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» CDA47-SIRPa blocking has met with several challenges in clinical application
including lack of therapeutic effect and toxicity.

* Novel (bispecific) formats can increase tumor-selectivity and reduced toxicity
of CD47-SIRPa-based immunotherapy:.
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* Combination strategies improve efficacy of CD47-SIRPa-based immunother-

apy.
* Increasinginsight into the mechanism-of-action, including the role of adaptive

immunity and timing can bring further advances in clinical application.
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Abstract

Background: The CD47-signal regulatory protein alpha (SIRPx) ‘don’t eat me’
signalling axis is perhaps the most prominent innate immune checkpoint to
date. However, from initial clinical trials, it is evident that monotherapy with
CD47-SIRPa blocking has a limited therapeutic effect at the maximum tolerated
dose. Furthermore, treatment is associated with severe side effects, most notably
anaemia, that are attributable to the ubiquitous expression of CD47. Neverthe-
less, promising clinical responses have been reported upon combination with the
tumour-targeting antibody rituximab or azacytidine, although toxicity issues still
hamper clinical application.

Main body: Here, we discuss the current state of CD47-SIRP« blocking therapy
with a focus on limitations of current strategies, such as depletion of red blood
cells. Subsequently, we focus on innovations designed to overcome these limita-
tions. These include novel antibody formats designed to selectively target CD47
on tumour cells as well as tumour-targeted bispecific antibodies with improved
selectivity. In addition, the rationale and outcome of combinatorial approaches
to improve the therapeutic effect of CD47 blockade are discussed. Such com-
binations include those with tumour-targeted opsonizing antibodies, systemic
therapy, epigenetic drugs, other immunomodulatory T-cell-targeted therapeutics
or dual immunomodulatory CD47 bispecific antibodies.

Conclusion: With these advances in the design of CD47-SIRPa-targeting ther-
apeutic strategies and increasing insight into the mechanism of action of this
innate checkpoint, including the role of adaptive immunity, further advances in
the clinical application of this checkpoint can be anticipated.
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bispecific antibody, CD47, immunotherapy, patient selection, tumour selective
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BACKGROUND

|

Phagocytes are the first line of defence in immunosurveil-
lance and act upon the balance between ‘eat me” and
‘don’t eat me’ signals to decide to phagocytose or not.
Within this balance, the CD47-SIRP« axis has emerged as
a key player. CD47 is a 50 kDa penta-spanning transmem-
brane protein belonging to the immunoglobulin family
that acts as a ‘don’t eat me’ signal.! Upon binding of
CD47 to signal regulatory protein alpha (SIRPa) expressed
on phagocytes, immunoreceptor tyrosine-based inhibitory
motif (ITIM)-mediated inhibitory signalling is initiated
to block phagocytic removal. This signalling axis is, for
instance, pivotal for red blood cell (RBC) homeostasis, with
young RBCs expressing high levels of CD47 and a decrease
in CD47 expression in ageing RBCs enabling effective
removal.’

Many cancers misuse this signalling axis to escape
immunosurveillance by phagocytes.> Correspondingly,
high expression of CD47 is associated with poor prog-
nosis in a range of cancers.*® To overcome escape of
immunosurveillance via CD47-SIRPa signalling, a series of
immunotherapeutics is being evaluated clinically (Table 1).
Fundamentally, they can be separated into strategies that
target and functionally block CD47, using CD47 antibod-
ies or recombinant forms of human SIRPa, and strategies
that target and block SIRPa with SIRPa antibodies or
soluble CD47 (Figure 1, panel 1). These approaches are
analogous but do differ in selectivity as CD47 is expressed
on most if not all cancerous and normal tissues. In con-
trast, the expression of SIRP« is limited to specific innate
cell types, most notably macrophages, monocytes, granu-
locytes, dendritic cells, neutrophils and neurons’ (Figure 1,
panel 2). Immunotherapeutic approaches that block the
CD47-SIRPa signalling axis have yielded promising pre-
clinical activity, with prominent induction of phagocytosis
in various cancer types.® ' In a preclinical setting, CD47-
SIRPa blocking is sufficient to trigger phagocytosis as
a single agent."!' However, single-agent treatment with
CD47-SIRPa blocking therapeutics in patients is associated
with a lack of therapeutic effect at the maximum tolerated
dose (MTD) and significant dose-limiting toxicity (DLT),
most notably anaemia and thrombocytopenia.'?#

In this review, we first provide an overview of the clin-
ical results of CD47-SIRP« therapeutics with a focus on
the limitations encountered, most notably toxicity (for
an overview, see Figure 1). We then review the develop-
ment of various novel monoclonal and bispecific antibody
(bsAb) formats designed to overcome these limitations
and improve the efficacy of CD7-SIRPa targeting. Sub-
sequently, we detail (pre)clinical studies in which CD47
targeting is rationally combined with other therapeutics,

such as opsonizing antibodies, hypomethylating agents or
proteasome inhibitors, in order to shift the phagocytic bal-
ance towards cancer cell removal and achieve synergistic
anticancer activity (Figure 2). Finally, we discuss efforts to
combine activation of immunity upon CD47 blockade with
(re)activation of anticancer T-cell immunity using bsAbs.

2 | LIMITATIONS OF
CD47-SIRPa-TARGETING THERAPEUTICS
ENCOUNTERED IN CLINICAL SETTINGS

In clinical trials with CD47 therapeutics, a diverse spec-
trum and severity of toxicities have been encountered
depending on the antibody used. Specifically, the first
clinical trial with CD47 antibody TI-061, having an IgG4
isotype, was halted after the first inclusion resulted in a
fatality.”® In subsequent clinical trials with magrolimab
(also an IgG4-based CD47 antibody), the major yet man-
ageable side effects in various cancer types were anaemia
and infusion-related reactions that did not lead to an
MTD.!*"® Importantly, the occurrence of anaemia upon
magrolimab treatment was significantly reduced by imple-
mentation of a so-called priming dose of 1 mg/kg followed
by a maintenance dose of 10-30 mg/kg.!”'® However,
the ENHANCE-2 trial in which magrolimab is combined
with venetoclax and azacytidine to treat acute myeloid
leukaemia (AML) and myelodysplastic syndrome (MDS)
recently halted patient inclusion due to unexpected serious
adverse reactions. Moreover, a clinical trial with the IgG4-
based CD47 antibody CC-90002 in relapsed/refractory
AML or high-risk MDS (23/28) was discontinued after
82% of patients developed febrile neutropenia and four
patients developed grade 4 toxicity.'* In this study, treat-
ment with CC-90002 did not yield objective responses.
CC-90002 was also evaluated in non-Hodgkin lymphoma
(NHL) patients in combination with RTX, which was again
associated with significant toxicity, namely, grade 3 or 4
anaemia, neutropenia and thrombocytopenia.* The over-
all response rate (ORR) was (5/37) 13%, and stable disease
(SD) was observed in (9/37) 25% of patients.* Similarly, the
IgG4-based antibody SRF231 triggered grade 4 thrombocy-
topenia, grade 4 amylase and lipase increase and grade 3
fatigue in advanced malignancies.”® These DLTs resulted
in an MTD of 4 mg/kg weekly, with no objective responses.

This difference in the toxicity profile of antibodies
even with the same isotype clearly suggests that anti-
body affinity and/or respective epitope on CD47 may
partly dictate the toxicity of mAb treatment. Nevertheless,
the isotype can also contribute to the toxicity and effi-
cacy of CD47 blocking. For instance, the IgG1 containing
SIRPaFc fusion protein TTI-621 triggered grade 4 transient
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Problem
CD47 is expressed on healthy patients will suffer from treatment
and tumor cells emerged adverse effects

e.g.
anaemia
thrombocythemia

low maximum
tolerated dose

tumor cell RBC/thrombocyte

possible solutions

— ¥ T

SIRPa is expressed
on monocytes, CcDh47

macrophages, directed arm

granulocytes,
4 @

mADb bind specifically to CD47
on tumor cells

dendritic cells, ¢
neurons. -

tumor ﬂ

selective

target
tumor cell RBC/thrombocyte A - tumor cell  RBC/thrombocyte
1. 2. 3
%‘i%miremed %‘g?g:t?:g?:gz%dét)w %Qt SIRPa-directed mAb % Tumor selective CD47 mAb
Legend a CD47 tumor antigen \\ SIRP«a

FIGURE 1 Toxicity observed with CD47-signal regulatory protein alpha (SIRP«) blocking antibodies and strategies to improve them.
CD47 is expressed on healthy and tumour cells, and therefore, targeting CD47 will also result in the loss of healthy cells with CD47 expression,
such as red blood cells (RBCs) and thrombocytes. The thrombocythemia and anaemia that are the result of these ‘off-target’ effects result in a
low maximum tolerated dose in clinical trials, thus limiting the effects on the tumour. To overcome this, three different strategies are
discussed in this review. (1) Novel body formats are designed to target only CD47 expressed on cancer cells. These antibodies are designed to
bind to clustered CD47 only. Another method to prevent binding to RBCs is by designing an antibody that binds to the epitope of CD47 that is
closely located to an N-glycosylated on RBCs and therefore functions as a ‘shield’ for RBCs. (2) Instead of targeting CD47 with CD47
monoclonal antibody (mAb) or recombinant human SIRP« (rhSIRP), it is also possible to target SIRPa on phagocytes, thereby
circumventing the RBCs and thrombocytes. (3) Bispecific antibodies are designed to target CD47 only to tumour cells with a second arm that
binds only to tumour-selective targets
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\ Blockade
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Blockade :
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and inhibit CD47-SIRPa signalling
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\/\ 2Je 0
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(2) epigenetic drugs
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Legend

A CD47 tumor antigen Y

systemic therapy that upregulates “eat me” signals ;.

L)
-4 chloroquine

inhibitory signal for the adaptive immune system

FIGURE 2

Combinatory strategies that improve the therapeutic effect of CD47-signal regulatory protein alpha (SIRPx) blocking.

Currently, five different strategies to improve CD47 blocking therapy are being evaluated. (1) In clinical trials with several different types of

cancer parents, Fc receptor (FcR) crosslinking antibodies that directly target tumour antigens are combined with CD47 blocking. The
combination of CD47 blocking with (5) stimulation of adaptive costimulatory signals or (2) blockade of adaptive ‘don’t eat me’ signals is also a
promising combinatory strategy, as increasing evidence states that the adaptive immune system has a pivotal role in the effect of CD47
blocking therapy. (3) The combination of anthracycline, epigenetic drugs (demethylating agents) and proteasome inhibitors also improved the
therapeutic effect of CD47 blockade. Most likely, this improvement is at least partly caused by upregulation of ‘eat me’ signals on tumour cells
triggering phagocytosis by immune cells. Finally, accumulating evidence points to CD47-SIRPa blocking antibodies triggering not only
phagocytosis but also autophagy of tumour cells and health issues. (4). Combination with autophagy blockers seems to improve the
phagocytic index in non-small cell lung cancer (NSCLC) and glioblastoma in a preclinical setting

thrombocytopenia and had a relatively low (0.2 mg/kg)
MTD." In contrast, the analogous IgG4 containing protein
TTI-622 triggered limited mostly grade 1 or 2 adverse events
(AEs) at doses up to 8 mg/kg.'® At the MTD, TTI-621 only
triggered a 13% ORR upon single treatment of diffuse large
B-cell lymphoma (DLBCL) patients,'? with TTI-622 having

a 20% objective response rate.'” This difference in toxicity
of TTI-621 and TTI-622 is in line with expectations that the
IgG1 Fc tail triggers the FcR-mediated immune response
more than an IgG4 Fc domain.?”

From the above, it is clear that although CD47 tar-
geting can effectively (re)activate anticancer immunity
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off-tumour, yet on-target activity/toxicity is a major con-
cern for CD47-SIRPa blocking that limits therapeutic
applicability. Therefore, the design of novel antibody for-
mats that do not bind or have a reduced binding profile to
RBCs or that have increased selectivity for cancer cells is
of major interest.

3 | STRATEGIES TO REDUCE THE
INTERACTION OF CD47/SIRPx
BLOCKERS WITH RBCS

An important means to improve the therapeutic index
of CD47-SIRPa blocking is to reduce binding or prevent
depletion of young RBCs. Simultaneously, strong bind-
ing to CD47 on cancer cells must be retained. Such an
improved binding profile may be achievable for various
reasons. Firstly, on the membrane of young RBCs, CD47
is localised in a distinct complex with RhAG, protein 4.2,
Band 3 and the cytoskeleton, which prevents CD47 from
clustering.”’ When RBCs age, CD47 can bind to throm-
bospondin (TSP) or TSP-like peptide (4N1K) and thereby
colocalise with gangliosides (a component of lipid rafts)
and clusters. On the surface of tumour cells, CD47 binds
TSP during the whole lifespan,>* creating a distinct bind-
ing profile that may enable ‘untargeting’ of young RBCs.
Furthermore, CD47 can be heavily glycosylated in a cell-
type specific manner, with five potential NXT/S sequences
in its extracellular IgV domain that are potentially mod-
ified by glycosaminoglycans.”® As glycosylation patterns
are often uniquely altered in cancer,”* cancer-specific
glycosylation patterns may be used to selectively target
cancer-expressed CD47.

Prominent examples that such altered binding charac-
teristics can be achieved are next-generation antibodies,
such as Lemzoparlimab, AKI117, IMC-002, AO-176 and
STI-6643 that have reduced binding to RBCs, B cells,
T cells and natural killer (NK) cells.”>?*% Lemzopar-
limab binds to a distinct conformational epitope closely
located to an N-linked CD47 glycosylation site. On RBCs,
this N-linked glycan structure is hypothesised to func-
tion as a ‘shield’ and prevent lemzoparlimab binding
to human RBCs. In line with this, deglycosylation by
peptide-N-glycosidase (PNGase) treatment restored RBC
binding.”’ Of these next-generation antibodies, clinical
results have only been reported for lemzoparlimab and
AK117, with no serious haematological adverse effects
or DLTs observed in lemzoparlimab doses up to 20-
30 mg/kg weekly.?® Treatment with AK117 similarly did
not associate with haematological adverse effects, even
up to 20 mg/kg.*® Moreover, among seven evaluable
relapsed/refractory NHL patients, three had a complete
response (CR), one a partial response and three had SD

when treated with lemzoparlimab in combination with
rituximab.?

In contrast to CD47 antibodies, the recombinant
human (rh)SIRPa-based therapeutic TTI-621 did not
trigger anaemia in clinical studies.'” A hypothesis for
this observation is that rhSIRPa only efficiently binds to
clustered CD47, whereas RBC-expressed CD47 does not
form clusters.’” In support of this hypothesis, clustering
of CD47 on RBCs using a non-competing CD47 antibody
restored the binding of TTI-621 to RBCs.*! In clinical trials,
treatment with TTI-621 and ALX148 (SIRP«a fusion pro-
tein) resulted in thrombocytopenia but not anaemia.'>*
Thrombocytopenia was postulated as an on-target effect
of CD47 blocking together with opsonisation by activating
IgGl, resulting in platelet removal by macrophages.'?

An alternate approach to circumvent RBC toxicity is
the targeting of the ligand SIRPa, of which expression
is restricted to cells of the myeloid lineage. Herewith,
the CD47 ‘antigen sink’ encountered with CD47-targeting
agents is also circumvented,®® as validated in vitro.>*
Most SIRPa mAbs induce antibody-dependent cellular
phagocytosis (ADCP) of cancer cells in combination with
opsonizing antibodies that target tumour antigens. More-
over, novel anti-SIRPa Abs have been developed to block
CD47/SIRP« signalling and simultaneously induce inter-
nalisation of the SIRPa/mAb complex, leading to down-
regulation of phagocyte-expressed SIRPa or prevention
of SIRPx clustering.35 However, whether the blockade of
SIRP«a also impacts on the phagocytosis of other healthy
cells, for example, RBCs, requires further investigation.
Several anti-SIRPa antibodies are in preclinical devel-
opment, while CC-95251 (NCTO03783403) and BI 765063
(NCT03990233) are in early clinical trials. In the first clin-
ical trial with BI 765063, treatment only induced mild
infusion-related AEs and no anaemia or thrombocytope-
nia. Clinical benefit was observed in 21/47 (45%) patients
with advanced solid tumours.>® Thus, circumvention of
anaemia or thrombocytopenia can be accomplished with
various strategies, including the development of CD47
mAbs that bind to a distinct epitope that is not targetable
on RBCs or by targeting SIRPa.

3.1 |
CDh47

Target antigen-directed blocking of

An alternate solution for reducing toxicity and possi-
bly increasing efficacy is the development of bispecific
CD47-targeting antibodies (bsAbs) or bifunctional fusion
proteins comprising SIRPa. In bsAbs, one arm of the
antibody recognises CD47, whereas the other arm recog-
nises a target antigen that can direct the antibody to the
cell of interest. An important feature of bsAbs is higher
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avidity to dual antigen-expressing cells relative to sin-
gle antigen-expressing cells.’’” Depending on the format,
a bsAb will have different pharmacokinetics and effec-
tor functions. For example, a human IgG1 Fc domain can
activate myeloid immune effector cells via Fcy receptors,
whereas an IgG4 Fc domain cannot.*® Various bispecific
approaches to block CD47-SIRPa signalling specifically on
selected cancer cell types have been developed (see Table 2
for overview and Figure 3 for formats being used). Cur-
rently, three such bispecific antibodies that target CD47
to the B-cell antigen CD19 or CD20 are being evalu-
ated in clinical trials (NCT03804996, NCT04853329 and
NCT04853329). Furthermore, bifunctional immunomodu-
latory approaches have been developed to combine CD47
blocking with additional immune-activating therapeutics.
In the next sections, the rationale and development are
discussed.

3.2 | B-cell malignancies

For the selective targeting of CD47 blocking to malig-
nant B cells, both CD19 and CD20 have been exploited as
target antigens. CD19 is expressed on almost all B cells
and has proven to be a good target for the treatment of
relapsed/refractory DLBCL patients with chimeric antigen
receptor (CAR) T-cell therapy.>” CD20 is a B-cell lineage-
specific antigen expressed on the cell surface of most B-cell
lymphomas.*® CD20-targeting antibodies such as RTX
have been broadly integrated into the standard-of-care
for B-cell lymphoma.* The bsAb NI-1701 was designed
for the tumour-selective targeting of CD47 to CD19. The
xA-body format comprises a humanised IgGl Fc heavy
chain, with a x light chain recognising CD47 and a 1 light
chain recognising CD19.4? Notably, the affinity of NI-1701
towards CD19 is higher than that for CD47 (500 nM vs.
0.6 nM). Correspondingly, NI-1701 only detectably bound
to B cells and not to RBCs in whole blood in vitro. NI-
1701 inhibited the growth of Raji tumours in NOD/SCID
mice significantly better than CD47 or RTX single treat-
ment. Moreover, NI-1701 treatment potentiated the effect
of RTX treatment, with 92% inhibition of tumour growth
compared to 72% and 48% for NI-1701 and RTX single
treatment, respectively.*” Another CD47xCD19 kA bsAb
(TG-1801) is humanised IgGl that minimally increases
ADCP upon monotherapy in vitro. Importantly, the CD47
arm, which has a similar affinity to human and cynomol-
gus CD47, did not induce any haematological AEs in
cynomolgus monkeys.* TG-1801 was also evaluated in
combination with umbralisib, a phosphatidylinositol-3-
kinase and CKle inhibitor, and ublituximab, a glycoengi-
neered CD20 mAb.**5 Interestingly, cotreatment with
TG-1801, ublituximab and umbralisib inhibited tumour
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growth by 93% in a Burkitt lymphoma mouse model com-
pared to 76% as a single treatment. Currently, TG-1801 is
being evaluated in a clinical trial (NCT03804996) with this
combination.

CD20-selective inhibition of the CD47-SIRP« interac-
tion was evaluated with several different antibody formats.
For example, we generated a bsAb fragment comprised
of the single-chain variable fragment (scFv) of a CD47
mAD fused to the scFv of RTX. This bi-scFv only blocked
SIRPa binding to CD47 on CD47+/CD20+ double-positive
cell lines and not on CD47 single-positive cell lines. Cor-
respondingly, phagocytosis upon single agent treatment
as well as upon combination with opsonizing antibodies
was detected only for CD47+/CD20+ cell lines and not
for CD47+/CD20- cell lines.*® Another CD20/CD47 bsAb
of the so-called dual-variable-domain immunoglobulin
(DVD-Ig) format also selectively bound to CD20/CD47-
positive cells, even in the presence of a 20-fold excess
of RBCs.*” This bsAb did not outperform a combination
of CD47 mADb and RTX treatment in terms of inhibi-
tion of tumour (Raji) growth in NSG mice, although
the impact of the ‘CD47 antigen sink’ was not evalu-
ated, as the bsAb did not cross-react with mouse CD47.4
A phase I clinical trial with this bsAb is recruiting
(CTR20192612). A third CD20/CD47 bsAb comprises a
CD47 nanobody fused to the C-terminus of RTX.*® This
bsAb selectively interacted with CD20/CD47-positive cells.
Here, macrophage-mediated phagocytosis did not outper-
form single RTX treatment in vitro, but the bsAb did delay
tumour growth of Raji cells significantly better than CD47
or CD20 single block in NOD/Shi-scid/IL-2Rynull(NOG)
mice.*® Of note, in April 2021, a clinical trial with an
analogous approach in which ofatumumab was fused
with rhSIRPa (CPO107/JMT601) started recruiting CD20-
positive lymphoma patients (NCT04853329), although no
preclinical efficacy or safety data have been published yet.
Taken together, the preclinical data with selective target-
ing of CD47 on B cells clearly provide proof-of-concept
for B-cell-restricted checkpoint inhibition, and results on
safety and efficacy in patients are expected in the near
future.

3.3 | Acute myeloid leukaemia

To direct CD47-mediated blocking towards AML, the
antigen CD33 (siglec-3) has been exploited. CD33 is a
transmembrane receptor expressed on cells of the myeloid
lineage that is overexpressed on blasts of ~90% of AML
patients.*” Both CD33-targeting antibody drug conju-
gates and bispecific antibodies were reported to have
high affinity for leukaemic blast cells in clinical trials
in relapsed AML.°%>! A CD47 bsAb comprised of CD33
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FIGURE 3

O V| tumor target antigen
. Vy tumor target antigen

‘_“ Extracellular domain SIRPa

Different bifunctional CD47-targeting antibodies (bispecific antibodies, bsAbs) and fusion proteins compromising signal

regulatory protein alpha (SIRPa). (A) A normal monoclonal antibody (mAb) demonstrating the different regions used in bifunctional
proteins. (B) Kappa/lambda bsAb compromised of a kappa and lambda light chain and are fused by a common heavy chain with an active
IgG1 domain. (C) Di-single-chain variable fragment (di-ScFv) is compromised of the variable regions of RTX and CD47 mAb fused with a
linker. (D) The dual-variable-fragment domain is compromised of a full antibody fused to the variable region of a CD47- or SIRPa-directed
antibody. (E) A full RTX antibody is fused to a CD47-directed nanobody (a single-domain antibody fragment derived from a naturally
occurring heavy-chain IgG antibody). (F) A bispecific trap antibody that is comprised of a human epithelial growth factor receptor 2
(HER2)-directed full antibody and the variable domain of the extracellular domain (ED) of SIRPa. (G) A fusion protein comprising the full
CD123 antibody fused to the ED of SIRPa. (H) A fusion protein compromised of the Vy; V. of an epidermal growth factor receptor (EGFR)
antibody fused to the ED of SIRP« using the knobs-into-holes technique. (I) A fusion protein compromised of Vy; V; of a CD47 mAb fused
with a programmed cell death ligand 1 (PD-L1) mAb that consists of an Fc domain with two V7. (J) A homotrimeric fusion protein
compromised of the ED of 4-1BBL and three EDs of SIRPa. (K) An Fc-linked fusion protein compromised of the ED of SIRP« that is linked
through an inactive IgG4 Fc domain with the ligand of CD40. DVD-Ig, dual-variable domain immunoglobulin; MSLN, mesothelin; Vy,
variable domain of the heavy chain; V;, variable domain of the light chain

mAb gemtuzumab and CD47 mAb 11al called HMBD004
inhibited CD47-SIRP« binding, thereby improving phago-
cytosis of HL60 AML cells and extending survival in a
murine xenograft model. Moreover, HMBDO004 preferen-
tially bound to CD47+/CD33+ cells in a mixed population
with CD47+/CD33- cells as measured by flow cytometry.*’

An analogous approach in which the N-terminal Ig
domain of SIRPx was fused to the variable light chain of
a CD33-targeting IgG1 antibody selectively triggered 70%
phagocytosis on the CD33-positive cell line MOLM-13 com-
pared to 55% by CD33 mAD alone at a concentration of
10 nM. >
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Another AML target being evaluated in the context of
CD47 bsAbs is CD123 (interleukin-3 receptor a). CD123
is expressed on AML blasts and AML stem cells, with
only moderate expression on normal haematopoietic stem
cells.”® To exploit CD123 for AML-selective CD47 block-
ing, the extracellular domain of SIRPx was fused to a
CDI123 antibody.>* This therapeutic, termed CD123xSIRPq,
opsonised the AML cell line MOLM-13 and augmented
antibody-directed cellular cytotoxicity (ADCC) compared
to CD123 mAb (Half maximal effective concentration
10.1 pM vs. 38.5 pM). Furthermore, treatment strongly
increased phagocytosis of primary patient-derived AML
cells by autologous macrophages compared to CDI123
mADb (90% vs. 20%, respectively). Of note, CD123xSIRPx
preferentially bound to MOLM-13 cells in the presence
of a 20-fold excess of RBCs, highlighting a preferred
binding profile that may be associated with low toxic-
ity in humans. Taken together, clear preclinical evidence
for AML-restricted CD47 checkpoint inhibition has been
generated for both CD33- and CD123-based targeting. Par-
ticularly in view of the DLT of ubiquitous CD47 blocking
in AML and MDS, the clinical safety and efficacy of these
therapeutics is of clear interest in order to (re)position
CD47 blocking for AML.

3.4 | Solid tumours
CD47 bsAbs have also been developed for several types of
solid cancer, including the targeting of mesothelin (MSLN)
using a CD47 bsAb of xy-body format.>> MSLN is a cell
surface glycoprotein overexpressed in mesothelioma, gas-
tric, lung, pancreatic, biliary and ovarian carcinoma, as
well as childhood AML with limited expression on healthy
tissue.® The MSLNxCD47 bsAb augmented phagocyto-
sis of the cell lines NCI-N87 (30% vs. 50%), HPAC (45%
vs. 60%) and OVCAR3 (20% vs. 55%) compared to treat-
ment with parental MSLN mAb.>> Compared to MSLN
mAb treatment, another MSLNxCD47 bsAb with a high-
affinity MSLN sequence yielded a 4.3-fold increase in
phagocytosis.”” Of note, (Fab)’2 fragments of this bispecific
also enhanced phagocytosis in combination with an MSLN
mADb binding to a different epitope of MSLN compared
to MSLN mAb alone, thereby clearly demonstrating the
added benefit of blocking CD47 on ADCP in this model.”’
Another target that is being evaluated for tumour-
directed CD47 blocking is CD70, with CD70 antibodies
themselves already being pursued for the treatment of
solid cancers.*>>® A bsAb combining the variable domain
of the CD70 antibody vorsetuzumab with the variable
domain of SIRPa-targeting antibody KWAR23 induced
more macrophage-mediated phagocytosis in four out of
four renal carcinoma cell lines compared to treatment with

SIRPa-Fc.** Moreover, treatment of xenografted Burkitt
lymphoma cell line Raji with the bsAb strongly inhibited
tumour growth in Rag2-/-IL2rg-/-FSIRP« knock in (SRG)
mice, although the treatment effect was similar to the
combination of vorsetuzumab and SIRPa mAb.*

Finally, the well-known carcinoma markers epider-
mal growth factor receptor (EGFR) and human epider-
mal growth factor receptor 2 (Her-2) have also been
exploited for targeting CD47 therapy. EGFR is a transmem-
brane receptor tyrosine kinase that promotes tumour cell
proliferation, angiogenesis and invasion.”® EGFR block-
ing antibodies have been successfully implemented for
the treatment of various types of carcinoma, including
breast cancer, renal cell carcinoma, non-small cell lung
cancer (NSCLC) and others.°® Using knobs-into-holes
technology, an EGFR mAb was genetically fused to a
rhSIRP« variant that was mutated to have higher binding
affinity for CD47 than native rhSIRPa.®’ In an ELISA-
type assay, the bsAb simultaneously bound to EGFR
and CD47. Functionally, EGFRxrhSIRPa increased the
phagocytic index of macrophage-mediated phagocytosis
of A341 compared to SIRPa-Fc single (37% vs. 32%) of
xenografted NOD/SCID mice in an ex vivo experimen-
tal set-up. Moreover, EGFRxSIRP« significantly delayed
tumour growth of EGFR-positive A431 cells compared to
treatment with EGFR mAbD or rhSIRPa. Of note, the engi-
neered SIRPa-Fc cross-reacted with CD47 of NOD/SCID
mice, thus allowing evaluation of CD47-related RBC
toxicity.®” Importantly, EGFRxSIRP« treatment did not
impact RBC count, whereas SIRPa-Fc did reduce RBC
count. Another bsAb-based approach, CD47xEGFR-IgGl,
enhanced EGFR-directed phagocytosis of cancer cells and
promoted cross-presentation of antigens to engage the
adaptive immune system.®® Finally, although no preclin-
ical data have been published, a HER2-SIRPa bispecific
mADb-Trap antibody is being evaluated in a clinical trial
for Her2+ cancer patients (NCT05076591) (Figure 3). It
has been shown that the combination of trastuzumab and
magrolimab overcomes resistance to trastuzumab single
treatment and improves phagocytosis in vitro,** provid-
ing a clear rationale for this bsAb. Taken together, the
tumour antigens MSLN, CD70, EGFR and HER2 are
being exploited as targets for target-selective CD47 block-
ade for solid cancer with preclinical proof-of-concept for
enhanced selectivity and activity.

3.5 | Challenges in tumour-targeted
bispecific antibody-based CD47 therapy

Although all the above-described bispecific antibodies
and fusion proteins have in vitro therapeutic effects
and reduced activity towards RBCs, a challenge of these
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tumour antigen-directed approaches is that most of these
targets are not truly tumour-specific but merely overex-
pressed in cancer. Thus, such bispecific antibodies will
also target healthy target antigen-expressing cell types with
high avidity, such as healthy epithelial cells upon EGFR
targeting or cardiomyocytes upon Her2 targeting. This
might thus unmask additional toxicity issues not previ-
ously encountered with CD47-based therapeutics. Further-
more, targeting CD47 to a particular tumour-associated
antigen carries an inherent risk in often heterogenous
cancers. For example, in AML, several leukaemic clones
can coexist within one patient, with distinct membrane
receptor-expression profiles.®> Furthermore, therapy can
change clonality and drive resistance to targeted ther-
apy. Overcoming such heterogeneity in cancer using a
CD47-based bsAb might be achieved by use of an anti-
tag approach, such as targeting of biotin or the fluorescein
isothiocyanate (FITC) label, as previously demonstrated
by us for targeted activation of tumour necrosis factor
receptor (TNFR) superfamily signalling.®®

4 | DESIGN OF CD47-SIRPax BLOCKING
IN COMBINATION WITH OTHER
THERAPEUTIC STRATEGIES

In addition to the development of novel CD47-directed
tumour-targeted immunotherapeutics, the implementa-
tion of CD47 blocking in combinatorial therapeutic strate-
gies is of particular appeal. Indeed, this appeal is evident
from the clinical results upon combined treatment with
CD47 antibody and RTX in B-cell lymphoma and the com-
bination of CD47 blocking with azacytidine in AML and
MDS.% In the next section of this review, we will discuss
the rationale and available data on combinatorial strategies
of CD47 blocking with (1) opsonizing antibodies, (2) sys-
temic therapy and (3) dual innate and adaptive checkpoint
immunotherapy.

4.1 | Combination of CD47-SIRPx
blocking with tumour-selective opsonizing
antibodies

Many of the (pre)clinical studies on CD47-SIRPa block-
ing have employed a combination with a tumour-targeting
therapeutic antibody that opsonises cancer cells and trig-
gers FcR-mediated activation of phagocytes (Figure 2,
panel 1). Most prominent among these is the combination
with RTX, a CD20-directed monoclonal antibody that trig-
gers NK-cell-mediated ADCC and macrophage, monocyte,
neutrophil and dendritic cell-mediated ADCP of CD20-
positive cells.®*® Indeed, in the first published clinical
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trial, the combination of CD47 mAb with RTX triggered
a 40% ORR and 33% CR in DLBCL and 71% ORR and
43% CR in follicular lymphoma.'® These clinical effects are
in agreement with various preclinical studies. For exam-
ple, the combination of the CD47 mAb B6HI12 with RTX
synergistically enhanced phagocytosis of primary NHL
compared to RTX and CD47 single treatment.”’ Further-
more, the combination of the CD47 mAb magrolimab
eliminated disease in three of four Raji-engrafted NSG
mice, whereas monotherapy with either mAb only delayed
tumour growth.”! Similarly, SIRP« mAbs and rhSIRPa
increase phagocytosis of RTX opsonised tumour cells in
vitro and in vivo.*>’? Finally, a macrocyclic peptide D4-2
that binds to SIRPa to competitively block CD47 interac-
tion increased phagocytosis of RTX opsonised lymphoma
cells by bone marrow-derived macrophages (BMDM) by
50%.”° Treatment with D4-2 alone did not trigger phagocy-
tosis. Thus, the combination of CD47 blocking with RTX
is a prominent and effective strategy that warrants further
exploration in clinical trials.

Similarly, the combination of the standard-of-care
Her2-targeting antibody trastuzumab with CD47-SIRP«a
blocking improved breast cancer phagocytosis.”*"”> For
example, the above-described macrocyclic peptide D4-
2 increased phagocytosis of breast cancer by BMDM
by ~10% compared to trastuzumab treatment alone.”
CD47 blocking also augmented the in vitro ADCP of
Her2+ breast cancer cell lines.”* In xenograft mouse stud-
ies where Her2+ breast cancer cells were injected and
treated with trastuzumab and CD47 blocking antibody,
survival time was increased.”*”> Similarly, the combina-
tion of SIRPa mAb KWAR23 with trastuzumab signifi-
cantly increased macrophage phagocytosis of the SK-BR-3
Her2+ breast cancer cell line from 25% to 90%** com-
pared to trastuzumab alone.** Currently, the combination
of trastuzumab and a rhSIRPa-Fc fusion protein (ALX148)
is being evaluated in a phase 1 clinical trial (NCT03013218).

In a similar fashion, the targeting of carcinoma-
expressed EGFR using cetuximab and SIRPa mAb
KWAR?23 significantly enhanced macrophage phagocyto-
sis of colon adenocarcinoma cell-line (DLD-1) from 35% to
90%.33 Furthermore, the combination of cetuximab with
magrolimab has been evaluated preclinically (data not
presented) and, thereafter, evaluated in a phase 1b/2 clini-
cal trial. In this trial, 45% of relapsed or refractory mKRAS
colorectal patients experienced SD, with a median pro-
gression free survival of 1.9 months and a median overall
survival of 10.4 months.!®

Importantly, the outcome of these combinations
depends on the tumour type and the immune microen-
vironment. In this respect, we previously identified that
CD47 expression only impacted survival in a subtype
of DLBCL patients, specifically non-Germinal Centre
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B-cell (GCB) (or activated B cell [ABC] plus unclassified)
DLBCL patients.® Moreover, only non-GCB cell lines
responded to CD47 blocking in vitro. These findings are in
line with the clinical results of magrolimab combination
with RTX in DLBCL patients, where 67% of ABC-DLBCL
patients responded and only 17% of GCB-DLBCL patients
responded.18 Taken together, these two studies indicate
that ABC-DLBCL might benefit more from the combina-
tion of CD47 with RTX, although studies in larger patient
cohorts are required to confirm this hypothesis. Such
differences likely exist for other cancer types, for example,
microsatellite instable (MSI) cancers, with a clear need
to identify optimal combinatorial strategies as well as
predictive biomarkers. The reason(s) underlying such
differential responses to CD47 blocking may be related
to other ‘don’t eat me’ and ‘eat me’ signals in the tumour
microenvironment (TME). For example, CD47 blocking
can be impacted by various other anti-phagocytic signals
(leukocyte immunoglobulin like receptor Bl [LILRB1],”
programmed cell death protein [PD]-1/PD-ligand [L]1777%)
and pro-phagocytic signals such as PS,” calreticulin®’, as
well as signalling lymphocytic activation molecule family
member 7 (SLAMF?7),%! although we previously identified
that SLAMF7 expression was not required for effective
treatment with CD47 blocking in DLBCL." Furthermore,
distinct infiltration patterns of macrophages and other
innate immune cells as well as T cells may dictate the
response.

4.2 | Combining CD47-SIRP« blocking
with systemic therapy

Another strategy being explored for CD47 blocking ther-
apeutics is the combination with chemotherapeutics that
kill rapidly proliferating cancerous cells (Figure 2, panel
3). In the process of dying, a host of ‘eat me’ signals,
including but not limited to phosphatidylserine, calretic-
ulin and HM GBI, are upregulated on the surface of cancer
cells or secreted to drive phagocytic removal of dying
cells.?? Thus, the combination of chemotherapeutic drugs
with CD47 blocking might help further shift the balance
towards phagocytic removal of cancer cells. The added
value of combination treatment of CD47 blocking with
chemotherapy has, for instance, been demonstrated in
different cancer models for the chemotherapeutic drug
doxorubicin.®*%* Combination of doxorubicin with a CD47
mAD in a 4T1 breast cancer model significantly reduced
tumour growth through macrophage-mediated ADCC.%
Secondly, phagocytosis of the osteosarcoma cell line
(MNNG/HOS) by BMDM differentiated into macrophages
was increased by 20% upon treatment with doxorubicin
and CD47 mAb compared to either CD47 mAb or dox-

orubicin treatment alone.%® Thirdly, treatment of MC38
xenografts with doxorubicin 1 day prior to treatment with a
PD-LI-SIRP« fusion protein significantly delayed tumour
growth compared to either monotherapy.®* In all these
studies, the ‘eat me’ signal calreticulin was upregulated
on the cell surface upon doxorubicin treatment, suggest-
ing that a shift in the phagocytic balance can increase
phagocytic removal.

A second class of drugs that have been evaluated in com-
bination with CD47 blocking are epigenetic drugs such
as azacytidine, which inhibit aberrant DNA methylation
that occurs in cancer.?” Similar to chemotherapeutics, aza-
cytidine triggered the upregulation of ‘eat me’ signals.
However, Treg and innate immune infiltration were also
upregulated in a PDAC tumour model, suggesting diverse
mechanisms.*® Treatment with the demethylating agent
azacytidine alone is associated with good clinical out-
come and a 50% ORR in high-risk MDS.?° In an ongoing
phase 1b clinical trial, combination treatment with aza-
cytidine and CD47 mAD increased the ORR in high-risk
MDS patients to 92%, with 12 patients (50%) achieving CR.
Furthermore, in preclinical studies, the combination of
CD47 mADb and azacytidine significantly enhanced phago-
cytic elimination of AML cells by human macrophages
in vitro, enhanced clearance of AML in vivo, and pro-
longed survival compared to single agent treatment.®® In
AML patients, this treatment induced an ORR of 64%,
with nine patients achieving CR (41%).”° Currently, an
expansion cohort is ongoing (NCT03248479).7 Further-
more, the antibodies ALX148 and AK117 are also being
evaluated in combination with azacytidine in clinical trials
(NCT04417517, NCT04900350).

A third class of drugs being tested in combination with
CD47 blocking are proteasome inhibitors, which trigger
cytotoxic elimination of cancer cells. This class of drugs
is used in the treatment of multiple myeloma (MM) and
mantel cell lymphoma (MCL) and is being evaluated for
various other cancer types. Proteasome inhibitors such
as bortezomib, carfilzomib and ixazomib also upregulate
‘eat me’ signals such as galectin 3, galectin 9, HSP90 and
calreticulin. It is therefore not surprising that the combi-
nation of proteasome inhibition and TTI-621 potentiated
phagocytic uptake in vitro and significantly delayed MM
tumour growth compared to single agent treatment in a
mouse model.”" This strategy is being evaluated in clin-
ical trials with relapsed MM patients, where TTI-622 is
being tested in combination with carfilzomib plus dex-
amethasone (NCT03530683) and antibody AO-176 is being
tested in combination with bortezomib/dexamethasone
(NCT04445701).

Interestingly, accumulating evidence points to CD47-
SIRPa blocking antibodies not only triggering phagocy-
tosis but also protecting cells from death by protective
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autophagy.” The induction of protective autophagy upon
CD47 treatment starts with upregulation of LC3, BECNI,
ATGS5 and ATG7, which has a cytoprotective role in malig-
nant cells.”® Indeed, treatment with a CD47 blocking
antibody in NSCLC triggered cytoprotective autophagy.
Subsequent combination of CD47 antibody with the
autophagy inhibitor chloroquine improved macrophage-
mediated phagocytosis of NSCLC cells from 30% (rhSIRPcr)
to 50% (chloroquine + rhSIRPa)** (Figure 2, panel
4). Similarly, thSIRP« treatment of glioblastoma cancer
cells upregulated autophagy markers, such as LC3 and
SQSTMI1. Moreover, combination treatment with rhSIRPx
and chloroquine again significantly enhanced phagocyto-
sis from 30% (rhSIRP«) to 45% (rhSIRPa + chloroquine).
Cotreatment also significantly extended the median sur-
vival of glioblastoma tumour-bearing mice compared to
single rhSIRP« treatment from 38 to 49 days.” Notably,
the anti-glioblastoma effect of disrupting CD47-SIRP« sig-
nalling was at least partly caused by additional CD8+ T
cells, as the effect was diminished by depletion of CD8+
T cells.

For any of the described combinations, the timing and
dosing regimen should be carefully calibrated. In this
respect, when mice were treated with chemotherapeutic
agents (cyclophosphamide and paclitaxel) after CD47 ther-
apy, the CD8+ T-cell response in vivo was abrogated upon
rechallenge of mice with the same tumour cell line. In
contrast, when chemotherapeutics were given 1 day before
CD47 blocking, CD47 not only synergised with chemother-
apy for tumour control but also preserved the host memory
response against relapsing tumours.”® In addition, certain
therapeutics can upregulate CD47 expression, as described
before for chemotherapeutics in triple-negative breast
cancer,”’ but also anti-angiogenic therapy (anti-vascular
endothelial growth factor [VEGF]) in NSCLC.”® Most
likely, CD47 expression is used as an escape mechanism
by tumour cells that remain after chemotherapy. Thus,
the impact and timing of (chemo)therapeutic treatment on
CD47 expression should be monitored, and consequently,
the timing of CD47 blocking could be tailored for optimal
activity in future clinical trials. In this respect, it would also
be of interest to investigate whether such drug-induced
upregulation of CD47 expression correlates with improved
CD47 blocking therapeutic effects.

5 | DUAL TARGETING OF INNATE
(CD47-SIRPax) AND ADAPTIVE
IMMUNITY

The efficacy of CD47 blocking in several mouse models
relied on T-cell and NK-cell responses, with knockout
of these cells negating therapeutic activity.*>°° Moreover,
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in cutaneous T-cell lymphoma, treatment with intratu-
moural rhSIRP« injections triggered expansion of NK and
CD8+ T cells in the TME.?? Similarly, in mice xenografted
with DLD1-cOVA-RFP+ cancer cells and treated with
CD47 blocking mAb, the popliteal lymph nodes contained
more proliferating OT-I T cells in comparison to IgG
treatment. Moreover, these macrophages primed an anti-
tumour CD8+ T-cell response in vivo that protected mice
from rechallenge with the same cancer cell line.”®

Thus, the combination of CD47-SIRPa with further
activation of adaptive T-cell immunity may yield a
more effective strategy to induce durable antitumour
activity'®"7® (Figure 2, panel 2). In this respect, the PD-
1/PD-L1 checkpoint axis for T cells is an interesting
target with proven clinical activity in many cancers (as
reviewed in Ref.%?). In immunocompetent C57BL/6 mice,
xenografted MC38 colon cancer cells treated with PD-L1
mADb and SIRPa-Fc significantly reduced tumour growth
compared to monotherapy.®® Interestingly, in the absence
of CD8+ T cells, the effect of PD-L1 mAb and rhSIRP«x
on tumour growth was completely abrogated.®® Further-
more, whereas in a poorly immunogenic B16F10 syngeneic
melanoma mouse model CD47 blocking did not syner-
gise with the B16F10-specific monoclonal antibody TA99
(anti-TRP-1), combination with PD-L1 blocking did con-
trol tumour growth in vivo and triple combination with
anti-TRP-1 cured a majority of mice (60%).%*

A second combinatorial strategy to reactivate innate
and adaptive immunity that has been evaluated preclini-
cally is the combination of CD47 blocking with cytotoxic
T-lymphocyte associated protein 4 (CTLA-4) blocking
antibodies. CTLA-4 is an important immune checkpoint
on T cells that competes with CD28 for B7-1/2 binding
to competitively inhibit early T-cell activation.'’’ In a
study with oesophageal cell carcinoma, treatment with
CD47 blocking increased the expression of both CTLA-
4 and PD-1.¥ Correspondingly, the combination of CD47
blocking with CTLA-4 mAb significantly inhibited mouse
xenografted tumour growth compared to CD47 single
treatment.'® Similar effects were observed in C57BL/6
mice treated with Panc02 (pancreatic cancer cell line),
where CD47 mAb in combination with CTLA-4 treatment
inhibited tumour growth more profoundly than single
treatment.®® Thus, preclinical evidence provides clear
proof-of-concept for combining PD-1/PD-L1 or CTLA-4
checkpoint inhibition with CD47 blocking.

5.1 | CD47-based therapeutics with dual
immunomodulatory activity

To further exploit this dual immunomodulatory strategy,
bsAbs that target both adaptive and innate immunity have
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been developed (Figure 2, panels 2 and 5). An example of
such dual targeting of innate and T-cell-mediated immu-
nity is an engineered CD47-targeting PD-L1 bsAb (IBI322)
(Figure 3). This bsAb has a 30-fold lower affinity for
CD47 than the parental CD47 mAb. Consequently, IBI322
uptake was increased in PD-L1-CD47-positive tumours and
decreased in blood depot organs compared to the parental
CD47 mAb. IBI322 had a favourable toxicity profile in non-
human primates (NHPs), with much milder adverse effects
on RBCs than in-house generated magrolimab. However,
as the binding affinity of IBI322 to cynomolgus CD47
was not disclosed, potential toxicity concerns in humans
remain unanswered. IBI322 treatment outperformed treat-
ment with a combination of PD-L1 + CD47 mAb in
controlling tumour growth of PDL1TCD47" Raji cells
after injection with human PBMC.!%* Currently, 1BI322
is being evaluated in clinical trials as monotherapy for
solid cancers and haematological diseases (NCT04912466,
NCT04338659, NCT04328831, NCT04795128). The first clin-
ical results were presented on the site of innovent as
20% ORR (according to RECISTv1.1) and 74.1% treatment-
related AE that was mostly grade 1-2 anaemia. HX-009 is
another PD-1/CD47 bispecific approach, in this case com-
prising a PD-1 antibody fused to soluble SIRP«, which is
currently being evaluated in a clinical trial (NCT04097769).
Although preclinical data have not been presented, the
first clinical trial with HX-009 treatment of 21 patients with
solid cancer was associated with manageable grade 1 or 2
toxicity in 46% of patients. Furthermore, of the 18 evalu-
able patients, three experienced a PR and six experienced
SD.lOS

In addition to targeted inhibition of negative signals, the
activation of costimulatory receptors on T cells is of inter-
est. For instance, we have developed a fusion protein com-
prising the extracellular domain of SIRP« fused to soluble
4-1BBL, termed DSP-107.”? The 4-1BBL domain targets T
cells expressing the costimulatory receptor 4-1BB, a well-
established surrogate marker for tumour-reactive T cells,
and triggers the activation of cytotoxic T lymphocytes. Sin-
gle treatment with DSP-107 or in combination with RTX
triggered significant phagocytosis of a panel of DLBCL
cancer cell lines. Moreover, activation of 4-1BB costimula-
tory signalling triggered augmented T-cell cytotoxicity in
vitro in an effector-to-target ratio-dependent manner only
upon CD47-specific binding of DSP-107.!°° DSP-107 is cur-
rently being evaluated in a phase I clinical trial in NSCLC
and advanced solid tumours (NCT04440735). In an analo-
gous approach, the bifunctional fusion protein SL-172154 is
designed to simultaneously inhibit CD47/SIRP« signalling
and activate the costimulatory receptor CD40 on antigen
presenting cells (APCs). CD40 signalling presents a crucial
licensing step for antigen presentation by APCs and sub-
sequent CD8+ and CD4+ T-cell activation. Interestingly,

although macrophages were more potent in the uptake of
cancer cells, the cross-priming of CD8+ T cells mediated
by type I interferon (IFN) largely depends on dendritic
cells.106:107.96 Tn BALB/C mice, murine SIRPa-Fc-CD40L
increased tumour rejection rates and long-term immunity
compared to treatment with CD47 mAb, CD40 agonist
antibody, or the combination of these.'’ Two phase I
clinical trials with SL-172154 are ongoing in patients with
gynaecological cancers (NCT04406623) or squamous cell
carcinoma of the skin and head and neck (NCT04502888).

Thus, T cells play an integral role in the efficacy of CD47
blocking preclinically, and bsAbs that cotarget T cells and
macrophages have good preclinical activity and safety. It
will be important to determine whether and how T cells
are involved in the therapeutic effect of CD47 blocking in
humans, for example, by defining the T-cell receptor reper-
toire after treatment and screening for the frequency of
tumour reactivity within the T-cell population. If T-cell
activation proves important in humans, further combi-
nations tailored towards synergizing innate and adaptive
immunity, such as the DSP107 and SL-172154 fusion pro-
teins described above, may yield significant advances in
therapeutic outcomes.

6 | CONCLUSIONS
In this review, the current state of CD47 blocking
in the clinic and associated limitations, as well as
strategies to overcome those limitations, such as circum-
venting RBC toxicity and increasing the efficacy of CD47-
SIRPa blocking are discussed, including next generations
of monoclonal antibodies and bifunctional therapeutics.
Additionally, the rationale and supporting evidence for
various types of combinatorial strategies that could syner-
gise with CD47 blocking treatment were reviewed.
Although the use of priming and maintenance dose of
magrolimab helped reduce anaemia as observed in the
first clinical trials, the recent halt on the magrolimab
ENHANCE trials in AML/MDS patients highlights the
pivotal need to develop strategies that further mitigate
toxicity in order to unlock the immune (re)activation
potential of CD47-SIRP« therapy. In this respect, circum-
venting toxicity using novel antibody formats that have
been designed to target CD47 on a distinct epitope that
enables a unique RBC sparing property is of particular
promise. The first dose-escalation studies with this type
of antibody, lemzoparlimab and AK117, reached doses of
10 and 20 mg/kg without DLT. In contrast, conventional
therapeutics such as SRF231, TTI-621 and TTI-622 reach
MTDs of 4, 0.2 and 8 mg/kg, respectively. Encouragingly,
lemzoparlimab given at 20-30 mg/kg with RTX triggered
57% ORR in refractory/relapsed NHL patients who were
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heavily pretreated with RTX.* Similar effects were
obtained with the first clinical trial with BI 765063 (SIRPx
mAb), which gave clinical benefit in 45% of the patients
with solid tumours with moderate AEs.*® The combina-
tion of such next-generation antibodies with opsonizing
mAbs such as RTX, cetuximab and trastuzumab holds
clear promise. Similarly, early combination studies of aza-
cytidine and magrolimab gave good clinical responses in
MDS and AML patients. Thus, overcoming the appar-
ent toxicity of this combination with next-generation
mAbs is anticipated to yield superior safety and possibly
efficacy.

The use of bispecific tumour-targeted antibodies is
another promising approach to not only increase tumour-
selective activity but also to reduce possible RBC toxicity.
However, with few exceptions, such as EGFR variant
IIT and under-glycosylated Mucin-1, the tumour targets
in such constructs are not uniquely expressed on can-
cerous cells and are also found on healthy cell types.
Consequently, treatment with such bispecific antibod-
ies may unmask on-target toxicity. Furthermore, under
the selection pressure of treatment, clonal drift may
occur, leading to resistance to targeted therapy and target
antigen-negative relapse.

To push the clinical application of CD47 blockade for-
ward, it will be important to evaluate the impact of
T cells and dendritic cells on the therapeutic effect of
CD47-SIRPa blockade with analyses of T-cell clonality
in the blood and TME of patients. Indeed, since T cells
were required in several murine models for therapeutic
efficacy, further focus on combinatorial innate/adaptive
immune targeting appears warranted. Recently, such a
dual immunomodulatory strategy was evaluated preclin-
ically, where CAR-T cells secrete SIRPa-Fc to enhance
phagocytosis and therapeutic effects of CAR-T cells in
solid tumours.'” Additionally, the timing of CD47 mAb in
combination with chemotherapy impacts the CD8+ T-cell
response in vivo and requires further investigation. More-
over, since the expression of CD47 itself can be modulated
in certain types of cancer upon therapy, this modula-
tion of expression may offer opportunities for optimal
combinatorial therapy design.

In conclusion, although CD47-SIRP« blocking has sev-
eral challenges in clinical application, prominent clin-
ical activity has been observed. Indeed, the advent of
novel monoclonal/bsAb formats and combination strate-
gies point towards the clear potential for increased tumour
selectivity and efficacy and reduced toxicity of CD47-
SIRPa-based immunotherapy.
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