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Chapter 1 

General introduction  
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Survival analysis in medical research 

Survival analysis denotes the statistical modelling and analysis of the expected 

duration of time until a pre-specified event. This event could be anything, such as the 

occurrence of heart failure (HF) or death from HF in medical research. Analysis of 

survival (time-to-event) data has some special properties. First, time to event is 

always positive and its distribution is often skewed. For example, in a study to predict 

mortality for acute HF patients, mortality was much higher in the first year than in 

the subsequent follow-up(1). Second, follow-up information is often incomplete. The 

most common type of incomplete data is called right censoring and occurs when a 

subject drops out before the study ends or when a subject is event-free at the end of 

the study. For example, in the same study mentioned above, patients may stop 

participating in the study before they experience the event of interest or they may be 

still alive at the end of the study. In these cases, we only observe a lower bound for 

the survival time rather than the exact event time. Right censoring is common in 

medical research, where in most cases one cannot wait until the last participant 

experiences the event and drop-outs are regularly experienced.         

One of the most frequently used approaches in survival analysis is the Kaplan-

Meier estimator(2) and a plot of the Kaplan-Meier estimator is very informative to 

explore the survival of a population as a whole or to compare the survival of two or 

more groups. However, the Kaplan-Meier method is less useful in exploring the 

association of continuous variables with survival. It may be also difficult to analyze 
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several variables simultaneously. Another widely used approach is the Cox 

proportional hazards (PH) model, which is usually used in cohort studies to relate the 

rate of event occurrence with covariates. While the Cox PH model is a versatile 

model that is applicable in a wide range of cases, it does rely on certain statistical 

assumptions that are sometimes violated. Violation of the assumptions of the Cox 

model will lead to biased estimates of a subject’s absolute event risk, thus hampering 

clinical decision making that is based on these predicted event risks.  

For example, in the Rotterdam study, Wolbers et al. found that the standard Cox 

model overestimated the 10-year risk of coronary heart disease in older women(3). 

They attributed this overestimation to the increased occurrence of death in this 

elderly population, which are treated as censored observations in the standard Cox 

model rather than as competing events that preclude the event of interest (coronary 

heart disease) from occurring. Another setting in which the standard Cox model 

results in biased estimates is when the time-to-event data are clustered(4). Such data 

arise when each study participant can potentially experience several events (e.g., 

multiple infections after hospitalization) or when there exists some natural or 

artificial clustering of subjects (e.g., multiple teeth in subjects or individual 

participant data from multiple studies). For example,  when trying to construct a 

prediction model using multiple data sources, it is inappropriate to ignore the 

dependence among study participants from the same study and simply analyze 

individual participant data from multiple studies as if they all came from a single 
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study(5). Finally, the standard Cox model treats all covariates that are included in the 

analysis as time-fixed, meaning that the values of covariates that change over time, 

such as kidney function, are not updated. While this is not an issue for covariates that 

are naturally time fixed, such as gender, keeping the values of time-varying 

covariates fixed at their baseline values has shown to result in an underestimation of 

the effect of that covariate on the time to occurrence of the event of interest, such as 

the onset of cardiovascular disease (CVD).  

Advanced statistical approaches that aim to improve the predictive accuracy of 

clinical prediction models for time-to-event outcomes are well established in the 

medical statistical literature. However, those approaches are less frequently or 

incorrectly applied in the clinical literature. This thesis contributes toward bridging 

the gap between statistical and clinical research by using a series of clinical case 

studies to illustrate how sophisticated statistical models can be appropriately applied 

to obtain better predictions. Furthermore, this thesis contributes towards the medical 

statistical literature by empirically comparing the predictive performance of different 

dynamic risk prediction approaches. 

 

Etiology versus prediction studies  

In medical research, it is crucial to distinguish prediction studies from etiological 

studies since they involve different research questions. In etiological studies, the aim 

is to understand a certain pathway of disease, while in prediction studies the aim is 
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to predict a disease or disease prognosis as accurately as possible(6). As they do share 

some common methodology, they are frequently confused and poorly reported(7–

10). For example, Lim et al. aimed to determine the impact of vascular disease burden 

on long-term transplantation and patient survival after kidney transplantation(11). 

This should have been an etiological study. However, the confounders selected in 

this study were based on p-values (predictive ability) in univariable analyses, which 

is an approach to select predictors in a prediction study. On the contrary, in another 

prediction study(12) aimed at developing a risk score to predict 5-, 10-, and 20-year 

individual dementia risk in older individuals, the authors gave a causal interpretation 

of the predictors included in the risk score by stating that “this risk estimate system 

helps individuals to identify their potential risk profile, and prevent or delay the 

future incidence of dementia”.  

In etiological studies, causality is usually of main interest. The gold standard for 

estimating causal effects is the randomized controlled trial (RCT) since a well-

conducted RCT allows for a causal interpretation of the estimated treatment effect. 

In observational studies, causal relations are also estimable provided that certain non-

observed confounding assumptions are being met(13,14). In prediction studies, the 

goal is to estimate individual’s absolute risk of experiencing an event of interest using 

a combination of predictors(15). Candidate predictors included in these multivariable 

regression models are potentially associated with, but not necessarily causally related 

to, the outcome. Estimates of the strength of association between a predictor and the 
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outcome, such as an odds ratio, risk ratio, or hazard ratio, therefore have no direct 

implication in prediction studies. Instead, model accuracy is assessed in terms of 

measures related to discrimination (i.e., the ability to distinguish between subjects 

who have the outcome of interest and those who do not) and calibration (i.e., how 

well the predicted probability from the model agree with the observed outcome 

frequencies in the data) and these measures are again of little interest in etiological 

studies.  

For a more detailed comparison between etiological and prediction research, we 

refer to Ramspek and his colleagues’ scoping review(10). We primarily focus on 

prediction research in this thesis.  

 

Static versus dynamic prediction 

In this thesis, clinical prediction models are divided into two categories: static 

prediction models and dynamic prediction models. Static prediction models involve 

using a set of time-fixed predictors to estimate event risk (often termed overall 

survival) within a specific time period(16). Predictors’ values at or before baseline 

are used and assumed to be constant across the follow-up. While prognostications 

are generally accurate at baseline, they tend to lose value for patients who have 

already survived for some time. In such situations, more accurate predictions can be 

optioned by updating the prognosis in response to changes in the clinical status of 

those patients(17,18). This is the domain of dynamic prediction.  
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One key feature differentiating dynamic prediction from static prediction is that 

the former usually involves time-dependent variables. There are two different types 

of time-dependent variables: internal time-dependent variables and external time-

dependent variables(19). An external variable is one that is not directly related to the 

event process. For example, the level of air pollution is an external time-dependent 

variable when studying its association with asthma attacks. An internal variable is a 

value over time generated by the individual under study. Examples would include all 

the biomarkers such as blood pressures measured over the course of the study. The 

distinction between two types of time-dependent variable is helpful in choosing 

correct models in dynamic prediction. For example, the commonly used time-

dependent Cox model (TDCM)(20) cannot properly handle internal variables 

because it assumes that the future measurements are independent of subjects’ 

survival. In this thesis, we focus on dynamic prediction based on internal time-

dependent variables.  

 

Contemporary issues in static prediction 

Researchers may encounter various challenges when developing and evaluating 

static prediction models(21). In this thesis, we focus on two common issues: 

between-study heterogeneity and competing risks. 

Between-study heterogeneity inevitably exists when studies are brought together 

in a systematic review. When constructing a clinical prediction model by 
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synthesizing the evidence from multiple data sources, differences in study design, 

case-mix (i.e., different distributions of patient characteristics across studies), and 

follow-up period are all possible sources of variability that need to be accounted for 

in the estimation of the baseline risk and/or the specification of the predictor 

effects(22)(23). Previous methodological research has described and proposed 

several approaches for assessing and addressing heterogeneity in prediction 

models(22). These approaches have been applied in various fields including, but not 

limited to superficial bladder cancer(24), traumatic brain injury(25) and pulmonary 

embolism(26). However, they have not yet been applied in heart failure (HF), which 

is a heterogeneous syndrome from both an etiological and pathophysiologic 

standpoint(27). Chapter 2 describes the development and validation of a prognostic 

model for predicting one-year all-cause mortality in patients hospitalized because of 

acute heart failure (HF) though an individual participant data (IPD) meta-analysis of 

four European acute HF cohorts.  

Competing risks refer to one or more events whose occurrence preclude the event 

of interest (primary event) from happening. For example, when incident HF is the 

primary event, death acts as a competing risk as it precludes the new onset of HF 

from occurring. The issue of competing risks in clinical studies is prevalent. Austin 

and Fine reviewed how competing risks were addressed in RCTs published in four 

leading medical journals(28) and the results were rather alarming: 77.5% of RCTs 

with a survival outcome were potentially susceptible to competing risks, but only 
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16.1% of those studies properly addressed the competing risks. A similar conclusion 

was drawn by Koller et al. in their critical appraisal of 50 studies published in high-

impact medical journals(29).  

Since competing risks are typically informative, i.e., it will change the probability 

of event of interest, the key feature of the analysis of a time-to-event outcome in the 

presence of a  competing risk is that the one-to-one relationship between hazard 

function and survival function (also referred to as the relationship between rate and 

risk in some studies(30,31)) is lost. In such situations, the standard Cox model, by 

treating competing events as censored observations, results in biased estimates of the 

absolute event risks(32,33). Although there is growing awareness of the impact of 

competing risks when developing prediction models, especially in cardiology(34–

36) and nephrology(37–39), techniques for addressing competing risks (modeling of 

the cause-specific hazard functions and modeling of the subdistribution hazard 

function) are still not well understood and results are often poorly reported(33). 

Chapter 3 describes the use of the Fine-Gray model to address the competing risk 

issue in the development of a prognostic model for predicting in-hospital mortality 

in COVID-19 patients. 

 

Contemporary issues in dynamic prediction 

As we introduced earlier, the defining feature of dynamic prediction is that 

predictions are updated in response to changes in the disease status of the patient. 
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Compared to assuming that all predictors remain constant across the follow-up as in 

static prediction, dynamic prediction is statistically more demanding as it requires 

modeling of the change in the (distribution of the) predictor variable over the time 

horizon of the prediction model. That is to say, dynamic prediction requires 

knowledge of the predictor’s values at future time points. For example, if one is 

interested in using dynamic prediction to estimate a patient’s 5-year probability of 

developing CVD based on time-varying systolic blood pressure (SBP) values, these 

SBP values need to be known 5 years forward.  

One way to obtain the future value of a predictor is to explicitly model the 

trajectory of that predictor. This is the approach taken in the shared random effects 

model (SREM)(40), which is a standard model for the joint modelling of longitudinal 

and survival data. In the SREM, a linear mixed effects model is used to model the 

trajectory of the predictor variable while the association between the present value 

of that predictor and the risk of experiencing the event of interest is modeled using a 

parametric or semi-parametric (Cox-like) survival model. While the SREM is 

extensively researched in the medical statistics field, it is still less frequently applied 

in the clinical field. Chapter 4 introduces the SREM and stresses its advantages over 

the commonly used TDCM through an illustrative case study in respiratory medicine. 

An alternative approach to jointly model longitudinal and survival data is the 

hidden Markov model (HMM)(41). The HMM assumes that a patient’s prognosis 

depends on the underlying state of the disease, which cannot be directly observed 
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(i.e., is latent). The observed longitudinal data are assumed to be realizations from a 

set of probability distributions conditional on these latent states. As such, the 

likelihood of a patient residing in a particular state can be inferred from the available 

longitudinal data, making the HMM a suitable tool for dynamic prediction. The 

HMM is commonly used in areas such as speech and signal processing(42) and has 

also been successfully applied to biological sequences(43). However, the HMM is 

not widely applied to clinical studies. Chapter 5 comprehensively assesses the 

association between CKD stage and the development of HF by fitting a 

misclassification model, an important special case of the HMM(41), to the data from 

the PREVEND study.  

It is natural to think that dynamic prediction models, by including the change of 

some important predictors, can achieve more accurate predictions compared with 

those including baseline predictors only. This has been confirmed in several clinical 

fields including but not limited to diabetes(44), breast cancer(45), and cystic 

fibrosis(46). However, the comparison of the predictive performance of different 

dynamic prediction approaches is less researched. While previous research showed 

that the SREM outperformed more naive approaches such as landmarking(47,48), it 

is unclear how the HMM, a less frequently applied approach in dynamic prediction, 

performs compared to the SREM. In Chapter 6, the predictive performance of the 

SREM and the HMM are empirically evaluated in the context of dynamically 
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predicting mortality in patients with acute HF based on serial NT-proBNP 

measurements.  
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