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A Fast and Memory-Efficient Brain MRI Segmentation Framework for
Clinical Applications

Ashkan Nejad1, Saeed Masoudnia2 and Mohammad-Reza Nazem-Zadeh2

Abstract— Current segmentation tools of brain MRI provide
quantitative structural information for diagnosing neurologi-
cal disorders. However, their clinical application is generally
limited due to high memory usage and time consumption.
Although 3D CNN-based segmentation methods have recently
achieved the state-of-the-art and come up with timely available
results, they heavily require high memory GPUs. In this
paper, we customize a memory-efficient (GPU) brain structure
segmentation framework, named FLBS, based on nnU-nets
which enables our framework to adapt its architecture based
on memory constraints dynamically. To further reduce the need
for memory, we also reduce multi-label brain segmentation
to the fusion of sequential single-label segmentations. In the
first step, single label patches are extracted from the T1w and
segmentation maps by locating the approximate area of each
structure on the MNI305 template, including the safety margin.
These considerations not only decrease the hardware usage but
also maintains comparable computational time. Moreover, the
target brain structures are customizable based on the specific
clinical applications. We evaluate the performance in terms of
Dice coefficient, runtime, and GPU requirement on OASIS-
3 and CoRR-BNU1 datasets. The validation results show our
comparable accuracies with state-of-the-arts and confirm the
generalizability on unseen datasets while significantly reducing
GPU requirements and maintaining runtime duration. Our
framework is also executable on a budget GPU with a minimum
requirement of 4G RAM.

Clinical relevance— We develop a memory-efficient deep
Brain MRI segmentation tool that significantly reduces the
hardware requirement of MRI segmentation while maintaining
comparable accuracy and time. These advantages make FLBS
suitable for widespread use in clinical applications, especially
for clinics with a limited budget. We plan to release the
framework as a part of a free clinical brain imaging analysis
tool. The code for this framework is publicly available∗.

I. INTRODUCTION

The precise segmentation of human brain MRI is an
important intermediate step for the quantitative analysis
process of neurological studies. It also provides valuable
structural information for the diagnosis, diseases monitoring,
and treatment control for most neurological disorders. There
are two available approaches for MRI segmentation; tradi-
tional neuroimaging software and recently developed deep
network-based methods. While the first approach suffers high
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time and computational load, the second has recently been
proposed to address these limitations.

The deep supervised networks replace time-consuming
sequential pipelines with a feedforward network. In this
approach, Fully Convolutional Networks (FCNs) are used
to learn segmentation in an end-to-end manner from image.
Their parallel implementations on graphical processing units
(GPU) reduces computation time from hours to few minutes.

U-Net architecture is one of the most successful FCN mod-
els in MRI segmentation [1]. Different U-net architectures
are employed to segment MRI images, including 2D and
3D U-Nets. The 2D U-Nets process MRI images slice by
slice and thus suffer from missing the entirely contextual
and neighborhood information. Although 3D U-nets were
suggested to address this limitation, another issue was raised.
The 3D U-nets encountered GPU memory constraints when
dealing with tens of millions of computations corresponding
to 3D feature spaces of high-resolution brain MRI volumes.

Several techniques were proposed to resolve the GPU
memory constraints, e.g., SLANT [2] and AssemblyNet [3].
Despite using smaller networks and dividing input volume,
these methods still occupy a minimum of 8-12 GB of
memory in the inference phase. As a result, this requirement
makes it difficult to use such methods in widespread clinical
use with limited computational resources where this limi-
tation is severe in the low-income communities. From other
viewpoint, in most clinical applications, segmentation of only
a limited number of structures is needed based on the user
requirements where the whole-brain segmentation methods
are not customizable in this manner. For this reason, recent
methods [4], [5] focus on specific essential brain regions
rather than whole-brain segmentation.

This paper aims to tackle the computational challenge of
running a state-of-the-art brain segmentation tool on a budget
GPU. To this end, we present and customized a low-cost
framework with a core of an already state-of-the-art 3D U-
net, nnU-net[6], for MRI brain segmentation called FLBS.
Reducing the hardware requirement for running the tool will
expand the application of this technology in medical clinics.

II. PROPOSED METHOD

Our proposed framework consists of three parts: 1) Pre-
processing prepares MR images for training and testing by
transforming them into a standard space to facilitate further
processes; 2) Segmentation trains a series of nnU-Nets [6]
on the designated extracted patches from the brain MR
images; 3)Post-processing fuses the labels by solving the
label conflict in the overlapping areas and transforms the



Fig. 1: The overall workflow of preprocess including affine transformation to MNI space, normalizaing the intensity values,
and structure-based patch extraction, respectively. In the final step, each box extracts a neighborhood with a safe margin
around pre-defined structures where their approximated locations are known in MNI305 space. We obtain the ranges of the
filling area by each structure for the training data and add 10% to the ranges in each direction for a safe margin.

Fig. 2: Segmentation outputs of FLBS for Hippocampus and Cerebellum White Matter from two MRI samples. The ground
truth segmentation refers to FreeSurfer (the most commonly used segmentation tool) segmentation output.The results show
that FLBS provides segmentation with a smoother border.

result back to the space of input image before the pre-
processing. The following subsections explain each stage.

A. Pre-processing

The image’s intensity scale and size and the head’s lo-
cation and scale are prone to significant variations due to
different imaging instrument calibrations and patient place-
ment. The first pre-processing step transforms the brain
image into a template space. We use the NiftyReg [7] for
affine transformation of images into the MNI305 template
[8]. The transformation also facilitates the later extraction of
structure-surrounding patches. In order to solve the issue of
diverse image intensity scales, we then perform the N4-bias
correction [9] algorithm. This method scales all the intensity
values into a normal domain.

The final step of pre-processing extracts a set of 3D
patches (boxes) with predefined sizes and locations from
the image. In MNI305 space, the approximate locations of
structures are known. Each box extracts a neighborhood
with a safe margin around a structure. We extract a patch
for each structure on T1-weighted images and the corre-
sponding segmentation map. The area to cover by each

patch is obtained by computing the corresponding structure’s
minimum and maximum voxel on the training data. Then,
the ranges are stretched by 10% to include a safe margin.
Figure 1 illustrates the overall workflow of pre-processing.
The following stage segments the extracted patches.

B. Segmentation

We employ the nnU-Net architecture [6] in MRI segmen-
tation for two main reasons: 1. this architecture achieves
state-of-the-art results in biomedical image segmentation. 2.
This network benefits from a strategy known as the network
topology dynamic adaptation [19]. The architecture adapts
automatically based on specific constraints, e.g., size of
the input images and memory limitation. These flexibility
advantages are utilized in FLBS.

We consider one separate network for each brain structure.
The extracted patch around the structure in fed into the

TABLE I: Summary of used collections from MRI datasets

Dataset # Subjects MRI Sample size Purpose
OASIS-3 200 256 × 256 × 256 train & test
CoRR-BNU1 20 144 × 256 × 256 test-only



TABLE II: The comparison of resulted structure-specific average Dice coefficient for FLBS with state-of-the-art methods on
OASIS dataset. The results for other methods were adapted from [2], which were compared under similar conditions. Only
[10] differs in terms of using combination of several datasets in addition to OASIS.

Structure U-Net [11] Patch CNN [12] NLSS [13] JLF [14] SLANT [2] 3D hemisphere CNN [10] FLBS
Amygdala - Left 68.77% 25.44% 67.04% 62.03% 70.74% 85.3% 88.46%
Amygdala - Right 68.24% 12.05% 64.9% 60.9% 66.86% 84.9% 88.52%
Cerebellum White Matter - Left 78.27% 66.65% 79.82% 75.83% 82.22% 93.3% 94.43%
Cerebellum White Matter - Right 79.48% 60.6% 80.47% 76.07% 82.7% 93.5% 94.67%
Hippocampus - Left 79.16% 49.84% 79.96% 76.89% 82.62% 89.1% 92.82%
Hippocampus - Right 79.36% 54.35% 81.53% 77.62% 83.42% 89.9% 93.29%
Pallidum - Left 74.49% 48.18% 77.75% 71.06% 81.07% 83.5% 89.03%
Pallidum - Right 76.73% 24.17% 79.17% 73.23% 80.9% 85.2% 90.89%
Putamen - Left 86.52% 64.24% 87.78% 82.92% 89.31% 89.9% 92%
Putamen - Right 86.28% 61.37% 88.3% 81.08% 89.18% 90.1% 91.51%
Thalamus - Left 86.48% 73.84% 87.85% 85.59% 87.42% 93.2% 90.03%
Thalamus - Right 87.3% 73.16% 88.53% 85.93% 88.52% 94% 90.24%

TABLE III: The comparison results of FLBS with state-of-the-art methods for transfer learning on CoRR-BNU1 dataset.
The segmentation results are reported in terms of average Dice coefficients for each structure. The results of other methods
were adapted from [15], which were compared based on similar experimental settings.

Structure SAU-Net [15] U-Net [1] U-Net++ [16] FastSurfer [17] QuickNAT [18] FLBS
Hippocampus - Left 88.06% 88.73% 88.14% 88.25% 85.81% 91.83%
Hippocampus - Right 87.58% 88.41% 87.24% 87.13% 84.44% 88.97%
Amygdala - Left 83.89% 81.19% 81.78% 82.41% 75.89% 85.88%
Amygdala - Right 84.38% 83.62% 80.55% 82.04% 71.18% 85.38%
Putamen - Left 89.32% 89.75% 88.35% 89.35% 87.48% 85.12%
Putamen - Right 90.04% 88.67% 90.3% 90.38% 87.75% 87.92%
Pallidum - Left 83.95% 85.17% 76.06% 82.04% 75.81% 83.8%
Pallidum - Right 87.68% 88.81% 86.18% 87.15% 80.78% 85.42%
Thalamus - Left 92.78% 92.02% 91.96% 91.68% 87.65% 87.96 %
Thalamus - Right 92.78% 92.72% 92.75% 91.68% 87.61% 87.84%

corresponding nnU-Net. Training on the extracted patches
allows the networks to focus on its sub-task and learn the
fine details of segmentation rather than both localization and
segmentation. In the training stage, a combination of Dice
and cross-entropy loss is computed at the final layer as the
loss to back-propagate into all layers for weight adjustment.
Hence, the loss function is defined as

L = LDice + LCE . (1)

Having K classes and I pixels, Dice loss is obtained from

LDice = −2|K|
∑
k∈K

∑
i∈I

uk
i v

k
i

∑
i∈I

uk
i +

∑
i∈I

vki , (2)

where u is the softmax output of the network and v is the
one hot encoding of the ground truth map.

The cross-entropy loss is calculated using

LCE = −
∑
k∈K

∑
i∈I

vki log u
k
i + ((1− vki ) log(1− uk

i )) (3)

In the prediction stage, boxes obtained from all networks
are merged into a single 3D matrix. The final fusion and
transformation are conducted in the post-processing stage.
Since segmentation of the structures is independent in this
step, this task is parallelizable to reduce the execution time
significantly.

The segmentation core uses nnU-Net library which imple-
mented in PyTorch and is publicly available. The segmenta-
tion networks were trained using L loss function and Adam
optimizer for 1000 iterations. Other optimization parameters
are similar to the default in the used nnU-Net library.

C. Post-processing

The post-processing procedure fuses the predicted labels
for all structures into one 3D matrix. The conflicting regions
are divided between contributing structures using a morpho-
logical procedure. At first, the borders of the overlapping
area are identified. The interior is then filled layer by layer by
convolving a 5-by-5-by-5 window on the overlapping region.
This process is done for each structure that contributes to
the creation of the common area in turn. The morpholog-
ical process is finished when no unlabeled voxel remains.
After reattaching all patches and correcting the overlapping
areas, it is transformed to the initial space using NiftyReg
algorithm.

III. EXPERIMENTAL RESULTS

We evaluated the framework on two benchmark MRI
datasets: OASIS-3 [20] and CoRR-BNU1 [21] datasets. The
information of these two datasets is summarized in table I.
The accuracies are reported based on the Dice coefficient
(eq. 2). The first experiment was conducted on the OASIS-3
dataset, containing T1w MR images with the segmentation
maps, where the first 126 samples and the successive 20
samples comprise the training and testing set, respectively.
The obtained structure-specific accuracies on the OASIS-3
dataset are reported separately and compared with state-
of-the-art methods on this dataset in table II. As shown,
FLBS outperforms all of the other methods on the OASIS-3
dataset. In the second experiment, we also tested the trained
framework on OASIS-3 for segmentation of MRI images



TABLE IV: Comparison of mean average time for thee struc-
ture segmentation on CoRR-BNU1 dataset. The inference
time consumption is computed by averaging the mean time
for each structure. The methods were executed on a GTX
1080Ti GPU. The minimum requirement of memory sizes
during inference phase are also reported. The runtime of
freesurfer was adapted from [15] based on running on CPU

Method runtime min. required memory size
SAU-Net 3.6 s 11 GB
QuickNAT 3.08 s 8 GB
FreeSurfer 3.2 m -
SLANT 9.28 s 11 GB
FastSurfer 2.67 s 11 GB
FLBS 2.72 s 4 GB

in the CoRR-BNU1 [21] dataset. One of the limitations in
current methods is the lack of good generalizability of the
trained models on other unseen datasets. Table III presents
the class-specific Dice coefficients in the case of transfer
learning on another unseen dataset. This table shows that our
trained framework on OASIS-3 is transferable with compara-
ble accuracies on CoRR-BNU1. Moreover, figure 2 illustrates
the segmentation outputs of FLBS for Hippocampus and
Cerebellum White Matter.

The runtime comparison between the state-of-the-art meth-
ods and ours based on GPU hardware is provided in table
IV. The inference runtime is calculated by averaging the
mean computation time for each structure. However, the
minimum requirements of memory size do not necessarily
show the exact ones, since we did not monitor exact memory
usages in these cases. We tested the models on GTX 1050Ti,
1080, and 1080Ti, respectively and reported the memory size
corresponding to the weakest GPU which can run the model.
Table IV shows that despite the sequential computation of
FLBS, our time consumption is comparable to state-of-
the-art methods. However, the memory requirement of our
framework is significantly less than the other methods, while
ouvrs is runnable on a budget GPU, e.g., GeForce GTX
1050Ti, compared methods needs to high-performance and
expensive GPUs. By accurately monitoring the training and
inference phase, we found that FLBS occupies a maximum of
only 6 GB of RAM while training and 2.7 GB while testing.
Its running time is also about 9 seconds on GTX1050Ti
which shows feasibility of our solution in terms of time
consumption.

IV. DISCUSSION

Structural brain segmentation is one of the essential steps
in diagnosing neurological disorders. Current methods for
automating this task need high GPU memories or signif-
icant time on the CPU. These challenges limit clinical
use, especially in low-income and highly populated regions
(our local challenges). We addressed these challenges and
developed a memory-efficient deep brain MRI segmentation
tool that is runnable on a budget GPU for a few seconds but
achieves high accuracy comparable with state-of-the-arts.The
advantages were achieved since we reduced the simultaneous

localization and fine segmentation in multi-structure brain
segmentation into only the structure segmentation. It was
implemented by limiting the input MRI volume to the
estimated surrounding of the structure and reducing multi-
label into the fusion of single-label segmentations. Better
accuracies on OASIS-3 and good generalizations in the case
of transfer learning on CoRR-BNU1 may confirm that the
presented framework is a reliable choice for clinical use.
However, ensuring its generalizations on different datasets
and different imaging devices without retraining requires
further evaluations. We plan to release the framework as a
part of a free clinical brain imaging analysis tool.
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