⩽([s]∼i ∩ ∥A ∧ B∥M). Therefore, M, s |= ⊙

i(C|A ∧ B).
If [s]∼i ∩ ∥A∥M = ∅, then [s]∼i ∩ ∥A ∧ B∥M = ∅ as well. Therefore, it is

trivial that M, s |= ⊙
i(C|A ∧ B).

3.5.3 Strong completeness of KCDL

Completeness is usually proved by contraposition, which means that, for every
consistent formula, we need to find a model that satisfies it. For strong complete-
ness, for each consistent set of formulas, we need to find a model that satisfies
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all of them. The completeness proof of KCDL in the single-agent case follows
Parent’s approach in our short paper (see Su (2020) or Appendix of this thesis).
However, in this chapter, we adopt the step-by-step strategy (more details on
this method can be referred to Burgess (1984), Blackburn et al. (2002)) rather
than Parent (2014) ’s method of canonical models since the step-by-step strategy
provides a lot of control over the model construction. The strategy does not
involve all maximal KCDL-consistent sets (MCS) to construct the canonical
model. Rather, it starts with an initial set and builds up a bigger model stepwise
with those sets needed to make it perfect.

Given an MCS ∆, let K−1
i ∆ = {ϕ | Kiϕ ∈ ∆} and ∆(i,ϕ) = {ψ | ⊙i(ψ|ϕ) ∈ ∆}.

Let CON be the set of all maximally KCDL-consistent sets. The following
lemmas and definitions are necessary for constructing the final model.

Lemma 3. (Lindenbaum Lemma) If Γ0 is a KCDL-consistent set of formulas, then
there is an MCS Γ such that Γ0 ⊆ Γ.

The Lindenbaum Lemma can be proved in the standard way.

Lemma 4. For each i ∈ G:

1. Let ∆ be an MCS. If Kiϕ ̸∈ ∆, then K−1
i ∆ ∪ {¬ϕ} is consistent;

2. Let ∆ and ∆1 be two MCSs. If K−1
i ∆ ⊆ ∆1 and ϕ ∈ ∆1, then ∆(i,ϕ) is consistent;

3. Let ∆ be an MCS. If
⊙

i(ϕ|ϕ ∨ ψ) ̸∈ ∆, then ∆(i,ϕ∨ψ) ∪ {¬ϕ} is consistent;

4. Let ∆ be an MCS. If
⊙

i(ϕ|ψ) ̸∈ ∆, then ∆(i,ψ) ∪ {¬ϕ} is consistent;

5. For each i ∈ G, ⊢KCDL (
⊙

i(θ|ψ ∨ θ) ∧⊙
i(ϕ|ψ)) →

⊙
i(ψ → ϕ|θ);

6. For each i ∈ G, ⊢KCDL

⊙
i(ϕ|ψ) →

⊙
i(ϕ ∨ θ|ψ ∨ θ).

The lemma above is already proved by Parent (2014).

Definition 33 (Network). N = ⟨S,∼1, · · · ,∼n,⩽, v⟩ is a network where

• S is a countable set of states,

• for each i ∈ G, ∼i⊆ S × S,

• ⩽⊆ S × S,

• v ⊆ S → CON.

Let [[ψ]]M be the set {s ∈ S | ψ ∈ v(s)}. Then we define the notion of
∼∈-smoothness which is the counterpart of ∼-smoothness in networks.

Definition 34 (∼∈-smoothness). Let N = ⟨S,∼1, · · · ,∼n,⩽, v⟩ be a network. N
is ∼∈-smooth if for every ϕ and every s ∈ S, for each i ∈ G and each t ∈ [s]∼i , if
ϕ ∈ v(t), either statement 1 or 2 holds:
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1. t ∈ max⩽([s]∼i ∩ [[ϕ]]N);

2. ∃u ∈ [s]∼i : u > t and u ∈ max⩽([s]∼i ∩ [[ϕ]]N).

Definition 35 (Coherent network). A network N = ⟨S,∼1, · · · ,∼n,⩽, v⟩ is coher-
ent if it satisfies the following conditions:

1. there is a label function l : S → {Σ(i,ϕ) | i ∈ G, ϕ ∈ LKCDL, ∃ t ∈ S(v(t) =
Σ)} such that v(s) extends l(s).

2. for all s, t ∈ S, if s ∼i t, then for each Kiϕ ∈ v(s), ϕ ∈ v(t).

3. for all s, t ∈ S, if s ∼i t and l(t) = Σ(i,ϕ) where there exists a u ∈ S and
v(u) = Σ, then s ∼i u.

4. for each i ∈ G, ∼i is an equivalence relation,

5. ⩽ is reflexive, transitive and ∼∈-smooth.

Coherent networks are analogous to epistemic betterness structures, but we
need further requirements to make a coherent network effectively resemble an
epistemic betterness structure.

Definition 36 (Perfect network). A network N = ⟨S,∼1, · · · ,∼n,⩽, v⟩ is perfect if
it is coherent and does not have any of the defects listed below:

1. Defect-1: S contains a state s such that Kiϕ ̸∈ v(s). But there is no t ∈ S such
that s ∼i t and ϕ ̸∈ v(t). We can use (s, Kiϕ) to denote the defect-1.

2. Defect-2: S contains a state s such that
⊙

i(ϕ|ψ) ̸∈ v(s). But there is no t ∈ S
such that t ∈ max⩽([s]∼i ∩ [[ψ]]M) and ϕ ̸∈ v(t). We can use (s,

⊙
i(ϕ|ψ)) to

denote the defect-2.

3. Defect-3: S contains a state s such that
⊙

i(ϕ|ψ) ∈ v(s). But there exists a t ∈ S
such that t ∈ max⩽([s]∼i ∩ [[ψ]]M) and ϕ ̸∈ v(s). We can use (s,

⊙
i(ϕ|ψ), t)

to denote the defect-3.

It is straightforward to induce an epistemic betterness structure given a
network by following v for the valuation of atomic propositions.

Definition 37 (Induced epistemic betterness structure). Let N = ⟨S,∼1, · · · ,∼n
,⩽, v⟩ be a coherent network. MN = ⟨S,∼1, · · · ,∼n,⩽, VN⟩ is the induced epistemic
betterness structure regarding N where for each propositional atom p, VN(p) = {s ∈
S | p ∈ v(s)}.

The following lemma shows that a perfect network induces an epistemic bet-
terness structure that is like a canonical model in the sense that set membership
corresponds to truth.
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Lemma 5 (Truth lemma). Let N = ⟨S,∼1, · · · ,∼n,⩽, v⟩ be a perfect network.
MN = ⟨S,∼1, · · · ,∼n,⩽, VN⟩ is the induced epistemic betterness structure regarding
N. Then for all ϕ ∈ LKCDL, and all states s ∈ S:

MN , s |= ϕ iff ϕ ∈ v(s)

Proof. By induction on the structure of ϕ. When ϕ is a Boolean formula, the
proof is standard.

When ϕ is in the form of Kiψ:

• (⇒) Suppose that MN , s |= Kiψ. By the semantics, for each t such that
s ∼i t, MN , t |= ψ. By the inductive hypothesis, ψ ∈ v(t). Assume, to reach
a contradiction, that Kiψ ̸∈ v(s). Since for all t such that s ∼i t, ψ ∈ v(t),
N has defect-1. Contradiction. Therefore, Kiψ ∈ v(s).

• (⇐) Suppose that Kiψ ∈ ∆. Since N is coherent, by Definition 35.2, for each
t ∈ S such that s ∼i t, ψ ∈ v(t). By the inductive hypothesis, MN , t |= ψ.
By semantics, MN , s |= Kiψ.

When ϕ is in the form of
⊙

i(ψ|χ):

• (⇒) Suppose that MN , s |= ⊙
i(ψ|χ). By the semantics, for each t ∈

max⩽([s]∼i ∩ ∥χ∥MN ), MN , t |= ψ. By the inductive hypothesis, ∥χ∥MN =
[[χ]]MN and ψ ∈ v(t). So max⩽([s]∼i ∩ ∥χ∥MN ) = max⩽([s]∼i ∩ [[χ]]MN ).
Assume, to reach a contradiction, that

⊙
i(ψ|χ) ̸∈ v(s). It means that N

has defect-3. Contradiction.

• (⇐) Suppose that
⊙

i(ψ|χ) ∈ v(s). Assume, to reach a contradiction,
that M, s ̸|= ⊙

i(ψ|χ). By the semantics, there is a t ∈ S such that
t ∈ max⩽([s]∼i ∩ ∥χ∥MN ) and M, t |= ¬ψ. By the inductive hypothesis,
∥χ∥MN = [[χ]]MN and ψ ̸∈ v(t). It means that N has defect-4. Contradic-
tion.

Therefore, we know that by constructing a perfect network, we can find an
epistemic betterness structure which can play the role of a canonical model in a
completeness proof.

The sketch of constructing the perfect network is as follows. Let Γ be a
KCDL-consistent set which can be extended to a maximally consistent set Γ0.
Then we need to construct a perfect network NΓ such that there exists one state
s in NΓ such that v(s) = Γ0. A stock set of states, S = {smn | m, n ∈ N}, is
given beforehand to be used for constructing NΓ step by step, providing the
initial state and all the new states we need for repairing defects. S is obviously
countable thereby rendering NΓ countable as well.

Every defect-1 can be represented by one particular element from the Carte-
sian product (S × {Ki | i ∈ G} × Form). Moreover, every two different defect-1
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are represented by two different elements from (S × {Ki | i ∈ G} × Form).
Every defect-2 can be represented by one particular element from (S × {⊙i | i ∈
G} × Form × Form) and every two different defect-2 are represented by two
different elements. Every defect-3 can be represented by one particular element
from (S × S × {⊙i | i ∈ G} × Form × Form) and every two different defect-3
are represented by two different elements. Therefore, all potential defects can
be enumerated since the union set (S × {Ki | i ∈ G} × Form) ∪ (S × {⊙i | i ∈
G}× Form× Form)∪ (S× S×{⊙i | i ∈ G}× Form× Form) is countable. The
enumeration provides an order that we use to determine which defect should be
repaired at each step of constructing the final perfect network NΓ.

The construction of NΓ starts with an initial network N0 which contains a
single state s00 ∈ S such that v(s00) = Γ0. Let D(Ni) = {d | d is a defect of Ni},
which denotes the set of all defects of Ni. We will show that N0 is coherent. If
N0 is perfect, just let N0 = NΓ. If N0 is not perfect, N0 must have some defect.
Let D0 = D(N0) where D0 is the D-set of N0. We repair the defect d ∈ Do which
is the minimal in the enumeration of all potential defects. If d is a defect-1 or
defect-2, we only add one new state s10 to N0. If d is a defect-3, we add the
set {s1n | n ∈ N} to repair it. The concrete ways to repair it is to be shown
in the following Lemma 6. In this way, we obtain N1 which is an extension to
N0 without the defect d. Then let D1 = D(N1) ∪ (D0 − {d}) where D1 if the
D-set of N1. If D1 = ∅, let N1 = NΓ. If D1 ̸= ∅, then we repair the minimal
defect d′ in D1. It is worth noting that D1 contains all defects of N1, which
may include defects of N0 except d. It is possible that after repairing d, some
d⋆ ∈ D0 is also repaired. But we also need to repair d⋆ in a specific step for the
convenience of proving the final model to be ∼∈-smooth. Which defect should
be repaired during each step and the process of repairing defects are shown in
the pseudo-code Algorithm 1.

Algorithm 1 How to repair defects during each step

i := 0
Di := D(N0)
while Di ̸= ∅ do

Repair the minimal defect d in Di and obtain a network Ni+1 which lacks
d

Di+1 = D(Ni+1) ∪ (Di − d)
i := i + 1

end while

We continue repairing defects according to Algorithm 1. We either stop
at some network Nn where Dn = ∅ or get a countably infinite sequence of
networks N0, N1, · · · . For the latter, let the union of all networks in this sequence
be NΓ. We will show that NΓ is perfect in Theorem 2.

We call each network Ni (i ≥ 0), which is constructed as illustrated above,
as brick network. The following Repair Lemma elaborates how to repair different
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types of defects from the D-set of a coherent brick network at some certain step.
It plays a key role in the completeness proof.

Lemma 6 (Repair Lemma). Let Nk = ⟨S,∼1, · · · ,∼n,⩽, v⟩ be an arbitrary brick
network and let Dk be the D-set of Nk. Assume d ∈ Dk is the minimal according to
the enumeration of defects. If Nk is coherent, then Nk+1 = ⟨S′,∼′

1, · · · ,∼′
n,⩽′, v′⟩ is

designed for repairing d such that Nk is a sub-network of Nk+1 and Nk+1 is coherent.

Proof. Let Nk = ⟨S,∼1, · · · ,∼n,⩽, v⟩ be an arbitrary coherent brick network.
We assume d is the minimal in Dk. We prove the lemma by showing that d can
be repaired based on its type.

If d is a defect-1 (s, Kiϕ): Let v(s) = ∆. By Lemma 4.1, K−1
i ∆ ∪ {¬ϕ} is

consistent. By the Lindenbaum Lemma, it can be extended to a maximally
consistent set ∆1. By Lemma 4.2, K−1

i ∆ ⊆ ∆1 and ¬ϕ ∈ ∆1 implies that ∆(i,¬ϕ) is
consistent. So it can be extended to a MCS Φ. Now we take a new state u, i.e.
u ̸∈ S. We define Nk+1 = ⟨S′,∼′

1, · · · ,∼′
n,⩽′, v′⟩ as follows:

1. S′ = S ∪ {u},

2. ∼′
i=∼i ∪([s]∼i ∪ {u})2,

For each j such that j ̸= i, ∼′
j=∼j ∪{⟨u, u⟩},

3. ⩽′=⩽ ∪{⟨u, u⟩},

4. v′(s′) =
{

Φ if s′ = u
v(s′) if s′ ̸= u

Repairing a defect-1 can be illustrated with the following figure where the
reflexive and transitive closure is omitted (the same for all the following figures):

s(∆) : ¬Kiϕ

i

s(∆) : ¬Kiϕ

i

i

u(Φ) : ¬ϕ

repair of a defect−1+3

t(Σ1) : ϕ t(Σ1) : ϕ

In this way, d is no longer in Dk+1.

• Nk+1 is coherent:

1. Define the new label function l′ as follows:

l′(s′) =
{

∆(i,¬ϕ) if s′ = u
l(s′) if s′ ̸= u
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2. We know that Φ extends ∆(i,¬ϕ), v′(s) = ∆, and v′(u) = Φ. For each
Kiπ ∈ v′(s), by (

⊙
iNec),

⊙
i(π|¬ϕ) ∈ v′(s). So π ∈ Φ, i.e. π ∈ v′(u).

For each Kiπ ∈ v′(u), we assume, to reach a contradiction, that
π ̸∈ v′(s). So ¬π ∈ v′(s). By an S5-schema ⊢KCDL ¬π → Ki¬Kiπ,
we have Ki¬Kiπ ∈ v′(s). So ¬Kiπ ∈ v′(u). Contradiction. Therefore,
π ∈ v′(s).
For other t ∈ [s]∼i , the proof is similar.

3. For each t ∈ [s]∼i , t ∼′
i u by the definition of ∼′

i. We know that t ∼′
i u,

l′(u) = ∆(i,¬ϕ), and v(s) = ∆. By t ∼i s, t ∼′
i s.

4. It is clear that for each i ∈ G, ∼′
i is still an equivalence relation.

5. It is straightforward to see that ⩽′ is reflexive and transitive. As for
∼∈-smoothness, we can also easily prove it. Let s′ be an arbitrary state
in S′, let π be an arbitrary formula in v(s′) and let j be an arbitrary
agent in G. If s′ ∈ S, we can find a state in max⩽′([s′]∼j ∩ [[ϕ]]Nk ) such
that it is strictly better than s′ since u is an isolated state with respect

to ⩽′ and Nk is ∼∈-smooth. If s′ = u, u ∈ max⩽′([u]∼
′
j ∩ [[ϕ]]Nk+1)

since u is isolated with respect to ⩽′.

If d is a defect-2 (s,
⊙

i(ϕ|ψ)): Let v(s) = ∆. We can simply throw a new state
u into S such that u ∈ max⩽′([s]∼

′
i ∩ [[ψ]]Nk+1) and ¬ϕ ∈ v′(u). By Lemma 4.4,

∆(i,ψ) ∪ {¬ϕ} is consistent. So it can be extended to a MCS Φ. Now we take a
new state u, i.e. u ̸∈ S. We define Nk+1 = ⟨S′,∼′

1, · · · ,∼′
n,⩽′, v′⟩ as follows:

1. S′ = S ∪ {u},

2. ∼′
i=∼i ∪([s]∼i ∪ {u})2,

For each j such that j ̸= i, ∼′
j=∼j ∪{⟨u, u⟩},

3. ⩽′=⩽ ∪{⟨u, u⟩},

4. v′(s′) =
{

Φ i f s′ = u
v(s′) i f s′ ̸= u

Repairing defect-2 can be illustrated with the following figure:

s(∆) : ¬⊙
i(ϕ|ψ)

��
i

s(∆) : ¬⊙
i(ϕ|ψ)

��
i

irepair of a defect−2+3

t(Σ2) : ψ, ϕ t(Σ2) : ψ, ϕ u(Φ) : ψ,¬ϕ

In this way, d is no longer in Dk+1.
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• Nk+1 is coherent:

1. Define the new label function l′ as follows:

l′(s′) =
{

∆(i,ψ) if s′ = u
l(s′) if s′ ̸= u

2. We know that Φ extends ∆(i,ψ), v′(s) = ∆, and v′(u) = Φ. Then the
proof is similar to that in repairing defect-1.

3. For each t ∈ [s]∼i , t ∼′
i u by the definition of ∼′

i. We know that t ∼′
i u,

l′(u) = ∆(i,ψ), and v(s) = ∆. By t ∼i s, t ∼′
i s.

4. It is clear that for each i ∈ G, ∼′
i is still an equivalence relation.

5. It is straightforward to see that ⩽′ is reflexive and transitive. ∼∈-
smoothness is also preserved since Φ is an isolated state w.r.t. ⩽′.

If d is a defect-3 (s,
⊙

i(ϕ|ψ), t): Let v(s) = ∆ and v(t) = Σ. In this case, we
must add a countable set of new states X = {u1, u2, · · · } into S such that every
um ∈ X is strictly better than t and ψ ∧ ϕ ∈ v(um). There are two cases:

If l(t) = Λ(i,θ) for some t′ ∈ M such that v(t′) = Λ and for some formula θ

(note that it must be the agent i), we can prove that Λ(i,ψ∨θ) ∪ {¬θ} is consistent.
Assume it is inconsistent. This implies that there are θ1, θ2, · · · , θn ∈ Λ(i,ψ∨θ)

such that ⊢ (θ1 ∧ · · · ∧ θn) → θ. By axiom (
⊙

iK),
⊙

i(θ|ψ ∨ θ) ∈ Λ (that is
v(t′)). By Definition 35.3, we have s ∼i t′. Then, by Definition 35.2, we obtain⊙

i(ϕ|ψ) ∈ v(t′) since Ki
⊙

i(ϕ|ψ) ∈ v(s). By Lemma 4.5, we have
⊙

i(ψ →
ϕ|θ) ∈ v(t′). So (ψ → ϕ) ∈ v(t). According to Algorithm 1, we know that d
must be a defect of some Ne where e ≤ m. So we have t ∈ max⩽([s]∼i ∩ [[ψ]]Ne).
By (ψ → ϕ) ∈ v(t), we have ϕ ∈ v(t). Contradiction. So Λ(i,ψ∨θ) ∪ {¬θ} is
consistent. Since

⊙
i(ϕ|ψ) ∈ v(t′), by Lemma 4.5,

⊙
i(ϕ ∨ θ|ψ ∨ θ) ∈ v(t′). In

other words,
⊙

i(ϕ ∨ θ|ψ ∨ θ) ∈ Λ. Therefore, (ϕ ∨ θ) ∈ Λ(i,ψ∨θ) ∪ {¬θ}. So we
obtain ϕ ∈ Λ(i,ψ∨θ) ∪ {¬θ}.

We know that Σ contains countably many formulas, we can enumerate them
as Σ = {χm | m ∈ N}. For each χm ∈ Σ, if Λ(i,ψ∨θ) ∪ {¬θ} ∪ {χm} is consistent,
let Φχm be an MCS extending Λ(i,ψ∨θ) ∪ {¬θ} ∪ {χm}; if Λ(i,ψ∨θ) ∪ {¬θ} ∪ {χm}
is inconsistent, let Φχm be an MCS extending Λ(i,ψ∨θ) ∪ {¬θ}.

Let X = {um | m ∈ N} where for each um ∈ X, um ̸∈ S. We define a new
function v′ such that for each um ∈ X, v′(um) = Φχm . X is used for repairing d.
Note that for each χ ∈ Σ such that Λ(i,ψ∨θ) ∪ {¬θ} ∪ {χ} is consistent, X only
contains unique state, e.g. um, such that v′(um) extends Λ(i,ψ∨θ) ∪ {¬θ} ∪ {χ}.
Since Σ only contains countably many formulas, we have that X is at most
countable.

If s = t and l(t) = Λ(j,θ) for some j ̸= i, some MCS Λ and some formula θ,
let v(s) = ∆ = {χm | m ∈ N}. For each χm ∈ ∆, if ∆(i,ψ) ∪ {χm} is consistent,
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let Φχm be an MCS extending ∆(i,ψ) ∪ {χm}; if ∆(i,ψ) ∪ {χm} is inconsistent,
let Φχm be an MCS extending ∆(i,ψ). Let X = {um | m ∈ N} where for each
um ∈ X, um ̸∈ S. Then we define a new function v′ such that for each um ∈ X,
v′(um) = Φχm . X is used for repairing d.

If s ̸= t and l(t) = Λ(j,θ) for some j ̸= i, the case is impossible.
We can define Nk+1 = ⟨S′,∼′

1, · · · ,∼′
n,⩽′, v′⟩ as follows:

1. S′ = S ∪ X.

2. ∼′
i=∼i ∪([s]∼i ∪ X)2.

For each j such that j ̸= i, ∼′
j=∼j ∪{⟨u, u⟩ | u ∈ X}.

3. ⩽′=⩽ ∪{⟨t′, u⟩ | t′ ⩽ t, u ∈ X} ∪ {⟨u, u⟩ | u ∈ X}.

4. v′(s′) =
{

Φχm if s′ = um where um ∈ X
v(s′) if s′ ̸∈ X

Repairing defect-3 can be illustrated with the following figure:

s(∆) :
⊙

i(ϕ|ψ)

��
i

s(∆) : ¬⊙
i(ϕ|ψ)

��
i

t(Σ) : ψ,¬ϕ
repair of defect−3+3 t(Σ) : ψ,¬ϕ, χ1, χ2, χ3 · · ·

ww

i

��
i

&&

i

u1(Φχ1) u2(Φχ2) · · ·

In this way, d is no longer in Dk+1.

• Nk+1 is coherent:

1. Define the new label function l′ as follows:

(1) If l(t) = Λ(i,θ):

l′(s′) =
{

Λ(i,ψ∨θ) if s′ ∈ X
l(s′) if s′ ̸∈ X

(2) If l(t) ̸= Λ(i,θ):

l′(s′) =
{

∆(i,ψ) if s′ ∈ X
l(s′) if s′ ̸∈ X

2. Let um be an arbitrary state in X.
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– If l(um) = Λ(i,ψ∨θ):
Let v(t′) = Λ where t′ ∈ S. For each Kiπ ∈ v(t′), by (

⊙
iNec),⊙

i(π|ψ ∨ θ) ∈ v(t′). So π ∈ v(um).
We know that t ∼i t′ by Definition 35.3. Then, by Definition 35.2,
for each Kiπ ∈ v(t), by an S5-schema ⊢KCDL Kiπ → KiKiπ, we
have Kiπ ∈ v(t′). So we obtain that π ∈ v(um).
Similarly, for each t′′ ∈ S, if t′′ ∼i t, we can prove that for each
Kiπ ∈ v(t′′), π ∈ v(um).
For each Kiπ ∈ v(um), assume, to reach a contradiction, that π ̸∈
v(t′′). So ¬π ∈ v(t′′). By an S5-schema ⊢KCDL ¬π → Ki¬Kiπ,
we have Ki¬Kiπ ∈ v(t′′). By the above results, ¬Kiπ ∈ v(um).
Contradiction. Therefore, π ∈ v(t′′).
Let un be a different state in X. For each Kiπ ∈ v(um), by an
S5-schema ⊢KCDL Kiπ → KiKiπ, KiKiπ ∈ v(um). By the above
results, Kiπ ∈ v(t). By the above results again, π ∈ v(un).

– If l(um) ̸= Λ(i,ψ∨θ) for the agent i:
That means l′(um) = ∆(i,ψ). Then we can prove it similarly to the
case when we repair defect-1.

3. Let um be an arbitrary state in X. We know that um ∼′
i t.

– If l(um) = Λ(i,ψ∨θ) for some t′ ∈ S such that v′(t′) = Λ:
Since Nk is coherent, by Definition 35.3, t ∼i t′. By the definition
of ∼′

i, t ∼′
i t′, thereby um ∼′

i t′.

– If l(um) ̸= Λ(i,ψ∨θ) for the agent i:

It means that s = t and l(∆) = Θ(j,θ) for some j ̸= i. We do not
need to consider this case since um only connected with some
states in S by ∼i.

4. It is clear that for each i ∈ G, ∼′
i is still an equivalence relation.

5. It is also straightforward to see that ⩽′ is reflexive and transitive. We
need to show that ⩽′ is ∼∈-smooth. Let w be an arbitrary state in
Nk+1. Let π be an arbitrary formula in v′(w). And let j be an arbitrary
agent in G. We only need to consider the case where j = i since X is
only connected to S by ∼′

i.

– If w ∈ [s]∼i , we know that there must exist a state w′ in
max⩽([s]∼i ∩ [[π]]Nk ) such that w′ > w since Nk is ∼∈-smooth.

* If w′ = t′ where t′ ⩽ t:
When there is a um ∈ X such that π ∈ v′(um), um ∈
max⩽′([s]∼

′
i ∩ [[π]]Nk+1) by the definition of ⩽′ and um > w

by transitivity.
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When there does not exist a um ∈ X such that π ∈ v(um),
w′ ∈ max⩽′([s]∼

′
i ∩ [[π]]Nk+1).

* If w′ ̸⩽ t and t ̸⩽ w′, then by the definition of ⩽′, w′ must be
in max⩽′([s]∼

′
i ∩ [[π]]Nk+1).

– If w ∈ S − [s]∼i , by the definition of ∼′
i, w is not connected to X

by ∼i.
– If w ∈ X, by the definition of ⩽′, w must be in max⩽′([s]∼i ∩
[[π]]Nk+1).

Therefore, ⩽′ is ∼∈-smooth.

Repair Lemma elaborates which defect should be repaired during each step
and how it can be fixed. We are fully prepared for the completeness proof now.
In the proof for Theorem 2, we formally describe the process of constructing the
perfect coherent network NΓ and thereafter the completeness is proved.

Theorem 2 (Completeness of KCDL). KCDL is strongly complete with respect to
the class of ∼-smooth epistemic betterness structures.

Proof. Let S = {smn | m, n ∈ N}. (S × {Ki | i ∈ G} × Form) ∪ (S × {⊙i | i ∈
G} × Form × Form) ∪ (S × S × {⊙i | i ∈ G} × Form × Form) be the set of all
potential defects. We can enumerate all its elements. Given is a KCDL-consistent
set of formulas Γ. Then the proof consists of a number of steps:

Constructing NΓ: Since Γ is consistent, it can be extended to a maximal consis-
tent set Γ0 by the Lindenbaum Lemma. We define a network N0 = ⟨S0,∼0

1,∼0
2

, · · · ,∼0
|G|,⩽0, v0⟩ where

• S0 = {s00}, where s00 ∈ S.

• ∼0
i = {⟨s00, s00⟩} for each i ∈ G.

• ⩽0= {⟨s00, s00⟩}.

• v0(s00) = Γ0.

• N0 is coherent:

1. Define the label function l0 as: l0(s00) = Γ(i,ϕ)
0 for an arbitrary i ∈ G

and an arbitrary ϕ ∈ LKCDL.

2. For each Kiπ ∈ v(s00), by KCDL ⊢ Kiπ → π, π ∈ v(s00).

3. Since l0(s00) = Γ(i,ϕ)
0 , by the definition of ∼0

i , s00 ∼0
i s00.
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4. It is obvious that for each i ∈ G, ∼′
i is an equivalence relation.

5. It is straightforward to see that ⩽′ is reflexive, transitive and ∼∈-
smooth.

• Repairing the minimal defect d in Dm:

Let m ≥ 0. Suppose that Nm = ⟨Sm,∼m
1 ,∼m

2 , · · · ,∼m
|G|,⩽m, vm⟩ is a coher-

ent network consisting of states from S.

• If Nm is perfect, namely Nm does not have any defects, let Nm = NΓ.

• If Nm has some defects and m = 0, let Dm = {d | d is a defect of Nm}.
If Nm has some defects and m > 0, Dm = {d | d is a defect of Nm} ∪
(Dm−1 − d′)} where d′ is the minimal defect in Dm−1 according to our
enumeration.

Then we repair the minimal defect d in Dm via the approaches shown in
Repair Lemma. There are three types of defects:

– d is a defect-1 or a defect-2:
According to Repair Lemma, we only need one new state to repair d.
Then we get a new networking lacking d: Nm+1 = ⟨Sm+1,∼m+1

1 ,∼m+1
2

, · · · ,∼m+1
|G| ,⩽m+1, vm+1⟩, where Sm+1 = S ∪ {s(m+1)0} (s(m+1)0 ∈ S).

In other words, we let the new state u added for repairing d be the
state s(m+1)0 in S. By Repair Lemma, we know that d will no longer
be a defect of any network extending Nm and Nm+1 is coherent.

– d is a defect-3:
According to Repair Lemma, we need a countable set of new states to
repair d. Then we get a new network lacking d: Nm+1 = ⟨Sm+1,∼m+1

1
,∼m+1

2 , · · · ,∼m+1
|G| ,⩽m+1, vm+1⟩, where Sm+1 = S ∪ {s(m+1)n | n ∈

N}. In other words, we let the new set of states X added for repairing
d be the set {s(m+1)n ∈ S | n ∈ N} ⊂ S. Since {s(m+1)n ∈ S | n ∈ N}
is a countable set, it is enough to repair the defect-4. By Repair
Lemma, we know that d will no longer be a defect of any network
extending Nm and Nm+1 is coherent.

• If there is no m ∈ N such that N(m+1) is perfect

In this case, we can define NΓ = ⟨SΓ,∼1,∼2 · · · ,∼|G|,⩽, v⟩, where

– SΓ =
⋃

m∈N Sm,

– for each i ∈ G, ∼i=
⋃

m∈N ∼m
i ,

– ⩽=
⋃

m∈N ⩽m,

– for an arbitrary sxy ∈ SΓ, v(sxy) = vx(sxy).
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According to our construction of each brick network Nm (m ∈ N) and
Repair Lemma, sxy must be added to repair some defect at the xth step.
So sxy must be included in network Nx.

• NΓ is coherent

• If NΓ = Nm for some m ∈ N: We know that N0 is coherent. According
to Repair Lemma, every step that repairs some defect will form a new
coherent network. So Nm must be coherent.

• If NΓ ̸= Nm for all m ∈ N: It means that NΓ is constructed by the
countably infinite union defined above. Let NΓ = ⟨SΓ,∼1,∼2 · · · ,∼|G|,⩽
, v⟩. We are to show that NΓ is coherent.

1. Define the label function lΓ as follows:
For each sxy ∈ SΓ, lΓ(sxy) = lx(sxy).

2. Let sx1y1 and sx2y2 be two arbitrary states in S. Suppose that sx1y1 ∼i
sx2y2 and x1 ≤ x2. So Nx2 contains both sx1y1 and sx2y2 . We know that
Nx2 is coherent. Therefore, for each Kiπ ∈ v(sx1y1), π ∈ v(sx2y2).

3. Let sx1y1 and sx2y2 be two arbitrary states in S. Suppose that sx1y1 ∼i

sx2y2 , x1 ≤ x2, and lΓ(sx2ys) = Σ(i,ϕ) where there exists a s ∈ SΓ such
that v(s) = Σ. So Nx2 contains sx1y1 , sx2y2 , and s. Since Nx2 is coherent,
sx1y1 ∼x2

i s. Therefore, sx1y1 ∼i s.

4. It is easy to see that for each i ∈ G, ∼i is an equivalence relation.

5. It is straightforward to prove that ⩽ is reflexive and transitive. We
need to check if it is also ∼∈-smooth.
Let sxy be an arbitrary state in NΓ such that v(sxy) = ∆ = {χk | k ∈
N}. So Nx is the first network where sxy is included. Suppose that
ϕ ∈ v(sxy) and sxy ̸∈ max⩽([sxy]∼i ∩ [[ϕ]]NΓ). Some key points in the
proof are shown in the following figure:

sxy(∆ ⊃ Π(i,θ)):⊙
i(ϕ1|ψ1), ψ1,¬ϕ1, ϕ⊙
i(ψ1 → ϕ1|ψ1 ∨ ϕ)

��

i

//

i

t(Λ ⊃ Π(i,θ∨ψ1)):
ψ1, ϕ1,¬θ, χn

//

i

smn(Λ′ ⊃ Π(i,θ∨ψ1∨ψ2))
¬θ,¬ψ1⊙

i(¬θ → ¬ϕ|θ ∨ ψ1 ∨ ϕ), ϕ

��

i

u1(Φχ1 ), u2(Φχ2 ), u3(Φχ3 ), · · ·
t′(Λ′′

χ′′i
⊃ Π(i, θ ∨ ψ1 ∨ ψ2 ∨ ϕ))

¬θ,¬ψ1,¬ψ2, ϕ
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• When l(sxy) = Π(i,θ) for some s′ ∈ Nx such that v(s′) = Π and
some formula θ:
Since sxy ̸∈ max⩽([sxy]∼i ∩ [[ϕ]]NΓ), there is a state t such that v(t) =
Λ and s < t. By Repair Lemma, it must be the case that t is added for
repairing a defect-4 d on some state s and sxy. Suppose that d is: there
is a formula

⊙
i(ϕ1|ψ1) ∈ v(s) such that sxy ∈ max⩽([s]∼i ∩ [[ψ1]]Nx )

and ¬ϕ1 ∈ v(sxy). So v(t), namely Λ, extends Π(i,θ∨ψ1) ∪{¬θ}∪ {χn}
for some χn ∈ ∆ or Π(i,θ∨ψ1) ∪ {¬θ}.
Since s ∼x

i sxy, by Nx is coherent,
⊙

i(ϕ1|ψ1) ∈ v(sxy). By axiom
(
⊙

iId),
⊙

i(ψ1 ∨ ϕ|ψ1 ∨ ϕ ∨ ψ1) ∈ v(sxy). By
⊙

i(ϕ1|ψ1) ∈ v(sxy) and
Lemma 4.5, we obtain that

⊙
i(ψ1 → ϕ1|ψ1 ∨ ϕ) ∈ v(sxy). It means

that there must be another defect-4 d′ on sxy:
⊙

i(ψ1 → ϕ1|ψ1 ∨ ϕ) ∈
v(sxy), but sxy ∈ max⩽([sxy]∼i ∩ [[ψ1 ∨ ϕ]]Nx ) and ψ1 → ϕ1 ̸∈ v(sxy).
To repair d′, there must be a countable set of states X = {uk |
k ∈ N} such that for each uk ∈ X, v(uk) = Φχk , and Φχk extends
Π(i,θ∨ψ1∨ϕ) ∪{¬θ}∪ {χk} or Π(i,θ∨ψ1∨ϕ) ∪{¬θ}. And for each uk ∈ X,
uk > sxy.
We know that for any u′ ∈ [s]∼i , if u′ > uk, then ϕ ̸∈ v(u′). If
there is a uk ∈ X such that ϕ ∈ v(uk), then we find the state uk ∈
max⩽([s]∼i ∩ [[ϕ]]Nx ). If there is no uk ∈ X such that ϕ ∈ v(uk), it
means that Π(i,θ∨ψ1∨ϕ) ∪ {¬θ} ∪ {ϕ} is inconsistent. So it implies that
there are θ1, θ1, · · · , θn ∈ Π(i,θ∨ψ1∨ϕ) such that ⊢ (θ1 ∧ θ2 ∧ · · · ∧ θn) →
(¬θ → ¬ϕ). So

⊙
i(¬θ → ¬ϕ|ψ1 ∨ ϕ ∨ θ) ∈ Π. By Nx is coherent, we

know that s′ ∼x
i sxy. So we have

⊙
i(¬θ → ¬ϕ|ψ1 ∨ ϕ ∨ θ) ∈ ∆ as

well.

For any smn ∈ [s]∼i , if smn > t, we know that v(smn) extends
Π(i,θ∨ψ1∨ψ2) ∪ {¬ψ1 ∧ ¬θ} ∪ {χ′} for some χ′ ∈ v(t) and some for-
mula ψ2, or v(smn) extends Π(i,θ∨ψ1∨ψ2) ∪ {¬ψ1 ∧ ¬θ}. Since Nm is
coherent,

⊙
i(¬θ → ¬ϕ|ψ1 ∨ ϕ ∨ θ) ∈ v(smn). Let v(smn) = Λ′ =

{χ′′
k | k ∈ N}.

If ϕ ∈ v(smn), smn has a defect-4 d⋆ in Nm:
⊙

i(¬θ → ¬ϕ|ψ1 ∨ ϕ∨ θ) ∈
v(smn) and smn ∈ max⩽([s]∼

m
i ∩ [[ψ1 ∨ ϕ ∨ θ]]Nm), but ¬(¬θ → ¬ϕ) ∈

v(smn). To repair d⋆, there must exist a set of states Y = {wk | k ∈
N} such that for each wk ∈ Y, v(wk) = Λ′′

χ′′
k

where Λ′′
χ′′

k
extends

Π(i,θ∨ψ1∨ψ2∨ϕ) ∪ {¬θ ∧ ¬ψ1 ∧ ¬ψ2} ∪ {χ′′
i } or Π(i,θ∨ψ1∨ψ2∨ϕ) ∪ {¬θ ∧

¬ψ1 ∧ ¬ψ2}. Since ¬θ ∧ ¬ψ1 ∧ ¬ψ2 ∈ v(wk), ϕ ∈ v(wk). But we
also know that for any w′ ∈ [s]′, if w′ > wk, then ¬ϕ ∈ v(w′).
So wk ∈ max⩽([smn]∼i ∩ [[ϕ]]NΓ) and w′ > sxy by transitivity.
• When l(sxy) = Π(i,θ) for some j ̸= i: the proof can go through
similarly.
Therefore, we proved that NΓ is ∼∈-smooth.
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NΓ is perfect: We have checked that NΓ is coherent. The only remaining work
is to show that NΓ does not have any defect.

Assume, to reach a contradiction, that NΓ has a defect d. This defect must
have appeared at some step of our construction, let us say at step n. This means
that d ∈ Dn. Note that d occurs somewhere in our enumeration of all possible
defects, say it appears as its m-th element. Then we know that there are at
most m defects preceding it, and so at step n + m we know that defect d has
been repaired. Since step n + m is included in NΓ, it is not possible that NΓ has
defect d. Contradiction. Therefore, NΓ does not have any defect. Therefore, NΓ
is perfect.

MNΓ is the final model: Since network NΓ is perfect, it follows by Truth Lemma
that the induced epistemic betterness structure regarding NΓ, namely MNΓ , is
∼-smooth. Therefore, by Truth Lemma, we find an epistemic betterness structure
to satisfy the consistent set Γ:

for each ϕ ∈ Γ, MNΓ , s00 |= ϕ.

Therefore, KCDL is complete with respect to the class of epistemic better-
ness structures of which the epistemic relations are equivalence relations and
the betterness relation is reflexive, transitive and ∼-smooth.

For reviewing the whole completeness proof, MNΓ is induced by a perfect
network NΓ. NΓ consists of elements from a stock set S = {smn | m, n ∈ N}, in
which we can enumerate all potential defects. NΓ is established from an initial
coherent network N0 consisting of single state s00 ∈ S. Then, so as to repair the
minimal defect in the current network, one state or countably many states are
added step by step. For any particular n ∈ N, if Nn is perfect, we find a network
which is able to induce an epistemic betterness structure MNn , by Truth Lemma,
to satisfy Γ. If we can never find a n ∈ N such that Nn is perfect, the union of
all Nn (n ∈ N), namely

⋃
n∈N Nn, is perfect. Finally, it follows by Truth Lemma

that the induced epistemic betterness structure (MNn or MNΓ ) is able to satisfy
the consistent set Γ.

3.6 Discussion and conclusion

This paper focuses on the interaction between knowledge and obligations. With a
special focus on the notion of knowledge-based obligation, which we formalized
using Hansson’s preference-based framework. We compare our work with
several related articles on deontic logic and then discuss future work inspired
by several challenges that remain.
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3.6.1 Related work

The logic of objective conditional obligations Parent (2014) systematically
studied the logic of objective conditional obligations using Hansson’s approach.
Since there is no epistemic operator in Parent’s system F+(CM), it does not
distinguish the objective and knowledge-based obligations that play a role in
Scenario 1 and 3. In contrast, we are motivated by these scenarios. Just as shown
in Section 3.4, epistemic detachment explicates how the agents in the scenarios
get an obligation when they know some information.

At the level of technical results, our paper solves a problem that Parent
left open. Parent proved that F+(CM) is complete with respect to the class
of reflexive and smooth betterness structures, under both maximality and
optimality rules. Parent (2014)’s main contributions are given in the following
table4:

maximality rule totalness totalness + transitivity transitivity
reflexivity + smoothness F+(CM) G ?

In terms of KCDL studied in the current paper, when restricting to the
single-agent case and assuming ∼ (there is only one ∼ in single-agent case) is
universal, epistemic betterness structures boil down to betterness structures in
Hansson’s framework and

⊙
i( | ) is logically equivalent to ⃝( | ). Therefore,

the argument for Theorem 2 can be applied also to prove the open question in
Parent (2014) (marked by ? in the above table).

Corollary 1. F+(CM) is strongly complete with respect to the class of betterness
structures that is reflexive, transitive and smooth under the maximality rule.

Such a completeness result is also discussed by Gabbay et al. (forthcoming).
Reviewing the formal definition of epistemic conditional obligations and

objective conditional obligations, we can say the epistemic conditional obliga-
tion is a relativized objective conditional obligation with respect to the agents’
epistemic information. In other words, the objective conditional obligation of
some agent i is the epistemic conditional obligation when i does not have any
epistemic information. Therefore, multiple agents can be introduced into KCDL

to formalize the notion of epistemic conditional obligation which is formally
agent-dependent.

Knowledge-based Obligation The motivation of our paper is very much
inspired by Pacuit et al. (2006)’s paper on knowledge-based obligations and Horty
(2019)’s work on epistemic oughts. We firstly compare our approach to Pacuit
et al. (2006).

What makes their approach different is that they define G(a) as ‘action a is
a morally good action’ over history-based models. With the concept of ‘good

4G is obtained by supplementing F with (¬⃝ (¬B|A) ∧⃝(C|A)) → ⃝(C|A ∧ B).
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action’, ‘agent i is obliged to perform action a’ is defined as i can perform a and i
knows that a is good. As they mentioned in their article, their knowledge-based
obligations are absolute obligations in the sense that the agent bears these obliga-
tions until they practically fulfilled them. Rather, in our paper, we formalized
knowledge-based conditional obligations which cannot come into force unless
the agent knows that the conditions are the case.

On the other hand, the notion of good actions is analogous to Hansson’s con-
ditional obligation in the sense of describing objective obligations, no epistemic
information involved. In their frameworks, only if you know that the action to
fulfill your obligation is morally good, you bear the knowledge-based obliga-
tion. As for formalizing Scenario 1 and 3, given a specific model for Scenarios,
Pacuit et al. use two formulas to express whether Uma bears a knowledge-based
obligation: (1) (KUmaSick ∧ ⟨Ann tells Uma⟩⊤) → KUmaG(Uma treats Sam); (2)
¬KUmaSick → ¬KUmaG(Uma treats Sam). Sentence (2) represents the situation
in Scenario 1 that when Uma does not know that Sam is ill, Uma does not have
a knowledge-based obligation to treat Sam. Sentence (1) expresses the situation
in Scenario 3 that when Uma knows that Sam is ill and it is an available action
that Ann tells the fact to Uma, Uma has a knowledge-based obligation to treat
Sam. It is very analogous to the principle of epistemic detachment discussed
in Section 3.4. In KCDL, only if you bear some knowledge-based conditional
obligation and know that the antecedent is the case, you bear an unconditional
obligation. For brevity, knowing something triggers the agent’s obligation.

However, we investigate the notion of knowledge-based obligation from a
perspective of conditionals. In our framework, epistemic detachment is valid
over all epistemic betterness structures rather than satisfied over some specific
model. We think validity of epistemic detachment characterizes the obligations
which are essentially knowledge-based.

Let us continue by comparing our work to Horty’s work on knowledge
and obligations. As Scenario 2 in Section 3.1 indicates, Horty (2019) specifically
investigates the notion of epistemic oughts whose violation invites criticism of
the agent only if the agent knows exactly what action is good. Horty embeds
an epistemic element into the deontic operator in stit logic. He defines agent i
has an epistemic ought to see to it that ϕ with a new stit operator:

⊙
[i kstit]ϕ,

whose definition intuitively means that for each optimal action type over all
the currently indistinguishable moments, i sees to it that ϕ. More specifically,⊙
[i kstit]ϕ not only means that ‘it ought to be that i sees to it that ϕ’, but

also i knows which action (type) they should perform over all the currently
indistinguishable moments.

We find that our basic idea of defining knowledge-based obligation is very
close to Horty’s. Horty defines epistemic oughts by focusing on optimal action
types over those epistemically indistinguishable moments. Analogously, we
define knowledge-based obligations by checking whether these best (optimal in
Horty’s sense) states uniformly satisfy some formula over those epistemically
indistinguishable states. Moreover, according to Horty’s frameworks, the follow-
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ing formula is valid in his logic: |= ⊙
[i kstit]ϕ → Ki

⊙
[i kstit]ϕ. It is intuitively

similar to the axiom (
⊙

iAbs) in KCDL. So it follows that both logics formalize
the type of obligations that the agent already knows.

Horty also introduces conditional epistemic oughts as:
⊙
([i kstit]ϕ/ψ). He

also mentions that his logic can invalidate the standard factual detachment:
̸|= (

⊙
([i kstit]ϕ/ψ) ∧ ψ) → ⊙

([i kstit]ϕ/⊤). But he does not point out when
the conditions can be detached. So KCDL can formalize Scenario 2 more
precisely by introducing the conditional obligations and formalizing the gamble
in Scenario 2 with epistemic detachment.

In addition, there is also a common difference between our knowledge-
based conditional obligations and Pacuit et al. (2006) and Horty (2019): the
object of ‘knowledge’. The term ‘knowledge-based’ does not explicitly indicate
what knowledge should be involved in knowledge-based obligations. In Pacuit
et al. (2006) and Horty (2019)’s research, they specified that knowing what
good/optimal actions are is the main characteristic of knowledge-based obliga-
tions. Broersen (2008) focused on knowing agents’ abilities to achieve goals. In
contrast, this chapter does not specify the objects of the knowledge. We mainly fo-
cus on the relation between agents’ knowledge and obligations. The epistemic de-
tachment theorem indicates this relation: |=KCDL (

⊙
i(ϕ|ψ) ∧ Kiψ) →

⊙
i(ϕ|⊤).

The formula ψ, as the object of the knowledge, can be a proposition describing
an action or a state of affairs.

Multi-agent conditional obligations Most literature on conditional obligations
involving multiple agents focuses on moral conflicts or collective obligations.
The current article does not investigate collective obligations, though, it is still
interesting to mention related work.

In the approach of stit logic, obligations of an agent are usually defined with
respect to some optimal choices of the agent. Restricting to these ψ-histories
of every choice for an agent i, Kooi and Tamminga (2008) define the collective
conditional obligation

⊙F
G(ϕ|ψ) which means group G ought to see to it that

ϕ under the situation that ψ in the interest of group F. Since different groups
induce different choices, the conditional obligations of them are consequently
distinct. It is analogous to Hansson’s conditional obligation in the sense that
only the necessity of antecedent can detach their conditional obligation. So⊙F

G(ϕ|ψ) is also objective.
Furthermore, based on the framework of Kooi and Tamminga (2008), Tam-

minga (2013) extended the language with action propositions which renders
conditional obligations defined with actions, instead of state of affairs. In the
new framework, formula ⃝F

G(αG|αH) expresses that if group H performs action
αH , then, in the F’s interest, group G ought to perform αG. ⃝F

G(αG|αH) is de-
signed for expressing what one group ought to do when other group has already
performed some particular actions. Tamminga tries to formalize a specific type
of conditional obligations: what one ought to do when others perform some
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s1 : H, BT

C

//

��

C

s2 : H, NG

��

//

C

s3 : H, BH

C

s4 : T, BT

C

s5 : T, NGoo

OO

C

s6 : T, BHoo

OO

Figure 3.10: M2

action. It is different from our aim shown in the current paper. We intend to
show what it ought to be under some specific state of affairs according to one’s
epistemic information.

3.6.2 Horty’s criticism

Recall Scenario 2. Horty (2019) illustrated that it is hard to say that Chiyo ought
to gamble (bet on heads or tails). This is because refraining from gambling does
not bring any loss but betting incorrectly makes Chiyo lose 5 euros. However,
based on Figure 3.5, we have M2, s1 |= ⊙

(BH ∨ BT|⊤), which seems to be
counter to this intuition.5

In context of Horty’s illustration, choosing to gamble is regarded as an action
and the consequences of gambling are not always better than not gambling.
Recall the model M2 for Scenario 2. In our framework, we only describe the static
states of all possible consequences. In M2, the best consequences (regardless of
any conditions) are those where Chiyo bets correctly, instead of all consequences
of choosing to gamble. However, we are inspired by Horty that KCDL can be
dynamified to describe actions themselves, not only the consequences of actions.

We plan to extend our framework by letting our epistemic betterness struc-
tures be based on priority structures, put forward by Liu (2008), van Benthem
et al. (2014), and combining the system with dynamic logic. For example, before
Chiyo decides to gamble or not, there are only two indistinguishable possible
worlds for her, which are the coin heads up and the coin tails up. Formalizing
‘betting heads’, ‘betting tails’ and ‘no gambling’ with three different action
models, there will be three corresponding consequence models after executing
three action models on the initial model. Comparing with three updated models,
we cannot tell which model is the best based on the priority structures defined
beforehand. Therefore, we cannot say choosing to gamble is the best action.
Chapter 6 will extensively study this approach.

5Horty also gives a solution to this problem within the framework of stit logic.
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3.6.3 Conclusions

The chief research object of this chapter is the notion of knowledge-based obli-
gation. Motivated by several real-life scenarios, we formalize the notion with
the dyadic operator

⊙
i( | ) as a conditional. By introducing epistemic relations

into betterness structures, the new epistemic betterness structures can distin-
guish objective conditional obligations and epistemic conditional obligations.
Following Hansson’s approach to dyadic deontic logic, the semantics of

⊙
i( | )

makes it agent-dependent, knowledge-triggered and already-known. With the
help of epistemic detachment, we can explain how the obligations of different
agents in six real-life scenarios are triggered. In the technical part, we provide a
sound and strongly complete axiomatization for the logic with multiple agents
KCDL with respect to the class of ∼-smooth epistemic betterness structures
where betterness relations are reflexive, transitive.
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Chapter 4

How Knowledge Triggers
Obligation: A Dynamic Logic
of Epistemic Conditional
Obligation

4.1 Introduction

In Chapter 3, we investigated epistemic conditional obligations which are a type
of conditional obligations where the consequent is triggered by the knowledge
of the antecedent. A static logic of epistemic conditional obligations (KCDL)
has been presented in the previous chapter, which defines operators

⊙
i(ϕ|ψ) as:

the best ψ-states that are epistemically indistinguishable for agent i also satisfy ϕ.
In this chapter, priority structures are introduced as representations of norms

that remain static throughout. These norms somehow determine obligations.
Accordingly, we build on the logic of epistemic conditional obligations to study
the dynamic process whereby the acquisition of new information, or the change
of factual circumstances, triggers changes of obligations. To do so we introduce
a dynamic operator formalizing obligation change, and show how the new
logic can systematize some fundamental deontic notions. The proposed logic is
motivated by the following scenarios, among which Scenario 7 is taken from
Pacuit et al. (2006) and Scenario 8 is a variant of an example from Horty (2019).

Scenario 7. Uma is a doctor whose neighbour Sam is ill. And Sam is a patient
at Uma’s practice. But Uma does not know that Sam is ill. We intuitively think
that Uma has no obligation to treat her neighbour. Then Sam’s daughter Ann
shouts loudly on the street that “My dad is ill, any help please?” Now Uma
knows that Sam is ill and has an obligation to treat Sam.

75
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Scenario 8. One coin is tossed and covered by a cup. Fumio and Chiyo have an
obligation to bet correctly (if the coin lands heads up and they bet on heads, or
if the coin lands tails up and they bet on tails). Chiyo then lifts the cup, looks at
the coin and ensures that the coin is heads up by some sleight of hand. Fumio
observes Chiyo looking at the coin, and he considers it possible that Chiyo has
flipped the coin. So before Chiyo looks at the coin, they do not have obligations
to bet on heads (or on tails). After Chiyo flips the coin, Chiyo has an obligation
to bet on heads but Fumio still does not have an obligation to bet on heads.

Scenario 9. Driss promised to his friend that he will go to the party on time.
But when he is on the way to the party, he sees a car accident happening. Now,
Driss ought to call an ambulance and help the people in the car, although it
could make himself be late for the party. Driss has a new obligation to call an
ambulance which overrides the obligation to keep the promise.

Outline of this chapter We will review some necessary technical background
in Section 4.2. Section 4.3 gives the language and semantics for the dynamic
epistemic conditional obligation, which is then used for modelling the scenarios
mentioned above. Section 4.4 uses our logic to provide novel formalizations of
important deontic notions such as absolute, prima facie and all-things-considered
obligations, as well as of a new type of obligation, which we call safe obliga-
tions. In developing these notions we highlight how the existing body of theory
on conditional belief dynamics in Dynamic Epistemic Logic (see Baltag and
Smets (2006b)) bears significance for the understanding of deontic condition-
als and their dynamics. Finally, Section 4.5 provides a sound and complete
axiom system for logic DKCDL, based on standard reduction axioms and the
Kangerian-Andersonian reduction of deontic operators (see Anderson (1958),
Kanger (1970)). This chapter is written based on our paper published in the
Eighth International Conference on Logic, Rationality and Interaction in 2021
Grossi et al. (2021). The proof details of strong completeness are entirely shown
in this chapter. Some relative discussions and future works are complemented
in the last section.

4.2 Preliminaries

Let P be a countable set of propositional atoms and let G = {1, · · · , n} be a finite
set of agents. The semantics of the static logic of knowledge-based conditional
obligations is shown as a reminder.

Definition 38 (Semantics of LKCDL). The truth conditions of formulas can be defined
over M as follows (only the non-trivial cases are shown):

• M, s |= Kiϕ iff [s]∼i ⊆ ∥ϕ∥M;

• M, s |= ⊙
i(ϕ|ψ) iff max⩽([s]∼i ∩ ∥ψ∥M) ⊆ ∥ϕ∥M
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s1 : ψ //
i

s2 : ¬ψ //
i

s3 : ψ //
i

s4 : ¬ψ
i

· · · · · ·

Figure 4.1: M (max⩽([s]∼i ∩ ∥ψ∥M) is empty)

(r ∨ Kq) // r

(a) Gk

s1 : ¬r,¬q
��

GG
// s2 : ¬r, q
GG

�� //xx &&
s3 : r, q
GG

��

(b) MGk

Figure 4.2: Two Examples

Observe that for non-empty [s]∼i ∩ ∥ψ∥M, the set max⩽([s]∼i ∩ ∥ψ∥M) can
be empty, which makes

⊙
i(ϕ|ψ) trivially true. Figure 4.1 exemplifies the case:

In Figure 4.1, a directed dotted arrow from sn to sm denotes sn ⩽ sm. The
solid line between sn and sm represents that sn ∼i sm. The reflexive and transitive
closure of ∼i and ⩽ are omitted. The epistemic betterness structure M consists
of an infinite strictly ascending chain where ψ is satisfied alternatively on the
sequence of states. Therefore, max⩽([s]∼i ∩ ∥ψ∥M) is empty and for an arbitrary
formula ϕ, the formula

⊙
i(ϕ|ψ) is trivially true.

The class of all epistemic models is denoted by S5. An epistemic betterness
structure is also an epistemic model extended with a betterness relation ⩽ over
the set of states. In the study on KCDL, betterness relations between states are
given a priori. In this chapter, priority structures will be introduced for ordering
states. In Chapter 2.4, we have given the original definition of priority structures
whose domains are finite sets of LPL-formulas. In this chapter, we define it
within LEL-formulas. Priority structures enable us to define the betterness
relations between states according to the LEL-formulas that are satisfied on the
states.

Definition 39 (LEL-Priority Structures). Given the language of the classical epistemic
logic LEL, an LEL-priority structure is a tuple G = ⟨Φ,≺⟩ such that:

• Φ ⊂ LEL and Φ is finite;

• ≺ is a strict order on Φ such that for all formulas ϕ, ψ ∈ Φ, it holds that:
if ϕ ≺ ψ, then ψ logically implies ϕ.

An example of an LEL-priority structure is shown in Fig.4.2a, where a one-
way dashed arrow from ϕ to ψ denotes ϕ ≺ ψ.

A priority structure supplies a criterion for assessing the relative ideality of
states. Given an LEL-priority structure, a betterness relation can be derived from
a domain of an epistemic model. In this way, priority structures serve a similar
purpose to norms in van der Torre and Tan (1998). In this chapter, we follow
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the approach of van Benthem et al. (2014) to obtain betterness relations from
priority structures.

Definition 40 (Epistemic Betterness Structures Based On Priority Structures).
Given an LEL-priority structure G = ⟨Φ,≺⟩ and an epistemic model ME = ⟨S,∼1
, · · · ,∼n, V⟩, the structure M = ⟨S,∼1, · · · ,∼n,⩽G , V⟩ is an epistemic betterness
structure based on G if M is ME extended with the betterness relation ⩽G , where ⩽G is
defined as follows, for any two states s, s′ ∈ S:

s ⩽G s′ ⇐⇒ ∀ϕ ∈ Φ : s ∈ ∥ϕ∥ME ⇒ s′ ∈ ∥ϕ∥ME

In other words, when an epistemic model ME and an LEL-priority structure
G are provided, we can construct an epistemic betterness structure by adding a
betterness relation based on G to ME. An example of an epistemic betterness
structure based on Gk is shown as MGk in Figure 4.2b. According to Gk, the state
satisfying r is the best. So s3 is the best. The state satisfying r ∨ Kq is better
than those not satisfying it. So s2 is better than s1. Since an epistemic betterness
structure based on a priority structure is an epistemic betterness structure, we will
also call them just epistemic betterness structures in the following parts.

It is worth noting that the betterness relation based on some priority structure
no longer has the issue mentioned in Figure 4.1. It follows from Definition 40
and finiteness of priority structures. Proposition 2 shows the point.

Proposition 2. Given a priority structure G = (Φ,≺) and an epistemic betterness
structure MG = (W,∼1, · · · ,∼n,⩽G , V) based on G, if T ⊆ W is not empty, then
max⩽G T ̸= ∅.

The proof goes by contradiction. The basic strategy is to show that those
states in T which satisfies the most formulas in the priority structure must be
maximal states in T. The existence of the state that satisfies the most formulas
comes from the finiteness of the priority structure.

Proof. For each s ∈ T, let Φs = {ϕ ∈ Φ | MG , s |= ϕ}. Since |Φ| is finite, there
exists an s ∈ T such that for each t ∈ T and t ̸= s, |Φt| ≤ |Φs|. Assume that
s ̸∈ max⩽MG

T. It means that there is a u ∈ T such that s <G u. By the definition
of <G , for each ϕ ∈ Φ, we have ϕ ∈ Φs ⇒ ϕ ∈ Φu and there is ϕ′ ∈ Φ such that
ϕ′ ∈ Φu but ϕ′ ̸∈ Φs. This implies that |Φs| < |Φu|. Contradiction. Therefore,
we have s ∈ max⩽MG

T. So we proved max⩽MG
T ̸= ∅.

In the rest of this thesis, all epistemic betterness structures are based on
a given priority structure. It follows that, on a pointed epistemic betterness
structure (M, s), the set max⩽ ∥ψ∥M ∩ [s]∼i is not empty if ∥ψ∥M ∩ [s]∼i is not
empty.
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4.3 Dynamic epistemic conditional obligation

In this section, we intend to establish a dynamic extension to KCDL. Action
models, originally introduced in dynamic epistemic logic (DEL), can characterize
not only the information changes, but also the factual changes (truth value of the
propositions). The formal definitions of action models and updated epistemic
models can be referred to Chapter 2.5. Then we give the language and semantics
for the dynamic extension to the static logic of knowledge-based conditional
obligations.

4.3.1 Language and semantics of LDKCDL

Definition 41. The language LDKCDL is given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | ⊙i(ϕ|ϕ) | [(U, e)]ϕ,

where p ∈ P, i ∈ G, and (U, e) is a pointed action model.

The language of dynamic epistemic logic is LDEL, which is identical to
LDKCDL but without the dyadic operator

⊙
i( | ). Subsequently, we provide the

semantics of the formula [(U, e)]ϕ over epistemic betterness structures based
on priority structures. Firstly, we need to define epistemic betterness structures
updated by action models.

Definition 42 (Updated epistemic betterness structures). Given an epistemic
model ME = ⟨S,∼1, · · · ,∼n, V⟩ and a priority structure G = ⟨Φ,≺⟩, the structure
M = ⟨S,∼1, · · · ,∼n,⩽G , V⟩ is the epistemic betterness structure based on G. Letting
U = ⟨E, R1, · · · , Rn, pre, post⟩ be an action model, the result of executing U in M is
the model M ⊗ U = ⟨S′,∼′

1, · · · ,∼′
n,⩽′, V′⟩ where:

• ⟨S′,∼′
1, · · · ,∼′

n, V′⟩ = ME ⊗ U;

• ⩽′= {((s, e), (t, f )) ∈ S′ × S′ | ∀ϕ ∈ Φ : (s, e) ∈ ∥ϕ∥ME⊗U ⇒ (t, f ) ∈
∥ϕ∥ME⊗U}.

An updated epistemic betterness structure consists of its corresponding
updated epistemic model and an updated betterness relation. The new betterness
relation re-orders these new states based on the priority structure. Now we can
give the truth condition of the formula [(U, e)]ϕ.

Definition 43. The truth conditions of atoms, Boolean formulas, epistemic formulas
and dyadic conditional obligations are identical to KCDL. Let M be an arbitrary
epistemic betterness structure based on priority structure G.

M, s |= [(U, e)]ϕ iff M, s |= pre(e) implies M ⊗ U, (s, e) |= ϕ.

The symbol |= is also to be used as logical consequence. It means that, for
an arbitrary set of formulas Φ and an arbitrary formula ϕ, Φ |= ϕ if and only
if for all pointed epistemic betterness structures (M, s) such that M, s |= Φ, it
holds that M, s |= ϕ.
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s1 : q1,¬p1 //

Uma

s2 : q1, p1

��
Uma

s4 : ¬q1,¬p1

Uma

s3 : ¬q1, p1//oo

(a) M1

• epaq

(b) Upaq

(s2, epaq) : q1, p1

Uma

(s1, epaq) : q1,¬p1

OO

(c) M1 ⊗ Upaq

Figure 4.3: Scenario 1: Ann is shouting loudly

4.3.2 Analysis of scenarios 7, 8 and 9

We are now in a position to formalize how obligations change in response
to information and factual changes. For each scenario, a priority structure is
given in advance, which remains unchanged throughout the story. It specifies
the betterness relations in both the initial and updated epistemic betterness
structures. The information changes and factual changes are characterized by
action models. After performing an action, the updated epistemic betterness
structure will determine the agents’ new obligations. In the following models,
the transitive and reflexive closures of all types of relations are omitted in the
figures.

Scenario 7: new information triggers obligations

In Figure 4.3, q1 refers to ‘Sam is ill’ and p1 refers to ‘Sam is treated’. We first
give the priority structure G1 for scenario 7. ‘Sam is not ill’ (¬q1) is always the
best state of affairs and ‘if Sam is ill, then Sam is treated’ (¬q1 ∨ p1) is better
than those cases where ‘Sam is ill but Sam is not treated’ (q1 ∧ ¬p1).

Accordingly, the initial epistemic betterness structure based on G1 is M1
(see Figure 4.3a). Over M1, we have M1, s1 |= ¬⊙

Uma(p1|⊤) ∧ ¬KUmaq1, which
means that Uma does not know that Sam is ill and does not have an obligation
to see to it that Sam is treated. Then, Sam’s daughter shouts loudly outside
that her dad is ill. This action can be modeled by an action model of truthful
public announcements, i.e., (Upaq, epaq) (see Figure 4.3b, ‘paq’ refers to ‘public
announcement that q1’). An action model of truthful public announcement
that ϕ is a singleton action model where the precondition equals to ϕ and the
postconditions for all propositions are id. It consequently eliminates all ¬ϕ-states
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s1 : BH, H

F,C

F,C

oo // s2 : BT, T

F,C

s4 : BH, T oo //

OO

s3 : BT, H

OO

(a) M2

et

F

ef

F

eh

(b) Uflip

(s1, ef) : BH, H oo //
F,C

F

(s4, ef) : BH, H

C

F

(s1, eh) : BH, H

F,C

oo //
��

OO

(s2, et) : BT, T

F,C

��

OO

(s4, eh) : BH, T

F

oo //

OO

(s3, et) : BT, H

OO

(s2, ef) : BT, H
C��

OO

oo // (s3, ef) : BT, H
��

OO

F

(c) M2 ⊗ Uflip

Figure 4.4: Scenario 2: Chiyo ensures that the coin lands heads up

and keeps ϕ-states. So pre(epaq) = q1 and postconditions for all propositions on
epaq are id.

Thereafter, shown as Figure 4.3c, the updated epistemic betterness structure
M1 ⊗ Upaq only contains the two states (s1, epaq) and (s2, epaq). We have M1 ⊗
Upaq, (s1, epaq) |= ⊙

Uma(p1|⊤), which means that Uma has an obligation to
see to it that Sam is treated. Therefore, we have M1, s1 |= ⊙

Uma(p1|q1) →
[(Upaq, epaq)]

⊙
Uma(p1|⊤).

Scenario 8: factual change triggers obligations

In Figure 4.4, T refers to ‘the coin lands tails up’, H refers to ‘the coin lands
heads up’, BT refers to ‘betting on tails’, and BH refers to ‘betting on heads’.
First, we give the priority structure G2 for Scenario 8. The best state of affairs
is betting correctly ((BH ∧ H) ∨ (BT ∧ T)). Any other cases are worse. Let F
denote Fumio and let C denote Chiyo.

The initial epistemic betterness structure based on G2 is M2 shown as
Figure 4.4a. Over M2, we have M2, s1 |= ¬⊙

F(BT|⊤) ∧ ¬⊙
F(BH|⊤) ∧

¬⊙
C(BT|⊤) ∧ ¬⊙

C(BH|⊤) since they cannot see the coin.
In Figure 4.4b, the action model Uflip describes the case where Chiyo sees

the coin and ensures that the coin lands heads up but Fumio cannot see Chiyo’s
action. Event et represents that Chiyo sees the coin is tails up but does not flip.
Event eh represents that Chiyo sees the coin is heads up but does not flip. Event
ef represents that Chiyo ensures that the coin lands heads up no matter whether
it was heads up or tails up. The preconditions are pre(et) = T, pre(eh) = H, and
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s1 : k,¬s,¬a

Driss

Driss

s2 : ¬k,¬s,¬a

Driss

oo

s3 : k,¬s, a // s4 : ¬k, s, a

OO

(a) M3

• eacc

(b) Uacc

(s4, eacc) : ¬k, s, a

Driss

(s3, eacc) : k,¬s, a

OO

(c) M3 ⊗ Uacc

Figure 4.5: Scenario 3: A car accident is happening

pre(ef) = ⊤. The postconditions of et and eh are id. The postconditions of ef are
post(ef)(H) = ⊤ and post(ef)(T) = ⊥.

After Chiyo performs the action, Chiyo has an obligation to bet on heads.
Since Fumio does not know whether Chiyo flips the coin, Fumio still does
not have an obligation to bet on heads (or on tails). These new obligations
can be shown over the updated epistemic betterness structure M2 ⊗ Uflip
(see Figure 4.4c). We have M2 ⊗ Uflip, (s1, ef) |= ⊙

C(BH|⊤) ∧ ¬⊙
F(BH|⊤) ∧

¬KF
⊙

C(BH|⊤).

Scenario 9: unconditional obligations are defeasible

In Figure 4.5, k refers to ‘Driss keeps promise’, a refers to ‘a car accident happens’,
and s refers to ‘Driss saves the people involved in the accident’. The priority
structure G3 for Scenario 9 would have the best state of affairs to be those where
there is no car accident and Driss keeps the promise (¬a ∧ k). The second best
case is that no accident happens (¬a). The third best case is that if an accident
happens, then Driss saves the people (¬a ∨ s). Other cases are the worst.

Accordingly, we assume that there are only four possible situations in the
initial epistemic betterness structure based on G3 (shown as M3, Figure 4.5a).
We have M3, s4 |= ⊙

Driss(k|⊤) ∧ ¬⊙
Driss(s|⊤), which means that Driss ought

to keep his promise unconditionally at that moment, but does not have an
unconditional obligation to save the people.

The action model (Uacc, eacc) (Figure 4.5b) represents the event of the car
accident, where pre(eacc) = a and post(eacc)(a) = ⊤. In the updated epistemic
betterness structure M3 ⊗ Uacc (Figure 4.5c), we have M3 ⊗ Uacc, (s4, eacc) |=⊙

Driss(s|⊤) ∧ ¬⊙
Driss(k|⊤), which means that, after seeing the car accident,

Driss’s unconditional obligation to keep his promise is overridden by another
unconditional obligation, namely, saving people.
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By our analysis on Scenario 9, we would say that epistemic conditional
obligations are defeasible. The defeasibility of

⊙
i( | ) appears in two differ-

ent aspects. In the static logic of epistemic conditional obligation KCDL, it
invalidates the formula

⊙
i(ϕ|ψ) →

⊙
i(ϕ|ψ ∧ χ), which means that a stronger

condition could override the old obligation (see Kraus et al. (1990), Governa-
tori et al. (2005)). In the dynamic extension shown in the current paper, the
formula

⊙
i(ϕ|⊤) → [(U, e)]¬⊙

i(ϕ|⊤) is satisfiable, which means that even an
unconditional obligation could be released after taking some action. All the
unconditional obligations formalized in Scenario 9 can be denoted by prima facie
obligations, a notion that is strongly related to defeasibility. We will discuss
these notions in the following section.

4.4 Information and knowledge-based obligation

In the context of conditional beliefs, van Benthem and Liu (2007) comments
that “conditional beliefs pre-encode beliefs that we would have if we learnt
certain things”. Baltag and Smets (2006b) state that “conditional beliefs give
descriptions of the agent’s plan about what he will believe . . . after receiving
new information”. Similarly, we take the view that conditional obligations
pre-encode what states of affairs would be the best if specific facts were to
hold. In deontic logic terminology, conditional obligations pre-encode the so-
called factual detachment of obligations (see Greenspan (1975), Prakken and
Sergot (1997)). And, continuing the above analogy, an epistemic conditional
obligation pre-encodes what can be referred to as epistemic detachment: KCDL |=
(
⊙

i(ϕ|ψ) ∧ Kiψ) → ⊙
i(ϕ|⊤). An unconditional obligation follows from an

epistemic conditional obligation and the knowledge of the antecedent.
We will be using a running example to show how the above intuitions lead

to natural formalizations, within language LDKCDL, of several philosophical
notions concerning obligations. In Figure 4.6, M = ⟨W,∼i,⩽, V⟩ where W =
{n ∈ N | 1 ⩽ n ⩽ 8}; relations ∼i and ⩽ are as depicted in the figure;
V(P) = {8}, V(I) = {n | 1 ⩽ n ⩽ 6}, V(L) = {1, 2, 4, 5}, V(S) = {1, 3, 4, 6},
V(A) = {4, 5}, V(N) = {4, 6}, and V(C) = W. Model M describes a scenario
where there is a world war and i is the president of a country. i has already
come to know that a world war happens but she does not know whether her
country is involved in the war. In model M, proposition P refers to ‘the world is
peaceful’, I refers to ‘i’s country is involved in the war’, C refers to ‘i protects her
civilians’, L refers to ‘the territorial land is invaded’, S refers to ‘the territorial
sea is invaded’, A refers to ‘i sends the army’, and N refers to ‘i sends the navy’.
In order to capture different notions concerning obligation, we need to define
information sets.

Definition 44 (Information set). Given a pointed epistemic betterness structure (M, s)
and a finite set of literals Q = {pm,¬pm | 1 ≤ m ≤ n for some n ∈ N and pm ∈ P},



84 CHAPTER 4. HOW KNOWLEDGE TRIGGERS OBLIGATION

8 : P,¬I 7 : ¬P,¬Ioo

3 : ¬L, S,¬A,¬N, C

i

i

// 4 : L, S, A, N, C

**

6 : ¬L, S,¬A, N, C

i

OO

��

OO

1 : L, S,¬A,¬N, C

i

// 2 : L,¬S,¬A,¬N, C

i

**

jj

5 : L,¬S, A,¬N, C

i

Figure 4.6: M (a president is facing a world war)

let I ⊂ Q and for each pm ∈ Q (or ¬pm ∈ Q), if pm ∈ I (¬pm ∈ I), then ¬pm ∈ I
(pm ∈ I). Then the information set of state s is Is = {ϕ ∈ I | M, s |= ϕ}.

The set Is consists of all true facts that have happened when s is the actual
world. For the set Q \ I, it represents the state of affairs that would occur in
the future. In the current example, let I5 = {¬P, I, L,¬S} be the information
set in state 5 representing all states of affairs that have happened, thereby can
be learnt by i. The remaining propositions {A,¬N, C} represent the states of
affairs that would occur as a result of i’s action.

Ideal conditional obligation ⃝(ϕ|ψ): Hansson’s conditional obligations
⃝(ϕ|ψ) are defined over betterness structures, i.e., M = ⟨S,⩽, V⟩, where epis-
temic relations are absent. We call them ideal conditional obligations here to
indicate that they describe the obligations regardless of agents’ epistemic in-
formation. The term ‘ideal’ is borrowed from Jones and Pörn (1985). Formula
⃝(ϕ|ψ) can be read as: ϕ is ideally good given the situation ψ. The semantics of
⃝(ϕ|ψ) is: all best ψ-states also satisfy ϕ, which considers all ontically possible
states. Moreover, ⃝( | ) is a global operator, which implies that it does not
depend on the state at which you evaluate it. Formula ⃝(ϕ|⊤) is a special type
of ideal conditional obligations. It describes that ϕ is the ideal state of affairs
over all ontically possible states.

In M, we have M, 5 |= ⃝(P|⊤)∧ Ki¬P, which means that the president i has
an ideal obligation to guarantee a peaceful world regardless of the information
set I5, although she knows that peace is no longer possible.

Epistemic unconditional obligation
⊙

i(ϕ|⊤): Formula
⊙

i(ϕ|⊤) tells the
agent what ought to be the case given her current information. In M, over
information set I5, i only knows that ¬P. Based on her current information, we
have M, 5 |= ⊙

i(¬I|⊤). Intuitively, she ought to guarantee that her country is
not involved in the war. Arguably, epistemic unconditional obligations corre-
spond to the notion of absolute obligation used by McCloskey (1963) to denote
those obligations that an agent ought to comply with at a specific moment or
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under specific information. To be subject to an absolute obligation is “to be in a
moral situation with moral commitment”. These properties are reflected in the
intuition of

⊙
i(ϕ|⊤). In M, we have M, 5 |= ⊙

i(A|L)∧¬KiL, which means that
i has an obligation to send an army when she knows that their territorial land is
invaded, but she does not know that they are invaded. So it means that i does
not have an absolute obligation to send the army. But, due to M, 5 |= ⊙

i(¬I|⊤),
i has an absolute obligation not to have her country involved in the war.

Prima facie obligation
⊙P

i ϕ: The formalization of prima facie obligations via
unconditional obligation (ideal obligation in this thesis) was first advanced
by Alchourrón (1996). We expand on this tradition here, showing how our
formalism also accommodates a natural formalization of this type of obligations.
We use ideas from McCloskey (1963)’s analysis to justify our approach. We
take as starting point McCloskey’s observation that “an actual obligation does
not differ ‘qualitatively’ from a prima facie obligation . . .” and hence it could
be captured by a formula

⊙
i(ϕ|⊤). However, we still need to distinguish

unconditional obligations that can be overridden (prima facie) from those that
cannot. The overriding phenomenon, we argue, has to do with the acquisition
of new information that brings about new prima facie obligations that override
previous ones. This is a dynamic phenomenon, and our framework is well-suited
to capture it.

Suppose that we only consider the single-agent case and the actions of
truthful public announcements (see Section 4.3.2). Any public announcement
introduces some true information. Taking the notation in public announcement
logic, given an epistemic betterness structure M = ⟨W,∼i,⩽, V⟩, M|ϕ = ⟨W ∩
∥ϕ∥M,∼′

i,⩽
′, V′⟩ where ∼′

i, ⩽
′, and V′ are ∼i, ⩽, and V restricted to the set

W ∩ ∥ϕ∥M, respectively. We use a new operator
⊙P

i ϕ to denote i’s prima facie
obligation to ensure ϕ. So, prima facie obligations can be defined as follows.

Definition 45 (Prima facie obligation). Given a pointed epistemic betterness structure
(M, s),

M, s |= ⊙P
i ϕ iff there exists ψ ∈ Is such that M|ψ, s |= ⊙

i(ϕ|⊤).

The semantics of
⊙P

i ϕ means that it is prima facie obligatory that ϕ for i if and
only if after receiving some true information, i has an epistemic unconditional
obligation to ensure ϕ. In our example, we have M, 5 |= ⊙P

i A since M|L, 5 |=⊙
i(A|⊤). But M, 5 |= ¬⊙

i(A|⊤). These mean that the president has a prima
facie obligation to send the army once she knows that the territorial land is
invaded. But this prima facie obligation is currently not an absolute obligation.
Similarly, i also has a prima facie obligation to send both their army and navy,⊙P

i (A ∧ N), once she knows that the territorial land and sea are invaded. But
this prima facie obligation will never become an absolute obligation since S
is not true in 5. We argue that the above definition of prima facie obligation
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succeeds in addressing the reservations moved by Prakken and Sergot (1997) to
the approach to prima facie obligations based on conditional obligations. Some
other approaches, e.g., dynamic approach, to study prima facie obligations, can
be seen in Willer (2016).

All-things-considered obligation
⊙A

i ϕ: All-things-considered obligations are
usually compared with prima facie obligations. Prakken and Sergot (1997) state
that “To find out what one’s duty proper is, one should consider all things, · · ·
[it] can be based on any aspect of the factual circumstances and find which
one is more incumbent”. The statement suggests that an all-things-considered
obligation should be the most ideal state of affairs when introducing all true
information. It is also strongly related to van der Torre’s exact factual detachment
in the context of objective conditional obligation when all factual premises are
given (see Chapter 4.1 in van der Torre (1997)). We define it as follows:

Definition 46 (All-things-considered obligation). Given a pointed epistemic better-
ness structure (M, s),

M, s |= ⊙A
i ϕ iff M|∧ Is , s |= ⊙

i(ϕ|⊤).

M|∧ Is is the model updated by introducing all information on s. In our
example, M, 5 |= ⊙A

i (A ∧ ¬N), which means that the president has an all-
things-considered obligation to send the army rather than the navy. However,
since she does not know that their territorial land has been invaded at the
moment, this all-things-considered obligation is not an absolute obligation yet.

Safe knowledge-based obligation
⊙S

i ϕ: We introduce a type of obligation
that, to the best of our knowledge, has not yet been discussed in the literature,
but which arises naturally in our framework. We have mentioned that absolute
obligations are defeasible given different information. But it is still possible
to find some obligations that cannot be defeated by the acquisition of new
information. In the study on conditional beliefs, Baltag and Smets (2006b) define
safe beliefs, where ‘safe’ means that they are persistent under revision with
any true information. Although their definition is founded on a connected
plausibility relation, we can follow their idea and define safe knowledge-based
obligations as follows:

Definition 47 (Safe obligation). Given an epistemic betterness structure M = ⟨S,∼1
,⩽, V⟩, M, s |= ⊙S

1 ϕ if and only if the following two conditions are satisfied:

1. M, s |= ϕ;

2. for each t, r ∈ [s]∼1 , if t ∈ ∥ϕ∥M and t ⩽ r, then r ∈ ∥ϕ∥M.

Intuitively, if M, s |= ⊙S
i ϕ, then ϕ is satisfied in the actual state and ∥ϕ∥M ∩

[s]∼i is ⩽-upward-closed. As a consequence, it is easy to check that M, s |=
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⊙S
i ϕ → ⊙

i(ϕ|⊤). Moreover, for any ψ ∈ Is, we have M|ψ, s |= ⊙
i(ϕ|⊤). Thus,

M|∧ Is , s |= ⊙
1(ϕ|⊤). This means that a safe obligation to ensure ϕ will never

be defeated by introducing new true information. It will always be an absolute
obligation as well as a prima facie obligation.

In our example, ∥C∥M ∩ [5]∼i is ⩽-upward-closed since C is satisfied over
the whole set. Thus, M, 5 |= ⊙S

i C. This means that i has a safe knowledge-based
obligation to protect her civilians, no matter what information she received.

4.5 Reduction and axiomatization

In this section, we will show that each LDKCDL-formula in the form of
⊙

i(ϕ|ψ)
can be reduced to some LDEL-formula by a Kangerian-Andersonian reduction
(KA-reduction) (see Anderson (1958), Kanger (1970)). In its classical form, the
reduction treats deontic operators ⃝ϕ as 2(Q → ϕ) where Q denotes a propo-
sitional ideality constant standing for ‘all obligations are met’. De Lima et al.
(2010) defined obligations as ⃝iϕ =de f ⟨⟨∅⟩⟩(¬ϕ → vioi) which means that
over all outcomes (after arbitrary execution), if ¬ϕ is achieved, i will meet a vio-
lation (denoted by a constant vioi). This reduction approach has been explored
extensively in the literature, in a variety of settings (see Meyer (1988), De Lima
et al. (2010), van Benthem et al. (2014)).

Åqvist (1997) provided KA-reduction for Hansson’s dyadic operator ⃝( | )
by partitioning all states into a sequence of optimality classes {opt1, · · · , optm},
from the best class opt1 to the worst optm. van Benthem et al. (2014) also gave a
logically equivalent formula to Hansson’s conditional obligation ⃝(ϕ|ψ) based
on priority structures, which generalized Åqvist’s formalization. It is shown as
follows:

[U]((
∨

⟨ϕ1,··· ,ϕn⟩∈SG

∧
1≤m≤n

(⟨U⟩(ϕm ∧ ψ) → (ϕm ∧ ψ))) → ϕ) (4.1)

SG is the set of longest sequences in the priority structure G. Formula (4.1)
consists of the universal modality [U] and classical logical connectives. Inspired
by (4.1), we first give a key formula schema for our following reduction axioms.

Given a priority structure G = ⟨Φ,≺⟩ and an arbitrary formula χ ∈ Φ∪ {⊤},
define Φχ = {χ′ ∈ Φ | χ′ ≻ χ}1. Thus, Φχ consists of all the formulas in G
better than χ. The KA-reduction of

⊙
i(ϕ|ψ) relies on the formula:

λi
ψ :

∨
χ∈Φ∪{⊤}((χ ∧ ψ) ∧ Ki(

∨
Φχ → ¬ψ))

Formula λi
ψ says “ψ is consistent with some χ in the priority structure and agent

i knows that any state of affairs that is better than χ (i.e.,
∨

Φχ) must falsify ψ”.

1If χ ∈ Φ and there is no χ′ ∈ Φ such that χ′ ≻ χ, let Φχ = ∅ and
∨

Φχ = ⊥. If χ = ⊤, Φχ = Φ.
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Lemma 7. Given a priority structure G = ⟨Φ,≺⟩ and an arbitrary epistemic betterness
structure (M, s) based on G, M, s |= λi

ψ iff s ∈ max⩽([s]∼i ∩ ∥ψ∥M).

Proof. (⇒) Suppose, to reach a contradiction, that s ̸∈ max⩽([s]∼i ∩ ∥ψ∥M).
We split the proof into two cases: • Case 1: If s ̸∈ ∥ψ∥M, then M, s ̸|= λi

ψ.
Contradiction. • Case 2: If s ∈ ∥ψ∥M and s is not the best ψ-state, then there
exists t ∈ [s]∼i such that M, t |= ψ and t > s. Since there must exist χ ∈ Φ ∪ {⊤}
such that M, s |= χ ∧ ψ, we have for any r > s that there exists χ′ ≻ χ (if
χ is ⊤, then χ′ ≻ ⊤ for each χ′ ∈ Φ) such that M, r |= χ′. Since t ∈ [s]∼i ,
M, t |= ∨

Φχ → ¬ψ. By t > s, we have that M, t |= χ′, which implies that
M, t |= ∨

Φχ. So M, t |= ¬ψ. Contradiction. Therefore, s ∈ max⩽([s]∼i ∩ ∥ψ∥M).
(⇐) Suppose that s ∈ max⩽([s]∼i ∩ ∥ψ∥M). There must exist χ ∈ Φ ∪ {⊤}

such that M, s |= (χ ∧ ψ) ∧ ¬∨
Φχ. We then prove by two cases: • Case 1: If

there is no t ∈ [s]∼i such that t > s, this implies that
∨

Φχ = ⊥. It is trivial
that for each r ∼i s, M, r |= ∨

Φχ → ¬ψ. So M, s |= Ki(
∨

Φχ → ¬ψ). • Case
2: If there is t ∈ [s]∼i such that t > s, there must exist χ′ ≻ χ in Φ such that
M, t |= χ′ ∧ ¬ψ, which implies that M, t |= ∨

Φχ → ¬ψ. As for each r ∼i s such
that r ̸> s, M, r |= ¬∨

Φχ, this also implies that M, r |= ∨
Φχ → ¬ψ. So for all

u ∼i s, M, u |= ∨
Φχ → ¬ϕ. Therefore, M, s |= Ki(

∨
Φχ → ¬ψ).

Therefore, λi
ψ captures the best ψ-state among the set of epistemically indis-

tinguishable states for agent i. The outermost operator of λi
ψ is not

⊙
i( | ).

Proposition 3 (KA-reduction of
⊙

i( | )). Given an epistemic betterness structure
(M, s) based on the priority structure G,

M, s |= ⊙
i(ϕ|ψ) ↔ Ki(λ

i
ψ → ϕ)

The proof involves a routine argument. The formula Ki(λψ → ϕ) can be read
as ‘for all states that i cannot distinguish from the real state, all best ψ-states also
satisfy ϕ’, which is coincident with the interpretation of

⊙
i(ϕ|ψ). The formula

λi
ψ can be considered as a relativized constant which plays a similar role with

the Kanger’s constant Q. But Q can only capture the most ideal state of affairs.
λi

ψ goes further as it describes the ideality relativized to some specific state of
affairs and a certain agent. KA-reduction above helps to reduce each formula in
the form of

⊙
i(ϕ|ψ) to a LDEL-formula without any dyadic deontic operator.

Another question about the reduction axiom is: what is the reduction axiom
for the formula [(U, e)]

⊙
i(ϕ|ψ)? Two different approaches are to be given,

which are essentially equivalent. The first way is straightforward. It first reduces
the dyadic deontic operator by (KA-reduction) shown in Proposition 3 and then
reduces the dynamic operator according to dynamic epistemic logic. The second
method goes conversely. Both ways are carried out by the formula λi

ψ.
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4.5.1 Approach 1: reducing deontic operator - dynamic operator

By Proposition 3, the reduction axiom for the formula [(U, e)]
⊙

i(ϕ|ψ) can be
carried out by reducing the dynamic epistemic logic formula [(U, e)]Ki(λψ → ϕ).

Proposition 4 (DEL-Reduction axiom (van Ditmarsch and Kooi (2008))). Given
an epistemic model (M, s), the reduction axiom for [(U, e)]Kiϕ is:

M, s |= [(U, e)]Kiϕ ↔ (pre(e) → ∧
e′Rie Ki[(U, e′)]ϕ)

Therefore, we can further give the reduction for [(U, e)]Ki(λ
i
ψ → ϕ):

Proposition 5. (Reduction Axiom I) Given an arbitrary epistemic betterness structure
(M, s),

M, s |= [(U, e)]
⊙

i(ϕ|ψ) ↔ (pre(e) → ∧
e′Rie Ki[(U, e′)](λψ → ϕ))

It deserves noting that the outermost operator of (pre(e) →∧
e′Rie Ki[(U, e′)](λψ → ϕ)) (denoted by (b)) is neither a dynamic operator nor a

deontic operator. According to Kooi (2007)’s definition of reduction axiom, we
find a reduction for [(U, e)]

⊙
i(ϕ|ψ).

4.5.2 Approach 2: reducing dynamic operator - deontic operator

We can also reduce the dynamic operator first and then reduce the dyadic
deontic operator by KA-reduction.

Proposition 6. Given a priority structure G = ⟨Φ,≤⟩, over an arbitrary epistemic
betterness structure based on G, [(U, e)]

⊙
i(ϕ|ψ) is logically equivalent to the following

formula:

(a) pre(e) → ∧
e′Rie

∧
χ′′∈Φ

⊙
i([(U, e′)]ϕ | (¬∨

Φχ′′ ∧ [(U, e′)]λψ))

Proof. (⇐) Suppose that M, s |= (a). We then prove it by two cases:
• Case 1: If M, s ̸|= pre(e), then M, s |= [(U, e)]

⊙
i(ϕ|ψ) trivially.

• Case 2: If M, s |= pre(e), then M, s |= ∧
χ′′∈Φ

∧
e′Rie

⊙
i([(U, e′)]ϕ|¬∨

Φχ′′ ∧
[(U, e′)]λψ). So we need to prove M, s |= [(U, e)]

⊙
i(ϕ|ψ). By semantics, we

need to prove pre(e) implies that M ⊗ U, (s, e) |= ⊙
i(ϕ|ψ). We have supposed

that M, s |= pre(e). So we only need to check if M ⊗ U, (s, e) |= ⊙
i(ϕ|ψ).

Assume, to reach a contradiction, that M ⊗ U, (s, e) ̸|= ⊙
i(ϕ|ψ). This implies

that there is (s1, e1) ∈ M ⊗ U such that (s1, e1) ∈ max⩽([(s, e)]∼i ∩ ∥ψ∥M⊗U)
and M ⊗ U, (s1, e1) |= ¬ϕ. By Lemma 7, we have M ⊗ U, (s1, e1) |= λψ. This
means that M, s1 |= [(U, e1)]λψ. Let χ1 be the formula in Φ such that M, s1 |= χ1
and for each χ′

1 ≻ χ1, M, s1 ̸|= χ′
1. So we have s1 ∈ max⩽([s]∼i ∩ ∥¬∨

Φχ1 ∧
[(U, e1)]λψ∥M). By M, s |= ∧

χ′′∈Φ
∧

e′Rie
⊙

i([(U, e′)]ϕ | ¬∨
Φχ′′ ∧ [(U, e′)]λψ),

we have M, s1 |= [(U, e1)]ϕ. So M ⊗ U, (s1, e1) |= ϕ. Contradiction. Thus, M ⊗
U, (s, t) |= ⊙

i(ϕ|ψ). Therefore, M, s |= [(U, e)]
⊙

i(ϕ|ψ).
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(⇒) Suppose that M, s |= [(U, e)]
⊙

i(ϕ|ψ). By semantics, pre(e) im-
plies that M ⊗ U, (s, e) |= ⊙

i(ϕ|ψ). Suppose that M, s |= pre(e). So M ⊗
U, (s, t) |= ⊙

i(ϕ|ψ). Now we prove it by contradiction. Assume that M, s ̸|=∧
χ′′∈Φ

∧
e′Rie

⊙
i([(U, e′)]ϕ | ¬∨

Φχ′′ ∧ [(U, e′)]λψ). This implies that there
exist χ1 ∈ Φ and e1 ∈ U such that M, s ̸|= ⊙

i([(U, e1)]ϕ | ¬∨
Φχ1 ∧

[(U, e1)]λψ). This means that there exists s1 ∈ [s]∼i such that s1 ∈ max⩽([s]∼i ∩
∥¬∨

Φχ1 ∧ [(U, e1)]λψ∥M) and M, s1 ̸|= [(U, e1)]ϕ. So M, s1 |= [(U, e1)]λψ,
which means that M, s1 |= pre(e) implies that M ⊗ U, (s1, e1) |= λψ. If
M, s1 ̸|= pre(e1), this contradicts M, s1 ̸|= [(U, e1)]ϕ. So M, s1 |= pre(e1).
Thus, M ⊗ U, (s1, e1) |= λψ. Since s ∼i s1 and eRie1, (s1, e1) ∈ [(s, e)]∼i . By
Lemma 7, (s1, e1) ∈ max⩽([(s, e)]∼i ∩ ∥ψ∥M⊗U). By M ⊗ U, (s, e) |= ⊙

i(ϕ|ψ),
M ⊗ U, (s1, e1) |= ϕ, which contradicts to M, s1 ̸|= [(U, e1)]ϕ. Thus, we proved
that M, s |= ∧

χ′′∈Φ
∧

e′Rie
⊙

i([(U, e′)]ϕ | ¬∨
Φχ′′ ∧ [(U, e′)]λψ).

Hereafter, we just need to reduce the dyadic deontic operator by KA-
reduction as shown in Proposition 3.

Proposition 7. Given a priority structure G = ⟨Φ,≤⟩, over arbitrary epistemic
betterness structure based on G, the following two formulas are equivalent:

(a) pre(e) → ∧
χ′′∈Φ

∧
e′Rie

⊙
i([(U, e′)]ϕ | ¬∨

Φχ′′ ∧ [(U, e′)]λψ).
(b) pre(e) → ∧

χ′′∈Φ
∧

e′Rie Ki(λ¬∨
Φχ′′∧[(U,e′)]λψ

→ [(U, e′)]ϕ)

Corollary 2. (Reduction Axiom II) Given a priority structure G = ⟨Φ,≤⟩, over
arbitrary epistemic betterness structure based on G, the following two formulas are
equivalent:

M, s |= [(U, e)]
⊙

i(ϕ|ψ) ↔ (b)

4.5.3 Harmony

We have shown two alternative reductions for the formula [(U, e)]
⊙

i(ϕ|ψ). It is
expected that they are logically equivalent.

Proposition 8. Given a priority structure G = ⟨Φ,≤⟩, over arbitrary epistemic
betterness structure based on G, the following two formulas are equivalent:

(b) pre(e) → ∧
e′Rie Ki[(U, e′)](λψ → ϕ)

(b) pre(e) → ∧
χ′′∈Φ

∧
e′Rie Ki(λ¬∨

Φχ′′∧[(U,e′)]λψ
→ [(U, e′)]ϕ)

To prove Proposition 8, we only need to check that Ki[(U, e′)](λψ → ϕ) is
equivalent to

∧
χ′′∈Φ Ki(λ¬∨

Φχ′′∧[(U,e′)]λψ
→ [(U, e′)]ϕ). The proof is omitted

since it is not hard. A commutative diagram2 (Figure 4.7) indicates that both
approaches are in harmony. Since approach 1 is simpler and KA-reduction in

2A commutative diagram is a diagram such that all directed paths in the diagram with the same
start and endpoints lead to the same result.
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[(U, e)]Ki(λψ → ϕ)

Reducing Dynamics
++

[(U, e)]
⊙

i(ϕ|ψ)
KA−reduction

33

Reducing Dynamics

,,

(b) ↔ (b)

(a)

KA−reduction

33

Figure 4.7: The two approaches to reduction

Proposition 3 follows the tradition of deontic logic, we will give the axiomatiza-
tion based on KA-reduction and formula (b) will plays an important role in the
completeness proof of our axiom system.

4.5.4 Axiomatization DKCDL

It should be noted that λi
ψ is defined by some ψ, some i ∈ G and a certain

priority structure. Therefore, our proof system is to be established based on a
fixed priority structure G.

Definition 48. The proof system DKCDL consists of the following axiom schemas
and inference rules:

for each i ∈ G

(TAUT) All instances of tautologies
(K) Ki(ϕ → ψ) → (Kiϕ → Kiψ)
(T) Kiϕ → ϕ
(4) Kiϕ → KiKiϕ
(5) ¬Kiϕ → Ki¬Kiϕ
(U-A) [(U, e)]p ↔ (pre(e) → post(e)(p))
(U-N) [(U, e)]¬ϕ ↔ (pre(e) → ¬[(U, e)]ϕ)
(U-C) [(U, e)](ϕ ∧ ψ) ↔ ([(U, e)]ϕ ∧ [(U, e)]ψ)
(U-K) [(U, e)]Kiϕ ↔ (pre(e) → ∧

e′Rie Ki[(U, e′)]ϕ)
(KA)

⊙
i(ϕ|ψ) ↔ Ki(λ

i
ψ → ϕ)

(MP) From ϕ and ϕ → ψ, infer ψ
(N) From ϕ, infer Kiϕ
(RE) From ϕ ↔ ψ, infer χ ↔ χ[ϕ/ψ]

DKCDL is given based on the proof system for dynamic epistemic logic
with postconditions UM given by van Ditmarsch and Kooi (2008), except (KA),
which is given so as to reduce the dyadic deontic operators. (RE) is the inference
rule replacement (substitution) of equivalents, which is admissible in DKCDL.
The notation χ[ϕ/ψ] denotes any formula obtained by replacing one or more
occurrences of ψ in χ with ϕ.
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Theorem 3. DKCDL is sound with respect to the class of epistemic betterness
structure.

Soundness can be obtained straightforwardly from the soundness of DEL
and the validity of (KA) (Proposition 3). The basic proof strategy of completeness
refers to Chapter 7.4 in van Ditmarsch et al. (2007) and Theorem 11 in Kooi
(2007). There are two key points in the completeness proof:

1. All LDKCDL-formulas are translated to LEL-formulas by a translation func-
tion (to be shown in Definition 49) which is induced by KA-reduction and
reduction axioms for dynamic operators.

2. In the following induction proofs, some are proved by induction on the
complexity of LDKCDL-formulas (to be shown in Definition 50) rather than
the structure of formulas.

The complexity measure is used for capturing whether the translation prac-
tically reduces the outermost dynamic operators or deontic operators of an
LDKCDL-formula. In this way, we reduce the completeness of DKCDL to the
known completeness of classical epistemic logic EL.

Definition 49. (Translation) The translation t : LDKCDL → LEL is defined as follows:

t(p) = p
t(¬ϕ) = ¬t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t(Kiϕ) = Kit(ϕ)
t(
⊙

i(ϕ|ψ)) = Ki(t(λi
ψ) → t(ϕ))

t([U, e]p) = t(pre(e) → post(e)(p))
t([U, e]¬ϕ) = t(pre(e) → ¬[U, e]ϕ)
t([U, e](ϕ ∧ ψ)) = t([U, e]ϕ ∧ [U, e]ψ)
t([U, e]Kiϕ) = t(pre(e) → ∧

e′Rie Ki[U, e′]ϕ)
t([U.e]

⊙
i(ϕ|ψ)) = t(pre(e) → ∧

e′Rie Ki[U, e′](λi
ψ → ϕ))

According to Definition 49, t(
⊙

i(ϕ|ψ)) is also equivalent to Ki(¬(t(λi
ψ) ∧

¬t(ϕ))).

Definition 50. (Complexity of LDKCDL) The complexity c : LDKCDL → N is defined
as follows:

c(p) = 1
c(¬ϕ) = 1 + c(ϕ)
c(ϕ ∧ ψ) = 1 + max(c(ϕ), c(ψ)))
c(Kiϕ) = 1 + c(ϕ)
c([U, e]ϕ) = (3 + |U|+ c(U)) · c(ϕ)
c(
⊙

i(ϕ|ψ)) = 3 + max(c(λi
ψ), c(¬ϕ))

where c(U) = max(c(pre(e1)), · · · , c(pre(e|U|)), c(post(e1)(p1)), · · · , c(post(e1)(pk)),
· · · c(post(e|U|)(p1)), · · · , c(post(e|U|)(pk))))).
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Note that our notion of complexity is slightly different from the complexity
definition used in dynamic epistemic logic or UM given by van Ditmarsch
and Kooi (2008). The definition of c(U) is worth stressing. It represents the
maximal complexity among all preconditions and postconditions of each event
in the action model U. The term |U| represents the number of events in U.
The constant 3 occurring in c([U, e]ϕ) is chosen for technical reasons. It is the
minimal number that makes Lemma 8 work.

Then we prove that all ϕ ∈ LDKCDL-formulas are syntactically equivalent
to their translation in Lemma 8. The proof will be done by induction on the
complexity of an arbitrary LDKCDL-formula ϕ. When ϕ is a propositional atom,
its complexity is minimal, i.e., 1. As for the inductive step, we need to show
that the translation of each formula with respect to its structure (except propo-
sitional atoms) is also syntactically equivalent to itself. The cases for negation,
conjunction, epistemic operator and dyadic deontic operator are relatively easy.
But when ϕ = [U, e]ψ, according to our translation shown in Definition 49, we
still need to show that the claim holds for different types of ψ respectively, i.e.,
ψ is a propositional atom, a negation, a conjunction, an epistemic formula or a
dyadic deontic formula.

Lemma 8. For all formulas ϕ ∈ LDKCDL, it is the case that ⊢ ϕ ↔ t(ϕ) and
t(ϕ) ∈ LEL.

Proof. By induction on c(ϕ).
• Base case: When ϕ = p for some propositional atom p, it is trivial that

⊢ p ↔ p and p ∈ LEL.
• Induction hypothesis: For all ϕ such that c(ϕ) < n: we have ⊢ ϕ ↔ t(ϕ)

and t(ϕ) ∈ LEL.
• Induction step: If c(ϕ) = n + 1:

• When ϕ = ¬ψ, we have c(¬ψ) = 1 + c(ψ). So c(ψ) = n. By induction
hypothesis, we get ⊢ ψ ↔ t(ψ) and t(ψ) ∈ LEL. Thus, ⊢ ¬ψ ↔ ¬t(ψ). It
just is ⊢ ϕ ↔ t(ϕ). And ¬t(ψ) ∈ LEL.

• When ϕ = (ψ1 ∧ ψ2), we have c(ψ1 ∧ ψ2) = 1 + max(c(ψ1, c(ψ2))). So
max(c(ψ1, c(ψ2))) = n. It means that c(ψ1) ≤ n and c(ψ2) ≤ n. By induc-
tion hypothesis, we have ⊢ ψ1 ↔ t(ψ1), ⊢ ψ2 ↔ t(ψ2), t(ψ1) ∈ LEL and
t(ψ2) ∈ LEL. Then we have ⊢ (ψ1 ∧ ψ2) ↔ (t(ψ1) ∧ t(ψ2)). It is equivalent
to ⊢ (ψ1 ∧ ψ2) ↔ t(ψ1 ∧ ψ2) by our translation. And t(ψ1) ∧ t(ψ2) ∈ LEL.

• When ϕ = Kiψ: c(Kiψ) = 1 + c(ψ). So c(ψ) = n. By induction hypothesis,
we have ⊢ ψ ↔ t(ψ) and t(ψ) ∈ LEL. By (NEC) and (K), ⊢ Kiψ ↔ Ki(t(ψ)).
It is equivalent to ⊢ Kiψ ↔ t(Kiψ) by our translation. And we also have
Kit(ψ) ∈ LEL.

• When ϕ =
⊙

i(ψ1|ψ2): c(
⊙

i(ψ1|ψ2)) = 3 + max(c(λi
ψ2
), c(¬ψ1)). So

c(λi
ψ2
) ≤ n and c(¬ψ1) ≤ n. By induction hypothesis, we have ⊢
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λi
ψ2

↔ t(λi
ψ2
), ⊢ ¬ψ1 ↔ t(¬ψ1), t(λi

ψ1
) ∈ LEL and t(¬ψ2) ∈ LEL. By

propositional logic, we have ⊢ ¬ψ1 ↔ ¬t(ψ1). Then it follows that
⊢ (λi

ψ2
∧ ¬ψ1) ↔ (t(λi

ψ2
) ∧ ¬t(ψ1)). So we have ⊢ ¬(λi

ψ2
∧ ¬ψ1) ↔

¬(t(λi
ψ2
) ∧ ¬t(ψ1)). It implies that ⊢ Ki(λ

i
ψ2

→ ψ1) ↔ Ki(t(λi
ψ2
) → t(ψ1))

by (NEC) and (K). It is equivalent to ⊢ ⊙
i(ψ1|ψ2) ↔ t(

⊙
i(ψ1|ψ2)) by

(KA), (RE) and our translation. And we also have Ki(t(λi
ψ2

→ ψ1)) ∈ LEL.

• When ϕ = [U, e]p: we know c([U, e]p) = 3 + |U|+ c(U).

We first prove ⊢ ϕ ↔ t(ϕ). We have c(pre(e) → post(e)(p)) = 2 +
max(c(pre(e)), c(¬post(e)(p))). If c(pre(e)) ≥ c(¬post(e)(p)), by c(U) ≥
c(pre(e)), we have c([U, e]p) > c(pre(e) → post(e)p). If c(¬post(e)(p)) ≥
c(pre(e)), then c(pre(e) → post(e)(p)) = 3 + c(post(e)(p)). By c(U) ≥
c(post(e)(p)) and |U| ≥ 1, we obtain c([U, e]p) > c(pre(e) → post(e)p).
By induction hypothesis, we have ⊢ (pre(e) → post(e)(p)) ↔ t(pre(e) →
post(e)(p)). It is equivalent to ⊢ [U, e]p ↔ t([U, e]p) by our translation
and (RE).

Then we prove t(ϕ) ∈ LEL. We have t([U, e]p) = t(¬(pre(e) ∧
¬post(e)(p))) = ¬(t(pre(e)) ∧ t(¬post(e)(p))). We know that c(pre(e)) ≤
c(U) and c(¬post(e)(p)) ≤ c(U) + 1. So we have c(pre(e)) ≤ n and
c(¬post(e)(p)) ≤ n. By induction hypothesis, we have t(pre(e)) ∈ LEL
and t(¬post(e)(p)) ∈ LEL. Thus, t([U, e]p) ∈ LEL.

• When ϕ = [U, e]¬ψ: c([U, e]¬ψ) = (3 + |U| + c(U)) · (1 + c(ψ)) = 3 +
|U|+ c(U) + 3 · c(ψ) + |U| · c(ψ) + c(U) · c(ψ).

We first prove ⊢ ϕ ↔ t(ϕ). We know c(pre(e) → ¬[U, e]ψ) = 2 +
max(c(pre(e)), c(¬[U, e]ψ)). Since c(¬[U, e]ψ) > c(pre(e)), we have
c(pre(e) → ¬[U, e]ψ) = 3 + c([U, e]ψ) = 3 + 3 · c(ψ) + |U| · c(ψ) + c(U) ·
c(ψ). So c([U, e]¬ψ) > c(pre(e) → ¬[U, e]ψ). By induction hypothesis,
we obtain ⊢ (pre(e) → ¬[U, e]ψ) ↔ t(pre(e) → ¬[U, e]ψ). It follows that
⊢ [U, e]¬ψ ↔ t([U, e]¬ψ) by (RE) and our translation.

Then we prove t(ϕ) ∈ LEL. We know t([U, e]¬ψ) = t(pre(e) →
¬[U, e]ψ) = t(¬(t(pre(e) ∧ t(¬post(e)(p))))). Since c(pre(e)) ≤ c(U) and
c([U, e]ψ) < c([U, e]¬ψ), by induction hypothesis, we have t(pre(e)) ∈ LEL
and t([U, e]ψ) ∈ LEL. Thus, we obtain t([U, e]¬ψ) ∈ LEL.

• When ϕ = [U, e](ψ1 ∧ ψ2): c([U, e](ψ1 ∧ ψ2)) = (3 + |U| + c(U)) ·
(max(c(ψ1), c(ψ2)) + 1).

We first prove ⊢ ϕ ↔ t(ϕ). Assuming c(ψ1) ≥ c(ψ2), we have c([U, e](ψ1 ∧
ψ2)) = 3 + |U| + c(U) + 3 · c(ψ1) + |U| · c(ψ1) + c(U) · c(ψ1). We also
know c([U, e]ψ1 ∧ [U, e]ψ2) = 1+max(c([U, e]ψ1), c([U, e]ψ2)). By c(ψ1) ≥
c(ψ2), we have c([U, e]ψ1 ∧ [U, e]ψ2) = 4 + |U|+ c(U) + c(U) · c(ψ1). So
c([U, e](ψ1 ∧ ψ2)) > c([U, e]ψ1 ∧ [U, e]ψ2). By induction hypothesis, we
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obtain ⊢ ([U, e]ψ1 ∧ [U, e]ψ2) ↔ t([U, e]ψ1 ∧ [U, e]ψ2). It is equivalent to
⊢ [U, e](ψ1 ∧ ψ2) ↔ t([U, e](ψ1 ∧ ψ2)) by (RE) and our translation.

Then we prove t(ϕ) ∈ LEL. Assuming c(ψ1) ≥ c(ψ2), we have
c([U, e](ψ1 ∧ ψ2)) = 3 + |U|+ c(U) + 3 · c(ψ1) + |U| · c(ψ1) + c(U) · c(ψ1).
We know t([U, e](ψ1 ∧ ψ2)) = t([U, e]ψ1) ∧ t([U, e]ψ2). Since c([U, e]ψ1) <
c([U, e](ψ1 ∧ ψ2)) and c([U, e]ψ2) < c([U, e](ψ1 ∧ ψ2)), by induction hy-
pothesis, we have t([U, e]ψ1) ∈ LEL and t([U, e]ψ2) ∈ LEL. Thus, we
obtain t([U, e](ψ1 ∧ ψ2)) ∈ LEL.

• When ϕ = [U, e]Kiψ, c([U, e]Kiψ) = 3+ |U|+ c(U) + 3 · c(ψ) + |U| · c(ψ) +
c(U) · c(ψ).

We first prove ⊢ ϕ ↔ t(ϕ). We know c(pre(e) →∧
e′Rie Ki[U, e′]ψ) = 2 + max(c(pre(e)), c(¬∧

e′Rie Ki[U, e′]ψ)). We
also know c(¬∧

e′Rie Ki[U, e′]ψ) = 1 + c(
∧

e′Rie Ki[U, e′]ψ) =
1 + |U| − 1 + max(c(Ki[U, e1]ψ), · · · , c(Ki[U, e|U|]ψ)) = 1 +

|U| + max(c([U, e1]ψ), · · · , c([U, e|U|]ψ)). Let m ∈ N such that
1 ≤ m ≤ |U| and c([U, em]ψ) = max(c([U, e1]ψ), · · · , c([U, e|U|]ψ)).
Then c(pre(e) → ∧

e′Rie Ki[U, e′]ψ)) = 3 + |U| + c([U, em]ψ) =
3 + |U| + 3 · c(ψ) + |U| · c(ψ) + c(U) · c(ψ). So it is easy to see that
c([U, e]Kiψ) > c(pre(e) → ∧

e′Rie Ki[U, e′]ψ)). By induction hypothesis, we
obtain ⊢ (pre(e) → ∧

e′Rie Ki[U, e′]ψ)) ↔ t(pre(e) → ∧
e′Rie Ki[U, e′]ψ)). It

is equivalent to ⊢ [U, e]Kiψ ↔ t([U, e]Kiψ) by (RE) and our translation.

Then we prove t(ϕ) ∈ LEL. We know t([U, e]Kiψ) = ¬t(pre(e) →∧
e′Rie Ki[U, e′]ψ) = ¬(t(pre(e)) ∧ t(¬∧

e′Rie Ki[U, e′]ψ)). We know
c(pre(e)) ≤ c(U). And c(¬∧

e′Rie Ki[U, e′]ψ) = 1 + |U| +
max(c(Ki[U, e1]ψ), · · · , c([U, em]ψ)) where {e1, · · · , em} = [e]∼i .
Since for each ek, el ∈ U, we have c([U, ek]ψ) = c([U, el ]ψ). So
c(¬∧

e′Rie Ki[U, e′]ψ) = 1 + |U| + c(Ki[U, e]ψ) = 2 + |U| + c([U, e]ψ) =
2 + |U| + c([U, e]ψ) = 2 + |U| + 3 · c(ψ) + |U| · c(ψ) + c(U) · c(ψ)
which is strictly smaller than c([U, e]Kiψ). By induction hypothesis,
t(¬∧

e′Rie Ki[U, e′]ψ) ∈ LEL. Thus, we obtain t([U, e]Kiψ) ∈ LEL.

• When ϕ = [U, e]
⊙

i(ψ1|ψ2): By (KA) and (RE), ⊢ [U, e]
⊙
(ψ1|ψ2) ↔

[U, e]Ki(λ
i
ψ2

→ ψ1).

We first prove ⊢ ϕ ↔ t(ϕ). By the above case of ϕ = [U, e]Kiψ, we can
easily prove that ⊢ ϕ ↔ t(ϕ).

Then we prove t(ϕ) ∈ LEL. By Lemma 8, we have ⊢ [U, e]
⊙

i(ψ1|ψ2) ↔
t([U, e]

⊙
i(ψ1|ψ2)) and ⊢ [U, e]Ki(λ

i
ψ2

→ ψ1) ↔ t([U, e]Ki(λ
i
ψ2

→ ψ1)).
So we have ⊢ t([U, e]

⊙
i(ψ1|ψ2) ↔ t([U, e]Ki(λ

i
ψ2

→ ψ1))). We know
c([U, e]

⊙
i(ψ1|ψ2)) = 9 + 3 · |U| + 3 · c(U) + 3 · max(c(λi

ψ2
), c(¬ψ1)) +

|U| · max(c(λi
ψ2
), c(¬ψ1)) + c(U) · max(c(λi

ψ2
), c(¬ψ1)). We
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know t([U, e]
⊙

i(ψ1|ψ2)) = t(pre(e) → ∧
e′Rie Ki[U, e′](λi

ψ2
→

ψ1)) = ¬(t(pre(e)) ∧ t(¬∧
e′Rie Ki[U, e′](λi

ψ2
→ ψ1))). We know

c(pre(e)) ≤ c(U) ≤ n. And t(¬∧
e′Rie Ki[U, e′](λi

ψ2
→ ψ1)) =

1 + |U|+ 1 + c([U, e](λi
ψ2

→ ψ1)) = 2 + |U|+ (3 + |U|+ c(U)) · c(λi
ψ2

→
ψ1) = 2 + |U| + (3 + |U| + c(U)) · (1 + max(c(λi

ψ2
), c(¬ψ1))) =

2 + |U| + 3 + |U| + c(U) + 3 · max(c(λi
ψ2
), c(¬ψ1))) + |U| ·

max(c(λi
ψ2
), c(¬ψ1))) + c(U) · max(c(λi

ψ2
), c(¬ψ1))) which is

strictly smaller than c([U, e]
⊙

i(ψ1|ψ2)). By induction hypothesis,
t(¬∧

e′Rie Ki[U, e′](λi
ψ2

→ ψ1)) ∈ LEL. Thus, t([U, e]
⊙

i(ψ1|ψ2)) ∈ LEL.

Therefore, we proved that for each formula ϕ ∈ LDKCDL, it is the case that
⊢ ϕ ↔ t(ϕ) and t(ϕ) ∈ LEL.

Let Γ be a set of LDKCDL-formulas and let t(Γ) = {t(ϕ) | ϕ ∈ Γ)}. We need
the following lemma to give the final completeness proof.

Lemma 9. For every set of formulas Γ ∪ {ϕ} ⊆ LDKCDL, Γ |= ϕ implies that
t(Γ) |=S5 t(ϕ).

Proof. Let M = ⟨S,∼1, · · · ,∼n,⩽, V⟩ be an arbitrary epistemic betterness struc-
ture and let ME = ⟨S,∼1, · · · ,∼n, V⟩ be the epistemic model removed the
betterness relation from M. We first show that for each LEL-formula ψ and
arbitrary s ∈ S, M, s |= ψ ⇔ ME, s |=S5 ψ.

By induction on the structure of ψ:

• When ψ = p for some propositional atom p: by semantics of LDKCDL,
M, s |= p if and only if s ∈ V(p). Then, by semantics of LEL, ME, s |=S5 p
if and only if s ∈ V(p). Thus, we have M, s |= p ⇔ ME, s |=S5 p.

• When ψ = ¬χ: Suppose that M, s |= ¬χ. By semantics of LDKCDL, we
have M, s ̸|= χ. By induction hypothesis, we have ME, s ̸|=S5 χ. So we have
ME, s |=S5 ¬χ. Suppose that ME, s |=S5 ¬χ. By semantics of LEL, we have
ME, s ̸|=S5 χ. By induction hypothesis, we have M, s ̸|= χ. So we have
M, s |= ¬χ.

• When ψ = (χ1 ∧ χ2): Suppose that M, s |= (χ1 ∧ χ2). By semantics of
LDKCDL, we have M, s |= χ1 and M, s |= χ2. By induction hypothesis, we
have ME, s |=S5 χ1 and ME, s |=S5 χ2. So we have ME, s |=S5 (χ1 ∧ χ2).
Suppose that ME, s |=S5 (χ1 ∧χ2). By semantics of LEL, we have ME, s |=S5
χ1 and ME, s |=S5 χ2. By induction hypothesis, we have M, s |= χ1 and
M, s |= χ2. So we have M, s |= (χ1 ∧ χ2).

• When ψ = Kiχ: Suppose that M, s |= Kiχ. By semantics of LDKCDL, we
have M, t |= χ for all t ∈ M such that s ∼i t. By inductive hypothesis, we
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have ME, t |=S5 χ. Since we know that [s]∼i
M = [s]∼i

ME
, we have ME, s |=S5

Kiχ. Suppose that ME, s |=S5 Kiχ. By semantics of LEL, we have ME, t |=S5
χ for all t ∈ ME such that s ∼i t. By inductive hypothesis, we have
M, t |= χ. Since we know that [s]∼i

M = [s]∼i
ME

, we have M, s |= Kiχ.

Now we proved that for an arbitrary LEL-formula ψ and for an arbitrary
state s ∈ S, M, s |= ψ ⇔ ME, s |=S5 ψ.

Let (NE, r) be an arbitrary pointed epistemic model such that NE, r |=S5 t(Γ).
So for each θ ∈ t(Γ), we have N, r |= θ by what we proved above where N is the
epistemic betterness structure derived from NE by the betterness relation based
on our priority structure. Let θ = t(θ′) and thus θ′ ∈ Γ. According to Lemma 8
and soundness, we have N, r |= θ′. Similarly, for each θ′′ ∈ Γ, we have N, r |= θ′′.
So we have N, r |= Γ. By Γ |= ϕ, we have N, r |= ϕ. By Lemma 8 and soundness,
we have N, r |= t(ϕ). By what we proved above, NE, r |= t(ϕ). Therefore, we
proved t(Γ) |=S5 ϕ.

Now we are fully prepared for the final strong completeness proof.

Theorem 4. (Strong completeness) For every set of formulas Γ ∪ {ϕ} ⊆ LDKCDL,
Γ |= ϕ implies Γ ⊢ ϕ.

Proof. Suppose that Γ |= ϕ. By Theorem 3 and DKCDL ⊢ ϕ ↔ t(ϕ) (Lemma 8),
we have Γ |= t(ϕ). By Lemma 9, we have t(Γ) |=S5 t(ϕ). By strong completeness
of EL with respect to S5, we have t(Γ) ⊢EL t(ϕ), which means that there is a
syntactic proof S where we can derive t(ϕ) from a finite set Λ ⊆ t(Γ) by EL.
Let Λ = ⟨ψ1, ψ2, · · · , ψm⟩. For each ψn ∈ Λ, we have ⊢ ψn ↔ t(ψn). We know
that S is a sequence of formulas. Then we can give a DKCDL-syntactic proof
which can derive ϕ from Λ as follows:

(1) ⊢ ψ1 ↔ t(ψ1)
(2) ⊢ ψ2 ↔ t(ψ2)
...
(m) ⊢ ψm ↔ t(ψm)
... S
(m+|S|+1) ⊢ ϕ
(m+|S|+2) ⊢ ϕ ↔ t(ϕ)
(m+|S|+3) ⊢ ϕ

Therefore, we conclude that Γ ⊢ ϕ.

Corollary 3. DKCDL is sound and strongly complete with respect to the class of
epistemic betterness structures.
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4.6 Discussion and conclusion

In this chapter, we provide a logic used for capturing obligation changes due to
information or factual changes. Then we give a list of key points of the article
and some possible future research.

Static normative system We introduced priority structures as linguistic re-
sources for referring to the betterness ordering on states of affairs. Priority
structures exist independently from epistemic betterness structures, which pro-
vide us meta-level criterion on goodness. In the context of deontic logic, they
can be regarded as normative systems in the sense that every priority structure
prescribes some norms which instructs agents what states of affairs ought to
be achieved. In semantics of DKCDL, a priority structure is given and never
changes itself. So priority structure, as normative systems, are static.

Dynamic obligations Epistemic betterness structures are used for describing
agents’ obligations. The dynamics investigated in this chapter are only per-
formed over epistemic betterness structure. We extended the static logic of
epistemic conditional obligation KCDL with a dynamic operator. Accordingly,
when an agent’s epistemic conditional obligation is triggered (to an uncondi-
tional obligation) by getting new information or coming to know that some
facts changed, the updated epistemic betterness structure shows the new in-
formation and the new betterness relation. Therefore, DKCDL can explicitly
capture obligation change. We showed how this logic can naturally accommo-
date, in an original way, several key deontic notions such as ideal obligation,
absolute obligation, prima facie obligation, all-things-considered obligation, and
safe knowledge-based obligation.

Axiomatization We established the sound and strongly complete axiom system
DKCDL with respect to epistemic betterness structures. By giving a Kangerian-
Andersonian reduction for the deontic operator and reduction axioms for the
dynamic operator, we can translate all LDKCDL-formula to a syntactically equiv-
alent LEL-formula. Therefore, we can derive the completeness of DKCDL from
the completeness of EL.

Following research As shown in this chapter, agents’ knowledge-based obliga-
tions are strongly affected by their information. However, in most cases in real
life, the obligations are also updates by receiving new commands or by following
new rules. For instance, a mother asks her children to open the door for their
father. At the moment, the children get a new obligation to open the door due to
their mother’s command. The command prescribes a new norm that ‘the door is
open’ is a better state of affairs than ‘the door is not open’. The mother updates
the normative system, which then affects the children’s obligation. It inspires us
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that normative systems can also be dynamified by means of updating priority
structures. The issues will be discussed in the upcoming Chapter 5.

Amount of previous research defined obligations with respect to propositions.
This chapter also follows the classical approach. But there are growing appealing
for action-based obligations where obligations are represented by actions rather
than propositions. It is also perfect in line with our intuitions that when you
ought to ‘do’ something, there is an action which you should perform. Although
there have been a lot of papers formalizing action-based obligations, dynamic
epistemic logic would become a brand new framework to represent action-based
obligations. It is very natural to formalize obligations as these action models
which are able to practically ‘improve’ the epistemic models. In other words, if
an action model leads to an updated epistemic model where each state is better
than its counterpart in the previous epistemic model, the action is an obligation.
Chapter 6 is going to investigated action-based obligations.
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Chapter 5

Making Norms and Following
Norms

5.1 Introduction

A normative sentence contains information which is used for either describing
some deontic state of affairs or prescribing a new norm. The descriptive use is
normally shown in an indicative mood, e.g., ‘Su ought to keep his promise.’ The
prescriptive use usually appears in an imperative mood, e.g., ‘Su, keep your
promise!’. These different uses of normative sentences involve different deontic
logics.

In the descriptive sense, normative propositions describe agents’ deontic
states, thereby having truth values. For example, ‘Pieter ought to drive on the
right’ has a certain truth value under some circumstances. In the Netherlands,
it is true, but it is false in England. Therefore, it is natural to construct a logic
of normative propositions. Varieties of deontic logic were developed following
this approach, such as standard deontic logic (see Chapter 1.1), dyadic deontic
logics (see Chapter 1.2), deontic logic in normative systems (see Ågotnes et al.
(2007)), dynamic deontic logic (see Meyer (1988)), and a number of deontic Stit
logic (see Chapter 1.2), etc.

In the prescriptive sense, we pay more attention to norms rather than nor-
mative propositions since they norms are not propositions and hence do not
have truth values. Norms can be ‘commands’ (in the pragmatic sense) or can
change agents’ deontic states. Infinitives or imperatives are generally used for
prescribing new norms, e.g., ‘It it obligatory for drivers to keep right on the
roads.’ or ‘Boys, come to help your Dad!’. Since imperatives or norms are unable
to bear truth values, as a consequence, a puzzling question arises: is there a logic
of imperatives? The question is known as Jørgensen’s dilemma (see Jørgensen
(1937)), which is also in line with Poincaré’s question: can imperatives be part
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of logical inferences (see Poincaré (1913))? Let us think about the following
inference from Hansen (2008):

John, open the door!
The door cannot be opened unless it is first unlocked.
John, unlock the door!

The above inference is considered to be valid at the first glance. It suggests
that one imperative, by some means, can entail another imperative. However,
according to Hansen’s insightful argument (see Chapter 1 in Hansen (2008)),
there is no logic of imperatives. In this sense, it seems impossible to establish
logical inferences of imperatives. But Hansen also said, “imperatives still can be
meaningfully used to determine what obligations arise in a certain situation”,
which leads us to a logic about imperatives.

Several logics earlier than Hansen’s argument, in effect, were developed in a
similar way to Hansen (2008). The basic strategy is introducing an independent
set of norms which can be updated by adding new norms or subtracting
norms from it (see Wright (1991), Makinson (1999)). Extensive work can be
witnessed in propositional dynamic logic given by Meyer (1988), input/output
logic established by Makinson and van der Torre (2007a), update semantics for
deontic reasoning studied by van der Torre and Tan (1998) and Willer (2016),
and dynamic epistemic deontic logic given by Aucher et al. (2009). There is also
a series of studies about changing legal systems in the framework of defeasible
logic given by Governatori and Rotolo (2004, 2010), Governatori et al. (2007).

Following the strategy mentioned above, this chapter also splits off norma-
tive systems from deontic models. However, our normative systems will be
characterized by ideality sequences where norms are not independent with each
other. Rather, they are structural. Moreover, the updates on ideality sequences
would make effects on conditional obligations by changing betterness relations
in deontic models. Accordingly, we give the notion of successful updates and
the Jørgensen’s dilemma can be resolved.

Outline of this chapter We first review Hansson’s conditional obligations as
the technical background. Then we show how to induce a betterness structure
based on a bare structure and an ideality sequence. Furthermore, prescribing
norms can be reflected on the updates on ideality sequences. Then we provide
a sound and strongly axiomatization of conditional obligations relativized to
normative systems. The notion of successful updates is given afterwards so as
to resolve the Jørgensen’s dilemma. The comparison with the related work is
shown in the last section.
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5.2 Preliminaries

We use the language LDDL for Hansson’s conditional obligations as a basis.
Necessary technical background to be used in this chapter will be illustrated.
Let P be a countable set of propositional atoms. We give the definition of LDDL
hereby as a reminder.

Definition 51 (Language LDDL). The language LDDL is given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Uϕ | ⃝(ϕ|ϕ)

where p ∈ P.

Intuitively, Uϕ stands for “ϕ is necessary”1; ⃝(ϕ|ψ) can be read as “if ψ is
the case, ϕ ought to be the case”. Ûϕ = ¬U¬ϕ which means that ϕ is possible.
In Hansson’s style, the conditional obligations do not involve any epistemic
elements.

5.2.1 Priority sequence as normative system

Priority sequences are a special type of priority structures in the sense that
they are a strict linear order. As mentioned in Chapter 2.4, the idea relates to
Hansen (2006)’s observations on the logic about imperatives where obligations
are decided by a set of prioritized imperatives. Liu (2008) also employed priority
sequences to derive preference relations in the context of preference logic.

Definition 52 (Priority sequences). A priority sequence is a tuple G = ⟨Φ,≺⟩ such
that:

• Φ ⊂ LPL and Φ is finite (Φ could be empty);

• ≺ is a strict linear order2 on Φ such that, for all formulas ϕ, ψ ∈ Φ, if ϕ ≺ ψ
then ψ logically implies ϕ.

The term ϕ ≺ ψ represents ψ is strictly better than ϕ.

A priority sequence can be regarded as a normative system to capture which
states of affairs are better.

1In Definition 1, we use the term 2 to denote the universal operator since 2 is the original term
used by Hansson (1969). Now we replace 2 with U to show the meaning of ‘universal’ behind the
operator.

2If ⟨A,<⟩ is a strict linear order, then < is an antisymmetric, transitive, and trichotomous binary
relation over A.
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5.2.2 Betterness structure for description

We have already provided a method to derive a betterness relation over states
from a given priority structure in Definition 40. Similarly, we hereby define
the betterness structure based on a priority sequence. It is used for modelling
conditional obligations in Hansson’s approach.

Definition 53 (Betterness structures based on priority sequence). Given a priority
sequence G = ⟨Φ,≺⟩, MG = ⟨S,⩽G , V⟩ is a betterness structure based on G where

• S is a nonempty set of states;

• V : P → P(S);

• ⩽G : S × S such that s ⩽G s′ ⇐⇒ ∀ϕ ∈ Φ : s ∈ ∥ϕ∥V ⇒ s′ ∈ ∥ϕ∥V .

Here, ∥ϕ∥V = {s ∈ S | M, s |= ϕ and ϕ ∈ Φ}.

According to Definition 53, ⩽G is a total preorder. The notation MG indicates
that the betterness structure MG is based on the priority sequence G. For exam-
ple, if G = ⟨{p},∅⟩, then the betterness relation ⩽G makes all p-states strictly
better than any ¬p-states. We will also call them just betterness structures if the
priority sequence needs not be specified.

According to Proposition 2, we know that if a subset T of the domain of
a betterness structure is non-empty, then max⩽G ̸= ∅. And we know that the
semantics of Hansson’s conditional obligation ⃝(ϕ|ψ) means that the obligation
addressee has an obligation ⃝(ϕ|ψ) in s if and only if all the best ψ-states with
respect to ⩽G in the model also satisfy ϕ. Thus ⃝( | ) is a global operator whose
semantics are not related to which state we are evaluating on. It describes the
ideal state of affairs (ϕ) under some certain circumstances (ψ).

According to the definition of betterness structures and the semantics of
conditional obligations, a priority sequence determines the obligations of the
agents. It is also straightforward to see that any update on a priority sequence
can change the betterness relations in the betterness structures based on it,
yielding different conditional obligations.

In the following section, we will replace priority sequence with a simpler
and more intuitive notion: ideality sequence. It plays similar roles as priority
sequence to order states in models.

5.3 Ideality sequence and betterness structure

In this section, we will introduce the notion of ideality sequence. It describes
which states of affair are strictly better than another in a more straightforward
way. In the aspect of inducing betterness structures, they are essentially equiva-
lent. However, ideality sequences facilitate defining the language of relativized
conditional obligations in Section 5.5 in the sense that they do not require any
further restrictions on the formulas in it.
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Definition 54 (Ideality sequence). A pair I = (I ∪ {ϵ},≪) is an ideality sequence
where

• I ⊂ LPL is a finite (can be empty) set of propositional formulas;

• ≪: I × (I ∪ {ϵ}) is a strict linear order such that for each ϕ ∈ I, ϕ ≪ ϵ.

An ideality sequence provides us an ordering on several states of affairs
denoted by propositional formulas. For example, if ϕ ≪ ψ, it means that ψ
is better than ϕ. The idea of it is more straightforward than that of priority
sequence. In this chapter, we treat ideality sequences as synonyms for ‘normative
systems’.

Notations: Given an ideality sequence I = (I ∪ {ϵ},≪) and I ̸= ∅, for each
ϕ ∈ I,

• Iϕ = {ϕ′ ∈ I | ϕ ≪ ϕ′ or ϕ′ = ϕ};

• if ϕ is not the maximal element in I ,
∨

I+ϕ =
∨{ϕ′ ∈ I | ϕ ≪ ϕ′};

• if ϕ is the maximal element in I ,
∨

I+ϕ = ⊥.

The semantic apparatus to be used in the logic of relativized conditional
obligations is bare structure.

Definition 55 (Bare structure). A pair M = (W, V) is a bare structure where

• W is a set of states and W ̸= ∅;

• V : P → P(W) is a valuation.

A bare structure consists of a domain of states and a valuation. It is equiva-
lent to a betterness structure without the betterness relation. A bare structure
provides a factual background. But given an ideality sequence, a betterness rela-
tion can be derived from a bare structure and thereafter, a betterness structure is
constructed. The way to derive the betterness relation from an ideality sequence
on a bare structure is shown as follows.

Definition 56 (Betterness structure based on ideality sequence). Given an ideality
sequence I = (I ∪ {ϵ},≪) and a bare structure M = (W, V), the betterness structure
based on I is MI = (W,⩽I , V) where ⩽I : W × W is the betterness relation between
states satisfying the following condition:

s ⩽I t ⇐⇒ either (i) or (ii), where
(i) ∃ϕ ∈ I : (M, t |= ϕ and ∀ψ ∈ I(ϕ ≪ ψ → M, s ̸|= ψ))
(ii) ¬∃ψ ∈ I : (M, s ̸|= ψ or M, t ̸|= ψ)
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The definition of s ⩽I t intuitively means that the best formula that t satisfies
is not worse than the best formula that s satisfies. The relation ⩽I is also a total
preorder (transitive and strongly connected).

Then we will show that a priority sequence is equivalent to an ideality
sequence, up to the betterness structures induced by them, and vice versa.

Definition 57 (Priority sequence induced by ideality sequence). Given an ideality
sequence I = (I ∪ {ϵ},≪), the priority sequence induced by I is G = (Φ,≺) where

• Φ = {∨ Iϕ | ϕ ∈ I};

• ≺: Φ × Φ. It satisfies the following condition:
∨

Iϕ ≺ ∨
Iψ ⇐⇒ ϕ ≪ ψ.

Theorem 5. Given an ideality sequence I and the priority sequence GI induced by I ,
we have ⩽I=⩽G based on arbitrary bare structure M.

Proof. (⇒) Suppose s and t are two arbitrary states in M such that s ⩽I t. By
Definition 56, there exists ϕ such that M, t |= ϕ and for each ψ ≫ ϕ, we have
M, s ̸|= ψ. Let

∨
Iθ be an formula in GI such that M, s |= ∨

Iθ . By s ⩽I t, we
have θ ≪ ϕ. Since M, t |= ϕ, it holds that M, t |= ∨

Iϕ. By the definition of GI ,
we have M, t |= ∨

Iϕ → ∨
Iθ . So M, t |= ∨

Iθ . Thus, s ⩽GI t.
(⇐) Suppose s and t are two arbitrary states in M such that s ⩽GI t. This

means that for each
∨

Iϕ ∈ GI such that M, s |= ∨
Iϕ, we have M, t |= ∨

Iϕ. Let∨
Iψ be the maximal element in GI such that M, s |= ∨

Iψ. This also implies that
M, s |= ψ. Then we have M, t |= ∨

Iψ. If M, t |= ψ, we find ψ such that M, t |= ψ
and for each θ ≫ ψ, it holds that M, s ̸|= θ. If M, t ̸|= ψ, by M, t |= ∨

Iψ, there
must exist χ ≫ ψ such that M, t |= χ. So we also find χ such that M, t |= χ and
for each θ ≫ χ, we have M, s ̸|= θ. Thus, we proved that s ⩽I t.

Theorem 5 shows that the betterness structure based on the ideality sequence
I is equals to the betterness structure based on the priority sequence induced
by I .

Definition 58 (Ideality sequence induced by priority sequence). Given an priority
sequence G = (Φ,≺), the ideality sequence induced by G is IG = (IG ∪ {ϵ},≪)
where

• IG = Φ;

• for each ϕ, ψ ∈ I, ϕ ≪ ψ iff ϕ ≺ ψ.

Theorem 6. Given a priority sequence G = (Φ,≺) and the ideality sequence IG =
(IG ∪ {ϵ} induced by G, there holds that ⩽G=⩽IG based on arbitrary bare strcture M.

Proof. (⇒) Suppose that s ⩽IG t. By Definition 56, there exists ϕ ∈ IG such that
M, t |= ϕ and for each ψ ∈ IG with ψ ≫ ϕ, M, s ̸|= ψ. Let θ be an arbitrary
formula in Φ and M, s |= θ. Since IG = Φ, we then prove it by three cases. When
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θ ≫ ϕ, it contradicts to s ⩽IG t. When θ = ϕ, we have M, t |= θ by M, t |= ϕ.
When θ ≪ ϕ, by Definition 58, θ ≺ ϕ. By Definition 52, |= ϕ → θ. So we have
M, t |= θ. Thus, we proved that s ⩽G t.

(⇐) Suppose that s ⩽G t. By Definition 53, for each ϕ ∈ Φ, M, s |= ϕ implies
that M, t |= ϕ. Let ψ ∈ Φ be the formula such that M, t |= ψ and for each θ such
that ψ ≺ θ, M, t ̸|= θ. Assume that M, s |= θ. By M, s |= ϕ =⇒ M, t |= ϕ for
each ϕ ∈ Φ, we have M, t |= θ. Contradiction. Since Φ = IG , we find a formula
ψ ∈ IG such that M, t |= ψ and for each θ ∈ IG with ψ ≪ θ, M, s ̸|= θ. Thus, we
proved that s ⩽IG t.

Now we know that ideality sequence and priority sequence are actually
equivalent up to the betterness relation induced by them given a certain bare
structure. And since different ideality sequences would induce different better-
ness relations on a given bare structure, we do not set betterness structures as
the semantics apparatus in this chapter. Rather, bare structures are used as the
models in this chapter for characterizing conditional obligations relativized to
different ideality sequences.

5.4 Making norms: generating normative systems

There have witnessed amount of research about the updates on obligations in
deontic logic (see van der Torre and Tan (1998), Mastop (2011), Yamada (2006,
2008, 2011)). In this section, we will show several ways of updating a given
ideality sequence. It can be considered as an action performed by a commander.
In the remaining part, we treat ideality sequences as synonyms for ‘normative
systems’.

We subsequently introduce four types of updates among which two types
of updates can derive all the other updates. Given an ideality sequence I =
(I ∪ {ϵ},≪), we use I = ⟨ϕ1, ϕ2, · · · , ϕn, ϵ⟩ to denote the sequence of formulas
in I with respect to ≪, where ϕi ≪ ϕj if i ≤ j.

5.4.1 Four possible updates

The first fundamental update is deletion. As the name suggests, ‘deleting a norm’
from a normative system means removing a formula from a given ideality
sequence. The definition is given as follows:

Definition 59 (Deletion). Given an ideality sequence I = (I ∪ {ϵ},≪) and ϕ1 is the
least formula in I , deleting ϕ1 from I brings about the ideality sequence I − ϕ1 where
ϕ1 in I is removed and the betterness order ≪ for the remaining formulas is preserved.

The deletion update captures abolishing a norm. It is related to the notion
of repeal or annulment in law. For example, in 1997, the Chinese government
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ϕ1 ϕ2 ϕ3 ϕ2 ϕ3
delete ϕ1

Figure 5.1: An example of deletion

ϕ1 ϕ2 ϕ0 ϕ1 ϕ2
postfix ϕ0

Figure 5.2: An example of postfixing

decriminalized speculation. Figure 5.1 is an example of deletion, where the
dashed arrows from ϕi to ϕj represent ϕi ≪ ϕj.

The second update is postfixing which was originally proposed by Liu (2008)
to add a least norm to the tail of a priority sequence. In the current paper, the
definition is modified to adapt to ideality sequence. When the original ideality
sequence is (∅ ∪ {ϵ},≪), we just put the new formula into the empty set,
making an ideality sequence consisting of a single norm and ϵ. The definition
of postfixing is given as follows.

Definition 60 (Postfixing (Liu (2008))). Let I = (I ∪ {ϵ},≪) and ϕ ̸∈ I.

• If I ̸= ∅ and I = ⟨ϕ1, · · · , ϕn, ϵ⟩, then postfixing ϕ to I is I ◁ ϕ =
⟨ϕ, ϕ1, · · · , ϕn, ϵ⟩.

• If I = ∅, then postfixing ϕ to I is I ◁ ϕ = ⟨ϕ, ϵ⟩.

Postfixing introduces a sub-ideal state of affairs to the original normative
system. It is relevant to the notion of ‘derogation’ in law. For example, the law
says no killing people. So not killing people is better than killing people. Then
a new provision is added that if you kill a person out of self-defense, you are
exonerated. It implies that killing a person out of self-defense is better than
murder. An example of postfixing is shown in Figure 5.2.

The third update is prefixing which can be originally found in van Benthem
et al. (2014). It is used for adding a better state of affairs than the original best
state of affairs. For example, according to some law, the best state of affairs is
not killing people. If there is a law which introduces a stronger requirement that
‘it is obligatory to not kill people and to not be aggressive against others’, then
the best state of affairs becomes not killing people and not being aggressive. We
also propose an adaptive modification to ideality sequences.

Definition 61 (Prefixing (van Benthem et al. (2014))). Given are an ideality sequence
I = (I ∪ {ϵ},≪) and ϕ ̸∈ I. Let I = ⟨ϕ1, · · · , ϕn, ϵ⟩. Prefixing of I by ϕ yields the
ideality sequence I ▷ ϕ = ⟨ϕ1, · · · , ϕn, ϕ, ϵ⟩.

The last update is insertion. It is employed to refine our ideality sequence
so as to make our normative system include more norms. For example, when
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measuring the penalty for the crime of corruption, different amounts of money
that a person accepts will lead to different sentencing. The initial law says 20
years in prison for embezzling €100,000 and 5 years in prison for embezzling
€10,000. Then a new provision is inserted that 10 years in prison for embezzling
€50,000. The measuring on the penalty is refined after the insertion.

Definition 62 (Insertion). Given an ideality sequence I =
⟨ϕ1, · · · , ϕi−1, ϕi, · · · , ϕn, ϵ⟩, then inserting a norm ϕ into I at position i
yields the ideality structure I↶ϕ,i = ⟨ϕ1, · · · , ϕi−1, ϕ, ϕi, · · · , ϕn, ϵ⟩.

In the technical level, not all types of updates are elementary since we can
construct any ideality sequence from a given ideality sequence by only deletion
and postfixing. The idea is straightforward: delete all the formulas in the original
one and then postfix the formulas one by one according to the order of the
target sequence.

Fact 6. Let I = ⟨ϕ1, · · · , ϕn, ϵ⟩ and I ′ = ⟨ψ1, · · · , ψn, ϵ⟩ be two arbitrary ideality
sequences. I ′ can be built from I by deletion and postfixing.

Proof. • Step 1: Delete each formula in I .

(1) delete ϕ0 : I − ϕ0 = ⟨ϕ1, ϕ2, · · · , ϕn, ϵ⟩
(2) delete ϕ1 : (I − ϕ0)− ϕ1 = ⟨ϕ2, · · · , ϕn, ϵ⟩
...
(n + 1) delete ϕn : ((I − ϕ0)− ϕ1)− · · · ϕn = ⟨ϵ⟩

• Step 2: Build up I ′ from ϵ by postfixing.

(1) postfix ψm : by Definition 60, postfixing ψm to ⟨ϵ⟩ yields ⟨ϵ⟩ ◁ ψm = ⟨ψm, ϵ⟩.
(2) postfix ψm−1 : (⟨ϵ⟩ ◁ ψm) ◁ ψm−1 = ⟨ψm−1, ψm, ϵ⟩.
...
(m + 1) postfix ψ0 : ((⟨ϵ⟩ ◁ ψm) ◁ ψm−1) ◁ · · ·ψ0 = ⟨ψ0, ψ1, · · · , ψm−1, ψm, ϵ⟩.

Since ((⟨ϵ⟩ ◁ ψm) ◁ ψm−1) ◁ · · ·ψ0 = I ′, we therefore build up I ′ from I
by deletion and postfixing. When I = ⟨ϵ⟩, we only need to do Step 2. When
I ′ = ⟨ϵ⟩, we only need to do Step 1.

Consequently, prefixing or inserting a norm on a given ideality sequence can
also be expressed with several updates only by deletion and postfixing.

5.4.2 A case study

In this section, we show how different updates on an ideality sequence result in
obligation changes by using a case study.
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(a) (ϵ,≪)

A

(b) (ϵ,≪) ◁ A

Figure 5.3: Creating the first norm A

A

¬A

Figure 5.4: M1 (left) and M2 (right)

Scenario The company ADD plans to bid for some tenders, but they have not
received any information on opening tenders yet. There are two firms A and B
which would open tenders in several days. Since ADD does not know anything
about tenders A and B, they currently do not have any preferences on these
tenders. So we assume that their initial ideality sequence is (ϵ,≪).

We will expand on the scenario discussing some more concrete possible
events. Let proposition A refer to ‘ADD prepares for tender A’, let B refer to
‘ADD prepares for tender B’, and let Q refer to ‘ADD supplies products in good
quality’.

Event 1. The firm A announces that they are opening a tender. ADD gets the informa-
tion and now it is obligatory for them to bid for A.

Update 1: creating an initial norm The first update on (ϵ,≪) is establishing
the first norm in it. The update can be expressed by postfixing a norm to (ϵ,≪).

In Event 1, the firm A opens their tender, which makes ‘preparing for tender
A’ more preferred than any other choice. Accordingly, the update on ideality
sequence in Event 1 is shown in Figure 5.3. Then, the betterness relation in the
original betterness structure will change by the update on the ideality sequence
(see Figure 5.4). M1 is derived based on (ϵ,≪) and M2 is derived based on
(ϵ,≪) ◁ A. In Figure 5.4, the top layer in M2 is the set of A-states and the bottom
layer is the set of ¬A-states, which means that all A-states are better than all
¬A-states. In all of the following figures of betterness structures, the higher
layers are strictly better than the lower layers.

Event 2 (Continuing Event 1). After the firm A opens their tender, they add a clause
that if any company can supply products in very good quality, the company will get an
additional remuneration.

Update 2: updating the best norm The firm A announces the new clause
which creates a better state of affairs than ‘preparing for tender A’. So, currently,
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A

(a) (ϵ,≪) ◁ A

A // A ∧ Q

(b) ((ϵ,≪) ◁ A) ▷ Q

Figure 5.5: Prefixing the norm Q (the dashed arrow means A ≪ (A ∧ Q))

A ∧ Q
A ∧ ¬Q

¬A

A

¬A

Figure 5.6: M2 (left) and M3 (right)

the most preferred state of affairs is ‘preparing for tender A and supplying
products in good quality’. The update on the ideality sequence is shown in
Figure 5.5. In Figure 5.5b, the one-way dashed arrow from A to A ∧ Q denotes
that A ≪ (A ∧ Q). The update on the betterness structure is shown in Figure
5.6. M3 is derived based on ((ϵ,≪) ◁ A) ▷ Q. Prefixing the norm Q divides the
set of A-states into two layers in M3: (A ∧ Q)-states and (A ∧ ¬Q)-states. ¬A is
still the worst state of affairs.

Event 3 (Continuing Event 1). After the firm A opens their tender, ADD receives
new information that the firm B also opens a tender. But the remuneration paid by B is
less than A’s. So ADD still considers ‘preparing for tender A’ their most preferred and
‘preparing for tender B’ as the second preferred.

Update 3: adding a least sub-ideality As mentioned above, postfixing intro-
duces a worse state of affairs than the original worst state of affairs. In other
words, postfixing a norm prescribes a new sub-ideal state of affairs. In Event 3,
the firm B opens their tender after A did. But bidding for B will get less profit
than bidding for A. In this case, the best state of affairs is still ‘preparing for
tender A’. The second best state of affairs is to bid for B. The update on the
ideality sequence is shown in Figure 5.7. The update on the betterness structure
is shown in Figure 5.8. M4 is derived based on ((ϵ,≪) ◁ A) ◁ B. Postfixing a
norm (A ∨ B) layers the set of ¬A-states in M2, forming two separated layers in
M4: (¬A ∧ B)-states and (¬A ∧ ¬B)-states. A is still the best state of affairs.

Event 4 (Continuing Event 3). After the firm A and B open their tenders, the firm C
also announces that they will open their tender. Comparing the remuneration provided
by A, B, and C, ADD finds that A is still the best, C is the second best and B is the
worst.

Update 4: refining the sequence In this case, we insert a new norm into the
ideality sequence. The current best state of affairs for ADD is still ‘preparing
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A

(a) (ϵ,≪) ◁ A

A

B

OO

(b) ((ϵ,≪) ◁ A) ◁ B

Figure 5.7: Postfixing the norm B

A

¬A ∧ B
¬A ∧ ¬B

A

¬A

Figure 5.8: M2 (left) and M4 (right)

for tender A’. The second best should be ‘preparing for tender C if bidding
for A is failed’. The third best is ‘preparing for B if neither of bids for A nor
C successes’. The worst case is none of bids is successful. The updates on the
priority sequence and the betterness structure are shown in Figure 5.9 and
Figure 5.10 respectively. M5 is derived based on (((ϵ,≪) ◁ A) ◁ B)↶ C. The set
of ¬A-states (including (¬A ∧ B)-states and (¬A ∧ ¬B)-states) in M4 will be
refined by the new norms (A ∨ C) and (A ∨ C ∨ B).

Event 5 (Continuing Event 4). After the firm A, B, and C open their tenders, C
announces that they have to quit their tender for some reasons. Consequently, bidding
for B if bidding for A is unsuccessful becomes second preferred.

Update 5: removing a norm The firm C quits their tender, which leads to
the case that bidding for C will not bring any profit for ADD. Thus, we just
need to delete the norm C from the ideality sequence (((ϵ,≪) ◁ A) ◁ B)↶ C (see

A

B

OO

(a) ((ϵ,≪) ◁ A) ◁ B

A

C

OO

B

OO

(b) (((ϵ,≪) ◁ A) ◁ B)↶ C

Figure 5.9: Inserting the norm C
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A
¬A ∧ C

¬A ∧ ¬C ∧ B
¬A ∧ ¬C ∧ ¬B

A

¬A ∧ ¬B
¬A ∧ B

Figure 5.10: M4 (left) and M5 (right)

A

C

OO

B

OO

(a) (((ϵ,≪) ◁ A) ◁ B)↶ C

A

B

OO

(b) ((((ϵ,≪) ◁ A) ◁ B)↶ C)− C

Figure 5.11: Removing a norm

Figure 5.11). The update on the betterness structure is shown in Figure 5.12.
M6 is derived based on (((ϵ,≪) ◁ A) ◁ B)− C. The set of (¬A ∧ C)-states in M5
merges with the set of (¬A ∧ ¬C ∧ B)-states. M6 shows that ‘preparing for B’ is
as good as ‘preparing for C’.

5.5 The logic PCDL

In this section, we will establish the logic of relativized conditional obligations
PCDL. The subscript PCDL is an acronym of ‘Prescriptive Conditional Deontic
Logic’.

A

¬A ∧ (B ∨ C)

¬A ∧ ¬C ∧ ¬B

A
¬A ∧ C

¬A ∧ ¬C ∧ B
¬A ∧ ¬C ∧ ¬B

Figure 5.12: M5 (left) and M6 (right)
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5.5.1 Language and semantics

Definition 63. The language LPCDL is given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Uϕ | ⃝I (ϕ|ϕ)
I ::= ϵ | χ; I

where p ∈ P and χ ∈ LPL.

The formula ⃝I (ϕ|ψ) represents that based on the ideality sequence I , it
ought to be ϕ given ψ.

Definition 64 (Semantics of LPCDL). Let M = ⟨W, V⟩ be an arbitrary bare structure.
The semantics of LPCDL is given as follows (only nontrivial cases):

M, s |= Uϕ iff ∥ϕ∥M = W;
M, s |= ⃝I (ϕ|ψ) iff max⩽I ∥ψ∥M ⊆ ∥ϕ∥M;

The semantics of ⃝I (ϕ|ψ) is also equivalent to MI , s |= ⃝(ϕ|ψ) where
⃝(ϕ|ψ) is Hansson’s conditional obligations and MI is the betterness structure
induced by the bare structure M and the ideality sequence I . The truth values
of ⃝I (ϕ|ψ) is decided by the ideality sequence I .

Based on the semantics given above, we show two valid formulas involving
deletion and postfixing updates. Both formulas are related to the concept of
successful updates to be introduced in Section 5.6.2

Fact 7. The following two formulas are valid:

(1) ⃝ϕ1;I (ϕ1|¬
∨

I) ∧ Û(¬∨
I ∧ ¬ϕ1) → ¬⃝I (ϕ1|¬

∨
I);

(2) ¬⃝I (ϕ1|¬
∨

I) ∧ Û(¬∨
I ∧ ϕ1) → ⃝I◁ϕ1(ϕ1|¬

∨
I);

Proof. (1) Let (M, s) be an arbitrary bare structure such that M, s |=
⃝ϕ1;I (ϕ1|¬

∨
I) ∧ Û(¬∨

I ∧ ¬ϕ1). By M, s |= Û(¬∨
I ∧ ¬ϕ1), we have

∥¬∨
I∥M ∩ ∥¬ϕ1∥M ̸= ∅. By the definition of ⩽I , for each r, t ∈ ∥¬∨

I∥M,
we have r ⩽I t and t ⩽I r. This means that ∥¬∨

I∥M = max⩽I ∥¬
∨

I∥M. So
we have M, s |= ¬⃝I (ϕ1|¬

∨
I)

(2) Let (M, s) be an arbitrary bare structure such that M, s |= ¬ ⃝I
(ϕ1|¬

∨
I) ∧ Û(¬∨

I ∧ ϕ1). By M, s |= Û(¬∨
I ∧ ϕ1), we have ∥¬∨

I∥M ∩
∥ϕ1∥M ̸= ∅. By Proposition 2, we have max⩽I◁ϕ1

∥¬∨
I∥M ̸= ∅. Let t

be an arbitrary state in max⩽I◁ϕ1
∥¬∨

I∥M. Assume that M, t ̸|= ϕ1. Let
r ∈ ∥¬∨

I∥M ∩ ∥ϕ1∥M. By the definition of ⩽I△ϕ1 , we have t < r. This con-
tradicts to t ∈ max⩽I◁ϕ1

∥¬∨
I∥M. Thus, M, t |= ϕ1. Therefore, we proved that

M, s |= ⃝I◁ϕ1(ϕ1|¬
∨

I)

Formula (1) represents that deleting the norm ϕ1 defeats the obligation to
see to it that ϕ1 when ¬ϕ1 is possible under the certain condition ¬∨

I. Formula
(2) means that postfixing the norm ϕ1 brings about the new obligation to see to
it that ϕ1 when ϕ1 is possible under the certain condition ¬∨

I.
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5.5.2 Axiomatization

Our axiom system will rely on the following formula schema: given an ideality
sequence I = (I ∪ {ϵ},≪) and an arbitrary formula ψ,

θIψ :
∨

χ∈I((χ ∧ ψ) ∧ U(
∨

I+χ → ¬ψ)) ∨ (ψ ∧ U(
∨

I → ¬ψ))

Lemma 10. Given an ideality sequence I = ⟨I ∪ {ϵ},≪⟩ and a bare structure (M, s)
based on I ,

M, s |= θIψ iff s ∈ max⩽I ∥ψ∥M

Proof. (⇒) Suppose, to reach a contradiction, that s ̸∈ max⩽I ∥ψ∥M. We split the
proof into two cases:

• Case 1: If s ̸∈ ∥ψ∥M, then M, s ̸|= θIψ . Contradiction.
• Case 2: If s ∈ ∥ψ∥M and s is not the best ψ-state, then there exists t ∈ M

such that M, t |= ψ and t >I s. Since there must exist χ ∈ Φ ∪ {⊤} such that
M, s |= χ∧ψ, we have for any r > s, there exists χ′ ≫ χ (if χ is ⊤, we let χ′ ≫ ⊤
for each χ′ ∈ Φ) such that M, r |= χ′. Since t ∈ M, M, t |= ∨

I+χ → ¬ψ. By t >I s,
we have that M, t |= χ′ for some χ′ ≫ χ, which implies that M, t |= ∨

I+χ . So
M, t |= ¬ψ. Contradiction. Therefore, we proved that s ∈ max⩽I ∥ψ∥M.

(⇐) Suppose that s ∈ max⩽I ∥ψ∥M. It must be either the case where there
exists χ ∈ Φ such that M, s |= (χ ∧ ψ) ∧ ¬∨

Iχ or the case where M, s |=
ψ ∧ ¬∨

I. We then prove by two cases:
• Case 1: There exists χ ∈ Φ such that M, s |= (χ ∧ ψ) ∧ ¬∨

Iχ:

• Case 1.1: If there is no t ∈ M such that t >I s, this implies that
∨

I+χ = ⊥.
It is trivial that for each r ∈ M, M, r |= ∨

Φχ → ¬ψ. So M, s |= U(
∨

I+χ →
¬ψ).

• Case 1.2: If there is t ∈ M such that t >I s, there must exist χ′ ≫ χ
in Φ such that M, t |= χ′ ∧ ¬ψ, which implies that M, t |= ∨

I+χ → ¬ψ.
As for each r ∈ M such that r ̸>I s, we have M, r |= ¬∨

I+χ which
also implies that M, r |= ∨

I+χ → ¬ψ. Thus, for all u ∈ M, it holds that
M, u |= ∨

I+χ → ¬ϕ. Therefore, M, s |= U(
∨

I+χ → ¬ψ).

• Case 2: M, s |= ψ ∧ ¬∨
I: Let t be an arbitrary state in M:

• Case 2.1: If M, t |= ¬∨
I, it trivially holds that M, t |= ∨

I → ¬ψ.

• Case 2.2: If M, t |= ∨
I, this implies that there must exist χ ∈ I such that

M, t |= χ. By the definition of ⩽I , we have s <I t. By our supposition that
s ∈ max⩽I ∥ψ∥M, we have M, t ̸|= ψ. Thus, we obtain that M, t |= ∨

I →
¬ψ.

Therefore, we can conclude that M, s |= U(
∨

I → ¬ψ). And we can also
obtain that M, s |= θIψ .
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So Lemma 10 indicates that θGψ captures the best ψ-states with respect to ⩽I .
In the light of θIψ , we can give the Kanger-Anderson reduction for the formula
⃝I (ϕ|χ) and therefore the proof system of the logic PCDL.

Proposition 9 (KA-reduction of ⃝I ( | )). Given a bare structure (M, s) and an
ideality sequence I ,

M, s |= ⃝I (ϕ|ψ) ↔ U(θIψ → ϕ)

Proof. (⇒) Suppose that M, s |= ⃝I (ϕ|ψ). By semantics, max⩽I ∥ψ∥M ⊆ ∥ϕ∥M.
Assume, to reach a contradiction, that there exist a state t ∈ M such that M, t |=
θIψ ∧ ¬ϕ. By Lemma 10, t ∈ max⩽I ∥ψ∥M. So we have M, t |= ϕ. Contradiction.

(⇐) Suppose that M, s |= U(θIψ → ϕ). Let t ∈ max⩽I ∥ψ∥M. Assume, to
reach a contradiction, that M, t |= ¬ϕ. By Lemma 10, we have M, t |= θIψ . Thus,
we have M, t |= ϕ. Contradiction.

The KA-reduction above helps to reduce each formula in the form of
⃝I (ϕ|ψ) to a LEL-formula without any dyadic deontic operator. Therefore
we can provide the proof system of the logic PCDL

Definition 65. The proof system PCDL consists of the following axiom schemas and
inference rules:

(TAUT) All instances of tautologies
(K) U(ϕ → ψ) → (Uϕ → Uψ)
(T) Uϕ → ϕ
(4) Uϕ → UUϕ
(5) ¬Uϕ → U¬Uϕ

(KA) ⃝I (ϕ|ψ) ↔ U(θIψ → ϕ)

(MP) From ϕ and ϕ → ψ, infer ψ
(N) From ϕ, infer Uϕ
(RE) From ϕ ↔ ψ, infer χ ↔ χ[ϕ/ψ]

The soundness of axiom (KA) has been given in Proposition 3. And it is easy
to prove that the inference rule (RE) is sound since we can prove that ‘from
⊢ θ ↔ χ, infer ⊢ ⃝I (θ|ψ) ↔ ⃝I (χ|ψ) and ⊢ ⃝I (ϕ|θ) ↔ ⃝I (ϕ|χ)’ is valid.
The remaining axioms and inference rules are also sound since they are classical
axioms or rules from modal logic S5.

By the axiom (KA), we can reduce every formula with the operator ⃝I ( | )
to a formula without the operator. Therefore, completeness of the axiom system
PCDL with respect to the semantics can be proved by translating LPCDL-
formulas to LEL-formulas via reduction axioms and induction on the complexity
of the formulas (see Chapter 7.4 in van Ditmarsch et al. (2007) and Theorem 11
in Kooi (2007)).

Theorem 7. The logic PCDL is sound and strongly complete with respect to the class
of bare structures.
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5.6 Successful updates and Jørgensen’s dilemma

In Section 5.4, we showed several ways of making norms which are to update
the normative systems (ideality sequences). However, making a norm does not
always bring the corresponding obligation to addressees. We call it ‘Moorean
phenomena’ in deontic context. In this section, we first provide some philosoph-
ical investigations on the addressee’s conditional obligations. They describe what
an obligation addressee ought to ‘see to it that’ given certain circumstances.

Notations: If I1 = ϕi; I2, let I1 − ϕi = I2 and let I2 ◁ ϕi = I1.

5.6.1 Descriptive obligations: following norms or not

As shown beforehand, the formula ⃝I (ϕ|ψ) is a normative proposition which
is satisfied or not in a bare structure. To be more precise, its satisfaction is
equivalent to the satisfaction of ⃝(ϕ|ψ) on a betterness structure based on I .
Normative propositions sometimes do not perform in line with norms from the
normative system which it is based on. In other words, in some cases, an agent
does not have an obligation to achieve ϕ even though ϕ has already been a norm
in the concerning normative system. This happens since norms exist outside the
betterness structures. They indeed affect what obligations the addressee would
have, however, the addressee’s obligations are not only decided by normative
systems, but also by these facts embedded in the bare structures.

In order to clarify the discrepancy between norms and obligations, we should
first elaborate, in our context, on the well-known Kantian principle that “ought
implies can”. The principle states that if an agent has an obligation, then (s)he
must be able to achieve that. Hence it is easy to see that the principle is attributed
to obligation addressees. The ‘ought’ denotes the addressees’ obligations which
is decided on the betterness structures. We can therefore say that ‘ought implies
can’ should be rephrased more precisely as ‘normative propositions imply can’.

How should we interpret the term ‘can’? Many deontic logicians have been
attempting to introduce the ability or agency into the deontic logics. These
contributions can mostly be referred to deontic stit logic as shown in Chap-
ter 1.2. But in our framework, we do not go as far as Stit logic. We propose to
interpret the ‘can’ in a more straightforward sense – possibility. Several similar
interpretations can also be found in Hansson (1969)’s original discussion on the
dyadic deontic operator and in work by other deontic logicians like Feldman
(1986). We say ϕ is possible in a bare structure (M, s) if M, s |= Ûϕ. Accordingly,
‘ought implies can’ can be formulated by following valid formulas.

Fact 8.
(a) |= ⃝I (ϕ|⊤) → Ûϕ
(b) |= (⃝I (ϕ|ψ) ∧ Ûψ) → Ûϕ

The formula (a) means that ‘it ought to be ϕ unconditionally based on I ’
implies ‘ϕ is possible’; (b) shows that ‘it ought to be ϕ given ψ based on I ’ and
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‘the condition ψ is possible’ imply ‘ϕ is possible’. The two validities illustrate
that if some state of affairs ought to be achieved, then it must be possible. In
other words, they ‘can’ be done.

5.6.2 Successful updates

Definition 66 (Successful updates). Let I1 = (I1 ∪ {ϵ},≪) be an ideality sequence
and let I1 = ϕ1; I2.

−ϕ1 is a successful update on I1 in (M, s) iff M, s |= ¬⃝I1−ϕ1 (ϕ1|¬
∨

I2)
◁ϕ1 is a successful update on I2 in (M, s) iff M, s |= ⃝I2◁ϕ1(ϕ1|¬

∨
I+1ϕ1

)

Deleting the worst state of affairs from the ideality sequence I1 is successful
in (M, s) if and only if the formula ¬⃝I1−ϕ1 (ϕ1|¬

∨
I+1ϕ1

) is true in (M, s). The
formula means that the agent no longer has the obligation to see to it that ϕ1
when any better state of affairs is not the case with respect to the updated ideality
sequence I1 − ϕ1. Postfixing a new state of affairs to the ideality sequence I2
is successful if and only if the agent gets a new obligation to see to it that ϕ1
when any better state of affairs is not the case with respect to the updated
ideality sequence I2 ◁ ϕ1. Definition 66 is in line with our intuition. A successful
command to delete a norm is supposed to release some obligations and a
successful command to add a norm is meant to assign some new obligations.

The issues of successful updates are closely related to CUGO principle (an
acronym of ‘Commands Usually Generate Obligations’) put forward by Yamada
(2008):

[!(i,j)ϕ]⃝(i,j) ϕ

It can be read as “after a command to i given by an authority j to see to it
that ϕ, i has an obligation to j to see to it that ϕ”. In our framework, we can
distinguish between the commands which do generate obligations and those
commands which do not. We therefore can rename the CUGO principle as
SCGO which means that ‘Successful Commands Generate Obligations’.

5.6.3 Possible failure of prescription

A bare structure M provides a model capturing possible worlds, which are
supposed to respect logical, ontic, physical or epistemic laws. For example, the
contradiction is by no means satisfied in any possible world. Furthermore, a
betterness structure based on some ideality sequence MI shows the betterness
ordering between each two possible worlds.

However, giving norms is not constrained by these laws. It is still possible for
a law-giver to command you to open the door and close the door simultaneously
(maybe when the commander is drunk), which can never be carried out by
any obligation addressees. The law-giver might also command the obligation
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s1 : ¬s

s2 : ¬s

MI1

deleting s

s1 : ¬s

s2 : ¬s

MI1−s

(a) Deleting s is failed

s1 : ¬m

s2 : ¬m

N(ϵ,≪)

postfixing m

s1 : ¬m

s2 : ¬m

N(ϵ,≪)◁m

(b) Postfixing m is failed

Figure 5.13: Deletion Failure and Postfixing Failure

addressee to do something impossible for the addressee, e.g., “Go to the Moon!”.
Hence, it is easy to see that some updates on normative systems fail to bring
about corresponding obligations into betterness structures. We next give two
examples where deletion and postfixing are failed, respectively.

Example 1: deletion failure In 1991, an American man requested his son,
Tom, not go to the Soviet Union. But during that year, they got the news of the
dissolution of the Soviet Union. So the man revoked his request. Since the Soviet
Union no longer exists, Tom would never go there.

Let proposition s stand for “Tom is in the Soviet Union”. The initial ideality
sequence is I1 = ⟨¬s, ϵ⟩, which means that not being in the Soviet Union is the
best state of affairs, otherwise is worse. After deleting s, I1 becomes (λ,≪). The
corresponding change on the betterness structure is shown in Figure 5.13a.

Since ¬s is true everywhere, it is impossible for Tom to be in the Soviet
Union. The only state of affairs he sees to it that is ¬s. So MI1 is identical to the
updated betterness structure MI1−s. Therefore we have M, s1 ̸|= ¬⃝I1 (¬s|⊤)
and M, s1 ̸|= ¬⃝I1−s (¬s|⊤). That means that the command of deleting ¬s is
failed.

Example 2: postfixing failure Tom’s father asks Tom to go to the moon (de-
noted by m). We assume the initial ideality sequence for Tom is (ϵ,≪). After
receiving the command from his father, the ideality sequence becomes (ϵ,≪) ◁m.
The corresponding change of the betterness structure is shown in Figure 5.13b.

After Tom receives the command that m, a new normative system is es-
tablished: (ϵ,≪) ◁ m which will make all m-states in the betterness struc-
ture better than those ¬m-states. But there is no m-states in N. So N, s1 |=
¬ ⃝(ϵ,≪)◁m (m|⊤), which means that commanding m fails in assigning the
obligation ⃝(m|⊤) to Tom.
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Conditions for success The two valid formulas in Fact 8 provides clues to
conditions for successes of deletion and postfixing respectively.

(1) ⃝ϕ1;I (ϕ1|¬
∨

I) ∧ Û(¬∨
I ∧ ¬ϕ1) → ¬⃝I (ϕ1|¬

∨
I);

(2) ¬⃝I (ϕ1|¬
∨

I) ∧ Û(¬∨
I ∧ ϕ1) → ⃝I◁ϕ1(ϕ1|¬

∨
I);

We can treat ϕ1 as the content of the norm updated. Formula (1) shows that if
the negation of content (¬ϕ1) is consistent with the condition that all the norms
in the updated ideality sequence (¬∨

I), then deleting ϕ1 will be successful.
Formula (2) indicates that if the content is consistent with the condition that all
the norms in the updated ideality sequence (¬∨

I), then postfixing ϕ1 will be
successful.

5.6.4 Resolving Jørgensen’s dilemma

We will explore two examples of Jørgensen’s dilemma with the concept of
successful updates.

(1) Open the door!
(2) The door cannot be opened unless it is unlocked.
(3) Unlock the door!

The inference above shows that we can derive a norm or an imperative
from an imperative and some declarative information. Sentences (1) and (3)
are essentially commands given by some speech acts of a commander, which
renders some states of affairs better than others. To comply with the speech-act
reading and avoid any ambiguity, it would be better to rephrase the Example
above as follows:

Example 1.
(1) Let the door be open!
(2) It is impossible that the door is open but it is not unlocked.
(3) Let the door be unlocked!

We subsequently give two ways to interpret the dilemma and they provide
different resolutions.

From norms to obligations

In the first approach, sentence (3) is interpreted with a normative proposition
⃝(u|⊤) which means that John ought to unlock the door unconditionally.
Therefore, the inference is essentially not an inference between imperatives. It
expresses a process where a new conditional obligation is assigned to John after
prescribing a new norm (1), i.e., Mϵ, s |= (Ûo ∧ U(o → u)) → ⃝(ϵ,≪)◁o(u|⊤).
The formula can be read as ‘if opening the door is possible and it must be the
case that if the door is open, then it is unlocked, then after postfixing the norm
of opening the door, it is obligatory to be unlocking the door unconditionally’.
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Proposition 10. Let M be an arbitrary bare structure. If I = (ϵ,≪), then M, s |=
(Ûo ∧ U(o → u)) → ⃝(ϵ,≪)◁o(u|⊤)

Proposition 10 explains why we intuitively think that the above inference is
‘valid’.

Proposition 11. Let I = ⟨Φ,≪⟩ be an arbitrary ideality sequence and let (M, s)
be an arbitrary bare structure. We have M, s |= (Û(ψ ∧ ¬∨

Φ) ∧ U(ψ → χ)) →
⃝(ϵ,≪)◁ψ(χ|¬

∨
Φ).

Proposition 11 is a generalization of Proposition 10. The proof is very straight-
forward, so we do not elaborate it here.

From norms to norms

In terms of the second approach, we interpret sentence (1) and (3) to norms
rather than obligations. Sentence (2) suggests that the content of norm (3)
is implied by the content of norm (1). In other words, the set of obligations
brought about by (1) includes the obligations brought about by (3). Following
this intuition, we give an interpretation on Example 1.

Given an ideality sequence I = (I ∪ {ϵ},≪) and a bare structure (M, s), let
OI

ψ = {ϕ | M, s |= ⃝I (ϕ|ψ)}. In the following part, proposition o represents
that the door is open and u represents that the door is unlocked.

Assume that, in Example 1, the original ideality sequence is I = (ϵ,≪) and
the bare structure is (M, s). Sentence (1) is a speech act postfixing a new norm o
to I . It yields a new ideality sequence I ◁ o. Sentence (2) can be interpreted as
the formula ¬Û(o ∧ ¬u) which is logically equivalent to U(o → u). Sentence (3)
is a different speech act which postfixes a new norm u to I yielding I ◁ u. The set
of obligations brought about by (1) is OI◁o

¬∨
I = {ϕ | M, s |= ⃝I◁o(ϕ|¬

∨
I)}. The

set of obligations brought about by (3) is OI◁u
¬∨

I = {ϕ | M, s |= ⃝I◁u(ϕ|¬
∨

I)}.
According to our intuition, it should be the case that OI◁u

¬∨
I ⊆ OI◁o

¬∨
I .

Proposition 12. Let (M, s) be an arbitrary bare structure and I = (I ∪ {ϵ},≪) be
an arbitrary ideality sequence. If ◁ψ is a successful update on I in (M, s) and M, s |=
U(ψ → χ), then ◁χ is also a successful update on I in (M, s) and OI◁χ

¬∨
I ⊆ OI◁ψ

¬∨
I .

Proof. Let ϕ be an arbitrary formula in Oχ;I
¬∨

I . So M, s |= ⃝χ;I (ϕ|¬
∨

I).
We know that M, s |= ⃝ψ;I (ψ|¬

∨
I). If ∥¬∨

I∥M = ∅, we have M, s |=
⃝ψ;I (ϕ|¬

∨
I) trivially. If ∥¬∨

I∥M ̸= ∅, we have ∥ψ∥M ∩ ∥¬∨
I∥M ̸= ∅.

By M, s |= U(ψ → χ), we have ∥ψ∥M ⊆ ∥χ∥M and thus ∥χ∥M ∩ ∥¬∨
I∥M ̸= ∅.

By the semantics of M, s |= ⃝χ;I (ϕ|¬
∨

I), we have max⩽χ;I ∥¬
∨ ∥M ⊆ ∥ϕ∥M.

By the definition of Mχ;I , it holds that max⩽χ;I ∥¬
∨

I∥M = ∥¬∨
I∥M ∩ ∥χ∥M.

So ∥¬∨
I∥M ∩ ∥χ∥M ⊂ ∥ϕ∥M. By ∥ψ∥M ⊆ ∥χ∥M, we have ∥ψ∥M ∩ ∥¬∨

I∥M ⊆
∥ϕ∥M. By the definition of Mψ;I , it holds that max⩽ψ;I ∥¬

∨
I∥M = ∥¬∨

I∥M ∩
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∥ψ∥M. Thus, we have max⩽ψ;I ∥¬
∨

I∥M ⊆ ∥ϕ∥M. This is equivalent to M, s |=
⃝ψ;I (ϕ|¬

∨
I).

Proposition 12 indicates that the success of (1) and information (2) implies
that (3) is successful and the obligations triggered by (3) are also triggered by
(1).

Example 2.
(1*) There is no longer need to let the door be open!
(2) The door cannot be opened unless it is unlocked.
(3*) There is no longer need to let the door be unlocked!

Example 2 involves different updates on ideality sequences. Sentence (1*)
deletes a norm o from the ideality sequence o; I . Sentence (3*) deletes u from
the ideality sequence u; I . We consider it as a valid inference since we intuitively
think deleting o defeats more obligations than deleting u.

Proposition 13. Let (M, s) be an arbitrary bare structure and I = (I ∪ {ϵ},≪) be
an arbitrary ideality sequence. If −ψ is a successful updates on ψ; I in (M, s) and
M, s |= U(ψ → χ), then −χ is also a successful updates on χ; I in (M, s) and
(Oχ;I

¬∨
I − O(χ;I)−χ

¬∨
I ) ⊆ (Oψ;I

¬∨
I − O(ψ;I)−ψ

¬∨
I ).

Proposition 13 indicates that the success of (1*) and information (2) implies
that (3*) is successful and the obligations defeated by (3*) are also defeated
by (1*). It worth noting that χ; I − χ = ψ; I − ψ = I . So the inclusion in the
end of Proposition 13 is equivalent to (Oχ;I

¬∨
I − OI

¬∨
I) ⊆ (Oψ;I

¬∨
I − OI

¬∨
I). This

is equivalent to Oχ;I
¬∨

I ⊆ Oψ;I
¬∨

I which is same as the inclusion in the end of
Proposition 12.

5.7 Discussion and conclusion

The research in this chapter was established on the distinction between obliga-
tions for describing agent’s deontic states and normative systems for prescribing
norms that assess what states of affairs are better or worse. There have been
many deontic logics concerning this prominent topic. Let us discuss some related
work to our research.

Dynamifying input/output logic framework The relation between description
and prescription can be represented by a widely accepted framework provided
in input/output logic by Makinson and Van Der Torre (2000), Makinson and
van der Torre (2007a). We will show that our logic PCDL practically dynamifies
the framework of input/output logic. Let us first see Figure 5.14 showing the
framework of input/output logic:
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f1
f2
f3
...

f1 → O1
f2 → O2
f3 → O3

...

O1
O2
O3
...

input output

Facts Conditional norms Obligations

Figure 5.14: The framework of input/output logic

The core element in input/output logic is the set of conditional norms. The
conditions are facts and consequences are obligations. So, given a set of facts,
these norms can produce a set of obligations based on their own mechanism.

The basic framework used in this thesis can also be simplified to the pattern
of input/output logic. A bare structure in this chapter provides a factual basis for
describing a possible situation. It plays a similar role as ‘facts’ in input/output
logic. An ideality sequence, as a normative system, is a criterion for assessing
which states in the bare structure are better and therefore, it decides what
obligations the agent has. So it can be thought of as the ‘mechanism’, i.e., condi-
tional norms in input/output logic. Finally, the obligations over the betterness
structure are the output of the bare structure and the ideality sequence.

This chapter developed a pattern similar to input/output logic since we can
change the ‘mechanism’ and we can also update the obligations accordingly. In
other words, we dynamified the static framework of input/output logic.

Updates on independent normative systems There has been a good amount
of research about updates on obligations in deontic logic. As mentioned in
Section 4.2, priority structures or ideality sequences studied in this thesis serve
a similar purpose to norms given by van der Torre and Tan (1998). They also
investigated updates on deontic models (deontic states in their terminology).
However, van der Torre and Tan (1998) defined updates directly on the models
where the betterness relations can be changed by new norms. Similarly, Mastop
(2011) also established a dynamic deontic logic where norm systems are substan-
tially deontic models. These norm systems can be updated by different types of
formulas, including deontic formulas. An update by a norm is a restriction on
the original deontic relation, which leads to a new deontic relation complying
with the norm. Also reviewing the series work on speech acts affecting obliga-
tions given by Yamada (see Yamada (2006, 2008, 2011)), we found that all these
updates on obligations are defined on the deontic relations of the models.

In contrast, this chapter defines updates on the normative system rather
than models (bare structures in this chapter). The normative systems (ideality
sequences) and bare structures are separated based on the distinction between
prescription and description. Any change on the normative system would bring
about changes on the truth values of obligations. In other words, the updates
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studied in this chapter change obligations indirectly.

Comparisons with the updates on legal systems In this chapter, we investi-
gated several types of updates on normative systems. Similarly, Governatori and
Rotolo and their colleagues have studied updates on legal systems by defeasible
logic. A defeasible theory is a structure (F, R,≻) where F is a set of facts, R is a
set of rules which represent relationships between premises and conclusions,
and ≻ is an acyclic superiority relation on R. Governatori et al. (2007) studied
norm modifications in defeasible logic. They mentioned four types of modifica-
tions: substitution, derogation, annulment and abrogation. These modifications
change the set of rules in a defeasible structure. Substitution can replace some
rules with other rules. Derogation limits the effects of the derogated rule. It is
related to postfixing since both updates characterize what should follow if there
are exceptions. Annulment and abrogation are used for cancelling some rules.
Annulment requires removing all effects/consequences of the provision that has
been annulled. But abrogation does not cancel the effects/consequences that
were obtained before the modification. In this sense, the deletion introduced in
this chapter is more similar to annulment since deleting a norm successfully
directly cancels the corresponding obligations. Governatori and Rotolo (2010)
also studied updates resulting from adding new norms into the legal systems.
It plays a similar role as postfixing or insertion defined in this chapter.

Conclusion Considering the differences between the prescriptive reading and
the descriptive reading in normative sentences, we introduced the notion of
relativized conditional obligations based on ideality sequences. Each ideality
sequence can be treated as a normative system which provides a criterion on the
relative ideality of states of affairs. Once that is done, every betterness structure
based on a given ideality sequence describes the conditional obligations. Deletion
and postfixing are two updates on the normative system which can bring about
their corresponding obligations successfully or not. Jørgensen’s dilemma can be
conceptualized by using the notion of successful updates. Furthermore, a sound
and strongly complete axiom system for the logic of relativized conditional
obligations PCDL has been established in this chapter.



Chapter 6

What I Ought to Do Based on
What I Know

6.1 Introduction

As mentioned in Section 1.1, Von Wright (1951) is generally regarded as the
person who initiated the field of deontic logic. His first system did interpret
the objects of obligations as act types instead of propositions, which indicated
that he meant to characterize obligation with respect to actions. However, he
applied classical logical connectives, such as negation and material implication,
to act types, which causes problems on how to understand these compound
act types. For example, the formula ¬Pα → ⊙

(α → β) is valid in his system,
which means that if an action α is forbidden, then doing action α commits us
to do anything (β is an arbitrary action). This is counter-intuitive and how to
interpret the implication between act types is questionable. Thereupon Von
Wright himself accepted the proposal that deontic operators are used to be
applied to propositions and he rebuilt his standard deontic logic following Prior
(1955), Anderson and Moore (1957), and Kanger (1970)’s approaches. We call this
type of obligations ‘ought-to-be’ obligations. As a consequence, from the 1960s
onward, deontic logicians could merely formalize which states of affairs are
good rather than expressing which actions are good. ‘Ought-to-be’ obligations
are normally interpreted as ‘it ought to be the case that · · · ’ or ‘it is obligatory
that · · · ’.

However, obligations in natural language usually appear with respect to
verbs, or we can say, to actions. We generally make claims such as ‘students
ought to go to school on time’, ‘you ought to keep promises’ and ‘I ought to
open the window now since my mother asks me to do so’. Only actions can be
performed and hence, our obligations are with respect to actions that we should
perform.
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There have been several deontic logics established based on actions after Von
Wright’s first attempt. Meyer (1988) treated deontic logic as a variant of dynamic
logic where actions are formalized as binary relations between states to represent
transitions between situations. An action is forbidden if all the states that can be
reached by performing the action are bad. A similar characterization can also be
found in Segerberg (1982). Meyer’s approach was extended by van der Meyden
(1996), where actions are assigned to sequences of states (multiple transitions
between states). Broersen (2004) investigated the problem of ‘action negation’
in dynamic deontic logic. Kulicki and Trypuz (2017) introduced both actions
and states into their deontic logic where an action ought to be done if it satisfies
both a-norms (for actions) and s-norms (for states). These approaches have been
developed based on the idea that actions are represented as transitions between
states and an action which leads to the optimal consequences ought to be done.

Furthermore, as Chapter 3 and 4 showed, what an agent ought to do at some
moment also depends on his/her knowledge. So this chapter will treat agents’
obligations as actions that they ought to perform based on their knowledge.

Dynamic epistemic logic seems to be an alternative framework for modelling
actions based on knowledge since action models are capable of expressing how
actions update situations according to agents’ information. Following the idea of
Meyer (1988), an action ought to be done if and only if the action leads from the
initial situation to the most ideal situations. In the context of dynamic epistemic
logic, it seems that we should suggest analogously that an action model ought
to be done if and only if the action model updates the initial epistemic model to
the optimal epistemic models. However, this chapter will replace the ‘optimality’
with ‘improvement’ to define ‘ought-to-do’ obligations. Roughly speaking, an
action ought to be done if and only if the action always improves the initial
situation to better situations. We will explain why this approach makes sense in
Section 6.3.

The following scenarios motivate us to treat obligations as actions and
suggest why we should involve epistemic elements into obligations. Scenario 12
has been given by Horty (2019) and Scenarios 10, 11 and 13 are variants of the
scenarios studied by Pacuit et al. (2006).

Scenario 10. Ann is a nurse and Uma is a doctor. Sam is a patient at Ann
and Uma’s practice. Uma just checks the test sheet and diagnoses Sam with
diabetes. Ann is taking care of Sam in the sickroom but she did not yet get the
information that Sam has diabetes. So Ann does not have an obligation to inject
insulin for Sam at that time.

Scenario 11. Ann is a nurse and Uma is a doctor. Sam is a patient at Ann and
Uma’s practice. Uma diagnoses Sam with diabetes and tells Ann the fact. Now
Ann has an obligation to inject insulin for Sam.

Scenario 12. Tao places a coin on the table but Chiyo cannot see whether it is
heads up or tails up. Chiyo must risk five euros for the opportunity to bet on
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heads or tails, with ten euros to win if Chiyo bets correctly (if the coin lands
heads up and Chiyo bets on heads, or if the coin lands tails up and Chiyo bets
on tails) and cannot get the five euros back if she bets incorrectly; or Chiyo can
choose not to gamble, without any profit or loss.

Scenario 13. Uma is a doctor working in a hospital. Sam is a patient at Uma’s
practice and he lies in a sickroom of the hospital. Suddenly, Sam is having a
heart attack in the hospital. Uma has an obligation to know the health state of
the patients at her practice.

Outline of the chapter In this chapter, we extend the action models introduced
in Section 2.5 to an action algebra in order to discuss compound actions, e.g.,
‘to open the door or to open the window’ and ‘to open the door and then to
open the window’. Then a method on comparing states and different epistemic
models is provided based on priority structures. In Section 6.4, we establish
the logic of knowledge-based ‘ought-to-do’ obligations and the axiomatization
is proved to be sound and strongly complete. Section 6.5 reformulates several
famous paradoxes in deontic logic using the newly proposed framework and
resolves them. In the end, we show how to model the scenarios mentioned
above by our framework.

6.2 Compound actions and transitions between mod-
els

Propositional dynamic logic captures actions as binary relations between states.
Each action represents a transition from one state to another. On page 165-166
in Harel et al. (2000), propositional dynamic logic defines four main operators
on actions: sequential composition, non-deterministic choice, iteration and test.
A sequential composition of two actions represents doing the first action and
then doing the second. A non-deterministic choice between two actions means
choosing one of the two actions non-deterministically and doing it. An iteration
of one action means doing the action a non-deterministically chosen finite
number of times. Testing a formula means proceeding if the formula is true; fail
if it is false.

Analogous to propositional dynamic logic, dynamic epistemic logic also
treats actions as transitions between two situations. Section 2.5 shows the way
an action model transforms (updates) an epistemic model to a new epistemic
model. Each action model can be regarded as a counterpart of a relation between
two states in propositional dynamic logic since both of them represent a single
action.

Section 2.5 only showed pointed action models in dynamic epistemic logic.
As a matter of fact, in some more extended versions of the logic, sequential
composition and non-deterministic choice have been introduced for capturing
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more complex actions. This chapter will also focus on these two types of action
operators and they can update epistemic models in different ways. They make
our framework more expressive in describing different types of actions and
accommodate the paradoxes in deontic logic.

In the remaining part of this section, several transition types between epis-
temic models caused by different types of actions are defined. If α is an ac-
tion, the term [[α]] represents the transition relation between epistemic models.
For example, if (M, s) and (M′, s′) are two epistemic models, the notation
(M, s)[[α]](M′, s′) represents that (M, s) is updated by the action α and (M′, s′)
is one of the updated models. Before we introduce the notion of compound
actions, the transition by a single pointed action model is defined as follows:

Definition 67 (Transition by pointed action models). Let (U, e) be an arbitrary
pointed action model.

(M, s)[[U, e]](M′, s′) iff M, s |= pre(e) and (M′, s′) = (M ⊗ U, (s, e))

The model (M ⊗ U, (s, e)) is the update model generated by executing (U, e)
on (M, s) (see Definition 19). A transition caused by a pointed action model from
an initial pointed epistemic model leads to the updated epistemic model. In the
following, we introduce two operators on actions: non-deterministic choice and
sequential composition.

6.2.1 Non-deterministic choice

The first type of compound action is non-deterministic choice. ‘Do A or B’ is the
general form of it. In terms of permission, ‘I am allowed to do sports or play
the piano’ means that I am permitted to do sports and I am also permitted to
play the piano, which is also known as a ‘free-choice’ sentence in deontic logic.

In the context of obligation, the sentence ‘you ought to call the ambulance or
save her by yourself’ implies that you ought to perform at least one of the two
actions. Moreover, it also indicates that both actions are obligatory, although it
might be the case that you can only do one of them at that moment.

According to our intuition in the context of permission and obligation, non-
deterministic choice between two actions seems to suggest the meaning of
conjunction, instead of disjunction. This interesting linguistic phenomenon is
the root of several paradoxes, like Ross’s paradox and the paradox of derived
obligation (to be introduced in Section 6.5) in many proposition-based deontic
logics. These issues motivate us to take non-deterministic choice into account.
We use the standard notation from dynamic epistemic logic (see page 112-113 in
van Ditmarsch et al. (2007)):

If α1 and α2 are actions, (α1 ∪ α2) is a non-deterministic choice action.

It deserves noting that α1 and α2 may themselves be pointed action models
or compound actions. We will define all actions inductively in Definition 71.
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The transitions between epistemic models caused by non-deterministic
choices are defined as follows:

Definition 68 (Transition of non-deterministic choice). Let α1 and α2 be two
arbitrary actions.

(M, s)[[α1 ∪ α2]](M′, s′) iff (M, s)[[α1]](M′, s′) or (M, s)[[α2]](M′, s′);

Definition 68 implies that the number of updated epistemic models that are
generated from one epistemic model by a non-deterministic choice could be
multiple. In contrast, the updated model generated by a pointed action model is
unique.

6.2.2 Sequential composition

Two actions can also be sequentially composed together forming a new action.
Specifically, we can concatenate two actions performed in sequence as a whole.
For example, ‘put the letter into an envelop and then mail it’ is a sequential
composition of ‘put the letter into an envelop’ and ‘mail the letter’. In the
deontic context, ‘you ought to put the letter into an envelop and then mail it’
implies that the two actions should be done in sequence and if only the first is
finished, it would bring about a violation. We also use the standard notation for
sequential composition as used in dynamic epistemic logic (see page 150 in van
Ditmarsch et al. (2007)):

If α1 and α2 are actions, α1; α2 denotes the composition of α1 and α2.

The transitions between epistemic models caused by sequential compositions
are defined as follows:

Definition 69 (Transition by sequential composition). Let α1 and α2 be two arbi-
trary actions.

(M, s)[[α1; α2]](M′, s′) iff there exists an epistemic model (M′′, s′′) such that
(M, s)[[α1]](M′′, s′′) and (M′′, s′′)[[α2]](M′, s′);

Definition 69 means that performing action α1 leads (M, s) to (M′′, s′′), and
then performing action α2 leads to (M′, s′). When two actions are pointed action
models, the sequential composition of them is still a pointed action model. This
new action model is constructed in the following way:

Definition 70 (Sequential composition of pointed action models (Def 2.8,
van Ditmarsch and Kooi (2008))). Let (U, e) = (E, R1, · · · , Rn, pre, post) and
(U′, e′) = (E′, R′

1, · · · , R′
n, pre′, post′) be two pointed action models. Then their

sequential composition ((U, e); (U′, e′)) is the action model ((U ⊗ U′), (e, e′)) =
((E′′, R′′

1 , · · · , R′′
n , pre′′, post′′), (e, e′)) where
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• E′′ = E × E′;

• for each i ∈ G, (e1, e′1)R′′
i (e2, e′2) iff (e1, e2) ∈ Ri and (e′1, e′2) ∈ R′

i;

• for each (e1, e′1) ∈ E′′, pre′′(e1, e′1) = ⟨U, e1⟩pre′(e′1);

• dom(post′′(e1, e′1)) = dom(post(e)) ∪ dom(post′(e′)) and

if p ∈ dom(post′′(e1, e′1)), then

post′′(e1, e′1)(p) =
{

post(e)(p) if p ̸∈ dom(post′(e′)),
[U, e]post′(e′)(p) otherwise

For p ∈ P and each (e1, e′1) ∈ E′′, post′′(p)(e1, e′1) = ⟨U, e1⟩post′(p)(e′1).

Definition 70 shows that two pointed action models can be composed to
one action model. So ((E′′, R′′

1 , · · · , R′′
n , pre′′, post′′), (e, e′)) itself is still a pointed

action model. Apart from composing two pointed action models, two compound
actions can also be composed. The following part in this section will show that
any compound action consisting of non-deterministic choice and sequential
composition equals an action in a normal form.

6.2.3 Normal form of compound actions

The following propositions have already been proved in van Ditmarsch et al.
(2007) and they tell us how to reduce a sequential composition to non-
deterministic choice between sequential compositions.

Proposition 14 (Sequential composition of compound actions (Prop 6.10, van
Ditmarsch et al. (2007))). Let α1, α2 and α3 be arbitrary actions.

(1) The compound action ((α1 ∪ α2); α3) equals ((α1; α3) ∪ (α2; α3)).
(2) The compound action (α1; (α2 ∪ α3)) equals ((α1; α2) ∪ (α1; α3)).

In item (1) in Proposition 14, the word ‘equals’ means that, given an arbitrary
epistemic model (M, s), the set of those updated epistemic models that generated
from (M, s) by performing ((α1 ∪ α2); α3) is the same as the set of those updated
epistemic models that derived from (M, s) by performing ((α1; α3) ∪ (α2; α3)).
Similarly, item (2) represents that the set of those updated epistemic models
that derived from (M, s) by (α1 ∪ (α2; α3)) is the same as the set of those up-
dated epistemic models that derived from (M, s) by ((α1; α2) ∪ (α1; α3)). So
Proposition 14 can be reformulated as follows:

(1⋆) {(M′, s′) | (M, s)[[(α1 ∪ α2); α3]](M′, s′)} =
{(M′, s′) | (M, s)[[(α1; α3) ∪ (α2; α3)]](M′, s′)}

(2⋆) {(M′, s′) | (M, s)[[α1; (α2 ∪ α3)]](M′, s′)} =
{(M′, s′) | (M, s)[[(α1; α2) ∪ (α1; α3)]](M′, s′)}
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Since we only consider these two types of compound actions, i.e., non-
deterministic choice and sequential composition, it follows immediately that
each compound action equals a non-deterministic choice between several
pointed action models or sequential compositions according to Proposition 14.

Proposition 15. Each compound action α equals an action in the form of ((U1, e1) ∪
· · · ∪ (Un, en)) for some n ≥ 1 where (U1, e1), · · · , (Un, en) are pointed action models
or sequential compositions of pointed action models.

Proposition 15 follows immediately from Proposition 14 and Definition 70.
Since each sequential composition of two pointed action models is still a pointed
action model, we can say each (Um, em) from (U1, e1), · · · , (Un, en) is a pointed
action model. We call ((U1, e1) ∪ · · · ∪ (Un, en)) the normal form of compound
actions.

Therefore, for simplicity, our language for actions only expresses pointed
action models and non-deterministic choice.

Definition 71. The language LAct
AKDL is defined as follows:

α ::= (U, e) | (α ∪ α)

where (U, e) are pointed action models with finite domains.

6.3 Comparing epistemic models

In this section, we will define knowledge-based ‘ought-to-do’ obligations over
the framework of dynamic epistemic logic. An epistemic model can be thought
of as a set of possible worlds for agents. An action is an update on some
epistemic model which can lead to new epistemic models. Meyer (1988)’s idea
is that an action ought to be done if and only if it updates the initial state to the
optimal states. However, this chapter follows a different approach. We suggest
that, in the context of dynamic epistemic logic, an action ought to be done if
and only if it always improves the initial model to better models.

This alternative interpretation deserves a further discussion here. Meyer
requires an obligation to make the current state achieve the best states. Reviewing
all deontic logics introduced in previous chapters, we found that optimality is
necessary for defining obligations. In standard deontic logic, being obligatory
requires all ideal states satisfies something. In Hansson’s dyadic deontic logic,
a conditional obligation is a proposition that holds in all the best states under
some condition. In deontic stit logic, an agent ought to see to it that ϕ if and
only if the optimal available action for the agent guarantees ϕ. However, in our
settings, the notion of ‘better’ takes the place of ‘best’ to determine whether an
action ought to be done. This idea makes senses as well. Let us recall the notion
of safe knowledge-based obligation defined in Section 4.4. Safe knowledge-
based obligation means that no matter what information the agent knows,
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the obligation always holds. In other words, fulfilling a safe obligation can
never be wrong. In this Chapter, performing an action which always leads to
better situations in the current state is safe in the sense that it never makes the
situation worse. So we also suggest that the obligation to be defined in this
chapter is a kind of safe obligation with respect to the agents’ current situation.
In addition, the betterness structures introduced in Section 2.1 originate from
preference logic. In preference logic, the characterizations of ‘an agent i prefers
a proposition ϕ to another proposition ψ’ are various. It can be given based
on optimality, like ‘for each ψ-state, the best states satisfy ϕ’. And it can also
be defined based on ‘better’: for each ψ-state, there exists at least one better
state satisfying ϕ (see van Benthem et al. (2006)). Looking back at our idea of
knowledge-based ‘ought-to-do’ obligation, we can say that an action ought to
be done if it always leads to better situations. Maybe the consequences are not
the optimal ones. But the action is safe enough to bring about better places.

In the current step, we need to find a method for assessing whether the
updated epistemic models become better.

6.3.1 Betterness between states and models

The first notion to be defined is the betterness between two states which can
be from different epistemic models. It takes a given priority structure as the
criterion to compare these two states.

Definition 72. (Betterness between states) Let M and M′ be two arbitrary epistemic
models. Given an LEL-priority structure G = ⟨Φ,≺⟩, the betterness relation between
states ⩽G is defined as follows: for any two states s ∈ M, s′ ∈ M′,

s ⩽G s′ ⇐⇒ ∀ϕ ∈ Φ : M, s |= ϕ ⇒ M′, s′ |= ϕ

If s ⩽G s′ but s′ ̸⩽G s, we have s <G s′.

We have introduced the idea of ⩽G in previous chapters. The idea stems
from van Benthem et al. (2014). But all the betterness relations shown before
are only defined over the states of one model. In the current chapter, we release
the restriction and render states from different models comparable based on a
certain priority structure.

Accordingly, we can evaluate whether an action improves an epistemic model
relativized to some agent i by the sure-thing principle. In decision theory, the
sure-thing principle states that a decision maker who would take a certain action
if he knew that event E has occurred, and also if he knew that the negation of E
has occurred, should also take that same action if he knows nothing about E
(see Page 21, Savage (1972)). This idea also comes from Horty (2019) when he
compares two act types.

Let G = {1, · · · , n} be the set of agents. Let (M, s) be a pointed epistemic
model where M = ⟨W,∼1, · · · ,∼n,⩽, V⟩. Let (U, e) be a pointed action model.
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The notations below are going to be used in the remaining part of this chapter:
let i ∈ G,

• If t is a state of M, then [t]∼i
M = {r ∈ M | t ∼i r}.

• (M, s)|∼i represents the epistemic model M restricted to the subset [s]∼i .

In the light of the sure-thing principle, if for each state in (M, s)|∼i , its
updated states in the updated model by action α are not worse than it, and
there is at least one state from (M, s)|∼i which is updated to a strictly better
state, then we can say that the action α practically improves the initial epistemic
model relativized to the agent i. Then the following definition shows how to
compare two models based on Definition 72.

Definition 73 (Betterness between Models). Let G be an LEL-priority structure.
Given an arbitrary epistemic model M = ⟨S,∼1,∼2, · · · ,∼n, V⟩ and an arbitrary
action α which equals ((U1, e1)∪ · · · ∪ (Un, en)). For each i ∈ G, if (M, s)[[α]](M′, s′),

(M, s) <i
G (M′, s′) iff there is (U, e) ∈ {(U1, e1), · · · , (Un, en)}

such that (M, s)[[U, e]](M′, s′) and
(M, s) <i

G (M ⊗ U, (s, e));

(M′, s′) <i
G (M, s) iff there is (U, e) ∈ {(U1, e1), · · · , (Un, en)}

such that (M, s)[[U, e]](M′, s′) and (M ⊗
U, (s, e)) <i

G (M, s);
where

(M, s) <i
G (M ⊗ U, (s, e)) iff (1) M, s |= pre(e);

(2) for each t ∈ [s]∼i
M , if there exists e′ ∈ U

such that (t, e′) ∈ [(s, e)]∼
′
i

M⊗U , then t ⩽G
(t, e′);
(3) there exists t ∈ [s]∼i

M and there exists

e′ ∈ U such that (t, e′) ∈ [(s, e)]∼
′
i

M⊗U and
t <G (t, e′).

(M ⊗ U, (s, e)) <i
G (M, s) iff (1) M, s |= pre(e);

(2) for each t ∈ [s]∼i
M , if there exists e′ ∈

U such that (t, e′) ∈ [(s, e)]∼
′
i

M⊗U , then
(t, e′) ⩽G t;
(3) there exists t ∈ [s]∼i

M and there exists

e′ ∈ U such that (t, e′) ∈ [(s, e)]∼
′
i

M⊗U and
(t, e′) <G t.

Definition 73 shows how to compare a pointed epistemic model with its
updated epistemic model relativized to the agent i’s epistemic states. In terms of
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Figure 6.1: An example of updating an epistemic model

(M, s) ⩽i
G (M ⊗U, (s, e)), we explain the three conditions one by one. Condition

(1) requires that the atomic action model is executable on the pointed epistemic
model. Condition (2) means that for each state that i cannot distinguish from the
current state, if its updated counterpart still cannot be distinguished by i, then
the updated state is not worse than its original state. Condition (3) illustrates
that there exists at least one original state that i cannot distinguish from the
current state such that its updated counterpart is still not be distinguished from
the factual state after the update by i and it is strictly worse than its updated
counterpart.

The intuition behind Definition 73 is straightforward. Assume s to be the
factual world. (M, s)|∼i denotes the set of epistemically indistinguishable worlds
from s of i. After performing some action model (U, e), the model (M, s)|∼i
yields an updated model. But we only need to consider these updated worlds
that i cannot distinguish from (s, e) since (s, e) is the factual state after the
action. When comparing (M, s)|∼i and (M ⊗ U, (s, e))|∼′

i
, all updated worlds

should not be worse than their original ones and at least one of them is strictly
better than its original counterpart. In terms of (M ⊗ U, (s, e)) <i

G (M, s), it can
be understood in a similar way. It represents that update epistemic model is
worse than the original one. This intuition is also in line with the well-known
concept of Pareto dominance in game theory. Given two strategy profiles s and s′,
the profile s Pareto dominates the profile s′ if in the profile s, some agents are
better off without making any other agent worse off (see Definition 2.1.1 from
Leyton-Brown and Shoham (2008)). In our context, the updated model is better
than the initial one if some states become strictly better and no state gets worse.

Figure 6.1 shows which parts of the two models we need to compare when
we focus on the agent i (the reflexive and transitive relations are omitted). In
the initial epistemic model M shown in Figure 6.1, s is the factual world and
we only need to focus on the subset {s, s1, s2} ⊆ M since i cannot distinguish
them. After executing the action model (U, e), we get the model (M ⊗ U, (s, e))
where we only need to check these states that are derived from {s, s1, s2} and
are connected to the updated factual world (s, e). In other words, we need to
compare the set {s, s1, s2} with the set {(s, e), (s, e1), (s1, e), (s1, e1), (s2, e)}.
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Figure 6.2: α is obligatory on s in Meyer’s logic

6.3.2 Building on Meyer’s approach

Meyer (1988) proposed a new setting of deontic logic which is viewed as a variant
of dynamic logic. As mentioned in Section 6.1, Meyer treats obligations as actions
which are transitions between point-style states. His logic is established based
on propositional dynamic logic (PDL) models, eg. (S, Rα1 , · · · , Rαn , V) where
{α1, · · · , αn} is a set of atomic actions.

Let α be an action and let I be a proposition constant which denotes ‘ideality’.
A formal definition of obligation in Meyer’s style can be defined accordingly.
The semantics of formula Oα is as follows:

M, s |= Oα iff for all t such that sRαt, M, t |= I.

The semantics means that the action α ought to be done if and only if
after performing the actions, all consequence states are ideal. In other words,
performing an obligatory action always brings about ideal states. Figure 6.2
gives an example of an action α that is obligatory in Meyer’s style.

However, in our real life, it is very unlikely that we can know all available
actions when facing some situations and therefore cannot judge which action
can bring about the optimal situations. Generally, we perform an action only
because it improves the current situation. Following this idea and our notion
of comparison between epistemic models, we give our idea about obligation:
an action is obligatory if and only if performing the action always leads to
better situations. Accordingly, the definitions of obligation and prohibition in
our framework would be like:

M, s |= ⊙
i α iff for all (M′, s′) such that (M, s)[[α]](M′, s′), (M, s) <i

G (M′, s′)
M, s |= Fiα iff for all (M′, s′) such that (M, s)[[α]](M′, s′), (M′, s′) <i

G (M, s)

Figure 6.3 gives an example of the action α, which is obligatory according
to our definition. The similarities and differences between Meyer’s and our
approach are listed below.

Similarities
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Figure 6.3: α is obligatory on s in our approach

• Actions are represented as transitions between states or situations.

• Obligations are interpreted with respect to actions.

Differences

• Meyer’s approach takes PDL models as the basis. Each state/situation is a
point in a PDL-model. Our approach uses the DEL framework where each
state/situation is an epistemic model. Therefore, a state in our approach
encodes more information, especially agents’ knowledge.

• In PDL, the actions are transitions between states in one PDL-model.
However, in DEL, actions are structured as action models and they are
transitions between epistemic models. DEL characterizes how an action
changes the situation in both epistemic and factual aspects.

• Our approach leaves out the notion of violation or ideality to specify
which state is the worst or best. According to our definition, an obligation
is an action that always leads to better situations, instead of the most ideal
situations.
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6.4 A Logic of knowledge-based ‘ought-to-do’ obli-
gation

In this section, we will give a formal characterization of knowledge-based ‘ought-
to-do’ obligation. A sound and complete axiom system for the logic will be
presented and investigated.

6.4.1 Language and semantics

Let P be a countable set of propositional variables and let G be a finite set of
agents.

Definition 74 (Language LAKDL
1). The language LAKDL is given by BNF:

LAKDL ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | [α]ϕ | ⊙i α | Fiα

LAct
AKDL α ::= (U, e) | (α ∪ α)

where p ∈ P, i ∈ G.

The formula Kiϕ represents the knowledge of agent i that ϕ is the case. The
formula [α]ϕ can be read as ‘after performing action α, ϕ is the case’. The formula⊙

i α represents the knowledge-based obligation of agent i that he/she ought
to do α. It can be read as: i ought to perform action α based on i’s information.
The formula Fiα paraphrases ‘it is forbidden for agent i to perform action α’.
Since we have an action algebra shown in an inductive manner, we can read
obligations (respectively, prohibitions) in different ways with respect to different
types of actions.

•
⊙

i(U, e): i ought to perform the action (U, e);

•
⊙

i(α1 ∪ α2): i ought to perform action α1 or α2.

• Fi(U, e): i is forbidden to perform the action (U, e);

• Fi(α1 ∪ α2): i is forbidden to perform action α1 or α2.

If we consider the obligation to perform a sequential composition of two
actions, i.e.,

⊙
i(α1; α2), we can read it as: i ought to perform α1 and then perform

α2. Similarly, the formula Fi(α1; α2) can be read as: i is forbidden to first perform
α1 and then perform α2.

The truth conditions for LAKDL-formulas are shown as follows.

Definition 75 (Semantics of LAKDL). Given an arbitrary epistemic model M =
⟨S,∼1,∼2, · · · ,∼n, V⟩ and an LEL-priority structure G, the truth conditions of
LAKDL is defined as follows:

1The abbreviation AKDL refers to the expression ‘action and knowledge-based deontic logic’
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M, s |= p iff s ∈ V(p).
M, s |= ¬ϕ iff M, s ̸|= ϕ,
M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ.
M, s |= Kiϕ iff M, t |= ϕ for each t ∈ [s]∼i .
M, s |= [α]ϕ iff for all (M′, s′):

if (M, s)[[α]](M′, s′), then M′, s′ |= ϕ.
M, s |= ⊙

i α iff for all (M′, s′):
if (M, s)[[α]](M′, s′), then (M, s) <i

G (M′, s′).
M, s |= Fiα iff for all (M′, s′):

if (M, s)[[α]](M′, s′), then (M′, s′) <i
G (M, s).

The intuition of obligations and prohibitions discussed in Section 6.3.2 are
reflected in the semantics of

⊙
i α and Fiα. The formula

⊙
i α is true if and

only if performing the action α always causes better situations. In contrast, the
semantics of Fiα means that performing the action α always results in worse
situations. Therefore, agent i ought to refrain from doing α. In other words,
the action α is forbidden for i. It deserves noting that, in KCDL, the agent i
knows every knowledge-based conditional obligation that he/she has. But in
this chapter, the formula

⊙
i α → Ki

⊙
i α is not valid, which means that an agent

might not know his/her own knowledge-based obligations.

6.4.2 Reduction and axiom system AKDL

In this section, we will show that each LAKDL-formula in the form of
⊙

i α and
Fiα can be reduced to some LDEL-formula by two reduction axioms, respec-
tively. However, the reduction axioms that we need here are not in Kangerian-
Andersonian style anymore. See the following two formulas:

Let G = ⟨Φ,≺⟩ be an LEL-priority structure and let (U, e) be a pointed action
model.

(RD
⊙

i)
⊙

i(U, e) ↔ (1)
∧

ϕ∈Φ∪{⊤} Ki(ϕ → ∧
e′Rie[U, e′]ϕ)

∧
(2) ¬Ki¬(

∨
ψ∈Φ

∨
e′Rie(⟨U, e′⟩ψ ∧ ¬ψ)).

(RDFi) Fi(U, e) ↔ (1′)
∧

ϕ∈Φ∪{⊤} Ki(
∧

e′Rie[U, e′]ϕ → ϕ)

∧
(2) ¬Ki¬(

∨
ψ∈Φ

∨
e′Rie(⟨U, e′⟩¬ψ ∧ ψ)).

The formula (RD
⊙

i) represents that
⊙

i(U, e) is logically equivalent to the
conjunction of formulas (1) and (2). Formula (1) intuitively means that for an
arbitrary formula ϕ ∈ Φ ∪ {⊤}, for all the states that i cannot distinguish from
the current state, if the state satisfies ϕ, then, after updating the model by action
(U, e), the updated state satisfies ϕ as well. In other words, the updated state
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is at least as good as the original state by Definition 72. Formula (2) represents
that there exists one state whose updated state satisfies some formula ψ ∈ Φ,
but it does not satisfy ψ itself. Alternatively speaking, formula (2) means that
there exists one updated state that i cannot distinguish from the factual state
after the update such that it is strictly better than its original state. So it says
that i ought to perform the action (U, e).

In contrast, the formula (RDFi) represents that each original state is at least
as good as its updated state. What is more, there exists one updated state that i
cannot distinguish such that it is strictly worse than its original state. Therefore,
the atomic action (U, e) is forbidden for i.

Proposition 16. The formula (RD
⊙

i) and (RDFi) are valid over the class of epistemic
models.

Proof. Let M = ⟨S,∼1, · · · ,∼n, V⟩ be an arbitrary epistemic model. We first
prove that (RD

⊙
i) is valid.

(⇒) Suppose that M, s |= ⊙
i(U, e). By semantics, for all (M′, s′), if

(M, s)[[U, e]](M′, s′), then (M, s) <i
G (M′, s′).

• Let t be an arbitrary state in M such that s ∼i t. Let ϕ ∈ Φ ∪ {⊤}. If
M, t ̸|= ϕ, then M, t |= ϕ → ∧

e′Rie[U, e′]ϕ holds trivially. If M, t |= ϕ, we
need to show that M, t |= ∧

e′Rie[U, e′]ϕ. Let e′ ∈ U such that e′Rie. If
M, t ̸|= pre(e′), then M, t |= [U, e′]ϕ. If M, t |= pre(e′), then (t, e′) ∈ M′

and (s, e)R′
i(t, e′). By Definition 72 and M, s |= ⊙

i(U, e), we have that t ⩽G
(t, e′). Thus, it holds that M′, (t, e′) |= ϕ. So we have M, t |= [U, e′]ϕ. Thus,
we have M, t |= ϕ → ∧

e′Rie[U, e′]ϕ. Then we have M, s |= ∧
ϕ∈Φ∪{⊤}(ϕ →∧

e′Rie[U, e′]ϕ).

• By the definition of (M, s) <i
G (M′, s′), there exists t ∈ [s]∼i

M and e′ ∈ U
such that (t, e′) ∈ [(s, e)]∼

′
M′ and t <G (t, e′). This implies that there exists

ψ ∈ Φ such that M, t ̸|= ψ and M′, (t, e′) |= ψ. Thus, it follows that
M, s |= ¬Ki¬(

∨
ψ∈Φ

∨
e′Rie(⟨U, e′⟩ψ ∧ ¬ψ)).

(⇐) Suppose that M, s |= ∧
ϕ∈Φ∪{⊤}(ϕ → ∧

e′Rie[U, e′]ϕ) ∧
¬Ki¬(

∨
ψ∈Φ

∨
e′Rie(⟨U, e′⟩ψ ∧ ¬ψ)).

• By the semantics, for each t such that t ∈ [s]∼i
M , M, t |= ϕ → ∧

e′Rie[U, e′]ϕ
for each ϕ ∈ Φ. Let ϕ be an arbitrary formula in Φ such that M, t |= ϕ. Then
M, t |= ∧

e′Rie[U, e′]ϕ. Let e′ be an arbitrary event in U. If M, t ̸|= pre′(e′),
then (t, e′) ̸∈ M′. If M, t |= pre(e′), then M′, (t, e′) |= ϕ. So we have
t ⩽G (t, e′).

• By M, s |= ¬Ki¬(
∨

ψ∈Φ
∨

e′Rie(⟨U, e′⟩ψ ∧ ¬ψ)), there exists t ∈ M such
that s ∼i t and let M, t |= ∨

ψ∈Φ
∨

e′Rie(⟨U, e′⟩ψ ∧ ¬ψ). Let ψ ∈ Φ and
e′Rie be the formula and event making M, t |= ∨

ψ∈Φ
∨

e′Rie(⟨U, e′⟩ψ ∧ ¬ψ)
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hold. So we have M, t |= ⟨U, e′⟩ψ ∧ ¬ψ. This implies that M, t |= ¬ψ and
M′, (t, e′) |= ψ. Then we have t <G (t, e′).

Therefore, we proved that M, s |= ⊙
i(U, e).

The validity of the formula (RDFi) can be proved in a similar way.

Now we can give the axiom system for the logic of knowledge-based ‘ought-
to-do’ obligation, namely AKDL.

Definition 76. The proof system AKDL consists of the following axiom schemas and
inference rules:

(TAUT) All instances of tautologies

(K) Ki(ϕ → ψ) → (Kiϕ → Kiψ)

(T) Kiϕ → ϕ

(4) Kiϕ → KiKiϕ

(5) ¬Kiϕ → Ki¬Kiϕ

(U-A) [U, e]p ↔ (pre(e) → post(e)(p))

(U-N) [U, e]¬ϕ ↔ (pre(e) → ¬[U, e]ϕ)

(U-C) [U, e](ϕ ∧ ψ) ↔ ([U, e]ϕ ∧ [U, e]ψ)

(U-K) [U, e]Kiϕ ↔ (pre(e) → ∧
e′Rie Ki[(U, e′)]ϕ)

(NC) [α ∪ α′]ϕ ↔ ([α]ϕ ∧ [α′]ϕ)

(RD
⊙

i)
⊙

i(U, e) ↔ (
∧

ϕ∈Φ∪{⊤} Ki(ϕ → ∧
e′Rie[U, e′]ϕ)∧

¬Ki¬(
∨

ψ∈Φ
∨

e′Rie(⟨U, e′⟩ψ ∧ ¬ψ)))

(RDFi) Fi(U, e) ↔ (
∧

ϕ∈Φ∪{⊤} Ki(
∧

e′Rie[U, e′]ϕ → ϕ)∧
¬Ki¬(

∨
ψ∈Φ

∨
e′Rie(⟨U, e′⟩¬ψ ∧ ψ)))

(RNC
⊙

i)
⊙

i(α ∪ α′) ↔ (
⊙

i α ∧⊙
i α′)

(RNCFi) Fi(α ∪ α′) ↔ (Fiα ∧ Fiα
′)

(MP) From ϕ and ϕ → ψ, infer ψ

(N) From ϕ, infer Kiϕ

(RE) From ϕ ↔ ψ, infer χ ↔ χ[ϕ/ψ]

The axiomatization AKDL consists of dynamic epistemic logic with post-
conditions UM established by van Ditmarsch and Kooi (2008), the reduction
axiom for non-deterministic choice (NC), and the reduction axioms for obliga-
tions in all types of actions, ie. (RD

⊙
i), (RDFi), (RNC

⊙
i) and (RNCFi). Moreover,

a non-deterministic choice is obligatory for i if and only if both choices (actions)
are obligatory. This is also in line with the axiom (NC) which represents that
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‘after performing a non-deterministic choice, ϕ is the case’ is logically equivalent
to ‘ϕ is the case after performing either of the two actions’.

Theorem 8 (Soundness of AKDL). AKDL is sound with respect to the class of
epistemic models.

All axioms and inference rules from UM are valid, which have been given
by van Ditmarsch and Kooi (2008). The validity of axiom (RC) and (NC) can be
referred to Page 152-152 in van Ditmarsch et al. (2007). Proposition 16 proves
that (RD

⊙
i) and (RDFi) are valid. The validity of (RNC

⊙
i) and (RNCFi) can be

given straightforwardly.
Completeness can be proved by translating LAKDL-formulas to LEL-formulas

via reduction axioms for dynamic operators and deontic operators, and induc-
tion on the complexity of the formulas. Let G = ⟨Φ,≺⟩ be the priority structure
that our system AKDL is based on. We give the translation and the complexity
of LAKDL-formulas as follows.

Definition 77. (Translation) The translation t : LAKDL → LEL based on G =
{1, · · · , n} is defined as follows. For each i ∈ G

t(p) = p
t(¬ϕ) = ¬t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t(Kiϕ) = Kit(ϕ)
t(
⊙

i(U, e)) =
∧

ϕ∈Φ∪{⊤} Ki(ϕ → ∧
e′Rie t([U, e′]ϕ))∧

¬Ki¬(
∨

ψ∈Φ
∨

e′Rie(t(⟨U, e′⟩ψ) ∧ ¬ψ))
t(Fi(U, e)) =

∧
ϕ∈Φ∪{⊤} Ki(

∧
e′Rie t([U, e′]ϕ) → ϕ)∧

¬Ki¬(
∨

ψ∈Φ
∨

e′Rie(t(⟨U, e′⟩¬ψ) ∧ ψ))
t(
⊙

i(α1 ∪ α2)) = t(
⊙

i α1 ∧
⊙

i α2)
t(Fi(α1 ∪ α2)) = t(Fiα1 ∧ Fiα2)
t([U, e]p) = t(pre(e) → post(e)(p))
t([U, e]¬ϕ) = t(pre(e) → ¬[U, e]ϕ)
t([U, e](ϕ ∧ ψ)) = t([U, e]ϕ ∧ [U, e]ψ)
t([U, e]Kiϕ) = t(pre(e) → ∧

e′Rie Ki[U, e′]ϕ)
t([U1, e1]

⊙
i(U2, e2)) =

∧
ϕ∈Φ∪{⊤} t(pre(e1) →∧
e′1Rie1

Ki[U1, e′1](ϕ → ∧e′2Rie2
[U2, e′2]ϕ)) ∧ t(pre(e1) →

¬∧
e′1Rie1

Ki[U1, e′1]
∧

ψ∈Φ
∧

e′2Rie2
([U2, e′2]ψ ∨ ¬ψ))

t([U1, e1]Fi(U2, e2)) =
∧

ϕ∈Φ∪{⊤} t(pre(e1) →∧
e′1Rie1

Ki[U1, e′1](∧e′2Rie2
[U2, e′2]ϕ) → ϕ) ∧ t(pre(e1) →

¬∧
e′1Rie1

Ki[U1, e′1]
∧

ψ∈Φ
∧

e′2Rie2
([U2, e′2]¬ψ ∨ ψ))

t([U, e]
⊙

i(α1 ∪ α2)) = t([U, e]
⊙

i α1 ∧ [U, e]
⊙

i α2)
t([U, e]Fi(α1 ∪ α2)) = t([U, e]Fiα1 ∧ [U, e]Fiα2)

Let θ = max{c(ϕ) | ϕ ∈ Φ}. In other words, θ is the formula in the domain
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of the priority structure Φ such that the complexity of θ is the maximal among
all formulas in Φ.

Definition 78. (Complexity of LAKDL) The complexity c : LAKDL → N based on
G = {1, · · · , n} is defined as follows: for each i ∈ G,

c(p) = 1
c(¬ϕ) = 1 + c(ϕ)
c(ϕ ∧ ψ) = 1 + max(c(ϕ), c(ψ)))
c(Kiϕ) = 1 + c(ϕ)
c([U, e]ϕ) = (3 + |U|+ c(U)) · c(ϕ)
c(
⊙

i(U, e)) = 5 + 2|Φ|+ 2|U|+ c([U, e]θ)
c(Fi(U, e)) = 5 + 2|Φ|+ 2|U|+ c([U, e]θ)
c(
⊙

i(α1 ∪ α2)) = 1 + max(c(
⊙

i α1), c(
⊙

i α2))
c(Fi(α1 ∪ α2)) = 1 + max(c(Fiα1), c(Fiα2))

where c(U) = max(c(pre(e1)), · · · , c(pre(e|U|)), c(post(e1)(p1)), · · · , c(post(e1)(pk)),
· · · c(post(e|U|)(p1)), · · · , c(post(e|U|)(pk))))).

It is worth noting that the complexity of LAKDL is different from that of
LDKCDL in the aspect of the deontic formulas. And the complexity of obligation
and prohibition are the same.

The completeness proof is analogous to Theorem 4 for the system DKCDL.
The constant 5 is the least number that can make the proof go through when
we do induction on the complexity of LAKDL-formulas. The proof details are
shown as follows.

Lemma 11. For all LAKDL-formula ϕ, it holds that ⊢AKDL ϕ ↔ t(ϕ) and t(ϕ) ∈
LEL.

Proof. By induction on c(ϕ).
• Base case: When ϕ = p for some propositional atom p, it is trivial that

⊢AKDL p ↔ p and p ∈ LEL.
• Induction hypothesis: For all ϕ such that c(ϕ) < n: we have ⊢ ϕ ↔ t(ϕ)

and t(ϕ) ∈ LEL.
• Induction step: If c(ϕ) = n + 1:

• When ϕ = ¬ψ, we have c(¬ψ) = 1 + c(ψ). So c(ψ) = n. By induction
hypothesis, we get ⊢AKDL ψ ↔ t(ψ) and t(ψ) ∈ LEL. Thus, ⊢AKDL

¬ψ ↔ ¬t(ψ). It just is ⊢AKDL ϕ ↔ t(ϕ). And ¬t(ψ) ∈ LEL.

• When ϕ = (ψ1 ∧ ψ2), we have c(ψ1 ∧ ψ2) = 1 + max(c(ψ1, c(ψ2))). So
max(c(ψ1), c(ψ2)) = n. It means that c(ψ1) ≤ n and c(ψ2) ≤ n. By induc-
tion hypothesis, we have ⊢AKDL ψ1 ↔ t(ψ1), ⊢AKDL ψ2 ↔ t(ψ2), t(ψ1) ∈
LEL and t(ψ2) ∈ LEL. Then we have ⊢AKDL (ψ1 ∧ ψ2) ↔ (t(ψ1) ∧ t(ψ2)).
It is equivalent to ⊢AKDL (ψ1 ∧ ψ2) ↔ t(ψ1 ∧ ψ2) by our translation. And
t(ψ1) ∧ t(ψ2) ∈ LEL.
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• When ϕ = Kiψ: c(Kiψ) = 1 + c(ψ). So c(ψ) = n. By induction hypoth-
esis, we have ⊢AKDL ψ ↔ t(ψ) and t(ψ) ∈ LEL. By (NEC) and (K),
⊢AKDL Kiψ ↔ Ki(t(ψ)). It is equivalent to ⊢AKDL Kiψ ↔ t(Kiψ) by our
translation. And we also have Kit(ψ) ∈ LEL.

• When ϕ =
⊙

i(U, e): c(
⊙

i(U, e)) = 5 + 2|Φ| + 2|U| + c([U, e]θ). Ac-
cording to Definition 77, we have t(

⊙
i(U, e)) =

∧
χ∈Φ∪{⊤} Ki(χ →∧

e′Rie t([U, e′]χ)) ∧ ¬Ki¬(
∨

ψ∈Φ
∨

e′Rie(t(⟨U, e′⟩ψ) ∧ ¬ψ)). Since
t([U, e′]χ) = (3 + |U| + c(U)) · c(χ) and c(χ) < c(θ), it is obtained
that c([U, e′])χ ≤ c([U, e′]θ). So c([U, e′]χ) < c(

⊙
i(U, e)). By in-

duction hypothesis, it holds that ⊢AKDL [U, e′]χ ↔ t([U, e′]χ).
Then, by the axiom (RD

⊙
i) and the inference rule (RE), we have

⊢AKDL

⊙
i(U, e) ↔ t(

⊙
i(U, e)). Since c([U, e′]χ) ≤ n, by induction

hypothesis, we have t([U, e′]χ) ∈ LEL. So it holds that t(
⊙

i(U, e)) ∈ LEL.

• When ϕ = Fi(U, e), the proof is similar to the above case.

• When ϕ =
⊙

i(α1 ∪ α2), we know t(
⊙

i(α1 ∪ α2)) = t(
⊙

i α1 ∧
⊙

i α2).
By Definition 78, we have c(

⊙
i(α1 ∪ α2)) = 1 + max(c(

⊙
i α1), c(

⊙
i α2)).

So we have c(
⊙

i α1) < n and c(
⊙

i α2) < n. By induction hypothesis,
⊢AKDL t(

⊙
i α1) ↔ ⊙

i α1 and ⊢AKDL t(
⊙

i α2) ↔ ⊙
i α2. So we have

⊢AKDL (
⊙

i α1 ∧
⊙

i α2) ↔ (t(
⊙

i α1) ∧ t(
⊙

i α2)). By the axiom (RNC
⊙

i)
and Definition 77, we have ⊢AKDL

⊙
i(α1 ∪ α2) ↔ t(

⊙
i(α1 ∪ α2)).

Now we show t(
⊙

i(α1 ∪ α2)) ∈ LEL. Since t(
⊙

i(α1 ∪ α2)) = t(
⊙

i α1 ∧⊙
i α2) = t(

⊙
i α1)∧ t(

⊙
i α2). By induction hypothesis, we have t(

⊙
i α1) ∈

LEL and t(
⊙

i α2) ∈ LEL. Therefore, it follows that t(
⊙

i(α1 ∪ α2)) ∈ LEL.

• When ϕ = Fi(α1 ∪ α2), the proof is similar to the above case.

• When ϕ = [U, e]p, we know c([U, e]p) = 3 + |U|+ c(U).

We first prove ⊢AKDL ϕ ↔ t(ϕ). We have c(pre(e) → post(e)(p)) = 2 +
max(c(pre(e)), c(¬post(e)(p))). If c(pre(e)) ≥ c(¬post(e)(p)), by c(U) ≥
c(pre(e)), we have c([U, e]p) > c(pre(e) → post(e)p). If c(¬post(e)(p)) ≥
c(pre(e)), then c(pre(e) → post(e)(p)) = 3 + c(post(e)(p)). By c(U) ≥
c(post(e)(p)) and |U| ≥ 1, we obtain c([U, e]p) > c(pre(e) → post(e)p).
By induction hypothesis, we have ⊢AKDL (pre(e) → post(e)(p)) ↔
t(pre(e) → post(e)(p)). It is equivalent to ⊢AKDL [U, e]p ↔ t([U, e]p)
by Definition 77 and the inference rule (RE).

Then we prove t(ϕ) ∈ LEL. We have t([U, e]p) = t(¬(pre(e) ∧
¬post(e)(p))) = ¬(t(pre(e)) ∧ t(¬post(e)(p))). We know that c(pre(e)) ≤
c(U) and c(¬post(e)(p)) ≤ c(U) + 1. So we have c(pre(e)) ≤ n and
c(¬post(e)(p)) ≤ n. By induction hypothesis, we have t(pre(e)) ∈ LEL
and t(¬post(e)(p)) ≤ LEL. Thus, t([U, e]p) ∈ LEL.
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• When ϕ = [U, e]¬ψ: c([U, e]¬ψ) = (3 + |U| + c(U)) · (1 + c(ψ)) = 3 +
|U|+ c(U) + 3 · c(ψ) + |U| · c(ψ) + c(U) · c(ψ).

We first prove ⊢AKDL ϕ ↔ t(ϕ). We know c(pre(e) → ¬[U, e]ψ) =
2 + max(c(pre(e)), c(¬[U, e]ψ)). Since c(¬[U, e]ψ) > c(pre(e)), we have
c(pre(e) → ¬[U, e]ψ) = 3 + c([U, e]ψ) = 3 + 3 · c(ψ) + |U| · c(ψ) + c(U) ·
c(ψ). So c([U, e]¬ψ) > c(pre(e) → ¬[U, e]ψ). By induction hypothesis,
we obtain ⊢AKDL (pre(e) → ¬[U, e]ψ) ↔ t(pre(e) → ¬[U, e]ψ). It fol-
lows that ⊢AKDL [U, e]¬ψ ↔ t([U, e]¬ψ) by the inference rule (RE) and
Definition 77.

Then we prove t(ϕ) ∈ LEL. We know t([U, e]¬ψ) = t(pre(e) →
¬[U, e]ψ) = t(¬(t(pre(e) ∧ t(¬post(e)(p))))). Since c(pre(e)) ≤ c(U) and
c([U, e]ψ) < c([U, e]¬ψ), by induction hypothesis, we have t(pre(e)) ∈ LEL
and t([U, e]ψ) ∈ LEL. Thus, we obtain t([U, e]¬ψ) ∈ LEL.

• When ϕ = [U, e](ψ1 ∧ ψ2): c([U, e](ψ1 ∧ ψ2)) = (3 + |U| + c(U)) ·
(max(c(ψ1), c(ψ2)) + 1).

We first prove ⊢AKDL ϕ ↔ t(ϕ). Assuming c(ψ1) ≥ c(ψ2), we have
c([U, e](ψ1 ∧ ψ2)) = 3 + |U|+ c(U) + 3 · c(ψ1) + |U| · c(ψ1) + c(U) · c(ψ1).
We also know c([U, e]ψ1 ∧ [U, e]ψ2) = 1+max(c([U, e]ψ1), c([U, e]ψ2)). By
c(ψ1) ≥ c(ψ2), we have c([U, e]ψ1 ∧ [U, e]ψ2) = 4 + |U| + c(U) + c(U) ·
c(ψ1). So c([U, e](ψ1 ∧ ψ2)) > c([U, e]ψ1 ∧ [U, e]ψ2). By induction hypoth-
esis, we obtain ⊢AKDL ([U, e]ψ1 ∧ [U, e]ψ2) ↔ t([U, e]ψ1 ∧ [U, e]ψ2). It is
equivalent to ⊢AKDL [U, e](ψ1 ∧ ψ2) ↔ t([U, e](ψ1 ∧ ψ2)) by (RE) and
Definition 77.

Then we prove t(ϕ) ∈ LEL. Assuming c(ψ1) ≥ c(ψ2), we have
c([U, e](ψ1 ∧ ψ2)) = 3 + |U|+ c(U) + 3 · c(ψ1) + |U| · c(ψ1) + c(U) · c(ψ1).
We know t([U, e](ψ1 ∧ ψ2)) = t([U, e]ψ1) ∧ t([U, e]ψ2). Since c([U, e]ψ1) <
c([U, e](ψ1 ∧ ψ2)) and c([U, e]ψ2) < c([U, e](ψ1 ∧ ψ2)), by induction hy-
pothesis, we have t([U, e]ψ1) ∈ LEL and t([U, e]ψ2) ∈ LEL. Thus, we
obtain t([U, e](ψ1 ∧ ψ2)) ∈ LEL.

• When ϕ = [U, e]Kiψ, c([U, e]Kiψ) = 3+ |U|+ c(U) + 3 · c(ψ) + |U| · c(ψ) +
c(U) · c(ψ).

We first prove ⊢AKDL ϕ ↔ t(ϕ). We know c(pre(e) →∧
e′i Rie Ki[U, e′]ψ) = 2 + max(c(pre(e)), c(¬∧

e′i Rie Ki[U, e′]ψ)). We
also know c(¬∧

e′i Rie Ki[U, e′]ψ) = 1 + c(
∧

e′i Rie Ki[U, e′]ψ) =

1 + |U| − 1 + max(c(Ki[U, e1]ψ), · · · , c(Ki[U, e|U|]ψ)) = 1 +

|U| + max(c([U, e1]ψ), · · · , c([U, e|U|]ψ)). Let m ∈ N such that
1 ≤ m ≤ |U| and c([U, em]ψ) = max(c([U, e1]ψ), · · · , c([U, e|U|]ψ)).
Then c(pre(e) → ∧

e′i Rie Ki[U, e′]ψ)) = 3 + |U| + c([U, em]ψ) =

3 + |U| + 3 · c(ψ) + |U| · c(ψ) + c(U) · c(ψ). So it is easy to see that
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c([U, e]Kiψ) > c(pre(e) → ∧
e′i Rie Ki[U, e′]ψ)). By induction hypoth-

esis, we obtain ⊢AKDL (pre(e) → ∧
e′i Rie Ki[U, e′]ψ)) ↔ t(pre(e) →∧

e′i Rie Ki[U, e′]ψ)). It is equivalent to ⊢AKDL [U, e]Kiψ ↔ t([U, e]Kiψ) by
(RE) and our translation.

Then we prove t(ϕ) ∈ LEL. We know t([U, e]Kiψ) = ¬t(pre(e) →∧
e′Rie Ki[U, e′]ψ) = ¬(t(pre(e)) ∧ t(¬∧

e′Rie Ki[U, e′]ψ)). We know
c(pre(e)) ≤ c(U). And
c(¬∧

e′Rie Ki[U, e′]ψ) = 1 + |U| + max(c(Ki[U, e1]ψ), · · · , c([U, em]ψ))

where {e1, · · · , em} = [e]Ri . Since for each ek, el ∈ U, we have c([U, ek]ψ) =
c([U, el ]ψ). So c(¬∧

e′Rie Ki[U, e′]ψ) = 1 + |U|+ c(Ki[U, e]ψ) = 2 + |U|+
c([U, e]ψ) = 2 + |U|+ c([U, e]ψ) = 2 + |U|+ 3 · c(ψ) + |U| · c(ψ) + c(U) ·
c(ψ) which is strictly smaller than c([U, e]Kiψ). By induction hypothesis,
t(¬∧

e′Rie Ki[U, e′]ψ) ∈ LEL. Thus, we obtain t([U, e]Kiψ) ∈ LEL.

• When ϕ = [U1, e1]
⊙

i(U2, e2), c([U1, e1]
⊙

i(U2, e2)) = (3 + |U1|+ c(U1)) ·
(5 + 2|Φ| + 2|U2| + c([U2, e2]θ)) = 15 + 6|Φ| + 6|U2| + 3c([U2, e2]θ) +
5|U1| + 2|Φ||U1| + 2|U1||U2| + |U1|c([U2, e2]θ) + 5c(U1) + 2|Φ|c(U1) +
2|U2|c(U1) + c(U1)c([U2, e2]θ). First of all, by the axiom (U-N), (U-
C), (U-K), (RD

⊙
i) and the inference rule (RE), we have ⊢AKDL

[U1, e1]
⊙

i(U2, e2) ↔ (
∧

ϕ∈Φ∪{⊤}(pre(e1) → ∧
e′1Rie1

Ki[U1, e′1](ϕ →
∧e′2Rie2

[U2, e′2]ϕ)) ∧ (pre(e1) → ¬∧
e′1Rie1

Ki[U1, e′1]
∧

ψ∈Φ
∧

e′2Rie2
([U2, e′2]ψ ∨

¬ψ))).

We first prove ⊢AKDL ϕ ↔ t(ϕ). We have c(pre(e1) →∧
e′1Rie1

Ki[U1, e′1](θ → ∧
e′2Rie2

[U2, e′2]θ)) = 3 + |U1| + (3 + |U1| +
c(U1)) · (1 + |U2| + c([U2, e′2]θ)). We also have c(pre(e1) →∧

e′1Rie Ki[U1, e′1]
∧

ψ∈Φ
∧

e′2Rie2
([U2, e′2]ψ ∨ ¬ψ)) = 3 + |U2| + (3 + |U1| +

c(U1)) · (|Φ| + |U2| + c([U2, e′2]θ ∨ ¬θ)) = 12 + 3|Φ| + 4|U2| + (3 +
|Φ|)|U1| + |U1||U2| + (3 + |Φ|)c(U1) + |U2|c(U1) + (3 + |U1| + c(U1)) ·
c([U2, e′2]θ). Then we obtain that c([U1, e1]

⊙
(U2, e2)) > c(pre(e1) →∧

e′1Rie1
Ki[U1, e′1](θ → ∧

e′2Rie2
[U2, e′2]θ)) and c([U1, e1]

⊙
(U2, e2)) >

c(pre(e1) → ∧
e′1Rie Ki[U1, e′1]

∧
ψ∈Φ

∧
e′2Rie2

([U2, e′2]ψ ∨ ¬ψ)). By induc-
tion hypothesis, we have ⊢AKDL (pre(e1) → ∧

e′1Rie1
Ki[U1, e′1](θ →∧

e′2Rie2
[U2, e′2]θ)) ↔ t(pre(e1) → ∧

e′1Rie1
Ki[U1, e′1](θ → ∧

e′2Rie2
[U2, e′2]θ))

and ⊢AKDL (pre(e1) →
∧

e′1Rie Ki[U1, e′1]
∧

ψ∈Φ
∧

e′2Rie2
([U2, e′2]ψ ∨ ¬ψ)) ↔

t(pre(e1) → ∧
e′1Rie Ki[U1, e′1]

∧
ψ∈Φ

∧
e′2Rie2

([U2, e′2]ψ ∨ ¬ψ)). Thus, by the
inference rule (RE), it is obtained that ⊢AKDL [U1, e1]

⊙
i(U2, e2) ↔∧

ϕ∈Φ∪{⊤} t(pre(e1) → ∧
e′1Rie1

Ki[U1, e′1](ϕ → ∧e′2Rie2
[U2, e′2]ϕ)) ∧

t(pre(e1) → ¬∧
e′1Rie1

Ki[U1, e′1]
∧

ψ∈Φ
∧

e′2Rie2
([U2, e′2]ψ ∨ ¬ψ)). This

implies ⊢AKDL [U1, e1]
⊙

i(U2, e2) ↔ t([U1, e1]
⊙

i(U2, e2)).

Then we prove t([U1, e1]
⊙

i(U2, e2)) ∈ LEL. Since we have proved
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that c([U1, e1]
⊙
(U2, e2)) > c(pre(e1) → ∧

e′1Rie1
Ki[U1, e′1](θ →∧

e′2Rie2
[U2, e′2]θ)) and c([U1, e1]

⊙
(U2, e2)) > c(pre(e1) →∧

e′1Rie Ki[U1, e′1]
∧

ψ∈Φ
∧

e′2Rie2
([U2, e′2]ψ ∨ ¬ψ)), by induction hypothesis,

we know that t(pre(e1) →
∧

e′1Rie1
Ki[U1, e′1](θ → ∧

e′2Rie2
[U2, e′2]θ)) ∈ LEL

and t(pre(e1) → ∧
e′1Rie Ki[U1, e′1]

∧
ψ∈Φ

∧
e′2Rie2

([U2, e′2]ψ ∨ ¬ψ)) ∈ LEL.
Therefore, it is followed that t([U1, e1]

⊙
i(U2, e2)) ∈ LEL.

• When ϕ = [U, e]
⊙

i(α1 ∪ α2), we know t([U, e]
⊙

i(α1 ∪ α2)) =
t([U, e]

⊙
i α1 ∧ [U, e]

⊙
i α2). We have c([U, e]

⊙
i(α1 ∪ α2)) = (3 + |U| +

c(U)) · (1 + max(c(
⊙

i α1), c(
⊙

i α2))). Assume c(
⊙

i α1) ≥ c(
⊙

i α2). So
c([U, e]

⊙
i(α1 ∪ α2)) = 3 + |U|+ c(U) + 3c(

⊙
i α1) + |U|c(⊙i α1) + c(U) ·

c(
⊙

i α1). On the other hand, we have c([U, e]
⊙

i α1 ∧ [U, e]
⊙

i α2) =
1+ (3+ |U|+ c(U)) · c(

⊙
i α1). This is strictly smaller than c([U, e]

⊙
i(α1 ∪

α2)). By induction hypothesis, ⊢AKDL ([U, e]
⊙

i α1 ∧ [U, e]
⊙

i α2) ↔
t([U, e]

⊙
i α1 ∧ [U, e]

⊙
i α2). By the axiom (RNC

⊙
i), the inference rule (RE)

and Definition 77, it holds that ⊢ [U, e]
⊙

i(α1 ∪ α2) ↔ t([U, e]
⊙

i(α1 ∪ α2)).

Now we prove t([U, e]
⊙

i(α1 ∪ α2)) ∈ LEL. We know t([U, e]
⊙

i(α1 ∪
α2)) = t([U, e]

⊙
i α1 ∧ [U, e]

⊙
i α2) ∈ LEL. Since c([U, e]

⊙
i α1) < n and

c([U, e]
⊙

i α2) < n, by induction hypothesis, t([U, e]
⊙

i α1) ∈ LEL and
t([U, e]

⊙
i α2) ∈ LEL. So we have t([U, e]

⊙
i α1) ∧ t([U, e]

⊙
i α2) ∈ LEL.

This implies that t([U, e]
⊙

i(α1 ∪ α2)) ∈ LEL.

• When ϕ = [U, e]Fi(α1 ∪ α2), the proof is similar to the above case.

Next we give the strong completeness proof for AKDL.

Theorem 9 (Strong completeness of AKDL). For every set of formulas Γ ∪ {ϕ} ⊆
LAKDL, Γ |= ϕ implies Γ ⊢AKDL ϕ.

Proof. Suppose that Γ |= ϕ. By Lemma 11 and soundness of AKDL, we have
t(Γ) |= t(ϕ). Since t(Γ) ⊆ LEL and t(ϕ) ∈ LEL, by strong completeness of EL

with respect to the class of epistemic models, we obtain t(Γ) ⊢EL t(ϕ). This
implies that there is a syntactic proof S where we can derive t(ϕ) from a finite
set Λ ⊆ t(Γ) by EL. Let Λ = ⟨ψ1, ψ2, · · · , ψm⟩. For each ψn ∈ Λ, we have
⊢AKDL ψn ↔ t(ψn). We know that S is a sequence of formulas. Then we can
give a AKDL-syntactic proof which can derive ϕ from Λ as follows:
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(1) ⊢AKDL ψ1 ↔ t(ψ1)
(2) ⊢AKDL ψ2 ↔ t(ψ2)
...
(m) ⊢AKDL ψm ↔ t(ψm)
... S
(m+|S|+1) ⊢AKDL ϕ
(m+|S|+2) ⊢AKDL ϕ ↔ t(ϕ)
(m+|S|+3) ⊢AKDL ϕ

Therefore, we conclude that Γ ⊢AKDL ϕ.

Corollary 4. AKDL is sound and strongly complete with respect to the class of
epistemic models.

6.4.3 Ought to be vs. Ought to do

The distinction between the notion of ‘ought-to-be’ and the notion of ‘ought-
to-do’ is significant. We mainly discuss two differences, focused around the
problem of ‘ought implies can’ and the problem around agency.

The problem around ‘ought implies can’ The approaches where deontic
operators are applied to propositions conceptualize the notion of ‘ought-to-be’.
They characterize what states of affairs ought to be achieved. In English, a
sentence like ‘it ought to be the case that there were no Second World War’
indicates that ‘ought-to-be’ can be applied to unreal or impossible states of
affairs. In this sense, ‘ought-to-be’ is not in line with the Kantian principle
‘ought implies can’. In contrast, ‘ought-to-do’ requires that the obligations can
be done by agents. For example, ‘you ought to not start the Second World
War’ suggests that the Second World War has not happened yet and you have
an obligation to refrain from starting it. Hence, we can say that the Kantian
principle fits to ‘ought-to-do’, instead of ‘ought-to-be’.

Chapter 3, 4 and 5 all discuss ‘ought-to-be’. The notion of knowledge-based
conditional obligations is defined over an epistemic betterness structure based on
a priority structure. In this section, we only focus on unconditional obligations.
Let us review two definitions studied in Chapter 3:

Definition 79. Given a priority structure G and an epistemic betterness structure
M = ⟨S,∼1,∼2, · · · ,∼n,⩽G , V⟩ based on G,

M, s |= ⃝ϕ iff max⩽G S ⊆ ∥ϕ∥M.
M, s |= ⊙

i ϕ iff max⩽G [s]
∼i ⊆ ∥ϕ∥M.

As for objective unconditional obligation, its definition focuses on all states.
The set of states in an epistemic betterness structure can be chosen according to
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any criteria, e.g., ontic possibility. So there is a state where there is no Second
World War and a state where there is the Second World War. The priority
structure shows that ‘there is no war’ is better than ‘there is the war’ and hence,
the first state is better than the second state. We can also easily obtain that it
ought to be that there is no war, even though the Second World War has already
happened.

However, the logic AKDL introduced in this Chapter applies the deontic
operator to actions. The action of not starting the Second World War can never
be executable at the current moment. Therefore, this action will never become an
obligation of some agent. According to this comparison to Hansson’s objective
unconditional obligation, AKDL is able to conceptualize the notion of ‘ought-
to-do’ properly.

The problem around agency In terms of epistemic unconditional obligation,
the semantics of the LKCDL-formula

⊙
i(ϕ|⊤) makes formula Kiϕ → ⊙

i(ϕ|⊤)
valid. The formula can be read as ‘if an agent knows something, it ought to be
the case’, which is extremely counter-intuitive. For example, if I know President
Kennedy was assassinated, then it ought to be the case that President Kennedy
was assassinated. If we review Hansson’s objective unconditional obligation, i.e.,
⃝(ϕ|⊤), a similar formula 2ϕ → ⃝(ϕ|⊤) is also valid in betterness structures.
Moreover, in standard deontic logic, the formula 2ϕ → ⃝ϕ is valid as well.
However, deontic stit logic does not have the problem. Therefore, it seems that
this is a common drawback of these logics which characterize ‘ought-to-be’
obligations without considering the notion of agency.

In the tradition of studies on ‘ought-to-be’ obligations, a set of possible
states and an ordering on the set are given a priori. ‘Ought-to-be’ obligations are
those states of affairs that hold on all the best states. We can alternatively say
that ‘ought-to-be’ obligations are the best states of affairs chosen from a given
situation (possible states and an ordering on them). This underlying idea of
defining obligations leaves no space for the notion of agency since the situation
is fixed in general.

But for these logics of ‘ought-to-do’ obligations, e.g., Meyer’s logic, and
these deontic logics involving agency, e.g., deontic stit logic, the problem no
longer exists. Also, the knowledge-based ‘ought-to-do’ obligation defined in this
chapter provides an approach to assessing whether an action is ideal. Beginning
with an initial epistemic model containing the states that are epistemically
possible for some agent, those actions that lead to better models are obligations.
If they result in strictly worse situations, they are forbidden. So only executable
but not performed actions can be candidates of some agent’s obligations in the
current situation. These actions can change something. The obligations are to
make the situations better.
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6.5 Resolving paradoxes of classical deontic logic

In this section, we investigate some paradoxes that have plagued deontic logic
for a long time. Meyer et al. (1994) and McNamara (2006) provided a list of
well-known paradoxes from the deontic logic literature. We mainly focus on
the issues about obligations or prohibition. Since the negation of actions is not
treated in this chapter, we do not discuss the paradoxes involving ‘not doing
. . . ’.

As mentioned in Section 6.3.2, the main similarity between our approach and
Meyer’s approach is treating obligations as actions which can make transitions
between states or situations. The paradoxes mentioned in the following part can
also be resolved under Meyer’s framework. So our approach works in dealing
with these paradoxes since we define obligations with respect to actions as
well. Now we will show how our knowledge-based ‘ought-to-do’ obligation
introduced in this chapter resolves these paradoxes properly.

6.5.1 Ross’s Paradox and non-deterministic choice

Ross’s Paradox (see Ross (1944)) is also known as ‘disjunction paradox’ which is
generally illustrated by the following informal argument:

1. It is obligatory that the letter is mailed.
2. If the letter is mailed, then the letter is mailed or burnt.
3. It is obligatory that the letter is mailed or burnt.

The above argument can be formalized in standard deontic logic as
⃝ϕ → ⃝(ϕ ∨ ψ), which is obviously valid since ϕ → (ϕ ∨ ψ) is always true by
propositional logic. What is worse, if a deontic logic satisfies the following two
conditions, it would suffer from Ross’s paradox:

1. using Kripke-style frames and defining obligation operator ⃝ as a kind of
necessity;

2. obligations are propositions and inferences between obligations are there-
fore based on classical logical inference.

Unfortunately, standard deontic logic and the deontic stit logic both satisfy
the above conditions. So it is inevitable that they are challenged by Ross’s
paradox. However, Meyer (1988)’s deontic logic based on propositional dynamic
logic provides a resolution. We can reformulate the paradox by LAKDL as
follows:

(1) M, s |= ⊙
i(Um, em);

(2) M, s |= m → (m ∨ l);
(3) M, s |= ⊙

i((Um, em) ∪ (Ul , el)).
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Formulas (1) and (2) are two premises which represent that the agent i
ought to mail the letter (

⊙
i(Um, em)) and in the factual world s, if the letter is

mailed, then it is mailed or burnt (m → (l ∨ m)). But we cannot derive that the
agent i ought to mail the letter or burn it since the action of burning the letter
should be captured by an independent action model (Ul , el) and the formula⊙

i((Um, em) ∪ (Ul , el)) is not true in s. As the axiom (RNC
⊙

i) implies, both
actions should be obligations themselves.

The above phenomenon is also in line with the free choice problem in the
context of deontic sentences. Sentence (3) should be understood as that mailing
the letter is obligatory and burning the letter is also obligatory, but since they
cannot be fulfilled at the same moment, the agent can choose freely to fulfill one
of them. Therefore, our conceptualization prevents the argument from validity
and resolves Ross’s paradox.

6.5.2 Weinberger’s paradox and sequential composition

Tom’s mom commands Tom to close the window and play the piano because if
they do not close the window, playing the piano would cause noise and disturb
their neighbors. Then Tom can give two arguments as follows:

(i) Tom ought to close the window and play the piano.
(ii) Tom ought to close the window.

and

(i) Tom ought to close the window and play the piano.
(ii⋆) Tom ought to play the piano.

From his mother’s command, Tom ought to close the window and play the
piano. Then by standard deontic logic, this obligation implies that Tom ought
to close the window even if Tom is not playing the piano, which makes no
sense since closing the window causes poor ventilation or it implies that Tom
ought to play the piano while not closing the window, which is not good as it
disturbs their neighbors. Standard deontic logic characterizes the two arguments
as ⃝(p ∧ q) ⊢ ⃝p or ⃝(p ∧ q) ⊢ ⃝q and makes them valid.

However, based on our framework, the action of closing the window and
playing the piano can be formalized by a sequential composition of two actions:
((Uw, ew); (Up, ep)) or ((Up, ep); (Uw, ew)). The command from Tom’s mother
claims that Tom ought to close the window and play the piano, which can
be captured by the LAKDL-formula

⊙
Tom((Uw, ew); (Up, ep)) or the formula⊙

Tom((Up, ep); (Uw, ew)). By the semantics, it means that after updating the
original epistemic model by the sequential composition (Uw ⊗ Up, (ew, ep)) or
(Up ⊗ Uw, (ep, ew)), a better epistemic model comes forth. But it does not imply
that the action of closing the window can bring about a better epistemic model
itself while not playing the piano, nor does it imply that the action of playing
the piano is obligatory while not closing the window.
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6.5.3 Penitent paradox

The penitent paradox is generally formalized as a valid formula in standard
deontic logic: Fϕ → F(ϕ ∧ ψ) which means that if ϕ is forbidden, then ϕ and ψ
is forbidden as well. Look at the following argument:

1) It is forbidden to break your promise to go to your friend’s party.
2) It is forbidden to call an ambulance for a car accident victim and

break your promise to go to the party.

It is totally unethical to go to the party while ignoring the victims of the car
accident. So the action of calling an ambulance and breaking the promise to
the party should not be forbidden. Therefore, the above argument is counter-
intuitive.

Standard deontic logic defines prohibition as Fϕ =de f ⃝¬ϕ, which means
that if ¬ϕ is obligatory, ϕ is forbidden. So the penitent paradox can also be
formalized as ⃝¬ϕ ⊢ ⃝(¬ϕ ∨ ¬ψ) which is equivalent to Ross’s paradox.

However, AKDL assigns independent status for the notion of prohibition
which is not defined based on obligation. Hence, we can reformulate the penitent
paradox over our framework and resolve it. See the following inference:

1)′ Fi(Ub, eb)
2)′ Fi((Ub, eb); (Uc, ec))

Because the sequential composition ((Ub, eb); (Uc, ec)) is a new action model
which can be different from (Ub, eb), it can make some original state better rather
than making it worse. The inference above is not valid over our framework.
Therefore, we have provided a way to accommodate the penitent paradox.

6.5.4 Forrester’s paradox of gentle murder

Forrester’s paradox of gentle murder involves both prohibition and obligation.
Let us see the following argument:

i) It is forbidden to break your neighbor’s window.
ii) If you break your neighbor’s window, you ought to apologize for it.
iii) If you apologize for breaking the window, you break your neighbor’s window.
iv) You break your neighbor’s window.

The sentences i) - iv) intuitively should be consistent and we can imagine
that there is a scenario making all four sentences true. However, they give rise
to a conflict if we interpret it in standard deontic logic. See the formal inference
below:
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i′) Fb
ii′) b → ⃝a
iii′) a → b
iv′) b
v′) Fb ∧⃝b

Formula v′) is derived from formula i′)-iv′) by standard deontic logic. The
conflict arises due to ⃝a and ⃝a → ⃝b. However, in our framework, all
these sentences should be understood in the light of ‘ought-to-do’ rather than
‘ought-to-be’. For example, the conditional ii) should be interpreted by dynamic
operators rather than material implication since it indicates the obligation
⃝(Ua, ea) after performing the action (Ub, eb). Similarly, sentence iii) should
also be understood as the proposition b is the case after performing an action
(Ua, ea). Therefore, we can reformulate the argument as follows:

i′′) Fi(Ub, eb)
ii′′) [Ub, eb]⃝ (Ua, ea)
iii′′) [Ua, ea]b
iv′′) ⟨Ub, eb⟩⊤

Now it is easy to find that formula i′′) - iv′′) are consistent in AKDL.
Forrester’s paradox of gentle murder has been accommodated properly.

6.5.5 Paradox of derived obligation

The formula ⃝ϕ → ⃝(ψ → ϕ) is valid in standard deontic logic. This suggests
that standard deontic logic can derive any conditional obligations whose con-
sequence itself is an obligation, which gives rises to a lot of counter-intuitive
instances. For example,

a. I ought to keep my promise to go to my friend’s party.
b. It is obligatory that if my family members need help now,

I still keep my promise to go to the party.

The argument above is nonsense since the state of affairs that my family
members need help is more urgent and it defeats my obligation to keep my
promise to the party. If we replace the formula with an equivalent form ⃝ϕ →
⃝(¬ψ ∨ ϕ), we find it is the same as the formulation shown in Ross’s paradox.
So we can resolve it as we did in Section 6.5.1

6.6 Formalization of Scenarios

In this section, we formalize the scenarios mentioned in Section 6.1. We use the
following atomic propositions:
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The best: Sam does not have diabetes and he is not injected with insulin.
The second best: 1. Sam has diabetes and he is injected with insulin.

2. Sam has diabetes and Ann knows the fact.

(¬q ∧ ¬p) ∨ (q ∧ KAnnq)

(¬q ∧ ¬p) ∨ (q ∧ p) ¬q ∧ ¬p

Figure 6.4: G1 (Scenario 10 and 11)

s3 : q, p s1 : q,¬p s2 : ¬q,¬p

Uma Ann

Figure 6.5: M1 (Scenario 10)

q : Sam has diabetes.
p : Sam is injected with insulin.
r : Sam is in the hospital.
h : Sam is having a heart attack.
H : The coin is heads up.
T : The coin is tails up.
BH : Chiyo bets heads.
BT : Chiyo bets tails.
NG : Chiyo does not gamble.

6.6.1 Scenario 10 and 11

We first give a priority structure G1 as the criterion for comparing models when
we discuss Scenarios 10 and 11.

Priority structure G1 in Figure 6.4 tells us what the best state of affairs is and
what the second best are. We give the initial epistemic model M1 for Scenario
10. The reflexive relations are omitted.

We also give the initial epistemic model M1 for Scenario 10. The reflexive
relations are omitted. The factual state is s1. The model M1 shows the initial
situation in Scenario 10 where Uma knows that Sam has diabetes but does not
know whether Sam is injected with insulin, and Ann knows that Sam is not
injected with insulin but she does not know whether Sam has diabetes. Then
we will see what can we get after performing two different actions.

Let us first check the action that Ann injects with insulin. We give the precon-
ditions and postconditions of the action model (Einject, einject): Pre(einject)) = ⊤
and Post(einject)(p) = ⊤. The truth value of q remains the same in each
state. Thus, if we want to check whether Ann ought to inject Sam with
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s3 : q, p s1 : q,¬p s2 : ¬q,¬p

M1

Uma Ann

⊗
Uma einject

Uinject

Uma,Ann

⇓M1 is updated by Uinject

(s3, einject) : q, p (s1, einject) : q, p (s2, einject) : ¬q, p

M1 ⊗ Einject, (s1, einject)

Uma Ann

Figure 6.6: Scenario 10 (Ann injects insulin)

insulin, we need to compare (M, s1)|∼Ann (consisting of s1 and s2) with
(M1 ⊗ Einject, (s1, einject))|∼′

Ann
(consisting of (s1, einject) and (s2, einject)) (see Fig-

ure 6.6). By Definition 73 and the priority structure G1, we have s1 <G1 (s1, einject)

but (s2, einject) <G1 s2, which means that (M, s1) ̸<Ann
G (M ⊗ Einject, (s1, einject)).

In other words, Ann injecting Sam with insulin could cause a worse state.
So we have M1, s1 ̸|= ⊙

Ann(Einject, einject). Therefore, Ann does not have the
knowledge-based obligation to inject insulin.

Now we check Uma’s action of telling Ann about Sam. We give the
preconditions and postconditions of action model (Etell, etell: pre(etell) = q
and Post(etell)(p) = id. After Uma tells Ann that Sam has diabetes, we
get another updated model shown in the bottom row in Figure 6.7. Since
M1 ⊗ Etell, (s1, etell) |= KAnnq, we have s1 <G1 (s1, etell) and s3 <G1 (s3, etell).
So if Uma tells Ann that Sam has diabetes, both possible states for Uma are
updated to better states. Thus, by Definition 73, it follows that (M, s1) ̸<Uma

G
(M ⊗ Etell, (s1, etell)). By semantics, we conclude that M1, s1 |= ⊙

Uma(Etell, etell)
which means that Uma ought to tell Ann the fact. This is also in line with our
intuition.

In Scenario 11, Uma has told Ann that Sam has diabetes. We continue
the analysis in Scenario 10 and Figure 6.7 where Uma tells Ann the fact. As
mentioned above, Uma ought to tell Ann that Sam has diabetes. After being
told the information, Ann ought to inject Sam with insulin. The updated model
(M1 ⊗ Etell, (s1, etell)) shown in Figure 6.7 simulates the situation after Uma tells
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s3 : q, p s1 : q,¬p s2 : ¬q,¬p

M1

Uma Ann

⊗
Uma etell

Utell

Uma,Ann

⇓ M1 is updated by Utell

(s1, etell) : q,¬p, KAnnq (s3, etell) : q, p, KAnnq

M1 ⊗ Etell, (s1, etell)

Uma

Figure 6.7: Scenario 10 (Uma tells Ann that Sam has diabetes)

Ann the fact.
We need to check the model updated by the action of injecting in (M1 ⊗

Etell, (s1, etell)). Let us see Figure 6.8. Since we only need to consider the states
that Ann cannot distinguish from the current state, i.e., (s1, etell), we get a new up-
dated model (M1 ⊗ Etell)⊗ Einject which only contains one state ((s1, etell), einject).
According to the priority structure G1, we have (s1, etell) <G1 ((s1, etell), einject).
Thus, we have M1 ⊗ Etell, (s1, etell) |=

⊙
Ann(Einject, einject).

6.6.2 Scenario 12

Scenario 12 is given by Horty (2019) to introduce the notion of epistemic ought,
which is actually identical to the notion of knowledge-based obligation. We will
use our knowledge-based ‘ought-to-do’ obligations to simulate Scenario 12.

The priority structure G2 used in Scenario 12 is shown in Figure 6.9.
The initial epistemic model M3 of Scenario 12 shows the situation where the

coin is tossed but Chiyo does not know whether the coin lands heads up or tails
up (¬KChiyoT ∧ ¬KChiyoH). At the moment, Chiyo has not decided whether to
bet.

Now we give the process of betting on heads in Figure 6.11. The case of
betting on tails is similar. The action model of betting on heads is (UBetH, eBetH).
The preconditions and postconditions are: pre(eBetH) = ⊤, post(eBetH)(NG) =
⊥, post(eBetH)(BT) = ⊥, and post(eBetH)(BH) = ⊤.
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(s1, etell) : q,¬p (s3, etell) : q, p

M1 ⊗ Utell

Uma

⊗
Ann einject

Uinject

Uma,Ann

⇓M1 ⊗ Utell is updated by Uinject

((s1, etell), einject) : q, p

Figure 6.8: Scenario 11 (After Uma tells Ann the fact, Ann injects Sam with
insulin)

The best: Chiyo bets correctly.
The second best: Chiyo does not bet.
The worst: Chiyo bets incorrectly.

(H ∧ BH) ∨ (T ∧ BT)

(H ∧ BH) ∨ (T ∧ BT) ∨ (H ∧ NG) ∨ (T ∧ NG)

Figure 6.9: G2 (Scenario 12)

s1 : T, NG,¬BH,¬BT s2 : H, NG,¬BH,¬BT

Uma

Figure 6.10: M3 (Scenario 12)
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s1 : T, NG,¬BH,¬BT

s2 : H, NG,¬BH,¬BT

M3

Chiyo

⊗
Chiyo eBetH

UBetH

Chiyo

⇓ M3 is updated by UBetH

(s1, eBetH) : T,¬NG, BH,¬BT (s2, eBetH) : H,¬NG, BH,¬BT

M3 ⊗ UBetH

Uma

Figure 6.11: Scenario 13 (Uma bets heads)
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The best: Sam is not having a heart attack and Uma knows Sam’s health state.
The second best: Sam is not having a heart attack and

Uma does not know Sam’s health state.
The third best: Sam is having a heart attack and Uma knows Sam’s health state.
The worst: Sam is having a heart attack and Uma does not know Sam’s health state.

¬h ∧ (KUmah ∨ KUma¬h)

¬h ∧ ¬(KUmah ∨ KUma¬h)

h ∧ (KUmah ∨ KUma¬h)

h ∧ ¬(KUmah ∨ KUma¬h)

Figure 6.12: G3 (Scenario 13)

s1 : h,¬(KUmah ∨ KUma¬h) s2 : ¬h,¬(KUmah ∨ KUma¬h)

Uma

Figure 6.13: M4 (Scenario 13)

After betting on heads, there are two possible states for Chiyo: (s1, eBetH)
and (s2, eBetH). According to the priority structure G3, (s1, etell) <G2 s1 and
s2 <G2 (s2, eBetH). This means that betting on heads could lead to a worse state.
Then, we have M3, s1 ̸|= ⊙

Chiyo(UBetH, eBetH).

6.6.3 Scenario 13

‘Ought to know something’ is also called epistemic obligation in philosophy. We
assume that, in Scenario 13, Uma knows that Sam is a patient at her practice
and Sam is living in the sickroom of Uma’s hospital. ‘Uma knows Sam’s health
state’ is expressed by ‘Uma knows whether Sam is having a heart attack’. It
should be Uma’s obligation. The priority structure G3 in Figure 6.12 is used for
Scenario 13.

The initial situation is modelled by M4 in Figure 6.13, where Uma does not
know whether Sam is having a heart attack.

Then we give the dynamic process of Uma’s asking about Sam’s health state
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s1 : h,¬(KUmah ∨ KUma¬h)

s2 : ¬h,¬(KUmah ∨ KUma¬h)

M4

Uma

⊗
Uma easkh easknh

Uask

Uma Uma

⇓ M4 is updated by Uask

(s1, easkh) : h, KUmah (s2, easknh) : ¬h, KUma¬h

M4 ⊗ Uask

Figure 6.14: Scenario 13 (Uma asks whether Sam is having a heart attack)

in Figure 6.14.

The action model Uask contains two events which represent the action of
asking that h is the case and the action of asking that h is not the case. The
preconditions are pre(easkh) = h and pre(easknh) = ¬h. The postconditions for
both events and any formulas are id.

According to the priority structure G3 in Figure 6.12, we have s1 <G3

(s1, easkh). That also implies that (M4, s1) <i
G3

(M4 ⊗ Uask, (s1, easkh)). Simi-
larly, it holds that s2 <G3 (s2, easknh) which also implies that (M4, s2) <i

G3
(M4 ⊗ Uask, (s2, easknh)). Thus, the action of asking about Sam’s health state
always leads to some better states. So we have M4, s1 |= ⊙

Uma(Uask, easkh).
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6.7 Discussion and conclusion

In this chapter, we conceptualized the notion of knowledge-based ‘ought-to-
do’ obligation based on dynamic epistemic logic. The basic idea of defining
the notion is that an action ought to be done if and only if the action always
improves the initial situation to better situations. As illustrated in Section 6.3, this
definition differs from the classical definition of obligations which requires that
obligations must lead to the optimal or the most ideal situations. On the other
hand, in the previous research on the notion of knowledge-based obligations
(see Section 1.4), each agent knows their own knowledge-based obligations.
However, the knowledge-based ‘ought-to-do’ obligations defined in this chapter
might not be known by the agents. These are two main differences between
our approach and the classical one. Even so, our approach and the classical
approach are actually not that different. We can transfer our approach to the
classical one by adding some constraints.

Restrictions to the number of actions However, by restricting the number of
actions available for each agent, there are only finitely many different conse-
quence situations and therefore we can compare them to find the most ideal
consequence situations. Following this restriction, we can define obligations in
Meyer’s approach. For example, given an epistemic model (M, s) as the initial
situation, an agent i has only three actions available for him/her: α1, α2, and α3
(See Figure 6.15). The action α1 can lead to a better situation, an incomparable
situation and a worse situation. So according to our definition of knowledge-
based ‘ought-to-do’ obligations in this chapter, α1 is not an obligation. The
actions α2 and α3 always lead to better situations. Thus, they are obligations
according to our definition.

However, if we can compare these green updated models which are all
better (than (M, s)) updated models, we can find the most ideal situations. Then
according to Meyer’s definition: an action ought to be done if and only if it
always leads to the most ideal situations, we can tell which actions of α1, α2 and
α3 are obligatory. Consider the following cases:

1. If (M′
1, t1) is the best and it is better than other green models, then no

action is the obligation since no action can always lead to the most ideal
situation.

2. If (M′
4, t4) and (M′

5, t5) are the most ideal, then α2 is the obligation.

3. If (M′
6, t6) are the most ideal, then α3 is the obligation.

It is easy to understand the case 2 and 3. Case 1 deserves further discussions.
If (M′

1, t1) is the unique optimal updated model, it implies that the action α1
can lead to the best situation and can also lead to the worst situation (M′

3, t3).
It is not a safe choice for the agent to perform α1. In contrast, performing α2



6.7. DISCUSSION AND CONCLUSION 161

Green: the updated model is better than the initial model.
blue: the updated model is neither better nor worse than the initial model.
red: the updated model is worse than the initial model.

s

(M, s)

t1 (M′
1, t1)

t2 (M′
2, t2)

t3 (M′
3, t3)

t4 (M′
4, t4)

t5 (M′
5, t5)

t6 (M′
6, t6)

α1

α2

α3

Figure 6.15

or α3 always brings about some better situations, which means that it is safe
to perform these two actions. In this sense, we can also say it is obligatory to
perform α2 or α3 since they are the safest choices when the situation is (M, s).
It again justifies the definition of knowledge-based ‘ought-do-do’ obligations
provided in this chapter which is based on ‘better consequences’ rather than
‘the optimal consequences’.

Knowing obligations in the single-agent case As mentioned in Section 6.4,
one of the differences between knowledge-based ‘ought-to-do’ obligations stud-
ied in this chapter and other characterizations of knowledge-based obligations
is that the formula

⊙
i α → Ki

⊙
i α is not valid. This means that an agent might

not know his/her own knowledge-based ‘ought-to-do’ obligations. However,
this difference can be removed by adding the following two constraints on the
action models:

1. There is only one agent in the group, i.e., G = {i};

2. The epistemic relation Ri in the action model is connected.

The two constraints imply that for each action model, the agent cannot
epistemically distinguish any events from the actual event in the action model.
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In other words, given an action model U, if e1 ∈ U and e2 ∈ U, the agent
considers the pointed model (U, e1) and the pointed model (U, e2) to be the
same action. Thus, in the following part, action models, instead of pointed action
models will be the object of the deontic operator. Let (M, s) be an arbitrary
pointed epistemic model and let dom(M) represent the domain of states of the
epistemic model M. Given a priority structure G,

M, s |= ⊙
i U iff (1) for each t with s ∼i t, there

is an e ∈ U such that (t, e) ∈
dom((M, s)|∼i

⊗
U);

(2) (M, s)|∼i < (M, s)|∼i

⊗
U.

where

(M, s)|∼i < (M, s)|∼i

⊗
U iff (1′) for each t ∈ dom((M, s)|∼i ), if

there is an e ∈ U such that (t, e) ∈
dom((M, s)|∼i

⊗
U), then t ⩽G (t, e);

(2′) there is a t ∈ dom((M, s)|∼i ) and
there is an e ∈ U such that (t, e) ∈
dom((M, s)|∼i

⊗
U) and t <G (t, e).

The condition (1) means that the action U is executable on all the states that
the agent i cannot epistemically distinguish from the actual state s. In terms
of the condition (2), it must satisfy the conditions (1′) and (2′). The condition
(1′) represents that for all updated states, they are not worse than their original
states. The condition (2′) means that there at least exists one original state such
that it is updated to a strictly better state.

It is worth noting that if M, s |= ⊙
i U, then for each t such that t ∼i s, it

also holds that M, t |= ⊙
i U according to the above semantics of

⊙
i U. Let

me explain this. Firstly, the action model U is executable on all the states that
the agent i cannot epistemically distinguish from the actual state. Secondly,
we have (M, s)|∼i = (M, t)|∼i and (M, s)|∼i

⊗
U = (M, t)|∼i

⊗
U. Therefore,

we can conclude that M, s |= Ki
⊙

i U, which means that the knowledge-based
‘ought-to-do’ obligations must be known by the agent.

Conclusion This chapter conceptualized the notion of knowledge-based
‘ought-to-do’ obligation based on dynamic epistemic logic. We also extended the
action models introduced in Section 2.5 by non-deterministic choice and sequen-
tial composition between actions in order to investigate obligations involving
compound actions. Then a method for comparing states and different epistemic
models was provided based on priority structures. In Section 6.4, we established
the logic of knowledge-based ‘ought-to-do’ and the axiomatization AKDL was
proved to be sound and strongly complete via new reduction axioms for obliga-
tion and prohibition. Section 6.5 accommodated several influential paradoxes of
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deontic logic in AKDL. In the end, we formalized the four scenarios mentioned
in Section 6.1.
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Chapter 7

Conclusion

This thesis provides two novel definitions of the notion of knowledge-based
obligation and also studies the logic of obligation change due to three types
of change. The first is epistemic change, which means that the updates on the
information of agents would also update their obligations. The second is factual
change. It represents that those actions that change facts can also bring about
new obligations. The last is norm change, which represents that if the norms
that agents are following are updated, then their obligations would be changed
accordingly. Different logic systems are established for all the logics mentioned
above. We do these work by combining epistemic logic, dynamic epistemic
logic, preference logic and deontic logic altogether. Therefore, a comprehensive
and coherent framework is provided. This thesis contributes to the systematic
research on the problem how knowledge affects agents’ obligations in the field
of deontic logic. In the remaining part of this chapter, we first look back at two
main approaches of characterizing knowledge-based obligations in this thesis.
The second section shows how we capture dynamic obligations with respect
to different updates. The third section reviews two main techniques used in
the strong completeness proofs. The last section shows how the research of this
thesis can be developed in the future.

7.1 Knowledge-based obligations

The core notion studied by this thesis is knowledge-based obligations. Although
there have been several formalism established for the notion, such as Pacuit
et al. (2006), Broersen (2008), Horty (2019), this thesis provides two new frame-
works for capturing knowledge-based obligations: Hansson’s conditional style of
knowledge-based ‘ought-to-be’ obligations and knowledge-based ‘ought-to-do’
obligations.

165
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7.1.1 Knowledge-based ‘ought-to-be’ obligations

The first characterization of knowledge-based obligations follows the tradi-
tion of ‘ought-to-be’ obligations. Moreover, the formalism is based on condi-
tional settings and, as a result, the relation between agents’ knowledge and
their obligations is clearly addressed by the principle of epistemic detachment:
|=KCDL (

⊙
i(ϕ|ψ) ∧ Kiψ) → ⊙

i(ϕ|⊤). According to our logic of knowledge-
based conditional obligations KCDL, an agent’s knowledge triggers his/her
own knowledge-based conditional obligations. An important characteristic of
our formalism is that every agent knows all their own knowledge-based con-
ditional obligations. So their unconditional obligations depend on what they
know.

In terms of the semantic apparatus, this thesis extends Hansson’s betterness
structures with epistemic relations. Rather than considering all possible worlds,
we only focus on those states that the agent cannot distinguish from the real
state. The agent i has a knowledge-based conditional obligation

⊙
i(ϕ|ψ) if and

only if all the best ψ-worlds that i cannot epistemically distinguish from the real
state satisfy ϕ (see Definition 28). With the constraint on the set of epistemically
indistinguishable states, the notion of knowledge-based conditional obligations
differs from Hansson’s objective conditional obligations in the sense that it takes
agents’ epistemic information into account.

7.1.2 Knowledge-based ‘ought-to-do’ obligations

The second characterization of knowledge-based obligations applies deontic
operators to actions rather than propositions and therefore a new definition of
knowledge-based ‘ought-to-do’ obligations is given. There are two factors moti-
vating us to develop an ‘ought-to-do’ style of knowledge-based obligations: (1)
in previous research on knowledge-based obligation, actions play fundamental
roles and their basic ideas are similar: the obligatory action is good, which is
also known by the agent; (2) there is one common counter-intuitive result in
many ‘ought-to-be’ style deontic logics, i.e., if one situation is the case, it ought
to be the case. An ‘ought-to-do’ tuning resolves several problems left by the
‘ought-to-be’ approach.

Dynamic epistemic logic provides the basic formal framework for our
knowledge-based ‘ought-to-do’ obligations. Each action is represented by an ac-
tion model or a non-deterministic choice between several action models, which
gives us a lot of control on expressing how an action updates a situation. An
action model transfers an epistemic model to a new epistemic model. An action
model is obligated with respect to some agent’s knowledge if and only if the ac-
tion model updates the initial epistemic model to a better one (see Definition 75).
It is worth noting that our ‘ought-to-do’ obligations are defined based on ‘better’
rather than ‘best’. It characterizes a type of safe obligations that agents can
perform given some certain situation.
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Priority structures (see Definition 15) are criterion on assessing whether a
state in the initial epistemic model is updated to a better one. Given an AKDL

axiom system, the priority structure is fixed and all updates on epistemic models
are judged by the priority structure.

Knowledge-based ‘ought-to-do’ obligations are ‘knowledge-based’ in the
sense that we only need to consider whether each state that one agent cannot
epistemically distinguish from the actual state is improved to a better state. The
obligations are determined by agents’ initial knowledge and also the knowledge
after doing the action.

7.2 Making static deontic logic dynamic

In our first characterization of knowledge-based obligations in ‘ought-to-be’
style, all obligations are static since they never change once an epistemic bet-
terness structure is given. However, various factors can change obligations in
our real life. This thesis mainly investigates three factors: information change,
factual change and norm change.

7.2.1 Dynamic obligations due to information/factual change

The logic of knowledge-based conditional obligations studied in Chapter 3
shows that knowledge triggers agents’ knowledge-based conditional obliga-
tions. A follow-up question is: how do an agent’s obligations change if his/her
knowledge changes? As mentioned above, we combine Hansson’s betterness
structures with epistemic relations and knowledge can be defined as the stan-
dard epistemic logic did. Dynamic epistemic logic has been widely used for
capturing information and factual change for decades, where action models
build the bridge between the initial models and the updated models. Therefore,
action models can lead from an initial epistemic betterness structure to an up-
dated epistemic betterness structure. During this process, facts (truth values of
propositions on some states) and information (epistemic relations) are changed
by an action model. As a consequence, the betterness relation is changed as
well since it is determined by a given priority structure and truth values of
epistemic logic formulas. Priority structures play the role of assessing which
states of affairs are better or worse. Given a priority structure, it remains the
same throughout.

Therefore, alongside the information change, agents would obtain some
new obligations and some obligations might be defeated. Based on the dy-
namic version of epistemic betterness structures, several philosophical notions
of obligations can be formalized over the novel framework. A prima facie
obligation (see Definition 45) is an unconditional obligations when the agent
knows something at a particular moment. All-things-considered obligations (see
Definition 46) of an agent are those unconditional obligations when the agent
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knows everything. Safe knowledge-based obligations (see Definition 47) are the
unconditional obligations whatever the agent knows.

In terms of semantics, we use a combination of dynamic epistemic logic and
Hansson’s betterness structures. Dynamic epistemic logic is used for character-
izing information and factual change. Obligations change due to the updates on
betterness relations which is controlled by priority structures.

7.2.2 Dynamic obligations due to norm change

In addition to epistemic and factual changes, norm change can also update an
agent’s obligations. The distinction between norms and obligations is known as
prescription and description in deontic logic. A normative system is used for
prescribing new norms, which could bring about new obligations to agents. So
updates on normative systems generally result in obligation change.

Chapter 5 mainly discusses the problem of how a normative system, namely
an ideality sequence (see Definition 54) in our terminology, affects one agent’s
obligations. The core notion is ‘relativized conditional obligations based on ide-
ality sequences’, i.e., ⃝I ( | ) (see Definition 64). It is formalized very similarly
to Hansson’s dyadic obligation operator except that it is relativized to ideality
sequences. Every ideality sequence I is a normative system, which represents
the prescriptive aspect of our framework. And betterness structures based on
some ideality sequence describe the conditional obligations.

Two elementary updates on ideality sequences are introduced: deletion and
postfixing. Deletion corresponds to abolishing a norm and postfixing is relevant
to the notion of derogation in law. We showed how these updates on ideality
sequences affect obligations.

Our logic of relativized conditional obligations PCDL resolves a famous
philosophical problem in inferences between norms: Jørgensen’s dilemma. It
provides a novel conceptualization on the dilemma. A ‘valid’ inference between
norms should preserve the success of the premises and the set of obligations
brought about by the concluded norm is a subset of the set of obligations
brought about by the premise norms.

7.3 Technical contributions

This thesis establishes several axiom systems for the notion of knowledge-based
obligations: KCDL, DKCDL, PCDL, and AKDL. These systems are proved
to be sound and strongly complete with respect to different classes of models.
The strong completeness proofs involve different techniques, such as canonical
models, the ‘step-by-step’ method, and the reduction axiom method. Next we
will review two important methods used in these proofs.
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7.3.1 The ‘step-by-step’ method

Deontic logics in Hansson’s style investigate dyadic obligation operators. Their
original method for completeness proof is using canonical models where each
possible world is a witness of all obligations under a certain condition. However,
this method does not work in the multi-agent case. In Chapter 3, the method of
‘step-by-step’ constructs a model which satisfies each consistent set of LKCDL-
formulas. This model does not include all maximal consistent sets of formulas.
Rather, it starts with an initial set and builds up a bigger model stepwise with
those sets needed to make it perfect.

In the light of the ‘step-by-step’ method, we proved that the axiomatization
KCDL is strongly complete with respect to the class of epistemic betterness
structures. Since an epistemic betterness structure is a generalization of Hans-
son’s betterness structure, the completeness result for KCDL (see Theorem 2)
gives an answer to the open question left by Parent (2014) for Hansson’s system
F+(CM) (see Corollary 1).

7.3.2 The Kangerian-Andersonian reduction

The Kangerian-Andersonian reduction was originally put forward to show that
the classical deontic operators can be reduced to classical modal operators,
i.e., 2 and proposition constants. However, Chapter 4 and 5 not only find
the Kangerian-Andersonian reductions to show knowledge-based conditional
obligations (see Proposition 3) and relativized conditional obligations (see Propo-
sition 9) can be reduced to the universal operators, but also use them as the
main axioms to prove the strong completeness of DKCDL (see Theorem 4)
and PCDL (see Theorem 7). By Kangerian-Andersonian reduction axioms, we
can reduce the strong completeness proofs to the classical strong completeness
proof for epistemic logic S5.

7.4 Future research

This thesis has investigated some problems of knowledge-based obligations. We
list several possible directions and considerations that can extend our research
in the future.

7.4.1 Collective obligations and group knowledge

In many other branches of philosophical logic, it is common to lift single-agent
notions to multi-agent notions. For example, the operator Ki in epistemic logic
represents one agent’s knowledge, whereas there are also DG, EG, and CG to
represent distributed knowledge, mutual knowledge and common knowledge of
a group of agents. Similarly, in deontic logic, there is also a notion of obligation
for a group of agents so that the group, as a whole, is obliged to accomplish a
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given task. It is called collective obligations. Although this thesis does not involve
collective obligations, this notion has been studied for decades in both deontic
logic and moral philosophy. When a group task is assigned, each member should
bear their own parts and hence gets an individual obligation. How a collective
obligation distributes over a group is a question that moral philosophers, political
philosophers and deontic logicians must confront.

In the field of deontic logic, there have been many frameworks for con-
ceptualizing the notion of collective obligations. Carmo and Pacheco (2000)
investigated the notion of collective agency by a new deontic and action logic
where a group of agents is treated as an institutionalized agent. Grossi et al.
(2004) also conceptualized the collective obligations by the notion of plan and
task allocation in computer science and addressed the problem which member
should be responsible for the failure of their group task. Tamminga and Duijf
(2017) studied the conditions under which the collective obligations coordinate
individual obligations based on game-theoretical frameworks. Based on the
bringing-it-about modality, Porello (2018) provided new modalities to capture
three types of group norms which in turn induce three types of collective
obligations. Duijf and Van De Putte (2021) studied the cases where a group
makes a collective decision, but no individual member of the group can be
held responsible for this decision. The most relevant work to our thesis is from
Cholvy and Garion (2002). They extended Boutilier’s conditional obligations
to a group notion. A new formula I(ϕ|IU(KB)) was provided where IU(KB)
represents the knowledge base of a given set of agents and the formula can be
read as ‘the group has an obligation of ϕ based on their knowledge base’.

In philosophy, we can see more discussions suggesting the notion of group
knowledge to play important roles in distributing collective obligations to
individual obligations. We list several claims about this issue from philosophical
literature:

1. (simplest) Members are only obligated to do their own part, provided
others are doing theirs.

2. (Lawford-Smith (2012) 1) A member of the collective is obligated to take
a capacity-relative share in joint work when given a belief that the other
members would do the same.

3. (Lawford-Smith (2012) 2) When a collective has an obligation to see to
it that ϕ, every individual member of the collective has an obligation to
take a capacity-relative share in fulfilling the obligation, unless she has the
reasonable belief that at least one other member of the collective will not
take a capacity-relative share in fulfilling the obligation.

4. (Aas (2015)) Every member not only does their parts under the condition
that they believe others will do their parts as well, but also before they
fulfill this collective obligation, they should contribute another collective
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action – changing the way they are organized – to make themselves form
a real organization.

As far as we found, we do not see deontic logic which aims to investigate
the notion of knowledge-based collective obligations. However, as the above
philosophers argued, group knowledge indeed affects the collective obligations
and individual obligations. Inspired by epistemic logic where the group notions
of knowledge are developed based on the single-agent knowledge, we can define
three different knowledge-based collective conditional obligations based on our
logic of knowledge-based conditional obligations in Chapter 3.

Given a set of agents G = {1, 2, · · · , n}, let M = ⟨S,⩽,∼1,∼2, · · · ,∼n, V⟩ be
an epistemic betterness structure. Let ∼∩=

⋂
i∈G ∼i, ∼∪=

⋃
i∈G ∼i, and let↠

be the reflexive and transitive closure of ∼∪.

1. D-Epistemic Collective Obligation
⊙

D(ϕ|ψ):

M, s |= ⊙
D(ϕ|ψ) iff max⩽|[s]∼∩ ∥ψ∥M ⊆ ∥ϕ∥M.

The truth of
⊙

D(ϕ|ψ) depends on the best ψ-worlds over these possible
worlds that can decide the distributed knowledge of G.

2. M-Epistemic Collective Obligation
⊙

E(ϕ|ψ):

M, s |= ⊙
E(ϕ|ψ) iff max⩽|[s]∼∪ ∥ψ∥M ⊆ ∥ϕ∥M.

The truth of
⊙

E(ϕ|ψ) depends on the best ψ-worlds over these possible
worlds that can decide the mutual knowledge of G.

3. C-Epistemic Collective Obligation
⊙

C(ϕ|ψ):

M, s |= ⊙
C(ϕ|ψ) iff max⩽|[s]↠∥ψ∥M ⊆ ∥ϕ∥M.

The truth of
⊙

C(ϕ|ψ) depends on the best ψ-worlds over these possible
worlds that can decide the common knowledge of G.

Do the above definitions characterize the notion of knowledge-based collec-
tive obligations properly? How do they relate to the knowledge-based individual
obligations provided in this thesis? What is the axiomatization for these collec-
tive obligations? They must be interesting questions for future research.
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7.4.2 From Individual Obligations to Social Obligations

Although KCDL defines epistemic conditional obligations in the multi-agent
case, it does not formalize any obligations that are essentially related to multiple
agents. For example, Matteo is a soldier in Cesar’s troop. When war breaks out,
Matteo has an obligation to Cesar to obey the commands given by Cesar. The
obligation of Matteo is directed to his commander Cesar. We can call this type of
obligation a ‘social obligation’ which is mostly inspired by the notion of social
commitments given by Castelfranchi (1995). It could be captured by introducing
a new operator

⊙
(i,j)(ϕ|ψ) which intuitively means that i has an obligation to j

to see to it that ϕ under the condition that ψ.
This type of obligations are relevant to social commitment. As Gilbert (1999)

argued, obligations between two agents are generated from their joint commit-
ments. Dignum et al. (1996), earlier than Gilbert, had provided a formal charac-
terization on actions of intention and commitment which changes agent’s obli-
gations. Cholvy and Garion (2002) also used a notion of individual commitment
to define individual obligations to a collective obligations. Dunin-Kȩplicz and
Verbrugge (2004), inspired by Castelfranchi (1995), defined social commitment
as: COMM(i, j, α) ↔ INT(i, α) ∧ GOAL(j, done(i, α)) ∧ CBEL{i,j}(INT(i, α) ∧
GOAL(j, done(i, α))), which intuitively means that i commits to j to do plan α
if and only if i has the intention to do α and j should be interested in i fulfill-
ing its intention and they commonly believe the above conditions. In terms of
speech acts, commanding, requesting, committing, etc. would affect the agent’s
obligations. Yamada (2006) established a multi-agent epistemic deontic Logic
MEDL where the formula [Com(i,j)ϕ]Kj ⃝(j,i,i) ϕ means that after i commands
j that ϕ, j will know that j has an obligation to i that ϕ in the name of i.

Considering the strong relevance between social obligations and social com-
mitments mentioned above (also witness Dignum and Royakkers (1998), Roy-
akkers and Dignum (1999)), we may give a characterization of

⊙
(i,j)(ϕ|ψ) based

on Dunin-Kȩplicz and Verbrugge (2004)’s idea:⊙
(i,j)(ϕ|ψ) ↔

⊙
i(ϕ|ψ) ∧ Kj

⊙
i(ϕ|ψ) ∧

⊙
j(
⊙

i(ϕ|⊤)|ψ)

Moreover, one agent as an authority can even change other agents’ obli-
gations. In the context of normative systems, Herzig et al. (2011) formalized
authorization with a formula Pi(+Pj(+ϕ)) which intuitively means that agent i
has the permission to authorize agent j to achieve ϕ.

7.4.3 Beyond consequentialism

In this thesis, we introduced several deontic logics which define obligations
based on actions. In Meyer (1988)’s approach, an action ought to be done if and
only if all the consequence worlds that it leads to are ideal. Deontic stit logic
tries to find optimal actions by comparing which action brings about the most
ideal histories. In Chapter 6, we follow the similar idea that if it is obligatory
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to fulfill an action, then this action must lead to more ideal situations. It is
worth noting that all these approaches follow the principle of utilitarianism or
consequentialism, because they all define obligations as actions which lead to
good consequences.

As mentioned in Section 2.1, there are other ethical theories, such as deon-
tological theory (see Kant (2002, 2005)), social contractarianism (see Hobbes
(1914), Rousseau (1795)), and contractualism (see Scanlon et al. (1998)) besides
consequentialism. Deontology is the main foil of consequentialism. It posits that
whether an action is our obligation cannot be justified by its effects. On the
contrary, it depends on whether the action complies with a moral norm.

If we plan to construct a deontic logic based on deontology, our criteria on
assessing actions should no longer be comparing their consequences. Instead,
we need to judge whether an action complies with given moral norms. But
there are some foreseeable problems. For example, how to define the inference
between two obligations in this sense? If an action complies with a moral norm,
which also means that the action is obligatory, how to derive another action
which also follows the moral norm? It seems that this problem would lead
to reducing the inference between obligations to the inference between moral
norms, which is not what we really expect. So how to establish a deontic logic
without resorting to consequentialism is a question to be resolved.

There are still many other interesting topics involving both deontic logic and
knowledge. For example, the interactions between permission and knowledge
deserve special attention as well. You are permitted to operate a machine in a
factory only if you know how to use it. Lots of possible directions and questions
need our further research.
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Summary

This thesis investigates the problem of knowledge-based obligations and how
knowledge affects obligations. Chapter 3 provides our first static logic of
knowledge-based conditional obligations. Chapter 4 and 5 study how obligations
change due to information, factual and norm change. Finally, we characterize a
new notion of knowledge-based ‘ought-to-do’ obligations and its axiomatization
is established.

We first introduce the notion of knowledge-based conditional obligations
which is defined over epistemic betterness structures. This definition addresses
the relation between agents’ knowledge and obligations, which is indicated
by a very important theorem in our research: the epistemic detachment, i.e.,
|=KCDL (

⊙
i(ϕ|ψ)∧Kiψ) →

⊙
i(ϕ|⊤). Therefore, we can say a knowledge-based

conditional obligation pre-encodes what obligation an agent has if the agent
knows some information.

In the semantic aspect, epistemic relations for each agent have been added
to betterness structures to construct epistemic betterness structures. Rather than
considering all possible worlds, we only focus on those states that the agent
cannot epistemically distinguish from the real state. The agent i has knowledge-
based conditional obligation

⊙
i(ϕ|ψ) if and only if all the best ψ-worlds that i

cannot distinguish from the real state satisfy ϕ. Accordingly, we establish the
logic of knowledge-based conditional obligations and provide a sound and
strongly complete axiomatization KCDL following the ‘step-by-step’ method
rather than the classical approach of canonical models. Since an epistemic
betterness structure is a generalization of Hansson’s betterness structure, the
completeness result for KCDL gives an answer to the open question left by
Parent (2014) for Hansson’s system F+(CM).

Then the static logic of knowledge-based conditional obligations is extended
by dynamic operators on epistemic and factual change. We therefore are able
to characterize obligation change due to epistemic or factual change. Specifi-
cally, dynamic epistemic logic was introduced for characterizing these updates.
Epistemic relations in an epistemic betterness structure are changed by action
models and therefore knowledge-based conditional obligations are changed.
Moreover, the action models used in this thesis also include the function of
factual change which can update the truth values of propositions on each state.
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Factual change would also change the betterness relation based on one given
priority structure.

According to the characterization of dynamic information, several philo-
sophical notions of obligations can be formalized over the novel framework.
A prima facie obligation is an unconditional obligations when the agent knows
something at a particular moment. All-things-considered obligations of an agent
are those unconditional obligations when the agent knows everything. Safe
knowledge-based obligations are the unconditional obligations whatever the
agent knows.

The axiom system DKCDL is established based on Kangerian-Andersonian
reduction for the deontic operator and we can prove it to be sound. By KA-
reduction axioms and reduction axioms for the dynamic operator, we can
translate each LDKCDL-formula to a syntactically equivalent formula of the
classical epistemic logic. Therefore we can derive the strong completeness of
DKCDL from the strong completeness of the classical epistemic logic.

In addition to epistemic and factual changes, norm change can also update
agents’ obligations. The distinction between norms and obligations is known as
prescription and description in deontic logic. A normative system is used for
prescribing new norms, which could bring about new obligations to agents. So
updates on normative systems generally cause obligation change.

Chapter 5 mainly discusses the problem of how a normative system, namely
an ideality sequence in our terminology, affects one agent’s obligations. The core
notion is ‘relativized conditional obligations based on ideality sequences’, i.e.,
⃝I ( | ). It is formalized very similarly to Hansson’s dyadic obligation operator
except that it is relativized to ideality sequences. Every ideality sequence I
is a normative system, which represents the prescriptive aspect of our frame-
work. And betterness structures based on some ideality sequence describe the
conditional obligations.

We introduce four updates on ideality sequences: deletion, postfixing, prefix-
ing and insertion, among which deletion and postfixing are elementary updates.
We show how these updates on ideality sequences affect obligations by a running
example. We do not involve many technical difficulties in the system PCDL

since the Kangerian-Andersonian reduction axiom for the relativized condi-
tional obligation facilitates the completeness proof. We spent comparatively
more words on explaining how this new logic resolves a famous philosophical
problem in inferences between norms: Jørgensen’s dilemma. Norms are not
propositions and hence they cannot have truth values. However, classical infer-
ences consisting of propositions are valid if they preserve the truth of premises.
The logic PCDL provides a novel conceptualization on the dilemma. A ‘valid’
inference between norms should preserve the success of the premises and the
set of obligations brought about by the concluded norm is a subset of the set of
obligations brought about by the premise norms.

Finally, we put forward a new approach to characterize the notion of
knowledge-based obligations. We call it Knowledge-based ‘ought-to-do’ obli-
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gations. Beforehand, all obligations discussed in this thesis are defined with
respect to propositions, which means that the deontic operators are applied to
propositions. However, how to formalize obligations based on actions has long
been investigated by deontic logicians. This question is also known as the ques-
tion how to provide a proper formalism of ‘ought-to-do’ instead of the classical
‘ought-to-be’. Chapter 6 jumps out of the tradition of ‘ought-to-be’ and shows a
way of capturing the notion of knowledge-based ‘ought-do-do’ obligations. It is
not only knowledge-based, which is analogous to knowledge-based conditional
obligations defined in Chapter 3, but also action-based.

Dynamic epistemic logic plays an important role again in this chapter. Each
action is represented by an action model or a non-deterministic choice between
several action models, which gives us a lot of control on expressing how an
action updates a situation. The deontic operator is applied directly to these
actions. An action model is obligatory with respect to some agent’s knowledge
if and only if the action model updates the initial epistemic model to a better
one. Priority structures remain important for comparing the initial model and
the updated model. In other words, an obligated action improves the current
situations. Similarly, the notion of prohibition is given as: an action is prohibited
if and only if it always makes the current situation worse. A logic of knowledge-
based ‘ought-to-do’ obligations, i.e., AKDL is provided and we can prove it to
be sound and strongly complete by reduction axioms (different from Kangerian-
Andersonian reduction). The logic AKDL is also able to conceptualize several
influential dilemmas of deontic logic.

In summary, this thesis establishes a comprehensive and coherent framework
for studying the problem of knowledge-based obligations. It combines epistemic
logic, dynamic epistemic logic, preference logic and Hansson’s deontic logic
altogether to characterize how knowledge affects an agent’s obligations.
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Samenvatting

Dit proefschrift onderzoekt het probleem van kennis-gebaseerde verplichtingen
en hoe kennis verplichtingen beı̈nvloedt. In Hoofdstuk 3 staat onze eerste sta-
tische logica van kennis-gebaseerde voorwaardelijke verplichtingen centraal.
In hoofdstuk 4 en 5 bespreken we hoe verplichtingen veranderen als gevolg
van informatie, en als gevolg van veranderende feiten en normen. Ten slotte
karakteriseren we een nieuwe notie van op kennis gebaseerde ’ought-to-do’-
verplichtingen en wordt de axiomatisering ervan vastgesteld in hoofdstuk 6.

We introduceren eerst het begrip van kennis-gebaseerde voorwaardelijke
verplichtingen, dat wordt gedefinieerd over epistemic betterness structures. Deze
definitie behandelt de relatie tussen kennis en verplichtingen van actoren, die
wordt aangegeven door een zeer belangrijke stelling in ons onderzoek: de
epistemische onthechting, d.w.z. |=KCDL (

⊙
i(ϕ|ψ)∧Kiψ) →

⊙
i(ϕ|⊤). Daarom

kunnen we zeggen dat een op kennis gebaseerde voorwaardelijke verplichting
vooraf codeert welke verplichting een actor heeft als de actor bepaalde informatie
kent.

Vanuit het semantische aspect zijn epistemische relaties voor elke actor
toegevoegd aan betterness structures om zo epistemic betterness structures te maken.
In plaats van alle mogelijke werelden te beschouwen, richten we ons alleen op
die toestanden die de agent epistemisch gezien niet kan onderscheiden van
de echte toestand. De actor i heeft een op kennis gebaseerde voorwaardelijke
verplichting

⊙
i(ϕ|ψ) dan en slechts dan als alle beste ψ-werelden die i niet kan

onderscheiden van de echte toestand voldoen aan ϕ. Dienovereenkomstig stellen
we de logica vast van op kennis gebaseerde voorwaardelijke verplichtingen en
bieden we een correcte en sterk volledige axiomatisering KCDL volgens de
‘stap-voor-stap’-methode in plaats van de klassieke benadering van canonieke
modellen. Aangezien een epistemische betterness structure een generalisatie is
van Hansson’s betterness structure, geeft het volledigheidsresultaat voor KCDL

een antwoord op de open vraag die Parent (2014) heeft achtergelaten voor het
systeem van Hansson F+(CM).

Vervolgens wordt de statische logica van kennis-gebaseerde voorwaarde-
lijke verplichtingen uitgebreid door dynamische operatoren op epistemische
en feitelijke verandering. We zijn daarom in staat om verandering van ver-
plichtingen te karakteriseren als gevolg van epistemische of feitelijke veran-
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dering. In het bijzonder werd dynamische epistemische logica geı̈ntroduceerd
om deze updates te karakteriseren. Epistemische relaties in een epistemische
betterness structure worden veranderd door actiemodellen en daarom worden
op kennis-gebaseerde voorwaardelijke verplichtingen veranderd. Bovendien
bevatten de actiemodellen die in dit proefschrift worden gebruikt ook de functie
van feitelijke verandering die de waarheidswaarden van proposities voor elke
toestand kan bijwerken. Feitelijke verandering zou ook de betterness relation
veranderen op basis van een gegeven prioriteitsstructuur.

Volgens de karakterisering van dynamische informatie kunnen verschil-
lende filosofische noties van verplichtingen worden geformaliseerd binnen
het nieuwe kader. Een prima facie verplichting is een onvoorwaardelijke
verplichting wanneer de actor iets weet op een bepaald moment. Alles-
overwogen verplichtingen van een actor zijn onvoorwaardelijke verplichtingen
waarin de actor alles weet. Veilige kennis-gebaseerde verplichtingen zijn de
onvoorwaardelijke verplichtingen, wat de actor ook maar weet.

Het axioma-systeem DKCDL is opgesteld op basis van een Kangeriaans-
Andersoniaanse reductie voor de deontische operator en we kunnen bewijzen
dat deze correct is. Door KA-reductie-axioma’s en reductie-axioma’s voor de
dynamische operator, kunnen we elke LDKCDL-formule vertalen naar een syntac-
tisch equivalente formule van de klassieke epistemische logica. Daarom kunnen
we de sterke volledigheid van DKCDL afleiden uit de sterke volledigheid van
de klassieke epistemische logica.

Naast epistemische verandering en feitelijke verandering, kan normverander-
ing ook de verplichtingen van actoren actualiseren. Het onderscheid tussen nor-
men en verplichtingen staat bekend als voorschrift en beschrijving in deontische
logica. Er wordt gebruik gemaakt van een normatief systeem voor het voorschri-
jven van nieuwe normen, die nieuwe verplichtingen voor actoren zouden kun-
nen meebrengen. Updates op normatieve systemen veroorzaken dus over het
algemeen verandering van verplichtingen.

Hoofdstuk 5 behandelt voornamelijk het probleem van hoe een normatief
systeem, namelijk een ideality sequence in onze terminologie, de verplichtingen
van een actor beı̈nvloedt. Het kernbegrip is ‘gerelativeerde voorwaardelijke
verplichtingen op basis van ideality sequences’, d.w.z. ⃝I ( | ). Het is op dezelfde
manier geformaliseerd als Hansson’s dyadische verplichtingsoperator, behalve
dat het wordt gerelativeerd tot ideality sequences. Elke ideality sequence I is een
normatief systeem, dat het voorschriftelijke aspect van ons raamwerk verte-
genwoordigt. Betterness structures gebaseerd op een of andere ideality sequence
beschrijven de voorwaardelijke verplichtingen.

We introduceren vier updates over ideality sequences: verwijdering, postfixing,
prefixing en insertie, waarvan verwijdering en postfixing elementaire updates
zijn. We laten aan de hand van een doorlopend voorbeeld zien hoe deze up-
dates van ideality sequences de verplichtingen beı̈nvloeden. Het systeem PCDL

brengt niet veel technische problemen met zich mee, aangezien het Kangeriaans-
Andersoniaanse reductieaxioma voor de gerelativeerde voorwaardelijke ver-



181

plichting het bewijs van volledigheid faciliteert. We hebben relatief meer woor-
den besteed aan het uitleggen hoe deze nieuwe logica een beroemd filosofisch
probleem oplost in gevolgtrekkingen tussen normen: Jørgensen’s dilemma. Nor-
men zijn geen proposities en kunnen daarom geen waarheidswaarden hebben.
Klassieke gevolgtrekkingen bestaande uit proposities zijn echter geldig als ze de
waarheid van premissen behouden. De logica PCDL biedt een nieuwe concep-
tualisering van het dilemma. Een ’geldige’ gevolgtrekking tussen normen moet
het succes van de premissen behouden en de reeks verplichtingen die door de
gesloten norm worden veroorzaakt, is een subreeks van de reeks verplichtingen
die door de premissennormen wordt veroorzaakt.

Ten slotte stellen we een nieuwe benadering voor om het begrip kennis-
gebaseerde verplichtingen te karakteriseren. We noemen het kennis-gebaseerde
‘ought-to-do’-verplichtingen. Vooraf zijn alle verplichtingen die in dit proefschrift
worden besproken gedefinieerd met betrekking tot proposities, wat betekent dat
de deontische operatoren worden toegepast op proposities. Hoe verplichtingen
op basis van acties kunnen worden geformaliseerd, is echter al lang onderzocht
door deontische logici. Deze vraag staat ook wel bekend als de vraag over hoe
je een juist formalisme van ’ought-to-do’ in plaats van het klassieke ’ought-to-
be’ kunt geven. Hoofdstuk 6 springt uit de traditie van ’ought-to-be’ en toont
een manier om de notie van op kennis gebaseerde ’ought-to-do’-verplichtingen
te vatten. Het is niet alleen op kennis gebaseerd, wat analoog is aan kennis-
gebaseerde voorwaardelijke verplichtingen zoals gedefinieerd in Hoofdstuk 3,
maar het is ook gebaseerd op actie.

Dynamisch-epistemische logica speelt in dit hoofdstuk opnieuw een be-
langrijke rol. Elke actie wordt weergegeven door een actiemodel of een niet-
deterministische keuze tussen verschillende actiemodellen, wat ons veel controle
geeft over hoe een actie een situatie bijwerkt. De deontische operator wordt
direct op deze acties toegepast. Een actiemodel is verplicht met betrekking tot
de kennis van een actor dan en slechts dan als het actiemodel het aanvankelijke
epistemische model update naar een beter model. Priority structures blijven be-
langrijk voor het vergelijken van het initiële model en het bijgewerkte model.
Met andere woorden, een verplichte handeling verbetert de huidige situatie.
Evenzo wordt het begrip verbod gegeven als: een handeling is verboden dan
en slechts dan als het de huidige situatie altijd erger maakt. Een logica van
kennis-gebaseerde ‘ought-to-do’-verplichtingen, d.w.z. AKDL wordt gegeven
en we kunnen bewijzen dat deze correct en sterk volledig is door middel van
reductie-axioma’s (anders dan Kangeriaanse-Andersonische reductie). De logica
AKDL is ook in staat om verschillende invloedrijke dilemma’s van deontische
logica te conceptualiseren.

Samenvattend stelt dit proefschrift een alomvattend en coherent kader vast
voor het bestuderen van het probleem van kennis-gebaseerde verplichtingen.
Het combineert epistemische logica, dynamisch-epistemische logica, voorkeurs-
logica en deontische logica van Hansson om te karakteriseren hoe kennis de
verplichtingen van een actor beı̈nvloedt.
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Lambèr M. M. Royakkers and Frank Dignum. From collective to individual
commitments. In Proceedings of the 7th international conference on Artificial
intelligence and law, pages 192–193, 1999.

Leonard J Savage. The foundations of statistics. Courier Corporation, 1972.

Thomas Scanlon et al. What we owe to each other. Harvard University Press, 1998.

Krister Segerberg. A deontic logic of action. Studia logica, 41(2-3):269–282, 1982.



190 BIBLIOGRAPHY

Yoav Shoham. Reasoning about Change: Time and Causation from the Standpoint of Ar-
tificial Intelligence. MIT Press, Cambridge, MA, USA, 1988a. ISBN 0262192691.

Yoav Shoham. Reasoning about Change: Time and Causation from the Standpoint of
AI. MIT Press, Cambridge, MA, 1988b.

Xingchi Su. Knowledge-based conditional obligation. Short Papers, Advances in
Modal Logic AiML 2020, pages 112–116, 2020.

Allard Tamminga. Deontic logic for strategic games. Erkenntnis, 78(1):183–200,
2013.

Allard Tamminga and Hein Duijf. Collective obligations, group plans and
individual actions. Economics & Philosophy, 33(2):187–214, 2017.

Johan Van Benthem. Exploring logical dynamics. Center for the Study of Language
and Information, 1997.

Johan Van Benthem. Modal logic for open minds. Stanford: Center for the Study
of Language and Information, 2010.

Johan van Benthem and Fenrong Liu. Dynamic logic of preference upgrade.
Journal of Applied Non-Classical Logics, 17(2):157–182, 2007.

Johan van Benthem, Sieuwert van Otterloo, and Olivier Roy. Preference logic,
conditionals, and solution concepts in games. Modality Matters, pages 61–76,
2006.

Johan van Benthem, Davide Grossi, and Fenrong Liu. Priority structures in
deontic logic. Theoria, 80(2):116–152, 2014.

Ron van der Meyden. The dynamic logic of permission. Journal of Logic and
Computation, 6(3):465–479, 1996.

Leendert van der Torre. Reasoning about obligations: defeasibility in preference-based
deontic logic. Tinbergen Institute Research Series 140. Amsterdam: Thesis,
1997.

Leendert van der Torre and Yao-Hua Tan. An update semantics for deontic
reasoning. In Paul Mcnamara and Henry Prakken, editors, Norms, Logics and
Information Systems, pages 73–90. IOS Press, 1998.

Leendert van der Torre and Yao-Hua Tan. Contrary-to-duty reasoning with
preference-based dyadic obligations. Annals of Mathematics and Artificial Intelli-
gence, 27(1-4):49–78, 1999.

Hans van Ditmarsch and Barteld Kooi. Semantic results for ontic and epistemic
change. In Logic and the Foundations of Game and Decision Theory (LOFT), pages
87–117. Amsterdam UP, 2008.



BIBLIOGRAPHY 191

Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic epistemic
logic. Springer Science & Business Media, 2007.

Bas C Van Fraassen. The logic of conditional obligation. In Exact Philosophy,
pages 151–172. Springer, 1973.

Georg Henrik Von Wright. Deontic logic. Mind, 60(237):1–15, 1951.

Georg Henrik Von Wright. A note on deontic logic and derived obligation. Mind,
65(260):507–509, 1956.

Georg Henrik Von Wright. A new system of deontic logic. In Deontic Logic:
Introductory and Systematic Readings, pages 105–120. Springer, 1970.

Yanjing Wang. A logic of knowing how. In International Workshop on Logic,
Rationality and Interaction, pages 392–405, 2015.

Yanjing Wang. Beyond knowing that: A new generation of epistemic logics. In
Jaakko Hintikka on Knowledge and Game-Theoretical Semantics, pages 499–533.
Springer, Cham, 2018.

Yanjing Wang and Qinxiang Cao. On axiomatizations of public announcement
logic. Synthese, 190(1):103–134, 2013.

Malte Willer. Dynamic foundations for deontic logic. Deontic Modality, pages
324–354, 2016.

Georg Henrik von Wright. Is there a logic of norms? Ratio Juris, 4(3):265–283,
1991.

Chao Xu, Yanjing Wang, and Thomas Studer. A logic of knowing why. Synthese,
198(2):1259–1285, 2021.

Tomoyuki Yamada. Acts of commanding and changing obligations. In Inter-
national Workshop on Computational Logic in Multi-Agent Systems, pages 1–19.
Springer, 2006.

Tomoyuki Yamada. Logical dynamics of some speech acts that affect obligations
and preferences. Synthese, 165(2):295–315, 2008.

Tomoyuki Yamada. Acts of requesting in dynamic logic of knowledge and
obligation. European Journal of Analytic Philosophy, 7(2):59–82, 2011.



192 BIBLIOGRAPHY



Appendix A

Strong Completeness of KCDL in the single-agent
case

The basic strategy of proving completeness is attributed to Parent (2014). Parent
(2014) still uses the canonical models to prove the strong completeness of
F+(CM). It is different from the ‘step-by-step’ approach used in Chapter 3 for
the multi-agent case. In terms of KCDL in the single-agent case, we can also
use canonical models to give a proof. But we provide a new definition on ⩽
in the canonical models which keeps ⩽ transitive. Let Γ be a consistent set of
LKCDL-formulas. We need to establish a canonical model which satisfies Γ. Let
Γ0 be some maximal consistent extension of Γ. Γψ

0 denotes {ϕ | ⊙(ϕ|ψ) ∈ Γ0}
and K−1∆ denotes {ϕ | Kϕ ∈ ∆}. We will distinguish two cases: (1) Principal
case: there is a formula ω such that Γω

0 ⊆ Γ0; (2) Limiting case: there is no
formula ω such that Γω

0 ⊆ Γ0.
Before we proceed, the following lemma is necessary.

Lemma 12. The following formulas are derivable in KCDL:

1.
⊙
(ψ1|ϕ) ∧

⊙
(ψ2|ϕ) ∧ · · ·⊙(ψn|ϕ) →

⊙
(ψ1 ∧ ψ2 · · · ∧ ψn|ϕ) (n ⩾ 2)

2. If ⊢ ψ → γ, then ⊢ ⊙
(ψ|ϕ) → ⊙

(γ|ϕ).

3.
⊙
(ϕ|ϕ ∨ ψ) ∧⊙

(ψ|ψ ∨ γ) → ⊙
(γ → ψ|ϕ)

4. ¬K¬ϕ → ¬⊙
(⊥|ϕ)

5.
⊙
(γ|ϕ ∨ γ) ∧⊙

(ψ|ϕ) → ⊙
(ϕ → ψ|γ)

6. (
⊙
(ϕ|ϕ ∨ ψ) ∧⊙

(ψ|ψ ∨ γ)) → ⊙
(ϕ|ϕ ∨ γ)

Principal Case

Definition 80. (The Canonical Model Generated by Γ0, Principal Case) A canonical
model generated by Γ0 is a tuple MΓ0 = ⟨W,∼,⩽, V⟩ where
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1. W = {(∆, ψ) | ∆ is a MCS and Γψ
0 ⊆ ∆}1;

2. (∆, ψ) ∼ (Σ, χ) iff K−1∆ ⊆ Σ;

3. (∆, ψ) ⩽ (Σ, χ) iff (
⊙
(χ|χ ∨ ψ) ∈ Γ0 and ψ ̸∈ Σ) or (∆ = Σ and ψ = χ).

4. V(p) = {(∆, ψ) | p ∈ ∆} for any p ∈ P.

Lemma 13. (1) ∼ is an equivalence relation and total; (2) Let ∆ be a MCS. If
⊙
(ϕ|ϕ ∨

ψ) ̸∈ ∆, then ∆ϕ∨ψ ∪ {¬ϕ} is consistent; (3) Let ∆ and ∆1 be two MCSs. If
⊙
(ϕ|ψ) ̸∈

∆1 and K−1∆ ⊆ ∆1, then ∆ψ ∪ {¬ϕ} is consistent.

Now we can prove the Truth Lemma based on MΓ0 .

Lemma 14. (Truth Lemma) Let MΓ0 = ⟨W,∼,⩽, V⟩ be a canonical model generated
by Γ0. For all (∆, ψ) ∈ W and all ϕ, MΓ0 , (∆, ψ) |= ϕ iff ϕ ∈ ∆.

Proof. We prove it by induction on the structure of ϕ. When ϕ is a Boolean
formula, the proof is standard. When ϕ = Kβ, it is almost the same as Parent
(2014).

When ϕ =
⊙
(α|β):

• (⇒) Suppose that
⊙
(α|β) ̸∈ ∆. By Lemma 13(3), Γβ

0 ∪ {¬α} is consistent.

So Γβ
0 ∪ {¬α} can be extended into a MCS ∆1. Since Γβ

0 ⊆ ∆1, (∆1, β) ∈ W.
Let (∆2, γ) be an arbitrary state in W such that β ∈ ∆2. By Definition
80, (∆2, γ) ̸> (∆1, β). By Lemma 13(1), (∆1, β) ∼ (∆, ψ). Thus, (∆1, β) ∈
max⩽|[(∆,ψ)]∼ ∥β∥MΓ0 . By the inductive hypothesis, MΓ0 , (∆1, β) |= ¬α. So
MΓ0 , (∆, ψ) ̸|= ⊙

(α|β).

• (⇐) Suppose that
⊙
(α|β) ∈ ∆. Let (∆1, θ) ∈ max⩽|[(∆,ψ)]∼ ∥β∥MΓ0 . We

want to show that
⊙
(θ|β ∨ θ) ∈ Γ0. Assume, to reach a contradiction, that⊙

(θ|β ∨ θ) ̸∈ Γ0. By Lemma 13(2), Γβ∨θ
0 ∪ {¬θ} is consistent. So it can be

extended into a MCS ∆2 such that Γβ∨θ
0 ∪ {¬θ} ⊆ ∆2. So (∆2, β ∨ θ) ∈ W.

By the axiom (
⊙

Id), β ∨ θ ∈ ∆2. So β ∈ ∆2. By (
⊙

Id) again, we have⊙
(β ∨ θ|β ∨ θ ∨ θ) ∈ Γ0. Since θ ̸∈ ∆2, (∆1, θ) ⩽ (∆2, β ∨ θ). And we know⊙
(θ|β ∨ θ ∨ θ) ̸∈ Γ0. So (∆2, β ∨ θ) ̸⩽ (∆1, θ). Thus, (∆1, θ) < (∆2, β ∨

θ). By Lemma 13(1), (∆1, θ) ∼ (∆2, β ∨ θ). By the inductive hypothesis,
MΓ0 , (∆2, β ∨ θ) |= β, which contradicts (∆1, θ) ∈ max⩽|[(∆,ψ)]∼ ∥β∥MΓ0 .

Thus,
⊙
(θ|β ∨ θ) ∈ Γ0. Let γ be an arbitrary formula such that γ ∈ Γβ

o .
So

⊙
(γ|β) ∈ Γ0. We also have

⊙
(θ|β ∨ θ) ∈ Γ0. Thus, by Lemma 12(v),⊙

(β → γ|θ) ∈ Γ0. Thus, β → γ ∈ Γθ
0. So β → γ ∈ ∆1. Thus, γ ∈ ∆1. So

α ∈ ∆1 as well. Therefore, MΓ0 , (∆, ψ) |= ⊙
(α|β).

1MCS represents the maximal LKCDL-consistent set.
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Lemma 15. (Verification Lemma) MΓ0 is reflexive, transitive and ∼-smooth.

Proof. (Reflexivity and Transitivity) Reflexivity is easily verified by Definition
80. Transitivity can be obtained by Lemma 12(iii) and Lemma 12(vi).

(∼-smoothness) Let (∆, θ) ∈ MΓ0 such that MΓ0 , (∆, θ) |= β:

• When
⊙
(θ|θ ∨ β) ∈ Γ0: Assume that (∆, θ) ̸∈ max⩽|[(∆,θ)]∼ ∥β∥MΓ0 . This

means that there exists (Σ, λ) ∈ MΓ0 such that (Σ, λ) > (∆, θ) and Σ ∈
∥β∥MΓ

0
. By Definition 80(iii),

⊙
(λ|λ ∨ θ) ∈ Γ0 and θ ̸∈ Σ. By Lemma 12(v),⊙

(λ|λ ∨ θ) ∧⊙
(θ|θ ∨ β) → ⊙

(β → θ|λ) ∈ Γ0. So
⊙
(β → θ|λ) ∈ Γ0. So

β → θ ∈ Σ, which implies that θ ∈ Σ. Contradiction.

• When
⊙
(θ|θ ∨ β) ̸∈ Γ0, we will show that there is (Σ, β ∨ θ) ∈ MΓ0

such that (Σ, β ∨ θ) > (∆, β) and (Σ, β ∨ θ) ∈ max⩽|[(∆,θ)]∼ ∥β∥MΓ0 . Since⊙
(θ|θ ∨ β) ̸∈ Γ0, by Lemma 13(2), Γβ∨θ

0 ∪ {¬θ} is consistent. So it can

be extended into a MCS Σ such that Γβ∨θ
0 ∪ {¬θ} ⊆ Σ. By Definition

80, (Σ, β ∨ θ) ∈ MΓ0 . Since ¬θ ∈ Σ, we have β ∈ Σ. Since for any
(Λ, λ) ⩾ (Σ, β ∨ θ), ¬(β ∨ θ) ∈ Λ. So ¬β ∈ Λ. Thus, (Σ, β ∨ θ) ∈
max⩽|[(∆,θ)]∼ ∥β∥MΓ0 . By the axiom (

⊙
Id), we have (Σ, β ∨ θ) > (∆, β).

Limiting Case

Definition 81. (The Canonical Model Generated by (Γ0, ω), Limiting Case) Take an
arbitrary formula ω, the canonical model generated by (Γ0, ω) is a tuple M(Γ0,ω) =
⟨W ′,∼′,⩽′, V′⟩ where ∼′ and V′ are defined as in Definition 80(ii) and (iii), W ′ and
⩽′ are defined as follows:

1. W ′ = W ∪ {(Γ0, ω)}, where W = {(∆, ψ) | ∆ is a MCS and Γψ
0 ⊆ ∆};

2. ⩽′ = ⩽ ∪{⟨(Γ0, ω), (Γ0, ω)⟩} ∪ {⟨(Γ0, ω), (∆, ψ)⟩ | (∆, ψ) ∈ W}, where ⩽
is defined as in Definition 80(iii).

The truth lemma and verification lemma for Limiting case can be proved
easily based on Lemma 14.

Theorem 10. KCDL is strongly complete with respect to the class of epistemic
betterness structures that are reflexive, transitive and ∼-smooth.
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是能不能走自己认为通往更好的未来的道路。感谢崔建英老师，沈瑜平老师，
刘虎老师，王玮老师，文学锋老师等诸位中山大学逻辑与认知研究所的老师把
我领进逻辑学的大门，让我真正能够有幸领略逻辑学中的无限风光，让我能够
走上通往更好未来的道路。
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白，社会网络的基础是普世价值，但同时，社会网络的目标也是普世价值，我
们的社会依然需要向这一目标前进。在此我要感谢2011级逻辑学专业的陆翔、
张怀宇、周华威、吴桐、卢振东、秦晓昀、黄殷雅、杨璇等同学和我建立的美
好的大学友谊。

硕士研究生的生活是纯粹的学术训练，我真正开始了学习逻辑学中有难度
的知识并且经历了将所学转换为新的学术成果的过程。在北京大学的这三年
并不快乐，学术的压力让我对自己的能力和未来产生了极大的不自信。但是
值得庆幸的是，正是这充满压力的三年，让我清楚认识到我对于逻辑学的热情
并非空穴来风，困难和压力不足以消磨我对这一学科的喜爱，那么我就值得在
这条道路上坚持下去。我要特别感谢我的硕士导师王彦晶，是他对于学术的严
格要求和给我们的全面训练让我能够有资格开始逻辑学的研究，也是因为他的
推荐，我才能够获得去荷兰深造的机会。我也要感谢北京大学逻辑学教研室的
周北海老师、刘壮虎老师、邢滔滔老师、陈波老师的悉心教导，跟随你们学习
也为我打下了牢固的逻辑学基础。在此还要感谢杨广泽、张月青、赵真泽、林
芳、陈逸然、王冠军、张帅、王子剑等同学在学习与生活上对我的照顾。

而回望在格罗宁根读博士的这四年，是我真正成熟起来的四年。当我以一
个独立研究者的姿态开始从事学术活动时，我首先感受到的是研究的苦，颇有
拔剑四顾心茫然的无力感，更何况，我的剑还并不锋利。博士研究本就是站在
人类知识的边缘上，试图将人类知识的外延再推开一点点，而随着研究课题的
细化，我的身边不再有能时常讨论问题的同学，虽然可以从导师处听取建议，
但是终究要自己独立解决。每一个面对白板写证明的夜晚，都是和逻辑符号的
孤独起舞。这确乎有点像苦行僧，修着自己的道，外人不可语。但是，研究本
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身又很有甜头，正是因为那些问题是前人未能触及或者攻克的，它们才会满足
年轻人的野心和征服欲。尤记得导师Barteld每每听到我阐述一个无法解决的问
题时，他的回应总是：“Interesting！”而非“Difficult”。用解决问题的有趣去替
代无法解决问题的焦虑，这是乐观精神，更是学者该有的自信。

除去学术上的孤独感，生活上的孤独感是更大的挑战。在异国他乡的偏远
小城，绝大部分的深夜，一个人待在办公室或者住所里，在荷兰人最喜欢的暖
光灯下，我看过书，看过电影，打过游戏。开始的一两年，我自认为孤独并不
是问题，但是世事难料，突如其来的百年一遇的新冠疫情打乱了世界上每一个
人的生活。长期的封锁和居家办公剥夺了我本就不多的与人接触的机会，隔离
政策更是让人感到脱离社会的无助与孤单。在逐渐增长的孤独感之中，我能感
受到自己内心的煎熬，那是一种来自于虚无的包围和折磨。好在身边有朋友，
是和他们的一次次聚餐和闲聊中，我感受到了人作为社会的动物的本性，也汲
取了最纯粹的快乐。还有我的小猫咪Cloud，你是陪伴我的小精灵。

博士四年是我学术能力进步最快的四年，也是我磨练心智的四年。个中苦
楚，只有自己明白。但是只有经历过这些，在未来才能游刃有余。

在最后，我要特别感谢一些人，是他们在我的成长中给予了我最诚挚的帮
助，教会了我最深刻的道理。

首先，我要感谢冯舒雅、魏小龙、苏浩、胡翔云，和他们从小缔结的友
谊，是时至今日依然能带给我美好童年回忆的珍贵感情。感谢牟一旭在我刚
上初中时伸出的橄榄枝，如今我们钢铁般的友谊已经快二十年了，抱歉你的
婚礼我无法到场，待我回北京再行祝贺。感谢辛鑫给了我平生第一次当伴郎
的机会，和你的友谊是那种不论多久不见都不会生疏的情感。然后我要感谢
孙嘉平、林郅乔在和我坐同桌的中学时光里给予我的莫大帮助，祝你们婚姻幸
福，百年好合。感谢杨怀东的善良与体贴，期待重逢时。感谢付乔雅、卢振东
夫妇在我高中和大学阶段给予的帮助，你们奇妙的缘分是老天的褒奖。感谢荆
文奕教会我用轻松愉快的心态和同学相处，等我去成都再给你送上迟到的新婚
祝福。感谢伍素在本科阶段对我学习上的帮助，和你愉快的学术讨论开启了我
走向逻辑学研究的道路。感谢任天鸿对我生活上的帮助，在你身上我学到了人
要追求自己的本心才能活得快活洒脱。感谢闫琦作为班长带领本科班级成为了
一个有爱的大家庭。感谢约宵队的吴玮、伏仕波、王晓曼，张泽思、黄嘉炜、
孙明耀、胡昕宜，正是因为你们，我的大学生活才是那么的灿烂美好。感谢
刘纪琪在硕士阶段陪我打球，我们一起进步，无论是球技还是学术，人生总会
顺利起来。感谢李丹愿意成为球队的主力女将，也感谢你愿意让我做你的倾听
对象，如今的如意郎君是你用赤诚之心换来的幸福。感谢王冠军在我找工作期
间提供的宝贵信息和建议，有机会我们杭州再见。感谢柳帅关于学术的分享，
和你的关系有种平淡而舒服的感觉。感谢方凯成在我当班长期间的鼎力支持，
你的洒脱和专注是我认为的年轻人该有的气质。感谢张恒禹教会我如何独立生
活。感谢冯玉振和宫艳萍夫妇对我生活上的照顾，每次聚餐都是非常快乐的回
忆。感谢刘默向我推荐的关于可判定性理论的书籍。感谢杨航作为办公室同事
介绍给我健身的理念，还有好吃的各种烤箱制品，祝你早生贵子。感谢张语哲
和我进行的诸多学术讨论，还有做的一手好菜，日后还想多多品尝。感谢陈一
菲给了张语哲一个温暖的怀抱。感谢罗莎分享的诸多关于毕业和工作的信息。
感谢张振兴的聚餐邀请让隔离生活多了很多乐趣。感谢郑珩多次贡献家中大
院让我们体会了露天烧烤的快乐。感谢徐特科陪我出去品尝美食。感谢Stipe
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Pandzic、Yuri Santos、Abby Toth、Nicole Orzan作为办公室同事和我们一起吃
饭聊天的快乐日常。感谢邓成龙把我领进格罗宁根羽球大家庭，更感谢他在生
活中方方面面对我的照顾。感谢郭洋洋、方帅、陈泰廷、吴梦之、李扬、郑潇
平、程志恒、刘曦鹏、温迪、方效寅陪我一起打球，我们每周的运动时光是我
读博期间难得的团体活动。感谢Kritika在我初到哲学系时给予我的诸多帮助。
感谢Cesar Reigosa担任哲学系博士生协会主席负责人期间组织的精彩学术活
动。感谢张潇俊和李灵在我孤单的时候陪我闲聊，给了我寂寞日子里温暖的阳
光。更要感谢任明普设计的论文封面让我晦涩的文字有了一个色彩纷呈又美观
大方的面子。
然后我要郑重地感谢我的三位导师Barteld Kooi, Rineke Verbrugge, Davide

Grossi，四年里我接受到了最全面和最体贴的博士指导，各位老师不仅在学术道
路上给我指引了全新的方向，更是在一次次的日常会议中，不断和我分享新的
知识、思维方法以及认真研究的态度。每每看到各位老师给我的论文草稿提出
的详尽的修改意见，就像是一次次的提醒，做学术要永远保持严谨认真，宁少
勿滥。在我犯错的时候他们能够温和地指出问题，在我做得还不错的时候给予
了我最大的表扬。当我的论文被一次次拒稿心灰意冷之际，你们的充满鼓励的
话语总是能让我重燃斗志。这一篇论文的成型，你们是最大的功臣。感谢Bart
Verhij、Jan Broersen和刘奋荣老师担任我的论文评审，他们的宝贵意见让这篇
论文变得好也带给了我很多新的启发。感谢Cor Steging帮助我翻译和修改该论
文中的荷兰语总结。感谢Allard Tamminga在我初到格罗宁根时给予我的生活
和学术上的建议。感谢Hans van Ditmarsch在学术会议中给予我的肯定和宝贵
建议。感谢Pauline Kleingeld担任我的年度考核考官。还要特别感谢Edoardo
Baccini和Francisco Trucco作为我的答辩“小蜜蜂”为我的博士答辩做出的巨大帮
助。

最后我要感谢我所有的家人，从小我就生活在一个和睦的大家庭中，也因
此我拥有了一个非常幸福的童年。俗话说，幸运的人用童年来治愈一生，我便
是如此。即便在离家读书后遇到了诸多困难，但是每每想起家人，那种从心底
流淌而出的暖意都能立刻抚平伤口。我要特别感谢我的父亲苏胜和母亲胡萍，
他们教会我学习的态度和谦卑的品行，他们教会我做人的风骨和处事的道理。
父母的养育之恩无以为报，此时此刻，就让我把这本博士论文赠予你们，回馈
你们的谆谆教诲。也请让我在今后的漫漫岁月里，好好照顾你们，祝福你们健
康幸福。

在感谢之后，我想回到逻辑学本身。纷繁复杂的人类社会之所以能够在一
片混沌中不断涌现新的秩序和破除旧的习俗，正是因为人们需要标准化的规定
来实现交流的欲望，而人类欲望的变迁又反过来缔造了新的标准化系统。曾经
的逻辑学试图为人类的认识提供一个标准化的规范，但是对于认识人类自己的
诉求又引领逻辑学走向了描述人类的方向。逻辑学是如此有野心的一门学科，
既要像社会学一样能够描述和解释人与社会，又要像数学一样规范人与社会。
我无法说我未来能为逻辑学作出多少贡献，但是逻辑学教会了我要能飞到更高
维的视角才能看清楚世界。但是，身处社会之中，不断增长的人生阅历又教会
了我只有沉下去体验世间百态才能处变不惊。
逻辑与生活，都是我的收获。
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