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1Radiofrequency ablation (RFA) is a minimally invasive technique for the treatment of solid 
tumors that can be used for both curative and palliative treatment. Although surgical resection 
remains the standard of care for most solid tumors, it could lead to higher morbidity and 
mortality, particularly in patients that have coexistent comorbidities [1]. Thus, local treatment 
alternatives like RFA, which maximize effectiveness and minimize morbidity, have come forth 
as an alternative for patients who are not surgical candidates and also as an adjunct to surgery 
[1]. It has been clinically accepted for the treatment of many tumor types and tissues including 
primary and secondary malignancies of the liver, kidney, lung, and bone [2].

RFA, temperature, and time

The principle by which RFA destroys tumor tissue is by increasing temperature until irrevers-
ible damage occurs [2]. To generate heat, RFA uses a current in the radiofrequency range 
(460-480 kHz), which by alternating its polarity causes the ions within the target tissue to 
agitate and generate frictional heat [1]. There is a direct link between the temperature and time 
needed to destroy cells through thermal damage. At temperatures up to 41 °C, little long-term 
damage is caused to the target cells, even if maintained for hours [3]. At 46 °C irreversible cell 
damage begins to occur, and exposures of up to 10 mins will cause necrosis of a significant 
population of cells [3]. Between 46-52 °C, microvascular thrombosis, ischemia, and hypoxia 
occur, and the time to kill the target cells is reduced drastically [3]. At temperatures of 60 °C, 
the cell membrane is destroyed almost instantly, and irreversible damage occurs [3]. At tem-
peratures between 40-48 °C, hyperthermia treatments usually sustain the temperature at the 
target site for > 1 hrs. to sensitize the tissues to other modalities such as chemotherapy, whereas 
treatments with temperatures between 60-90 °C are considered as thermal ablation [4]. If 
tissues are exposed to temperatures above 100°C, water starts to evaporate from the tissues, 
affecting the energy deposition of RFA because of the sudden increase in the tissue’s imped-
ance caused by desiccation, and thus temperatures higher than 100 °C should be avoided for 
RFA. Furthermore, the heat distribution is not uniform during RFA, with temperatures near 
the electrodes being highest and decreasing as a function of the distance from the electrode. 
Additionally, a margin of between 0.5-1 cm of ablated healthy tissue is necessary to eliminate 
the risk of residual tumor [5]. Because of all these reasons, it is important to have an adequate 
control of the temperature and duration of the procedure to guarantee the right amount of 
damage to completely destroy the target tumor. 
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There are various types of RFA devices and modes of energy deposition depending on how the 
current is regulated and the shape of the electrode. The most common electrode shape are the 
monopolar needle-like electrodes, with a single active electrode at the end of the probe. These 
are characterized by their ease of insertion, particularly for solid tumors, and a smaller and 
more cylindrically shaped ablation zone compared to the multiprobe electrodes [6]. Multiprobe 
expandable electrodes, with their umbrella-like shape and multiple active electrodes, are used 
mostly for large soft tissue ablations and produce a spherical ablation zone [6]. There are also 
internally cooled electrodes, in which a saline solution circulates inside the electrode to prevent 
overheating of the nearest tissues; and bipolar electrodes, in which two active electrodes are 
placed close to each other to achieve continuous coagulation between them [6]. 

For the regulation of energy, some devices use a constant amount of power, but nowadays 
most devices control the amount of power delivered as a function of the temperature at the 
tip of the electrode or as a function of the tissue’s impedance [6]. For the temperature con-
trol, a thermocouple is placed at the tip of the electrode, and depending on the maximum 
temperature desired (for example, 90 °C), the device would increase or decrease the power 
output as necessary to reach and maintain this temperature for a certain amount of time de-
fined by the interventionalist [6]. Impedance-controlled ablations deliver energy until a rapid 

Figure 1 Example of a computer simulation showing the temperature distribution during RFA of a bone tumor in the 
range of therapeutic hyperthermic temperatures. The electrode can be seen inserted in a bone tumor in the distal femur.
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1increase on the impedance occurs, which happens when there is tissue desiccation, and an 
ablation is deemed successful if the device impedes out [6]. For this thesis, the focus will be 
on temperature-controlled RFA, which is the modality used at the University Medical Center 
Groningen for the treatment of the bone tumors discussed further into the thesis, and because 
it is most commonly used for the treatment of osteoid osteomas (OO) [7].

RFA for the treatment of bone tumors

Because of the many advantages that RFA offers in contrast to some of the most common 
techniques to treat bone tumors, such as surgical resection, there has been a growing interest 
for its use in the treatment of bone tumors, particularly for the treatment of a small benign 
tumor called OO, for which RFA is nowadays suggested as the treatment of choice [7]. Find-
ings suggest it may also be possible to use RFA to treat other (larger) bone tumors such as 
atypical cartilaginous tumors [8], osteoblastoma [9], and chondroblastoma [10]. Additionally, 
it has also been suggested for the treatment of recurrent bone and soft-tissue sarcomas in 
non-surgical candidates [11] and can be used for the treatment of bone metastases such as the 
ones from hepatocellular carcinoma [12]. However, although RFA is becoming more popular 
for the treatment of bone tumors, there is little information regarding the resulting size of the 
ablation zones in bone, and it is not clear if assumptions made for the treatment of other types 
of tumors in other locations (such as liver) are transferable to the treatment of bone tumors 
(especially larger ones) with RFA. Therefore, more studies are needed to understand RFA better 
to guarantee safe and effective ablation zones.

In a study by Lee et al. [13] of RFA in dog femurs, it was demonstrated that MRI was able to 
accurately determine the extent of the ablation zone by comparing the imaging and histological 
results. However, although it is possible to determine the extent of the ablation zone by MRI, 
other studies in RFA of bone have not had a quantitative follow up regarding the size of the 
ablation zone, focusing instead on whether the tumor was destroyed, recurrence rates, and/
or functional outcomes. Although RFA seems promising for the treatment of bone tumors, 
the protocols have not been standardized yet, and therefore it is not clear what the optimal 
configuration may be to guarantee optimal tumor treatment.

Even in the case of OO, for which RFA is the standard treatment of choice, a literature survey 
reveals that interventionalists use different protocols, even for similar types of lesions, with 
variations in target temperature or the duration of the ablation. A temperature-controlled 
mode of 90°C for 6 minutes, as suggested by Rosenthal et al., is the current standard for treat-
ing OO with RFA. [7]. However, ablation times of between 6-15 minutes have been reported 
in multiple studies [14] [15] [16] [17] [18] [19] [20] [21]. Variation can also be observed in the 
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temperature used, ranging from 60-90°C [17] [18] [19] [22] [23]. Generally, shorter ablation 
times and/or lower control temperatures are used when a smaller ablation zone is desired, and 
longer ablation times and/or higher control temperatures are used when a larger ablation zone 
is needed. However, none of the studies did a quantitative analysis of the extension of the 
ablation zones, and thus the magnitude of these changes is not clear. For example, does an RFA 
with a control temperature of 80°C for 6 minutes result in a smaller or larger ablation zone 
than an RFA with a control temperature of 90°C for 4 minutes? Interventionalists often have 
to consider these options in an attempt to deliver the best treatment for each individual case, 
but the answers are not obvious. 

Because the Nidus of an OO can be easily identified on a CT scan, and the OO are located in 
bones, CT guidance has been the standard since the first studies on RFA of OO by Rosenthal 
et al. [24]. It also allows to clearly visualize the position of the electrode inside the patient and 
to place it in the nidus with good accuracy [25]. For this, a small hole is performed with a 
drill in the skin and bone of the patient and then the electrode is manually introduced. The 
electrode is then slowly introduced in an iterative process in which a CT scan is made every 
time the electrode is repositioned until the desired position is reached. In the case of ACTs, CT 
guidance has also been the preferred method, but given the low density of ACTs, the tumor 
boundaries are not always clearly visible, which could affect the accuracy of the electrode’s 
position.

In this thesis the main focus will be on the use of RFA for the treatment of ACTs and to lesser 
extent on OO. 

ACT, also known as chondrosarcoma grade I [26], is a cartilage-forming bone tumor affecting 
mostly the long bones and pelvis that permeates marrow spaces replacing marrow fat and 
bone trabeculae [27]. Because the tumor may evolve to a higher, more aggressive and danger-
ous, grade, complete tumor removal with intralesional curettage followed by local adjuvant 
treatment has been considered the standard treatment of choice [28]. However, these and 
other similar surgical approaches present potential risk of morbidity and complications, such 
as postoperative fractures, infections, and local recurrence [29] [30]. Given the mild nature of 
ACT, the possible problems from the current standard of care may outweigh the benefits, and 
thus minimally invasive techniques like RFA may be a better alternative.

The interest in treating ACT with RFA arose when a supposedly benign lesion of otherwise 
unclear nature was treated by RFA, which turned out to be an ACT on subsequent pathological 
examination [31]. The treatment was successful, and given the many advantages of minimally 
invasive surgery, RFA could be a great alternative for the treatment of ACTs, but still research 
is needed to guarantee safe and effective planning.
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1OO are one of the most common types of bone tumors [7], that while benign, they may cause 
substantial morbidity, particularly due to the remarkable pain they can cause [24]. These lesions 
are round or oval, and measure up to 1.5 cm in diameter [24]. Lesions occurring within joints 
or in trabecular bone may produce little or no sclerotic response, whereas the ones occurring 
in cortical bone are usually surrounded by a dense sclerotic layer [24]. The standard treatment 
used to be surgical excision, but RFA is now the standard of care [32] for its treatment thanks 
to its minimal invasiveness in contrast to surgery. 

Computational modelling of RFA and the finite element 
method

Testing the effect that the procedural parameters may have in the size of the ablation zone in 
actual patients may be dangerous, either leading to undertreatment, and thus leaving residual 
tumor, or to overtreatment and causing unnecessary damage to healthy structures. As a solution 
to this problem, computational simulations have arisen in which models simplify the clinical 
scenario and the physics underlying the generation and propagation of heat. This allows for 
a systematic study of the different parameters and configurations of the procedure without 
having to put the patients at risk of under- or overtreatment. The most popular technique for 
modelling of RFA has been the Finite Element Method [33], in which the physics that rule 
ablation, corresponding to a set of partial differential equations, can be solved using numerical 
methods in a given discretized domain (e.g., an abstraction of the patient’s anatomy).  

Figure 2 CT Images of two intra-operative images of an RFA procedure. Left, RFA of a small OO. Right, RFA of an ACT. 
In both cases, the tumors appear as lower density areas (with a darker color) compared to the surrounding bone whereas 
the electrodes appear as linear high-density structures traversing the tumors.
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In RFA, heat is generated by the interaction between the applied electric current and the tissues 
surrounding it in a process called Joule heating, where the electric energy is converted into 
thermal energy. To calculate the heat source generated by RFA, the tissues can be considered as 
total resistive because in the radiofrequency range biological tissues have no meaningful capaci-
tive losses [34], and a quasi-static approach can then be considered. With this, the electric field 
can be calculated using Laplace equation, and the heat source can be calculated as a function 
of the electric field and the conductivity of each tissue. 

Then, the Heat Equation can be used to know how the heat is transported, but for biological 
tissues the Heat Equation has been modified to account for phenomena such as heat loss due 
to blood perfusion, resulting in Penne’s Bioheat Equation [35].

The heat transfer equation takes into account the density,  (), specific heat,  (), and thermal 
conductivity,  (), as well as the Temperature (K), time (s), the heat generated by RFA,  (), and 
the heat loss due to blood perfusion,  (W /). 

These partial differential equations have no analytical solution and numerical methods such as 
the Finite Element Method have to be utilized to approximate a solution. To solve the equations, 
a domain and boundary conditions have to be properly defined to approximate the solution to 
the prescribed problem with numerical methods. The geometry of the object(s) of interest, or 
the domain, has to be discretized into subdomains, called finite elements, resulting in a system 
of simpler algebraic equations to approximate the solution locally by fitting trial functions 
into the partial differential equations and minimizing the error between the solution and an 
associated error function [36]. Thus, the problem is divided into an assembly of subdomains, 
consisting of a set of equations to the original problem; these equations are then recombined 
into a global system of equations with known solutions that can be calculated from the initial 
values from the original problem [36]. These initial values are set by the boundary conditions, 
where the problem is defined along a certain boundary of the domain. The discretization of the 
domain is implemented by the generation of a mesh, consisting of multiple nodes and facets 
which serve to define the finite elements.

An example of applying the FEM for RFA would be to represent the anatomy of the patient in 
a discretized form with a mesh, where the mesh is divided into subdomains corresponding to 
the different tissues and the electrode itself. Each of these subdomains is given certain param-
eters, like their corresponding density or electrical conductivity, as defined by the tissue we are 
modeling. Then, we define the places where we “know” the exact solution to our equations. For 
example, we can assume that the value of the tissue’s temperature will be the same as the core 
body temperature (approximately 37 °C) far away from the electrode. We also know that the 
grounding pad will be located somewhere far away from the electrode at the outer boundaries 
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1of the domain, defining the value of the electric potential = 0 in that region. Similarly, for the 
electrode, the voltage will be controlled by the algorithm of our implementation and it will 
be a known value. With these assumptions, initial values can be given to the model, and the 
equations can then be approximated and RFA simulated.

It is also important to note that the size of the mesh elements is of great importance, as they 
define the spatial resolution, and places with high gradients could be subject to high interpola-
tion errors if the elements are too large. In the other hand, places with low gradients do not 
require high resolution, and using larger elements is encouraged to reduce the computational 
load. Since the problems do not have an exact solution, it is important to analyze the problem 
and by trial-and-error guarantee that the solution to the problem does not depend on the 
discretization of the domains. Usually, a mesh convergence analysis is required, where the 
elements are reduced in size until the results of a certain metric (like the temperature at certain 
point of interest) does not change in a significant manner. I Since the equations have no 
analytical solution, the results totally depend on how the models are defined, where not only 
the boundary conditions matter, but also the discretization of the mesh.

Figure 3 Example of a simplified problem with a 2D mesh with triangular elements representing an electrode inside 
some tissue. Smaller triangles are used in the electrode, where the heat is generated and the highest gradients are therefore 
expected, and smaller triangles will help to approximate the solution better because of the higher resolution obtained. At 
the boundary at the right, larger triangles are used as lower gradients are expected, and larger elements can therefore ap-
proximate the solution adequately.
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Objectives of this thesis

The optimal configuration of RFA settings for the treatment of bone tumors still remains a 
mystery, but they are crucially important to guarantee total tumor destruction while sparing as 
much healthy tissue as possible. With tools such as the Finite Element Method and computer 
models allowing us to explore the effects of changing the main parameters defining the size of 
the ablation zone (such as time and temperature) without risking a patient’s health: the focus 
of this thesis will be to explore the effects of the multiple parameters affecting the size of an 
ablation zone and to try to create computer models able to replicate what is seen in clinical 
practice in order to create reliable models to predict and plan RFA of bone tumors, which is 
required for safe and effective tumor ablations.

In Chapter 2, a retrospective study on RFA of ACTs in the long bones was done to try to 
determine the size of the resulting ablation zones using clinical data. The study showed that 
RFA of ACT was effective, with the resulting ablation zones being larger than the tumors, and 
also showed that the ablation zones were much larger than expected, especially when compared 
to ablations on other common sites such as the liver. The results from this study also served as 
the first step towards developing the computational models by serving as the clinical standard 
in which to base the computational models.

Chapter 4 is a study in which the optimal values of some parameters of the computational 
models were calculated to replicate the clinical cases observed in Chapter 2. The parameters 
studied were the tissue properties of the main tissues affecting the resulting ablation zone, 
which are the properties of the ACT and the surrounding trabecular bone. The main factors 
affecting the ablation zone were studied and an optimal configuration was defined in which it 
was possible to replicate the clinical cases studied. 

In Chapter 5 we used the clinical data from Chapter 2 and the resulting optimized values of 
Chapter 4 to create complex 3D patient-specific models to calculate the resulting ablation 
zones. The model was developed with retrospective data, but it could be used for prospective 
planning, allowing interventionalist to tweak multiple parameters such as the control tempera-
ture, time, and position of the electrode in order to guarantee optimal treatment of patients.

In Chapter 3, the thesis will explore using computer models what the quantitative effects to 
changes in the target temperature and duration of the ablation procedure are on the size of the 
resulting ablation zone of RFA of OO. Given the multiple possible configurations of target 
temperature and ablation time, this chapter will shed light on the interplay between these two 
parameters and how they affect the ablation zone. 
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In the final chapter, the main conclusions and implications of this thesis are discussed, putting 
in context our findings and perspectives for the future. 
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Radiofrequency ablation of atypical cartilaginous tumors 
in long bones: a retrospective study

Purpose: To determine the size of the ablation zone after radiofrequency ablation (RFA) of 
atypical cartilaginous bone tumors (ACT) using temperature-controlled 20 and 30 mm RFA 
straight non-cooled electrodes. 

Materials and methods: Sixteen patients with ACT in their long bones, who had undergone 
a single-session single-application CT-guided temperature-controlled RFA, were included 
retrospectively in the study. Tumors with a diameter of 10-25 mm were treated with 20 mm 
electrodes (n=10), and tumors of 25-35 mm, with 30 mm electrodes (n=6). The ablated zone 
was measured after three months on MRI images.

Results: All the tumors were within the ablated zone on the 3-month follow-up MRI scan. 
The mean ablation time with the electrode, at a target temperature of 90°C, was 7.6 minutes 
(range 6-10). The median of the largest ablation diameters, on applying the 20 and 30 mm 
electrodes, were 42 mm (IQR 8.5, range 30-51 mm) and 44.5 mm (IQR 4.5, range 42-63 
mm), respectively.

Conclusions: All the retrospectively viewed tumors in the long bones of ACT patients treated 
with RFA were completely ablated. The ablation zone diameters in the bones were larger than 
expected, when compared to other tissues, such as the liver.
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Introduction

Atypical cartilaginous tumors (ACT), previously known as chondrosarcoma grade one [1], 
are one of the most frequently encountered tumors in orthopedic oncology [2]. These are 
characterized by the development of cartilaginous neoplastic tissue, mostly in the long bones 
and pelvis, that permeates marrow spaces and completely replaces the marrow fat and bone 
trabeculae [3]. Due to its unpredictable nature, and the possibility of local tumor progression, 
treatment encompasses complete tumor removal with intralesional curettage followed by local 
adjuvant treatment as the standard technique of choice [4]. However, the latter technique can 
lead to complications, such as postoperative fractures, infections and local recurrence [5,6].

Radiofrequency Ablation (RFA) is a minimally invasive procedure that has become the treat-
ment of choice for osteoid osteomas (OO), and is also suitable for the treatment of other 
bone tumors [7]. Contrary to intralesional curettage, RFA is particularly appealing due to its 
high success and low complication rates [8-9], and because of the need of little to no patient 
hospitalization, making it a good option to explore as an alternative to the standard surgical 
care. Although rare, some known complications of RFA on bone tumors include the potential 
damage to adjacent soft tissue, particularly in the presence of cortical thinning [10], and the 
risk of fractures [11]. 

A pilot study by our research group already proved that cartilaginous tumor cells can, poten-
tially, be eliminated with RFA [12]. It also demonstrated that gadolinium-enhanced mag-
netic resonance (MR) imaging three months post procedure could be a reliable post-operative 
follow-up monitoring technique for the detection of residual tumors, similar to the findings by 
Lee et al. for OO [13]. Although the safety of RFA has been attested, accurate and reproducible 
planning remains challenging because of the lack of available information on the size of RFA 
ablation zones in bone tumors and on whether it is comparable to RFA zones in soft tissues 
(e.g., liver). 

Consequently, intervention radiologists and oncology surgeons have had to rely on their expe-
rience in the treatment of other types of tumors and on procedural recommendations supplied 
by the RFA manufacturers. The clinical experience is often based on the treatment of small 
(< 2 cm) tumors such as OO or on the ablation of other tissues such as the liver, whereas the 
manufacturers’ information is often based on ex-vivo ablations of non-perfused healthy animal 
livers treated at room temperature. No standard has been set yet, as it is known that differences 
in tissue composition and in procedure time result in significantly different outcomes [14]. 
Additionally, some of the few studies of RFA on larger bone tumors, such as osteoblastomas 
[15-17] and chondroblastomas [18-21], have only focused on clinical outcomes, and not on 
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the measurements of the ablation zones. Thus, the combination of the aforementioned factors 
makes it difficult to plan and predict the size of a RFA zone for the treatment of bone tumors.

Therefore, the aim of this study was to evaluate and report on the MRI and CT findings after 
carrying out a RFA on ACT in patients who were evaluated as possible candidates for RFA 
instead of intralesional curettage, to report the diameters of the tumors and the corresponding 
resulting diameters of their ablation zones, and to test whether or not RFA can produce large 
enough ablation zones to completely ablate the target tumor.

Materials and Methods

Study design
Patients aged ≥18 with indicative signs of ACT, who had opted for surgical treatment (in 
contrast to watchful waiting), were selected based on a multidisciplinary assessment consisting 
of location, size, and aspects of the tumor on an MRI. At the time of the evaluation, the op-
tions were discussed with the patient: curettage with local adjuvants or RFA. This retrospective 
study is based on the patients who chose to be treated with RFA.

To study the size of the resulting ablation zones, we examined intra-operative Computed To-
mography (CT) as well as pre and post-operative gadolinium-enhanced MR images of patients 
who underwent RFA to treat ACT from January 2015 to December 2017 at the University 
Medical Center Groningen (UMCG). Biopsies were taken at the time of the procedure prior to 
the RF ablation to confirm the characteristic imaging diagnosis of ACT. Only patients whose 
diagnosis of ACT had been histopathologically confirmed were selected for this retrospective 
study. Furthermore, only patients treated with a single-session single-application ablation were 
selected for this retrospective study in order to reduce the variability in ablation zone size 
produced by the needle placement in the cases requiring multiple overlapping ablations on the 
same tumor .  

The patients were informed about the potential use of their anonymized data for scientific 
research with a written form at the time of the intervention; any patients who objected to 
sharing their data were excluded from the study. Since the procedure was part of the usual 
care, no additional written or verbal consent was necessary, which is in accordance with the 
regulations of the Medical Ethical Review Board of the University Medical Center Groningen. 

The tumors were measured on a pre-operative gadolinium-enhanced MRI scan. The following 
electrode lengths were used for the ablation: tumor diameters in the 10-25 mm range were 
treated with a 20 mm exposed tip electrode, while tumors in the 25-35 mm range were treated 
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using a 30 mm exposed tip electrode. Tumors > 35 mm were ablated with multiple overlapping 
ablations and were not included in this study. This decision was made based on our previ-
ous experience with total bone tumor ablations . However, the overall size of the tumor and 
its location also played an important role when choosing the electrode length and whether 
overlapping ablations were needed.

RFA procedure
All the RFA procedures were day-care treatments and were performed under CT guidance 
(Somatom Definition AS, Siemens Medical Systems, Erlangen, Germany) and general or spinal 
anesthesia by two experienced radiologists.

An 11G bone needle was used to drill a hole in the bone, both for tissue sampling and to 
position the RFA electrode (17G, Covidien CoolTip, Medtronic, USA). The procedure was 
temperature-controlled, non-cooled, with a target temperature of 90° Celsius at the tip of the 
electrode, and an ablation time of between 6 and 10 minutes. The time was estimated based 
on our prior experience of treating ACT and other bone tumors, particularly OO. Generally, 
if the temperature rose without a problem to 90° Celsius, the ablation time was 6 minutes; 
if there were problems reaching the target temperature (e.g., electrical impedance increasing 
fast and the system shutting off before reaching it) the electrode was repositioned slightly and 
the temperature was increased gradually by hand to reach 90° Celsius, which required up to 
10 mins of ablation. Additionally, in order to estimate the effects of time and temperature on 
the size of the ablation zones, we measured the duration of the ablation with the electrode at a 
temperature of ≥ 60° and the duration after it reached the target temperature of 90°. 

Given the small size of the lesions, surgical stabilization was not necessary for these cases.

Evaluation RFA
A follow up MRI was performed 3 months after the procedure to assess the ablation zone using 
a 1.5 T MRI scanner (Siemens, Erlangen, Germany) with a surface coil. Both fat-suppressed 
Short Tau Inversion Recovery (STIR) T2-weighted sequences (TR/TE/TI: 8270/160/19 ms, 
slice thickness 4 mm) and T1-weighted images (TR/TE: 500/19 ms, slice thickness 4 mm), 
before and after the administration of an intravenous gadolinium-based contrast agent (0.1 
mmol gadoterate meglumine (Dotarem®; Guerbet) per kg of body weight), were acquired in 
two planes (transversal and either coronal or sagittal) as part of the routine MRI protocol in 
the UMCG.

MRI analysis and measurements
The tumors were measured on the pre-operative MR images following the previously described 
directions. After ablation, the resulting ablation zones were measured on the follow-up 
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gadolinium-enhanced T1-weighted MR images. The assessor was unaware of the size of the 
RFA needle used. Two diameters were defined and measured, one along the line of the elec-
trode and one perpendicular to it. The diameter perpendicular to the electrode was assessed in 
both perpendicular planes and the shortest of the two was chosen. Pre- and postoperative MR 
images were used in order to compare the tumor and ablation diameters.
Based on the manufacturer’s information, the length of the electrode is one of the main factors 
defining the extent of the ablations. Longer electrodes produce a larger ablation zone, with a 
longer ablation diameter along the electrode and a shorter ablation diameter perpendicular 
to it. Therefore, the resulting ablation diameters were classified and analyzed according to the 
electrode length used.

Statistics
A Pearson’s correlation coefficient was calculated to test for the effect of the duration of treat-
ment and the differences in ablation range. The means and standard deviations (SD) of the 
normally distributed data, as well as the medians and interquartile ranges (IQR) of the non-
normally distributed data, are also presented. P values <0.05 were considered significant. All 
statistical analyses were performed using Python with the 2.7 version of SciPy [22].

Results

A total of N=16 patients matched the inclusion criteria namely, those treated with a single 
electrode position ablation (Figure 1). The mean age of the patients was 48.8 years (±15.3, 
range 24-72). The treated anatomical locations were: femur (n=12), tibia (n=2), and humerus 
(n=2) whereby two tumors resided in the diaphysis (one in the femur, one in the humerus) 
and 14 in the metaphysis. Table 1 presents the entire patients’ parameters and outcomes, while 
Table 2 gives a summary. 
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The median ablation zone diameters of the 20 mm electrode were 42 (IQR 8.5) and 24.5 
(IQR 19.5) mm for the longitudinal and perpendicular axes, respectively. Regarding the 30 
mm electrode, the median ablation zone diameters were 44.5 (IQR 4.5) and 32.5 (IQR 7) 
mm for the longitudinal and perpendicular axes, respectively. The mean and median tumor 
and ablation zone diameters of all the data grouped according to electrode length, with their 
respective SD or IQR, for the perpendicular and longitudinal diameters, are summarized in 
Table 3. Figure 2 gives two examples of the ablation zone measurements.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 

Assessed for eligibility (n=45) 
Standard treatment between Jan 2015 
and Dec 2017 with histopathologically 
confirmed ACT. 

Excluded (n=29) 
Treated with more than one 
needle position 

Patients treated with a 20 
mm electrode (n=10) 

Patients treated with a 30 
mm electrode (n=6) 

Eligible (n=16) 

Figure 1. CONSORT diagram showing the inclusion and exclusion criteria and the resulting eligible patients, who were 
separated into two groups based on the length of the electrode used to treat them.

Table 2. Summary of the patients and ablations parameters.

Patients 16

Age 48.8 (±15.3) years

Bone (femur/tibia/humerus) 12/2/2

Location (diaphysis/metaphysis) 2/14

Patients per needle length (20/30) 10/6

Time > 60°C 9.25(±1.3 , range 8-12) minutes

Time at 90°C 7.56 (±1.5, range 6-10) minutes
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The mean ablation time with the tip of the electrode at 90°C was 7.6 ± 1.5 minutes, (range 
6-10 minutes) whereas with a temperature of ≥ 60°C it was 9.25 ± 1.3 minutes (range 8-12 
minutes). No significant correlations were found between the differences in the ablation diam-
eters and their duration, neither for the time at 90°C nor for the time with a temperature of ≥ 

Figure 2. A, B: intraoperative CT and postoperative gadolinium-enhanced MR of a tumor ablated close to the cortical 
wall in a femur metaphysis. C, D: intraoperative CT and postoperative gadolinium-enhanced MR images of a centrally 
located tumor ablated in a femur metaphysis.

Table 3. Longitudinal and perpendicular diameters of the tumors and ablations. All measurements are in millimeters. 
Values with a * are normally distributed and represent thus the mean and standard deviation (SD), whereas the rest are 
non-normally distributed and represent the median and interquartile ranges (IQR), as indicated.

All patients (n=16) 20 mm electrode (n=10) 30 mm electrode (n=6)

Mean/
median

SD/
IQR

Range
Mean/
median

SD/
IQR

Range
Mean/
median

SD/
IQR

Range

Resulting 
ablations

longitudinal 
axis

43 5 30-63 42 8.5 30-51 44.5 4.5 42-63

perpendicular 
axis

28 15 14-43 24.5 19.5 14-43 32.5 7 27-41

Treated 
tumors

longitudinal 
axis

23.5* 6.3* 12-38 20 6.5 12-38 26 3 23-32

perpendicular 
axis

17.1* 3.8* 10-23 16.5 4.5 10-23 20 5 15-23
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60°C. The P-values for the longitudinal and perpendicular ablation diameters against time at 
90°C were p = 0.94 and p = 0.96 for the 20 mm electrode, and p = 0.76 and p = 1 for the 30 
mm electrode. The p values for the perpendicular and longitudinal ablation diameters against 
time at ≥ 60°C were: p = 0.94 and p = 0.93 for the 20 mm electrode, and p = 0.82 and p = 0.63 
for the 30 mm electrode.

The median, IQR, and the range of the difference in length between the resulting ablation and 
tumor diameters were as follows: the 20 mm electrode (n=10) had a perpendicular diameter 
of 9.5 mm (IQR 15.2, range 1-26), and a longitudinal diameter of 20.5 mm (IQR 9.5, range 
4-26); the 30 mm electrode (n=6) had a perpendicular diameter of 14 mm (IQR 5, range 
8-18), and a longitudinal diameter of 20 mm (IQR 8.5, range 13-31). These results are sum-
marized in Table 4 and illustrated in Figure 3.

Table 4. Median, IQR, and range of the difference between the resulting ablation diameters and tumor diameters. All 
values are in millimeters.

Ablation diameters minus tumor diameters

20 mm electrode (n=10) 30 mm electrode (n=6)

 Perpendicular  Longitudinal Perpendicular  Longitudinal

Median 9.5 20.5 14 20

IQR 15.2 9.5 5.0 8.5

Range 1-26 4-26 8-18 13-31

Figure 3. Tumor diameters versus resulting ablation diameters of all 16 patients. Left: longitudinal ablation and tumor 
diameters. Right: Perpendicular ablation and tumor diameters. The solid diagonal lines in the graphs represent the point 
where the size of the ablation and the tumor could be the same, indicating the potential risk of recurrence.
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All the ablations were technically successful (i.e., the ablated zone was ≥2 mm clear of the 
tumor on the 3-month follow up MRI, as planned).

Discussion

RFA is an attractive minimally invasive treatment alternative to surgery. The present study ad-
dressed an important knowledge gap on the extent of thermal damage by RFA on bone tumors. 
Applying RFA on ACT in the long bones, using a temperature-controlled algorithm with 20 
and 30 mm straight non-cooled electrodes, resulted in ablations with median longitudinal 
diameters of 42 and 44.5 mm, respectively, which were large enough to completely cover the 
tumors being treated and more, as planned.

Although literature exists on the resulting ablation zones following RFA in tissues like the 
liver [23, 24], RFA studies of bone tumors other than OO have mostly focused on the clinical 
outcomes while giving little insight into the extent of the thermal damage. This information 
is critical for reliable and accurate planning to ensure safe and effective RF ablation of bone 
tumors. The tumor should be completely ablated while damaging as little healthy surrounding 
tissue as possible. Therefore, further studies of the extent of RFA ablation zones in bones 
should be done to explore the possibilities of using this, apparently less risky, technique for the 
treatment of bone tumors.

Interestingly, since bone has lower thermal and electrical conductivities than soft tissues, such 
as the liver [25], one could intuitively expect the resulting ablation zones to be smaller than 
those in soft tissue. However, this was not found in our study. The high water content of 
cartilaginous tumors together with the lack of heat sinks could be a plausible explanation for 
the large ablation zones. We have to consider that the main ablated tissue, the tumor, was 
cartilage instead of bone, and its high water content might result in more favorable conduction 
of current and heat. Furthermore, the electrical conductive property of cartilage seems to indi-
cate that it is slightly higher than liver tissue (and much higher than bone), but it has similar 
thermal properties as the liver [25]. Moreover, bone ablations do not suffer from heat sinks 
caused by nearby large blood vessels, which hinder the ablations. Some studies suggest that 
tumor tissue has a higher degree of electrical conductivity than healthy tissue [26-28], which 
could further explain the large ablation zones obtained, since tissues with higher conductivities 
demonstrate more energy deposition [29]. 

Another important remark about our study is that applying RFA to an ACT produced abla-
tions with a much shorter perpendicular axis than longitudinal axis (Table 3). Although it is 
true that the longitudinal axis is supposed to be longer, the difference is probably less than it 
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seems according to our numerical results. This discrepancy may be explained by the anatomi-
cal characteristics of the tumors and their surroundings, the planning of the procedures, and 
our aim to report the smallest ablation diameter in the perpendicular axes. Clear examples of 
this are patients numbers one and three (Table 1), whose ablation diameters were particularly 
shorter in the perpendicularly measured axis. This may have been because the ablations were 
confined to the small bone cavities (the diaphysis), where the cortical bone could have pre-
vented the ablations from developing further, and therefore resulted in ablations that were as 
large as possibly allowed by the bone surrounding them. This effect, in turn, resulted in the 
reported perpendicular ablation diameters, which were as large as the bone in which they were 
confined i.e., short, yet effective, ablation diameters.

Similarly, this effect was observed when the tumors were located next to, but not completely 
surrounded by, cortical bone, as shown in Figures 2 A and B, where an electrode was placed 
immediately next to the cortical bone. The resulting ablation zone seemed to be limited in the 
direction towards the cortical wall but not in the other directions. However, since we aimed 
to report the shortest diameter, we chose the diameter that was limited by the cortex. The 
apparent insulating properties of cortical bone are in accordance with other studies, such as the 
one by Pinto et al. [30]. In contrast, the ablations seemed to extend more when they were not 
limited by the cortex, as in the case of the centrically located tumors in the femur metaphysis, 
as exemplified in Figures 2 C and D. These two phenomena can be seen in the wide variations 
in the extent of the perpendicular ablations, as shown in Figure 1, depending on whether they 
were limited by bone or not.

A limitation of this study is that we could not show the effects of the differences in ablation 
time on the resulting ablation diameters, as shown by the weak correlation coefficients. This 
could be because all the ablations were performed in a similar time frame of 6-10 minutes, after 
having reached the target temperature of 90°C. Since ablations tend to grow rapidly in the first 
few minutes of the procedure and then reach a plateau, whereupon an increase in time results 
in small differences, we think that any additional changes after 6 minutes, due to thermal dam-
age, are negligible. This does not mean, however, that this phenomenon occurs after exactly 
6 minutes. More data with shorter and longer ablation times are needed to test this, but such 
experiments also come with the risk of unsuccessful ablations. Additionally, other factors may 
be affecting the size of the ablations, such as the histological characteristics of each individual 
tumor, the position of the electrode, etc.

Another limitation was the impossibility of finding a clear relationship between the results of 
the ablations and the location of the tumors, as there were many possible confounders and 
few data points per category (e.g., electrode used, bone type, bone location, etc.). This stresses 
the main limitation of the study, in that it was a single center study with only 16 patients. In 
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addition, the ranges of the selected electrode lengths were not clear cut because we observed 
some overlap around the 25 mm zone. This could have been the result of differences in opinion 
in the assessment of the tumor, other than diameter, and thus as to which electrode to use for 
the intervention. We also observed one case of a considerably large tumor that was ablated 
with a 20 mm electrode (patient 1); the reasoning behind the decision to use this electrode is 
unknown to us. Any repositioning of the antenna was not reported, but it could explain why 
that electrode was chosen for a tumor of that size. 

Likewise, patient 7’s ablation diameter was particularly large along the electrode, but we are 
not sure what caused this. Furthermore, although an MRI made 3 months after the procedure 
can be used reliably to show the results of a RFA applied to an OO, perhaps this is not the case 
for an ACT. The resulting ablated zones might have been underestimated because healing may 
have already occurred and the ablated zones had shrunk.

Finally, even though the results show that applying RFA to an ACT can produce large ablation 
zones, it is important not to overestimate the effects of a RFA and the procedures should be 
planned with care, particularly in complicated cases where overlapping ablations may be neces-
sary. Complete tumor removal is, of course, preferable to having residual tumor tissue, and 
bone seems to be able to protect the surrounding structures from thermal damage, even if the 
ablations are larger than expected. However, other studies of RFA on chondroblastomas have 
shown the risk of damaging articular cartilage [8] and the growth plate [18]. Thus, it seems 
that bone may not be protective in all cases, which could be related to the thickness of the 
cortical bone or the perfusion of the surrounding tissues. These factors may also be the result 
of an underestimation of the extent of the ablations, as highlighted in this study. Therefore, 
extra caution should be taken when performing ablations close to structures at risk such as the 
cartilage surface of joints or nerve roots. Additionally, it is important to remember that our 
results were obtained without using the cool-tip mode, which, if used, could potentially result 
in even larger ablation zones.

The results of our study should help to understand the effects of RFA on bone tumors and 
highlight the importance of presenting not only the clinical outcomes of these procedures, but 
also the resulting ablation zones. A better understanding of RFA effects on bone is still needed 
for accurate and safe planning of the procedures.
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Conclusion

Radiofrequency ablation of atypical cartilaginous tumors in bone with a temperature-controlled 
mode and straight non-cooled electrodes resulted in large enough ablations to treat the target 
tumors. The ablations here were larger than those seen in soft tissue.
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Effects of control temperature, ablation time, and 
background tissue in radiofrequency ablation of osteoid 
osteoma: a computer modeling study

Abstract
Purpose
To study the effects of the control temperature, ablation time, and the background tissue 
surrounding the tumor on the size of the ablation zone on radiofrequency ablation (RFA) 
of osteoid osteoma (OO).

Materials and methods
Finite element models of non-cooled temperature-controlled RFA of typical OOs were 
developed to determine the resulting ablation radius at control temperatures of 70, 80, 
and 90°C. Three different geometries were used, mimicking common cases of OO. The 
ablation radius was obtained by using the Arrhenius equation to determine cell viability. 

Results
Ablation radii were larger for higher temperatures and also increased with time. All ge-
ometries and control temperatures tested had ablation radii larger than the tumor. The 
ablation radius developed rapidly in the first few minutes for all geometries and control 
temperatures tested, developing slowly towards the end of the ablation. Resistive heating 
and the temperature distribution showed differences depending on background tissue 
properties, resulting in differences in the ablation radius on each geometry.

Conclusions
The ablation radius has a clear dependency not only on the properties of the tumor but 
also on the background tissue. Lower background tissue’s electrical conductivity and blood 
perfusion rates seem to result in larger ablation zones. The differences observed between 
the different geometries suggest the need for patient-specific planning, as the anatomical 
variations could cause significantly different outcomes where models like the one here 
presented could help to guarantee safe and successful tumor ablations.

Keywords: radiofrequency ablation; osteoid osteoma; computer models; finite element method
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Introduction

Radiofrequency ablation (RFA) is a minimally invasive technique that has become the treat-
ment of choice for osteoid osteomas (OO), one of the most common types of bone tumors 
[1]. Since Rosenthal et al.’s initial findings [2], different settings have been tested to guarantee 
optimal treatment. Currently, the standard RFA for OO is a temperature-controlled mode 
of 90°C for 6 minutes [1], which originates from the first Rosenthal et al.’s experiments. 
Originally, they had decided on an ablation time of 3 minutes with a control temperature of 
90°C, but the duration was later increased to 6 minutes after a (successful) attempt to reduce 
the number of tumor recurrences in [3] [2]. By increasing the ablation time, the amount of RF 
energy delivered to the tissue is increased, causing larger ablation zones. 

Even though the ablation time is usually between 4 and 6 minutes, various studies have used 
longer times, ranging generally from 6 to 10 minutes [4] [5] [6] [7] [8] [9] [10]. In the case of 
electrodes of a smaller diameter, which produce smaller ablation volumes [11], ablation times 
of up to 14-15 minutes of active heating have been used [12] in an attempt to compensate for 
their reduced ablation volumes. However, the differences in ablation size between the standard 
approach of approximately 6 minutes and what others have proposed has not been quantified, 
and only the clinical outcomes were presented. Although the series are mostly successful, it 
is not clear what the ideal ablation time is, and what the quantitative effects of changing it 
are. Given that the main aim of the treatment is a reduction in pain, questionaries to assess 
the severity of the patient’s pain are the main metric utilized before and after treating OO 
with RFA. Thus, post-operative imaging studies are not usually performed, making it hard to 
quantify the effects of changes in protocol on the ablation zone. 

Goldberg et al. studied RFA on ex-vivo liver and muscle tissues and showed that the resulting 
ablation radius did not change after 6 minutes [11] had passed, which coincides with the initial 
suggestions by Rosenthal et al. However, the conclusions of this and other similar studies of 
RFA on liver or other soft tissues may not apply to bony tissues, hence the need for a systematic 
study of the effects of ablation time on OO. 

Other clinical studies also opted to vary the control temperature, with most of them rang-
ing from 60-90°C [7] [8] [9] [13] [14]. Generally, lower temperatures are used to prevent 
damaging nearby structures at risk like nerves (as this is expected to lead to a reduced ablation 
zone), and sometimes it may also be difficult to actually attain the target of 90°C and thus 
lower temperatures are used. However, again, the lack of post-operative imaging makes it hard 
to understand the effects on the thermal damage caused by the changes in the used control 
temperature. 
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To the best of our knowledge, no systematic study has been done on the consequences of 
varying the control temperature and ablation time of RFA on OO. These parameters have 
a direct impact on the extension of the ablation zone and therefore on the clinical outcome 
but testing on patients carries the risk of unsuccessful ablations, which could be detrimental 
to the patient’s health. Therefore, we implemented computer models using the finite element 
method (following the previous work on OO by Irastorza et al. [15]) to study the effect of 
control temperature and ablation time on ablation size. We tested this on 3 typical anatomical 
configurations of OO and looked at how the different tissues surrounding the tumor affected 
the extension of the ablation. 

Materials and Methods

Finite element models of non-cooled temperature-controlled RFA of typical OOs were de-
veloped, following mostly the work by Berjano [16] and Irastorza et al. [15], to determine 
their dynamic temperature distribution and cell death at various control temperatures and 
durations. Based on the studies mentioned in the introduction, the models were studied with 
control temperatures of 70, 80, and 90°C, and for as long as 15 minutes of active heating. 

Description of the geometry
There were two main objectives when creating the geometries: 1) to approximate common 
cases of OO and 2) to explore the effects of different anatomical configurations of RFA on OO. 
Examples of common cases can be seen in  Figure . With these cases in mind, we decided to test 
three different scenarios: The first, a juxtacortical nidus (the tumor) surrounded by a layer of 
sclerosis which in turn is surrounded by trabecular and cortical bone (Figure 4A). The second, 
similar to the first, but without the sclerotic layer and with the nidus surrounded by trabecular 
bone (Figure 4B). The third, an intracortical nidus with no trabecular bone or sclerotic layer 
directly around it (Figure 4C). The third case could also serve as an example of how the abla-
tion radius changes in the longitudinal direction of bone. All the geometries had a final layer 
of muscle surrounding the cortical bone. The nidus, a sphere with a 1 cm diameter, was treated 
with an electrode with an active tip of 0.75 cm in length and gauge 17, in accordance with 
common practice by interventionists. To simplify the complex anatomy, a rectangular cortical 
bone shape was chosen with dimensions similar to those of a typical tibia. All the geometries 
were defined as 2D axisymmetric, with the axis of symmetry along the electrode. Given that 
most of the cell death occurs close to the electrode, we found these geometrical approximations 
to be sufficient for the tests; increasing the distance further or changing the shape of the cortical 
box or the surrounding muscle did not change the outcome significantly. Mesh convergence 
tests were performed on the three models to guarantee mesh independence in our results, and 
special attention was paid to the size of the elements next to the electrode where the highest 
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gradients were located. The cell death radius (explained in the next section) was used as the 
convergence criterion. Convergence was assumed to have occurred when a change of less than 
1% in the cell death radius was obtained. Triangular elements with a characteristic length as 
small as .1 mm were tested.

Equations governing radiofrequency ablation
In RFA, heat is generated due to Joule heating which then propagates through the body. The 
simulations thus consisted of solving a coupled electric-thermal problem, in which the thermal 
problem was governed by Pennes’ bioheat equation [17] modified to account for phase change 
due to tissue vaporization [18]:

 
Figure 1. Three examples of common cases of OO. The hypodense focus corresponds to the location of the nidus. The first 
image shows a nidus with a thin layer of sclerosis surrounded by both cortical and trabecular bone in a femur. The second 
image shows a nidus with little sclerosis and surrounded mostly by trabecular bone. The third image shows an intracortical 
nidus completely covered by cortical bone in a tibia. The right-most image shows another intracortical OO but now from 
a different view. The first and third images show an example of how the electrode (the hyperdense-bright object) is usually 
placed in the nidus. The first image is labeled to work as a reference, and in the following ones the tumor was indicated 
for clarity.

Figure 2. Geometries mimicking typical cases of OO, roughly matching the cases from  Figure . a) is a case of an OO sur-
rounded by a layer of sclerosis. b) is a case of an OO in the middle of trabecular bone close to a cortical wall. c) is a case 
of an OO completely surrounded by cortical bone, and that could also represent the extent of thermal ablation along the 
longitudinal axis of bone. All three cases are further surrounded by a layer of muscle.
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pad, a Neumann boundary condition of zero flux at the symmetry axis, and a Dirichlet 

boundary condition with a value equal to the applied r.m.s. voltage at the electrode 

surface were employed for the electric problem.  

To mimic the clinical setting, the voltage was regulated such that a pre-defined 

temperature at the tip of the electrode was reached, and subsequently maintained, 

which can be modeled by using a PI-controller, i.e. 
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Where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, Ttarget the desired 

control temperature, T(t) the temperature at the tip at time t, Kp the error 

proportionality constant, and Ki the integral proportionality constant. The initial 

voltage was set to zero. Then the Kp and Ki values had to be found with similar 

behaviors as in the ex- Bitsch et al. experiments [20]. Although this is model 

dependent, a good agreement was found by setting Kp at 1.15 V/K and Ki at 0.06 V/K/s 

[21]. 

For most of the model, the Trujillo and Berjano [22] model propositions for biological 

tissues, temperature-dependent parameters of electrical conductivity, thermal 

conductivity, and apparent heat capacity were used as reference.  

Regarding electrical conductivity, a linear increase of 1.5% per degree Celsius until the 

point of vaporization was used. Then, vaporization is characterized as a sudden drop 

in the electrical conductivity, with a linear decrease up to a factor of 10000, as 

described in equation 6. 
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where where 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 is the baseline electrical conductivity (S/m) of each tissue at 37 °C, ∆σ is the 

1.5% temperature dependent rate of change in electrical conductivity per degree 

Celsius, and 𝜎𝜎𝜎𝜎vap is the modeled electrical conductivity of vaporized tissue where 𝜎𝜎𝜎𝜎vap =

 10𝑥𝑥𝑥𝑥10−3 (S/m) [22]. 

The thermal conductivity was considered as having a linear increase until the point of 

vaporization where a maximum value was set for any temperature beyond 100 °C: 
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𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(100 °C − 37 °C),                                               𝑇𝑇𝑇𝑇 > 100 °C (7) 

 

where 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the baseline thermal conductivity of each tissue at 37 °C and ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 

corresponds to a 0.003 change in thermal conductivity per degree Celsius [15] [23]. 

When water starts to evaporate there is a sudden change in the heat capacity during 

the phase-change. Although tissue vaporization is not expected because the PI 

controller will regulate the output current to maintain a maximum target temperature 

of 90 °C, tissue vaporization was modeled using the enthalpy method [18] [22]: 
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)  and C𝑖𝑖𝑖𝑖 is the water fraction of 

each tissue.  

FEniCS [24], an open-source platform for solving partial differential equations, was 

used to develop a solver for our models. The implementation was based on the works 

by Hall [25], who developed a model to solve various minimally invasive tumor 

ablation therapies (e.g., RFA, Microwave ablation, etc.) using FEniCS. 

Tissue properties 
Most of the tissue properties were obtained from [26], except for the sclerotic layer and 

nidus (where we followed Irastorza’s assumptions), or as indicated otherwise in Table 

1. We also followed Irastorza’s assumed blood perfusion values for all tissues. The 

properties of plastic and metal were taken from [27]. In most cases, where a range of 

values was available, the average value was chosen. The only exceptions where in the 
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FEniCS [24], an open-source platform for solving partial differential equations, was 

used to develop a solver for our models. The implementation was based on the works 

by Hall [25], who developed a model to solve various minimally invasive tumor 

ablation therapies (e.g., RFA, Microwave ablation, etc.) using FEniCS. 

Tissue properties 
Most of the tissue properties were obtained from [26], except for the sclerotic layer and 

nidus (where we followed Irastorza’s assumptions), or as indicated otherwise in Table 

1. We also followed Irastorza’s assumed blood perfusion values for all tissues. The 

properties of plastic and metal were taken from [27]. In most cases, where a range of 
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The thermal conductivity was considered as having a linear increase until the point of 
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FEniCS [24], an open-source platform for solving partial differential equations, was used to 
develop a solver for our models. The implementation was based on the works by Hall [25], who 
developed a model to solve various minimally invasive tumor ablation therapies (e.g., RFA, 
Microwave ablation, etc.) using FEniCS.

Tissue properties
Most of the tissue properties were obtained from [26], except for the sclerotic layer and nidus 
(where we followed Irastorza’s assumptions), or as indicated otherwise in Table 1. We also 
followed Irastorza’s assumed blood perfusion values for all tissues. The properties of plastic and 
metal were taken from [27]. In most cases, where a range of values was available, the average 
value was chosen. The only exceptions where in the specific heat and thermal conductivity of 
the reactive zone, for which we used cortical bone values to simulate the effects of a high degree 
of sclerosis but still with some blood perfusion. 

Cell death model
To assess the tissue damage caused by the heating process we used the Arrhenius damage model 
[31]. The cell viability of a given tissue is given by Ω, which calculates the thermal damage to 
each cell over time:

Table 1. Material’s properties. All properties were obtained from [26] for tissues at 500 kHz, except where marked. The 
references correspond to a [27], b [15], c [28], d [29], e [30] * correspond to the values of cortical bone from [26]. The 
water fraction of connective tissue was assumed for the nidus and the water fraction of cortical bone was assumed for the 
sclerotic layer. 

Material/ tissue
Density 
(kg/m3)

Electrical 
conductivity 

(S/m)

Specific heat
(J/kg ∙ K)

Thermal 
conductivity 

(W/m/K)

Blood 
perfusion 
coefficient 
(x10-4s-1)

Water fraction

Electrode 6450a 1.00E+08a 840a 18a 0 0

Plastic 70a 1.00E-05a 1045a 0.026a 0 0

Nidus 1046b 0.22b 2726b 0.56b 48b .60 d

Sclerotic layer 1908b 0.0535b 1313* 0.32* 2.95b .23 c

Trabecular bone 1178 0.0867 2274 0.31 5.90b .27 c

Cortical bone 1908 0.022 1313 0.32 0.00b .23 c

Muscle 1090 0.446 3421 0.49 6.70b .76 e
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correspond to the values of cortical bone from [26]. The water fraction of connective tissue 
was assumed for the nidus and the water fraction of cortical bone was assumed for the sclerotic 
layer.  

Cell death model 
To assess the tissue damage caused by the heating process we used the Arrhenius 
damage model [31]. The cell viability of a given tissue is given by Ω, which calculates 
the thermal damage to each cell over time: 
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where R is the universal gas constant, A (a frequency factor), and ∆𝐸𝐸𝐸𝐸 (the activation 

energy for the irreversible damage reaction) the cell-line dependent parameters. Since 

the treatment is on bone tumors, and Tillotson et al. found that cortical and trabecular 

bone have roughly the same susceptibility to heat [32], osteocytes seemed like the best 
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Cell death (Ω) is given as a probability of cell viability, where exposure to higher temperatures 
for longer periods increases the likelihood of a given cell dying. A value of Ω = 4.6 was chosen 
as the threshold, corresponding to a 99% probability of cell death. Once a cell reached said 
threshold, it was considered dead and the perfusion was stopped. To calculate the outcome 
for our studies, a radius from the center of the electrode in directions perpendicular and 
parallel (upwards) to the electrode was used to calculate the resulting cell death radius in both 
directions. Additionally, we allowed the simulations to cool down for five minutes (chosen 
arbitrarily based on preliminary results) after the active electrode was turned-off to capture the 
thermal damage more accurately over time while the heat was still dissipating, as shown in [33]. 

Validation of the model
Our model is based on the computer model by Irastorza et al. [21], who modeled radiofre-
quency ablation of OO and compared their results to the ex-vivo experiments by Bitsch et al. 
[21]. To validate our model, the Irastorza et al. model was replicated as best as possible and the 
results from our model were compared against their results and against the ex-vivo experiment 
by Bitsch et al. The values from their studies were obtained with WebPlotDigitizer [34] and 
compared against the results from our simulations. 

Bitsch et al. created three OO models using bovine long bone specimens, categorized depend-
ing on the thickness of the cortical bone lamella separating the nidus from the periosteum. 
A hole was drilled and filled with 0.8% agarose gel to model the nidus. In the soft tissue 
surrounding bone, three thermocouples were placed at distances of 0, 5, and 10 mm from the 
periosteum. The specimens were heated to an internal temperature of 35 °C, and RFA was 
performed for 400 seconds with a control temperature of 95 °C. The temperatures measured by 
the thermocouples were reported in graphs. The ex-vivo setting was then replicated by Irastorza 
et al. using the temperature profiles obtained from the temperature probes to validate and opti-
mize their OO model. Of the three Bitsch et al. models, the one with a 3 mm lamella thickness 
was chosen arbitrarily here, but our model was compared against all their configurations. For 
a more detailed explanation of the ex-vivo experiments and the assumptions to replicate them, 
please refer to Bitsch et al. [20] and Irastorza et al. [21], respectively. 
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Results

Validation
The results were within 1°C degree of difference to the ones obtained by Irastorza et al. for 
most of the ablation time with a maximum absolute error of 2.2 °C, encountering the largest 
differences for the probe closes to the tumor and almost identical results for the other two. 
Against the Bitsch et al. results, a maximum absolute error of 4.3 °C of difference was found. 

Figure 3. Top: Geometry used to replicate one of the Bitsch et al. ex-vivo experiments, where temperature probes were 
positioned at 0-, 5-, and 10-mm distance from the lamella, here shown as the black rhombuses in the geometry. Bottom: 
Temperature in time for the 3 probes. In black, Bitsch. et al ex-vivo experiments; in red, our simulations; in blue, Irastorza 
et al.’s simulations.
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Effects of time and control temperature
Figure 6 shows the temperature distributions of the three tested simulation models at the end 
of active heating (at 15 min), for all control temperatures. Cell death and measurements are 
also shown, obtained after 15 min of ablation + 5 min of cooldown. None of the tested models 
and configurations tested reached maximum temperatures of ≥ 100 °C, and there was no tissue 
vaporization.

Figure 4. Simulated temperature distribution for the three different geometries and three control temperatures after 15 
minutes of ablation. White lines represent the geometry of the model and the black line represents the resulting cell death 
isoline. The green line indicates the distance from the center of the electrode to the isoline, i.e., the radius used as the 
outcome variable.
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Figure 7 shows all the radii obtained for all the geometries tested with different control 
temperature configurations and durations. The dash-dot line corresponds to the radius of the 
nidus, to enable visual comparison of the obtained radius in each configuration against the tar-
get tissue to be ablated (the nidus). The number in each label indicates the control temperature 
used. The X and Y indicate the directions in which the temperature isotherm was obtained: 
X, perpendicular to the electrode; Y, parallel to the electrode. Both measurements start at the 
center of the electrode, and the Y direction was measured from the center to the top.

The ablation radii were larger at higher temperatures, and also increased with time, as expected. 
The ablation radii of all the tested geometries and control temperatures were larger than the 
tumor at the end of the ablation. The ablation radius developed rapidly in the first few minutes 
and then slowed down by the end of the ablation. The ablation radius was smallest for geometry 
b), followed by geometry a), and largest in geometry c), when compared at the same control 
temperature. The radius was almost identical in both directions for the first two cases, whereas 
in geometry c), the ablation radius increased considerably more in the direction perpendicular 
to the electrode after a couple of minutes for all the tested control temperatures. 

To test the sensitivity of the models further to changes in the tissue parameters, we performed 
simulations with four combinations of maximum and minimum electrical conductivity (0.5 
S/m and 0.08 S/m, respectively) and blood perfusion (70x10-4s-1 and 26x10-4s-1) values in the 
nidus. These parameters were chosen because they are the most influential factors defining the 
size of the ablation radius [35]. The values were taken from Irastorza et al.’s study [15]. For 
all target temperatures and anatomical configurations, the ablations were performed for 15 
minutes of active heating plus five minutes of cooldown at the end. Only the material param-
eters of the tumor were changed because the three geometries tested already presented great 
variations in the tissues surrounding the tumor. The results in Figure 8 show that the ablation 

Figure 5. Radii of the cell death isoline obtained for the geometries tested under all the configurations. The number in 
the labels indicates the control temperature and the X or Y indicate whether it was measured in direction perpendicular 
(X) or parallel (Y) to the electrode. The straight dash-dot line indicates the radius of the nidus. The first few initial values 
were omitted for clarity. 
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radius changes depended mostly on the effects of electrical conductivity, with the perfusion 
having little to no effect. Compared to the ablation radius with the baseline parameters, a 
change in the ablation zone radius of approximately +15% for the cases with a higher nidus 
electrical conductivity and -15% for the cases with the lower electrical conductivity was seen 
for all configurations.  Additionally, since the parallel and perpendicular radii showed the same 
kind of relative relationship between them as the average cases already explored, we omitted the 
parallel radius from the graphs for clarity purposes.

Finally, to understand the reason for the differences in the ablation radii in the different models 
better, we obtained a line graph of the resistive heating and the temperature from the center 
of the electrode and perpendicular to it. Only cases with a control temperature of 90°C are 
presented as examples but the trends presented in Figure 9 were true for all the control tem-
perature configurations. 

Figure 6. Analysis on the effects of the tumor’s electrical conductivity (σ) and blood perfusion (ω) on the resulting 
maximum ablation. Combinations of maximum and minimum values of σ and ω were tested in all three geometries, 
as described in the labels. The straight dash-dot line indicates the radius of the nidus. The initial first few initial values 
were omitted for clarity.



Chapter 3

54

The distribution of the resistive heating demonstrates clear differences in the distribution of 
the induced heat that depend did not only depend on the target tissue (nidus) but on the 
surrounding tissue as well. This is particularly clear in the peak at the electrode-tumor interface 
(at .75 mm) and at the tumor-bone interface (at 5 mm). The amount of induced heat varied 
with time as a function of the voltage applied but its distribution remained more or less the 
same all the time. Hence, only one graph of the 15 minutes measurement is shown.

The temperature profile also shows the effects of the differences on the distribution of induced 
heat. At the beginning of the ablation, the case with the tumor surrounded by cortical bone 

Figure 7. Line graphs of the resistive heating and temperature of the three models tested, from the center of the electrode and 
perpendicular to it, with a control temperature of 90 °C. The tissue interface between the tumor and bone is located at 5 
mm. Two representative points in time were chosen for the temperature profiles, one close to the beginning of the procedure 
(30 seconds) and one at the end (15 minutes) to highlight the contrast in the distribution of heat at the beginning and 
at the end of the ablation. The distribution of the resistive heating did not change significantly over time, so only one line 
graph is shown, obtained at 15 minutes.



55

Effects of  control temperature, ablation time, and background tissue properties

Ch
ap

te
r 

3

seems to induce less heat around the tumor, but creates an additional peak of heat at the 
tumor-bone interface, which, with time, increases the maximum temperatures reached deeper 
in the tissue. It is also interesting to note that all the cases seem to have similar heat transfer 
rates after the tumor (at 5 mm), as shown in the slope of the temperature profile.

Discussion

Radiofrequency ablation is a technique that has been consolidated as a standard clinical practice 
for the treatment of OO due to its effectiveness and low complication rates. However, neither 
the effects of the ablation time, nor the control temperature, nor the effects of the background 
tissue surrounding the tumor on the resulting ablation zone are well understood. Some studies 
have used ablation times as short as four minutes [36] whereas in others the time has been as 
long as 15 minutes [12] to treat similar types of lesions. Also, deliberate variations in control 
temperature, with the aim of generating smaller ablation zones, have been reported, usually for 
small tumors or tumors near structures at risk [14]. Nonetheless, quantitative analysis of the 
effects of these parameters has not been done, and their impact on the resulting ablation zone 
is not clear. Additionally, it is well known that the characteristics of both the target tissue (the 
nidus in this case) and the tissue surrounding it have a big impact on the resulting ablation 
zone. To explore the effects of all these parameters in a systematic way, we developed finite 
element models to simulate RFA of OO under multiple configurations of control temperature, 
ablation time, and anatomical location of the tumor.

In some of the first RFA studies with  OO, Rosenthal et al. concluded that little to no change 
was achieved in the extent of the ablation zone after approximately three minutes but that 
nevertheless, in clinical practice, the patients seemed to experience less recurrences when the 
duration of the RFA was increased to six minutes [36] Other studies even claimed to notice a 
difference in the clinical outcomes by increasing the ablation time to up to 15 minutes [12]. 
Our results showed that an ablation tends to develop rapidly, achieving most of the ablation 
radius during the first few minutes, and then actually grows slowly so that it develops consider-
ably during the whole 15 minutes of active heating and perhaps even longer. This was true for 
all the simulated OO geometries and for every control temperature, and especially true for 
geometry c) where the ablation radius was the largest and it grew the most with time. 

A possible explanation for the different radii obtained with each model may be due to the 
effects of blood perfusion. Schutt and Haemmerich [37]s showed that cirrhotic livers (with 
lower perfusion rates) had larger ablations zones than normal healthy livers because of what has 
been called the “oven effect”. Highly perfused tissues usually act as heat sinks, increasing the 
rate in which heat is drawn away, whereas non-perfused tissues surrounding the tumor could be 
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seen as a sort of oven, as with cirrhotic livers, allowing more heat to concentrate in the tumor 
and its surroundings. Cortical bone also has little to no blood perfusion. A nidus surrounded 
by cortical bone could therefore be compared to cirrhotic livers, with cortical bone causing 
the oven effect. This could also explain why the tumor surrounded by trabecular bone had the 
smallest ablation radius of all, as the trabecular bone was modeled with the highest perfusion of 
all the three models whereas in the case of geometry b), it was immediately next to the tumor, 
acting as a heat sink. Regarding geometry a), the electrical conductivity and perfusion modeled 
for the sclerotic layer was somewhere between that seen in cortical bone and trabecular bone, 
and the results that were somewhere between the other two models. Additionally, geometry c)’s 
ablation radius grew larger in the direction perpendicular to the electrode than in the parallel 
direction. As the ablation radius grew in size, it reached the muscle boundary in the parallel 
direction, and its high perfusion could have acted as a heat sink. The nidus’s blood perfusion 
did not seem to have a significant effect on the outcome of the ablation radius. In fact, the 
ablation radius quickly became bigger than the nidus, which caused the nidus’s blood perfusion 
to stop when its cells died.

However, we think that a more plausible explanation for the overall results may be due to 
the differences in the electrical conductivity of the tumors and their surrounding tissue. It is 
known that the electrical conductivity of the target tumor is crucial in defining the volume of 
the ablated tissue, with higher electrical conductivities allowing for more energy deposition 
and thus larger ablation volumes. Yet, Solazzo et al. [38] showed that the electrical conductiv-
ity of the background tissue also has a strong influence on how the energy is deposited and 
therefore on the thermal distribution. They varied the electrical conductivity of the target tissue 
and its surroundings with a phantom and a computer model and demonstrated that when the 
background tissue had the same electrical conductivity as the target tissue, the electrical and 
thermal distribution decreased smoothly from the electrode towards the outer boundaries of 
the model. However, when the electrical conductivity of the background tissue was lower, they 
observed a secondary electric field peak at the tissue interface, which was associated with a 
“wider” temperature distribution (i.e., higher temperatures going deeper). When the electrical 
parameters were reversed, whereby the target tissue had low electrical conductivity and the 
surrounding tissue had increased electrical conductivity, the opposite effect occurred. In this 
case, there was no heat generation at the tissue interface, causing a “compressed” temperature 
distribution, since high temperatures were only found close to the electrode. These results are 
analogous to what we found where the cortical bone seemed to produce larger ablation radii 
because of an additional resistive heating peak at the nidus-bone interface. This effect is more 
noticeable when we compare geometries b) and c), because trabecular bone has considerably 
lower electrical conductivity than cortical bone, and as such the model with trabecular bone 
had a smaller resistive heating peak and a smaller ablation radius. 
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Irastorza et al. mentioned a similar trend in their computer models of OO, where they studied 
the presence of the layer of sclerosis using various degrees of vascularization and bone density. 
In their study, the ablation radius increased with decreasing electrical conductivity of the reac-
tive zone, and an additional peak in the temperature distribution, which is similar to what 
Solazzo et al found [15] [38]. This confirms the importance of the background tissue on the 
resulting ablation zone, and shows how surrounding tissue with lower conductivity can lead to 
an increased ablation zone. This also illustrates that while bone is a good thermal and electrical 
insulator, bony background tissue will alter the heat induction profile, particularly when there 
is a high mismatch between the target tissue and the background tissue, as shown by Solazzo et 
al. [38]. The consequences of this effect may seem counter-intuitive at first, given that bone is a 
good insulator, but experiments have demonstrated that, particularly in the case of background 
cortical bone, it could potentially lead to larger ablations in comparison to other background 
tissues.

The effects of this mismatch in electrical conductivity were stronger when the electrical con-
ductivity of the nidus was increased further, resulting in even larger ablation radii than the ones 
produced with the original settings. These variations in tumor properties, however, also showed 
that the blood perfusion of the tumor had little impact on the heat distribution in comparison 
to the electrical conductivity. This lack of dependency on the blood perfusion seemed to be 
because of how quick the ablation zone encompassed the nidus, stopping the nidus’s blood 
perfusion in the first seconds to a minute of the procedure. This insight could be particularly 
important in cases where RFA is used to treat a malignant bone tumor because tumor tissues, 
especially malignant ones, seem to demonstrate much higher electrical conductivity compared 
to healthy tissue.

Our experiments show that ablation outcomes are highly tissue dependent, and not only on 
the properties of the target, but also on its surrounding tissues, which suggests the need for 
accurate patient specific imaging and treatment planning. This could be particularly important 
for tumors close to structures at risk, and considerations should be made based upon both 
the tumor properties and its surrounding tissue. Computational modeling for patient specific 
planning could play an important role to guarantee the success of the procedures. 

A  limitation of this study is  the lack of validation of  the model against clinical or in-vivo 
models; it could only be validated against ex-vivo OO experiments. However, since the model 
correlated accurately to the ex-vivo experiments, one can assume that the model demonstrates 
the effects and importance of the tested parameters with clinically useful levels of agreement.
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Conclusion

The ablation radius of RFA on OO is clearly dependent on the target temperature and ablation 
time, where higher temperatures and longer ablation times produce higher ablation radii. The 
ablation radii grow rapidly during the first few minutes and continue to grow, although slowly, 
until the electrode is turned off after 15 minutes. The size of the ablation radius clearly depends 
on the background tissue surrounding the tumor, where tissues with lower electrical conductiv-
ity led to an increased ablation radius, and this effect increases when the electrical conductivity 
of the tumor is increased as well. The blood perfusion of the tumor does not seem to have an 
important effect on the resulting ablation radius. This suggests the need for patient specific 
imaging and planning of the procedures, where computational models like the one presented 
here could help to give more accurate and personalized patient treatment.



59

Effects of  control temperature, ablation time, and background tissue properties

Ch
ap

te
r 

3

References
 [1]  D. Motamedi, T. J. Learch, D. N. Ishimitsu, Motamedi¸Kambiz, M. D. Katz, E. W. Brien and L. 

Menendez, “Thermal Ablation of Osteoid Osteoma: Overview and Stepby-Step Guide,” RadioGraphics 
, vol. 29, no. 7, pp. 2127-2141, 2009. 

 [2]  D. Rosenthal, F. Hornicek, M. Wolfe, L. Jennings, M. Gebhardt and H. Mankin, “Percutaneous Radio-
frequency Coagulation of Osteoid Osteoma Compared with Operative Treatment,” J Bone Joint Surg 
Am, Vols. 80-A, no. 6, pp. 815-821, 1998. 

 [3]  D. Rosenthal, A. Alexander, A. Rosenberg and D. Springfield, “Ablation of Osteoid Osteomas with a 
percutaneously placed electrode: A new procedure,” Radiology, vol. 183, no. 1, pp. 29-33, 1992. 

 [4]  M. A. S. S. D. O. G. W. L. B. W. B. K. H. U. &. R. C. Weber, “Clinical long-term outcome, technical 
success, and cost analysis of radiofrequency ablation for the treatment of osteoblastomas and spinal 
osteoid osteomas in comparison to open surgical resection,” Skeletal Radiol, vol. 44, no. 7, pp. 981-993, 
2015. 

 [5]  R. Rehnitz, S. Sprengel, B. Lehner, K. Ludwig, G. Omlor, C. Merle, H. Kauczor, V. Ewerbeck and M. 
Weber, “CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and 
long-term follow up in 77 patients,” Eur J Radiol, vol. 81, no. 11, pp. 3426-34, 2012. 

 [6]  D. Rosenthal, F. Hornicek, M. Torriani, M. Gebhardt and H. Mankin, “Osteoid osteoma: percutaneous 
treatment with radiofrequency energy,” Radiology, vol. 229, no. 1, pp. 171-175, 2003. 

 [7]  R. Hoffmann, T. Jakobs, C. Kubisch, C. Trumm, C. Weber, H. Duerr, T. Helmberger and M. Reiser, 
“Radiofrequency ablation in the treatment of osteoid osteoma-5-year experience,” Eur J Radiol, vol. 73, 
no. 2, pp. 374-379, 2010. 

 [8]  K. Sung, J. Seo, J. Shim and Y. Lee, “Computed-tomography-guided percutaneous radiofrequency 
thermoablation for the treatment of osteoid osteoma-2 to 5 years follow-up,” int Orthop, vol. 33, no. 1, 
pp. 215-1218, 2009. 

 [9]  S. Mylona, S. Patsoura, P. Galani, G. Karapostolakis, A. Pomoni and L. Thanos, “Osteoid osteomas in 
common and in technically challenging locations treated with computed tomography-guided percutane-
ous radiofrequency ablation,” Skeletal Radiol., vol. 39, no. 5, pp. 443-449, 2010. 

 [10]  A. Paladini, P. Lucatelli, F. Cappelli, G. Pizzi, V. Anelli, E. Amodeo, D. Beomonte Zobel, L. Paladini, 
R. Biagini, D. Attala, C. Zoccali and G. Vallati, “Osteoid osteoma treated with radiofrequency ablation 
in non-operating room anesthesia. A different way of approaching ablative therapy on osteoid osteoma,” 
Eur Rev Med Pharmacol Sci, vol. 22, no. 17, pp. 5438-5446, 2018. 

 [11]  S. Goldberg, G. Gazelle, S. Dawson, W. Rittman, P. Mueller and D. Rosenthal, “Tissue Ablation with 
Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume,” Acad 
Radiol, vol. 2, pp. 399-404, 1995. 

 [12]  E. Rimondi, A. Mavrogenis, G. Rossi, R. Ciminari, C. Malaguti, C. Tranfaglia, D. Vanel and P. Ruggieri, 
“Radiofrequency ablation for non-spinal osteoid osteomas in 557 patients,” Eur Radiol, vol. 22, pp. 
171-188, 2012. 

 [13]  U. Albisinni, A. Bazzocchi, G. Bettelli, G. Facchini, E. Castiello, M. Cavaciocchi, G. Battista and R. 
Rotini, “Treatment of osteoid osteoma of the elbow by radiofrequency thermal ablation,” J Shoulder 
Elbow Surg., vol. 23, no. 1, pp. e1-7, 2014. 

 [14]  B. Gebauer, F. Collettini, C. Bruger, K. Schaser, I. Melcher, P. Tunn and F. Streitparth, “Radiofrequency 
Ablation of Osteoid Osteomas: Analgesia and Patient Satisfaction in Long-term Follow-up,” Rofo, vol. 
185, no. 10, pp. 959-966, 2013. 



Chapter 3

60

 [15]  R. Irastorza, M. Trujillo, J. Villagrán and E. Berjano, “Computer modelling of RF ablation in corti-
cal osteoid osteoma: Assessment of the insulating effect of the reactive zone,” International Journal of 
Hyperthermia, vol. 32, no. 3, pp. 221-230, 2016. 

 [16]  E. J. Berjano, “Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the 
future,” Biomed Eng Online, vol. 5, no. 24, 2006. 

 [17]  H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” Applied 
physiology, vol. 1, no. 2, pp. 93-122, 1948. 

 [18]  J. Abraham and E. Sparrow, “A thermal-ablation bioheat model including liquid-to-vapor phase change, 
pressure- and necrosis-dependent perfusion, and moisture-dependent properties,” Int. J. Heat Mass 
Transf., vol. 50, no. 13-14, pp. 2537-2544, 2007. 

 [19]  J. Doss, “Claculations of electric fields in conductive media,” Med phys, vol. 9, no. 4, pp. 566-73, 1982. 
 [20]  R. Bitsch, R. Rupp, L. Bernd and K. Ludwig, “Osteoid Osteoma in an ex Vivo Animal Model: Tempera-

ture Changes in Surrounding Soft Tissue during CT-guided Radiofrequency Ablation,” Rad, vol. 238, 
no. 1, pp. 107-112, 2006. 

 [21]  R. Irastorza, M. Trujillo, J. Villagrán and E. Berjano, “Radiofrequency Ablation of Osteoma Osteoide: 
A Finite Element Study,” in VI Latin American Congress on Biomedical Engineering CLAIB 2014, 
Paraná, 2015. 

 [22]  M. Trujillo and E. Berjano, “Review of the mathematical functions used to model the temperature 
dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation,” Int 
J Hyperthermia, vol. 29, no. 6, 2013. 

 [23]  D. Haemmerich and B. Wood, “Hepatic radiofrequency ablation at low frequencies,” Int J Hyperther, 
vol. 22, pp. 563-574, 2006. 

 [24]  A. Logg, K.-A. Mardal, G. Wells and e. al., Automated Solution of Differential Equations by the Finite 
Element Method, Springer, 2012. 

 [25]  S. Hall, “MITA-model,” 5 Feb 2016. [Online]. Available: https://github.com/sheldonkhall/MITA-
model.

 [26]  P. Hasgall, F. Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. Gosselin, D. Payne, A. Klingenböck 
and N. Kuster, “IT’IS Database for thermal and electromagnetic parameters of biological tissues,” 15 
May 2018. [Online]. Available: itis.swiss/database. [Accessed 09 09 2019].

 [27]  S. Tungjitkusolmun, S. Staelin, D. Haemmerich, J. Tsai, H. Cao, J. Webster, F. Lee, D. Mahvi and 
V. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” 
IEEE Trans Biomed Eng, vol. 49, pp. 3-9, 2002. 

 [28]  J. Gong, J. Arnold and S. Cohn, “Composition of Trabecular and Cortical Bone,” Anat Rec, vol. 149, 
pp. 325-31, 1964. 

 [29]  H. Woodard and D. White, “The composition of body tissues,” Br J Radiol, vol. 59, no. 708, pp. 
1209-1219, 1986. 

 [30]  I. Lorenzo, M. Serra-Prat and J. Yébenes, “The Role of Water Homeostasis in Muscle Function: A 
Review,” Nutrients, vol. 11, no. 8, p. 1857, 2019. 

 [31]  J. Pearce, “Comparative analysis of mathematical models of cell death and thermal damage processes,” 
Int J Hyperther, vol. 29, no. 4, pp. 262-280, 2013. 

 [32]  C. Tillotson, A. Rosenberg and D. Rosenthal, “Controlled thermal injury of bone. Report of a percu-
taneous technique using radiofrequency electrode and generator,” Invest Radiol, vol. 24, no. 11, pp. 
889-892, 1989. 

 [33]  R. Irastorza, M. Trujillo and E. Berjano, “How coagulation zone size is underestimated in computer 
modeling of RF ablation by ignoring the cooling phase just after RF power is switched off,” Int J Numer 
Meth Biomed Engng, vol. 33, no. 11, p. e2869, 2017. 



61

Effects of  control temperature, ablation time, and background tissue properties

Ch
ap

te
r 

3

 [34]  A. Rohatgi, WebPlotDigitizer, 4.4 ed., Pacifica, California, 2020. 
 [35]  S. Hall, E. Ooi and S. Payne, “Cell death, perfusion and electrical parameters are critical in models of 

hepatic radiofrequency ablation,” Int J Hyperthermia, vol. 31, no. 5, pp. 538-50, 2015. 
 [36]  C. Pinto, A. Taminiau, G. Vanderschueren, P. Hogendoorn, J. Bloem and W. Obermann, “Technical 

Considerations in CT-Guided Radiofrequency Thermal Ablation of Osteoid Osteoma: Tricks of the 
Trade,” AJR Am J Roentgenol, vol. 179, no. 6, pp. 1633-1642, 2002. 

 [37]  D. Schutt and D. Haemmerich, “Effects of variation in perfusion rates and of perfusion models in 
computational models of radio frequency tumor ablation,” Med Phys, vol. 35, no. 8, pp. 3462-70, 2008. 

 [38]  S. Solazzo, Z. Lui, S. Lobo, M. Ahmed, A. Hines-Peralta, R. Lenkinski and S. Goldberg, “Radiofre-
quency Ablation: Importance of Background Tissue Electrical Conductivity—An Agar Phantom and 
Computer Modeling Study,” Radiology, vol. 263, no. 2, pp. 495-502, 2005.





Chapter 4
Modelling radiofrequency ablation 
of atypical cartilaginous tumors 
in long bones using finite element 
methods

Ricardo Rivas a, Ludo J. Cornelissen a, Thomas C. Kweeb, Paul C. 
Juttec, Peter M. A. van Ooijen a*

a University of Groningen, University Medical Center Groningen, Department of 
Radiotherapy, Groningen, The Netherlands
b University of Groningen, University Medical Center Groningen, Department of Radiology, 
Groningen, The Netherlands
c University of Groningen, University Medical Center Groningen, Department of 
Orthopedics, Groningen, The Netherlands



Chapter 4

64

Modelling radiofrequency ablation of atypical 
cartilaginous tumors in long bone using finite element 
methods

Abstract
Aim
To model radiofrequency ablation (RFA) of atypical cartilaginous tumors (ACT) in long 
bones using finite element modeling, and accurately predict ablation zone shape and 
extend. 

Materials and methods
Imaging data from a clinical case of a patient with an ACT who was treated with RFA 
was used to model a typical case of RFA of ACT and to measure the extension of the 
post-procedural ablation zone. The finite element method was used to solve the equa-
tions governing the coupled thermal-electric problem defining RFA. To find the set of 
parameters that could best replicate the clinical data and to evaluate their influence on the 
outcome, a fractional factorial analysis with the Taguchi method was used. The results were 
analyzed with the main effects plot and ideal parameters were proposed and tested. 

Results
The most important parameters defining the ablation zone size were the electrical con-
ductivity of the target tumor and its surrounding tissue, the trabecular bone, followed by 
the blood perfusion of the trabecular bone. The proposed parameters and model produce 
ablation diameters of 38x43, being 5x1 mm shorter than the clinical case in the directions 
perpendicular and parallel to the electrode, respectively.

Conclusions
RFA of ATC can be reliably replicated with a computer model using the parameters found 
with our parametric analysis, which could potentially be used for more reliable patient-
specific planning.



65

Modelling radiofrequency ablation of  atypical cartilaginous tumors in long bones

Ch
ap

te
r 

4

Introduction

Radiofrequency ablation (RFA) is a minimally invasive technique that has been widely used  
for the treatment of various types of tumors, such as tumors in liver [1], lungs [2], kidneys [3], 
or breast [4], and has been suggested as the treatment of choice for osteoid osteomas, a benign 
small bone lesion [5]. Although its application for bone tumors has been mostly limited to 
osteoid osteomas, advances have been made to treat other (larger) bone tumors such as atypical 
cartilaginous tumors [6], osteoblastoma [44], and chondroblastoma [8], while other studies 
have suggested the use of RFA for the treatment of recurrent bone and soft-tissue sarcomas 
in non-surgical candidates [9]. Although the technique of RFA seems to be safe and overall 
effective, with few complications and comorbidities [1] [2] [3] [4] [5], the extension of thermal 
damage remains poorly understood. As a result, interventionists’ planning of RFA procedures 
in the bone currently relies on assumptions based on other types of tumors, tissues, and abla-
tion procedures. Because it is known that differences in tissue composition and ablation time 
produce significantly different outcomes [10], these assumptions may not be adequate and 
lead to problems such as unsuccessful interventions or unintentional damage to other tissues.

Atypical cartilaginous tumors are among the most common types of bone tumors [11], located 
mostly in the long bones and pelvis, replacing marrow fat and trabecular bone with cartilagi-
nous neoplastic tissue [12]. Because of the risk of local tumor progression, treatment consist of 
complete tumor removal, with intralesional curettage followed by local adjuvant treatment as 
the standard of care [13]. Because of its overall effectiveness and safety, RFA has great potential 
to replace invasive techniques in selected cases, as shown in a pilot study by our research group 
[6]. This study showed that the technique has the potential for better local tumor control while 
improving the functional outcome and allowing patients to return to their normal activities.

The main aim of RFA is complete tumor destruction while sparing as much healthy tissue as 
possible. As a solution, computer models to simulate the procedure and increase our under-
standing of how the thermal damage is induced and distributed over time have been developed, 
with the finite element method being one of the most popular methods to achieve this [14]. 
However, to the best of our knowledge, there have been no computer studies on RFA of tumors 
other than osteoid osteoma in the long bones. Given the current interest to expand the use 
of RFA to other types of bone tumors, such as atypical cartilaginous tumors and the lack of 
information regarding the expected outcomes in these cases, a computer model is crucial to 
improve our understanding of the procedure and be of use for accurate procedural planning 
thereby enhancing safety and efficacy. Effective local tumor control whilst minimizing damage 
for the patient is the holy grail in local tumor treatment. Therefore, the aim of this study is 
to develop a finite element model to accurately predict the ablation zone shape and extend of 
atypical cartilaginous tumors.
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Materials and methods

To model a typical procedure and find the best fitting parameters to replicate the resulting 
ablation zone, a representative standard case of an atypical cartilaginous tumor in the long 
bones that underwent RFA was chosen from a previous study [15]. After the procedure was 
optimized for this case, a second case (with a different anatomical configuration) was also 
tested to validate the accuracy of our model and parameters.

Model Geometry
A case of a centrally located tumor in the long bones was selected to use as a reference for the 
optimization. By using a centrally located tumor it was possible to assume an axis of symmetry 
along the electrode to simplify the model. The modeled tumor was assumed to be a perfect 
ellipsoid encased by trabecular bone, and then surrounded by a wall of cortical bone, followed 
by one more layer of muscle (Figure 2). The electrode was assumed to be inside the tumor just 
next to the interface with trabecular bone, with a little offset from the starting point of the 
tumor of 0.5 mm. The simulated electrode had the same length as the electrode used in the 
clinical cases selected, i.e., an electrode with a 2 cm active tip, with the rest of the electrode 
insulated by a thin layer of plastic. A mesh convergence analysis was done until a change of < 
1% on the ablation zone diameters was found.

Figure 1 Pre-, intra-, and post-operative images of the representative clinical case used for the analysis. The tumor is poorly 
visible on the CT images given its low density, but it is easy to see on the MR images. Figure 1A shows the preoperative MR 
image of a cartilage tumor in a tibia metaphysis, where the tumor is visible within the trabecular bone. Figure 1B, intra-
operative CT images of the same cartilage tumor, the RF electrode is seen entering from top left of the image.  Figure 1C 
shows the post-procedural MR image with the resulting ablation zone after the RFA intervention. Here, the hypointense 
focus represents the ablated tumor, and the hypointense contours surrounding it represent the borders of the ablation zone. 
The corresponding resulting ablation diameters are indicated with caliper measurements. 
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Radiofrequency ablation procedure and clinical ablation zone
In the clinical case that was used for modelling, the ablation was performed using a non-cooled 
straight electrode with a self-regulating current to keep a pre-defined control temperature of 
90°C, which is measured at the tip of the electrode to monitor and control the procedure. 
This temperature was maintained for approximately between 6 and 8 minutes at this control 
temperature. Our simulations lasted for 7 minutes, and a proportional-integral (PI) controller 
(as described in the following section) was used to control the output voltage based on the 
control temperature measured at the tip of the electrode, as in the clinical case.

Figure 2 The top images show the intraoperative CT image with measurements of the tumor (a round hypodense focus 
around the electrode) and its spacial relation to its surroundings and how the electrode was used as axis of symmetry for 
the resulting axisymmetric model. The contrast window was adjusted from the previous figure to more clearly highlight the 
cortical bone and tumor. The bottom image shows the meshing of the model, having smaller elements next to the electrode-
tumor interface, where more resolution is needed because of the higher gradients of current and temperature at the electrode 
and because of its smaller size.
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The patient was evaluated two months after the procedure using MRI. A radiologist measured 
the resulting ablation diameter in two main axes, and these were then defined as our outcome 
of interest to be replicated. The perpendicular axes are similar in 2 dimensions, so with two 
axes a full 3D representation is guaranteed. The ablation zone in the simulations was obtained 
using a cell thermal damage model, the Arrhenius equation [16], which relates the amount of 
thermal damage through time to a given cell and calculates its viability, as described in the next 
section. The primary outcome of the simulation, in 2 dimensions, is then the diameter of the 
resulting ablation zone, i.e. the region in which cell viability is zero.

Equations governing radiofrequency ablation
The models consisted of solving a coupled electric-thermal problem, as defined by the Joule 
effect and Pennes’ bioheat equation. For the generation of heat, an electrode supplies a voltage 
in the radiofrequency range (≈ 500 kHz) which then heats up the nearby tissues. At this range, 
a quasi-static approach is used because the tissues can be considered as totally resistive, i.e., 
capacitive losses do not play a role in the heating [17]. The heat source, 
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dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
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Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

where 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 is the r.m.s. voltage (V) set at the electrode boundary, and 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 and 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 are the error 
and integral proportionality constants of the PI-control, correspondingly. 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 is the target 
temperature and T(t) the sampled temperature at the tip at time t. The PI-constants were cho-
sen from the study by Irastorza et al. [18], who found a good agreement with these constants 
to an ex-vivo experiment of RFA in bone setting 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 and 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent heat 
capacity method [20] to model tissue vaporization: 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 



69

Modelling radiofrequency ablation of  atypical cartilaginous tumors in long bones

Ch
ap

te
r 

4

Where 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 is the apparent specific heat, as defined by the apparent heat capacity method 
[20], used to capture the sudden change in heat capacity during the phase-change from water 
to vapor, stated by the piecewise function in equation (14), where 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 corresponds to the density 
in 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

, and c to the specific heat in 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

. 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 is the thermal conductivity in 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

  of each 
tissue, T is the temperature in (K), t is the time in (s) and 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 is the heat source in 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

. 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 is 
the blood perfusion heat loss in 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

, defined in equation 6.

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

Where 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 in 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

, and 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

 in 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤 

, represent the baseline density and specific heat of each 
tissue, correspondingly. 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤  is the density of vapor and 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤  its specific heat. 

The voltage is regulated with a PI-controller where the aim is to reach and maintain a 

pre-defined temperature at the tip of the electrode for a certain amount of time, as in 

the clinical setting. The controlled can be modelled as: 

Vr.m.s.(t) =  Kp �Ttarget − T(t)�+ Ki � �Ttarget − T(𝑡𝑡𝑡𝑡)�
𝜏𝜏𝜏𝜏

0
dt (3) 

where Vr.m.s. is the r.m.s. voltage (V) set at the electrode boundary, and Kp and K𝑖𝑖𝑖𝑖 are 

the error and integral proportionality constants of the PI-control, correspondingly. 

Ttarget is the target temperature and T(t) the sampled temperature at the tip at time t. 

The PI-constants were chosen from the study by Irastorza et al. [18], who found a good 

agreement with these constants to an ex-vivo experiment of RFA in bone setting Kp =

1.15 �𝑉𝑉𝑉𝑉
𝑘𝑘𝑘𝑘
� and Ki =  0.06 � V

K ∙ 𝐬𝐬𝐬𝐬
�.

The thermal problem is governed by Pennes’ bioheat equation [19], with the apparent 

heat capacity method [20] to model tissue vaporization:  

𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝛒𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑻𝑻𝑻𝑻)
𝛛𝛛𝛛𝛛𝐓𝐓𝐓𝐓
𝛛𝛛𝛛𝛛𝛛𝛛𝛛𝛛

= 𝛁𝛁𝛁𝛁 𝛁 (𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊(𝐓𝐓𝐓𝐓)𝛁𝛁𝛁𝛁𝐓𝐓𝐓𝐓) + 𝐐𝐐𝐐𝐐𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐐𝐐𝐐𝐐𝐩𝐩𝐩𝐩 (4) 

Where ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent specific heat, as defined by the apparent heat capacity 

method [20], used to capture the sudden change in heat capacity during the phase-

change from water to vapor, stated by the piecewise function in equation (14), where ρ 

corresponds to the density in �Kg
𝑚𝑚𝑚𝑚3�, and c to the specific heat in � J

kg ∙ K
�. 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the thermal

conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

�  of each tissue, T is the temperature in (K), t is the time in (s) and 

QRF is the heat source in �W
𝑚𝑚𝑚𝑚3�. Qp is the blood perfusion heat loss in �W

𝑚𝑚𝑚𝑚3�, defined in

equation 6. 

ρc𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(T) =

⎩
⎨

⎧
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,  𝑇𝑇𝑇𝑇 ≤ 99 °C
�𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap�

2
+ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤C,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap,         𝑇𝑇𝑇𝑇 > 100 °C

 

(5) 

Where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 in ( 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

3
), and  c𝑖𝑖𝑖𝑖 in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, represent the baseline density and specific heat of 

each tissue, correspondingly. 𝜌𝜌𝜌𝜌vap is the density of vapor and 𝑐𝑐𝑐𝑐vap its specific heat. 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤  is the density 
of water, is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 is the latent heat of vaporization of water in is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

, and C is the water fraction.

The blood perfusion heat loss is given by:

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

where 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 is the cell-death-dependent blood perfusion coefficient of each tissue, in 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

, 
which becomes zero when a given cell dies, as defined by the cell-death model. 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 is the density 
of blood in 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

,  

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 the specific heat of blood in 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

, 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 the temperature of blood in (K).

The electrical and thermal conductivity of biological tissues have a temperature-dependent 
behavior, which were modeled following Trujillo and Berjano [21], where a constant linear 
increase was considered until the point of vaporization.

To model the sudden drop in the electrical conductivity caused by tissue vaporization, the 
conductivity was modeled with a linear increase until the point of vaporization, as defined by:

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

The initial electrical conductivity at 37 °C of each tissue is given by 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 in 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

, with the 
linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 is the 
tissues’ conductivity at 100 °C, and 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 is the electrical conductivity of vaporized tissue 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

.



Chapter 4

70

A linear increase of 0.003 per  was considered for the thermal conductivity until the point of 
vaporization, where a maximum value was set, as stated in:

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

where 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 is the baseline thermal conductivity in 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 and 

is the density of water, 𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤 is the latent heat of vaporization of water in � 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
�, and C is 

the water fraction. 

The blood perfusion heat loss is given by: 

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6) 

where ω𝑖𝑖𝑖𝑖(𝛺𝛺𝛺𝛺) is the cell-death-dependent blood perfusion coefficient of each tissue, in 

(𝑠𝑠𝑠𝑠−1), which becomes zero when a given cell dies, as defined by the cell-death model. 

ρb is the density of blood in (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3),  cb the specific heat of blood in ( J

kg ∙ K
), Tb the 

temperature of blood in (K).  

The electrical and thermal conductivity of biological tissues have a temperature-

dependent behavior, which were modeled following Trujillo and Berjano [21], where a 

constant linear increase was considered until the point of vaporization. 

To model the sudden drop in the electrical conductivity caused by tissue vaporization, 

the conductivity was modeled with a linear increase until the point of vaporization, as 

defined by: 

𝜎𝜎𝜎𝜎(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎0 + ∆𝜎𝜎𝜎𝜎(𝑇𝑇𝑇𝑇 − 37 °C),             T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
(T − 100 °C)

5
,   100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C

 

(7) 

The initial electrical conductivity at 37 °C of each tissue is given by 𝜎𝜎𝜎𝜎0 in �S
m
�, with the 

linear rate of change in electrical conductivity per °C given by ∆σ = 0.015. 𝜎𝜎𝜎𝜎100°C is the 

tissues’ conductivity at 100 °C, and 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue 

𝜎𝜎𝜎𝜎vap =  1𝑥𝑥𝑥𝑥10−4 � 𝑆𝑆𝑆𝑆
𝑚𝑚𝑚𝑚
�. 

A linear increase of 0.003 per °C was considered for the thermal conductivity until the 

point of vaporization, where a maximum value was set, as stated in: 

k(T) = �𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(𝑇𝑇𝑇𝑇 − 37 °C),      𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘0 + ∆𝑘𝑘𝑘𝑘(100 °C − 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

where 𝑘𝑘𝑘𝑘0 is the baseline thermal conductivity in � 𝑊𝑊𝑊𝑊
m ∙ K

� and ∆𝑘𝑘𝑘𝑘 the rate of change in 

thermal conductivity per °C. 

 the rate of change in thermal 
conductivity per °C.

Boundary conditions
For the electric problem, a Dirichlet boundary condition at the electrode surface was set with 
a value equal to the applied r.m.s. voltage. A Dirichlet boundary condition of zero voltage was 
set at the outer boundaries to mimic the dispersive electrode. A Neumann boundary condition 
of zero flux was set at the symmetry axis. For the thermal problem, a Dirichlet boundary 
condition of a constant temperature of 37 °C to mimic the body temperature was set at the 
outer boundaries, and a Neumann boundary conduction of zero thermal flux was set at the 
symmetry axis. 

An implementation on FEniCS [22], an open-source platform for finite element modelling, 
was used to model and solve the proposed model. The model was adapted from the work by 
Hall [23], who developed a platform to solve multiple minimally invasive tumor ablation 
therapy models using FEniCS.

Cell death model 
The Arrhenius model [16] was used to assess the thermal damage in RFA, where the thermal 
damage to which a given cell is exposed is calculated over time using a first-order kinematics 
relationship, with higher temperatures and exposure times increasing the amount of damage, 
as defined by:

Boundary conditions 

For the electric problem, a Dirichlet boundary condition at the electrode surface was 

set with a value equal to the applied r.m.s. voltage. A Dirichlet boundary condition of 

zero voltage was set at the outer boundaries to mimic the dispersive electrode. A 

Neumann boundary condition of zero flux was set at the symmetry axis. For the 

thermal problem, a Dirichlet boundary condition of a constant temperature of 37 °C to 

mimic the body temperature was set at the outer boundaries, and a Neumann 

boundary conduction of zero thermal flux was set at the symmetry axis.  

An implementation on FEniCS [22], an open-source platform for finite element 

modelling, was used to model and solve the proposed model. The model was adapted 

from the work by Hall [23], who developed a platform to solve multiple minimally 

invasive tumor ablation therapy models using FEniCS. 

Cell death model  

The Arrhenius model [16] was used to assess the thermal damage in RFA, where the 

thermal damage to which a given cell is exposed is calculated over time using a first-

order kinematics relationship, with higher temperatures and exposure times 

increasing the amount of damage, as defined by: 

Ω(τ) =  � 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−
∆𝐸𝐸𝐸𝐸

𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇(𝑡𝑡𝑡𝑡)
τ

0
 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡, (9) 
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Simulated ablation zone
The cell death model was used to calculate the thermal damage to cells, with a cell being 
considered dead once it reached a threshold of Ω = 4.6, corresponding to a 99% chance of 
cell death [26]. The ablation radius was calculated across the modeled geometry starting at 
the electrode until the threshold was found. A cool-down phase after the active electrode was 
turned-off was allowed to more accurately capture the thermal damage over time, as shown by 
Irastorza et al. [27].

Tissue properties, tumor properties fitting, and the Taguchi orthogonal 
array
To study the effects of the tissue properties on the size of the ablation zone, and to capture the 
interpatient variability, minimum, average, and maximum values of each of the reported tissue 
properties were tested. Five variables with three levels for each of the tissues were thus defined. 
Focus of the tests were the properties of the tumor and the surrounding trabecular bone only, 
and the properties of cortical bone and muscle were kept at their average values. Additionally, 
since the actual tissue properties of the tumor have not been determined experimentally, but it 
is a cartilaginous tumor, the properties of cartilage were used as a baseline to then look for the 
best fitting parameters to replicate the clinical cases presented. 

With these two main points in mind, the average, minimum, and maximum reported values of 
both cartilage and trabecular bone were tested. 10 variables (electrical conductivity, blood per-
fusion, density, heat capacity, and thermal conductivity, of both the tumor and the trabecular 
bone) with three levels (minimum, average, and maximum values) were thus defined. To avoid 
a full factorial analysis (requiring 310 experiments), the Taguchi method, a fractional factorial 
method, was used. The Taguchi method uses an orthogonal array to reduce the number of 
parameter configurations by having the columns (parameters) mutually orthogonal, causing 
that, for any pair of columns, all combinations of factor levels occur, and to occur an equal 
number of times [28]. This allows to estimate main effects with just a few experimental runs 
when the right orthogonal array is utilized. With 10 variables and three levels, the Taguchi 
L27 orthogonal array, shown in Table 2, was used. All tissue properties were obtained from the 
IT’IS Foundation [29], except for the properties of the tumor, described in more detail below. 

For the parameters of the tumor the following considerations were taken. Electrical conductiv-
ity has been shown to be one of the most important parameters as it directly drives the energy 
deposition, and both benign and malignant tumors have been found to have significantly 
higher electrical conductivities, sometimes more than twice as high than its healthy counter-
parts [30] [31] [32].Thus, for the electrical conductivity of the tumor, the average value of 
cartilage at the radiofrequency range was chosen, with a value of 0.2 S/m, and the maximum 
value for the electrical conductivity was chosen to be twice as large as the one from healthy 
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cartilage. For completeness, we made its minimum value half of that of healthy tissue, but this 
was done arbitrarily.

In the case of the tumor’s blood perfusion, only one study was found, reporting a perfusion 
of 5.83 s−1 [29]. Given that cartilage is considered a non-vascularized tissue, that tumors may 
induce angiogenesis and create blood vessels, we gave it two additional values: one of no perfu-
sion at all (0s−1), and one of 8.33 s−1, just slightly higher than the reported value and the same 
as the maximum for cancellous bone. We encountered a similar problem defining the tumor 
density. The value of cartilage’s density in literature was an average of 1099.50 (with two stud-
ies, reporting 1099 and 1100). Since both reported almost the same value, for completeness we 
added a minimum of 1050 and a maximum of 1150, which are small arbitrarily chosen devia-
tions. For the specific heat capacity and thermal conductivity, the reported average, maximum, 
and minimum values for cartilage were used. 

Table 2 L27 Orthogonal Array with all the different configurations of tissue properties tested. The M, A, and m correspond 
to the maximum, average, and minimum values of each parameter, respectively.

Trial

Variables and levels

A B C D E F G H I J

1 M M M M M M M M M M

2 M M M M A A A A A A

3 M M M M m m m m m m

4 M A A A M M M A A A

5 M A A A A A A m m m

6 M A A A m m m M M M

7 M m m m M M M m m m

8 M m m m A A A M M M

9 M m m m m m m A A A

10 A M A m M A m M A m

11 A M A m A m M A m M

12 A M A m m M A m M A

13 A A m M M A m A m M

14 A A m M A m M m M A

15 A A m M m M A M A m

16 A m M A M A m m M A

17 A m M A A m M M A m

18 A m M A m M A A m M

19 m M m A M m A M m A

20 m M m A A M m A M m

21 m M m A m A M m A M

22 m A M m M m A A M m
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For all the other tissues, their average reported value was taken. In the case of the electrode, to 
simulate the thin layer of plastic insulating it beyond the active part, we defined the insulated 
part as having properties of the active electrode (nickel-titanium) but with the electrical con-
ductivity of plastic. The properties of all tissues and materials are given in Table 5. All values 
were obtained from [29], except where indicated.

Outcomes and optimization
The diameter of the ablation zone as indicated by the cell death threshold was measured in 
directions perpendicular to and parallel to the electrode and used as the outcome of interest. 
With the results from the L27 orthogonal array, a Main Effects plot was used to examine 
how each factor contributed to the ablation diameter and the results were presented using a 
centered mean to more easily compare the diameters in both directions. After identifying the 

Table 2 L27 Orthogonal Array with all the different configurations of tissue properties tested. The M, A, and m correspond to 
the maximum, average, and minimum values of each parameter, respectively. (continued)

Trial

Variables and levels

A B C D E F G H I J

23 m A M m A M m m A M

24 m A M m m A M M m A

25 m m A M M m A m A M

26 m m A M A M m M m A

27 m m A M m A M A M m

Table 3 Table with the tissue properties of all tissues. All values were obtained from [29], except where indicated. The 
maximum (Max), minimum (Min), and average (Avg) values of the tumor and trabecular bone used for the sensitivity 
analysis are also indicated. a, corresponds to the values as described in [33], which are of a nickel-titanium electrode; 
b, correspond to the assumptions for the tumor values as described in the main text, and * corresponds to the electrical 
conductivity of plastic, also taken from [33]. 

Material / tissue
Electrical 

conductivity 
(S/m)

Blood 
perfusion 
coefficient 
(x10-3s-1)

Density 
(kg/m3)

Specific heat
(J/kg ∙ K)

Thermal 
conductivity 

(W/m/K)

Active electrode a 1.00E+08 0 6450a 840 18

Insulated part of the electrode a 1.00E-05 a * 0 6450 840 18

Tumor
Max: 0. b

Avg: 02 
Min: 0.1b

Max: 0.83 b

Avg: 0.5 b

Min:0.0 b

Max:1150 
Avg: 1100 
Min: 1050

Max: 3664 
Avg: 3568 
Min: 3500

Max: 0.518 
Avg: 0.487 
Min: 0.417

Trabecular bone
Max: 0.135 
Avg: 0.0925 
Min: 0.05

Max: 0.83  
Avg: 0.5 

Min: 0.167

Max: 1350  
Avg: 1178.33 

Min: 1080

Max: 2254 
Avg: 2274 
Min: 2060

Max: 0.36 
Avg: 0.3125 
Min: 0.29

Cortical bone 0.022 0.167 1908 1313 0.32

Muscle 0.446 .6167 1090 3421 0.49
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most influential properties and examining the results, an optimal configuration was chosen as 
to match as closely the clinical results.

Finally, to further test the chosen parameters, we tested them on a different case. The new case 
had a different geometry with a different size of tumor, bone, and with an active tip of 3 cm. All 
the considerations for the previous model were taken for this case, changing only the geometry 
and the ablation time. The ablation was simulated with an active heating time of 6 minutes, 
replicating what was reported in clinical practice, and a cooldown time was also allowed as 
described previously.  

Results

The ablation radii of all the tested configurations are shown in Table 4.

Table 4 All the different configurations tested as based on the L27 orthogonal array with their respective resulting ablation 
diameters in the directions perpendicular and parallel to the electrode. 

Test Perpendicular Ablation diameter (mm) Parallel ablation diameter (mm)

1 28.60 37.85

2 32.10 39.58

3 38.14 42.41

4 29.27 38.20

5 33.12 40.02

6 35.71 41.75

7 30.21 38.61

8 30.74 38.89

9 37.08 42.05

10 28.24 37.65

11 31.03 39.32

12 25.73 36.61

13 29.37 38.27

14 30.49 38.94

15 25.31 36.37

16 28.84 38.00

17 29.87 38.65

18 26.01 36.81

19 27.46 37.46

20 24.24 36.56

21 24.11 36.16

22 27.16 37.35
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For the perpendicular and parallel ablation diameters, the smallest ablation diameters were 
23x35.6 mm for case number 27, and largest ablation diameters of 38x42.5mm for case num-
ber 3. The average ablation diameters were 28x38 mm, respectively. 

The main effects plot in Figure 3 shows the influence that each factor and level had on the 
ablation radius. The most influential factor was the electrical conductivity of both the tumor 
and the trabecular bone. The higher the electrical conductivity of the tumor, the larger the 
ablation radius. In contrast, a lower electrical conductivity from trabecular bone yields a larger 
ablation radius. Blood perfusion was the second most important parameter, but only in the 
case of trabecular bone, decreasing the ablation radius when its value was high, and increasing 
the ablation diameter when its value was low.

Looking at the results from the Taguchi experiments, the experiment that had the largest 
ablation diameters, of 38x42.5mm, was already close to the clinical case to replicate, with an 

Table 4 All the different configurations tested as based on the L27 orthogonal array with their respective resulting ablation 
diameters in the directions perpendicular and parallel to the electrode.  (continued)

Test Perpendicular Ablation diameter (mm) Parallel ablation diameter (mm)

23 24.64 36.81

24 23.86 36.09

25 27.88 37.76

26 24.40 36.68

27 23.78 36.02

Figure 3 Main effects plot with a centered mean showing how each parameter and level influence the size of the ablation 
radius. Higher slopes indicate a higher difference on the results from one level to another. The analysis was performed in 
both radii, perpendicular and parallel to the electrode, with near identical results, and only the one in the perpendicular 
direction to the electrode is shown. 
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ablation diameter of 43x44 mm. Because of this, a first step towards optimizing the parameters 
to replicate the clinical case was then to choose the parameter-level configuration that could 
produce the largest ablation diameters by choosing the parameters that contributed the most 
to a large ablation zone, as larger diameters were still needed. The selection is shown in Table 5.
Using the proposed set of tissue parameters, a resulting ablation zone of 38x43 mm was 
obtained, as shown in Figure 4. The chosen combination based on the main effects analysis 

of parameters was just 0.5 mm larger than the case that yield the maximum results from the 
Taguchi array. It was also 5x1 mm shorter than the clinical case in the directions perpendicular 
and parallel to the electrode, respectively. Further tweaking the parameters to increase the 
perpendicular diameter always resulted in an increase in the parallel diameter, which meant an 
overestimation on the ablation zone size. An underestimation was deemed more acceptable and 
therefore the proposed tissue parameters were accepted as the optimal configuration. 

Table 5 Combination of parameters to maximize the ablation zone based on the main effects plot. The brackets indicate 
whether the parameter level was the maximum, average, or minimum value, from the range of values used.
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In the second test of the best fi tting parameters, using a model with a diff erent geometry, the 
results of the simulations were an ablation zone of 33x49 mm, in contrast to the 31x48 mm 
ablation zone measured in clinical practice, shown in Figure 5.

Figure 4 Resulting ablation zone with the proposed optimal. Th e ablation was simulated for a total of 7 minutes of active 
heating plus some additional minutes until the mesh cooled down, after which the cell death was calculated. Th e fi gure 
shows the temperature map just before the electrode is turned off  and the contour of the cell death after cooldown.
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Discussion

With the growing need for the use of minimally invasive procedures such as RFA in bone 
tumors (minimizing damage with maximal effect) but with the little information available 
regarding the extension of the ablation zones, interventionists are challenged with planning 
with limited knowledge.  Incomplete local tumor control or unnecessary damage of healthy 
tissue (e.g., nerve damage, bone fracture) are common problems that could potentially be 
avoided if the resulting ablation zones could be planned more accurately. With the models and 
parameters presented here, a model of radiofrequency ablation of ACT able to replicate abla-
tion results in clinical practice is possible. These findings represent an important step towards 
a better understanding of thermal damage in bone tumors and towards more complex patient 
specific models which are needed to help interventionists ensure safe and effective planning 
and procedures to guarantee successful treatment.

Several studies have already used models to simulate RFA in other tissues, such as liver, heart, 
cornea, etc., with most models based on the Finite Element Method [14]. Some models have 
modeled accurate geometrical representations of real human anatomy [34], showing that the 
resulting ablation zone differs considerably depending on the ablated tissue, and highlighting 
the importance of carefully choosing the right treatment time and applied voltage. So far, 
the only RFA model of bone tumors were on osteoid osteomas [35] [27], however this type 
of tumor is smaller than the ones here discussed, and is also characterized by having a thick 

Figure 5 Left: Intraoperative CT image showing the location of the electrode inside the patient. Center: Post-operative 
MRI showing the resulting ablation diameters. Right: Resulting ablation radius and diameter from the simulations; the 
geometry was adapted to replicate as best as possible the dimensions from the clinical cases. The simulation had a time of 
active heating of 6 minutes, as in the clinical case, plus some additional minutes until the mesh cooled down, after which 
the cell death was calculated. The figure shows the temperature map just before the electrode is turned off and the contour 
of the cell death after cooldown.
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sclerotic layer or by usually being in cortical bone. In contrast, ACTs may be much larger, 
lack the sclerotic layer, and grow in trabecular bone. Thus, although both are models of bone 
tumors, there are important differences that justify the creation and validation of a model like 
the one here presented.

Because of the uncertainty on the parameters for the model, particularly the properties of 
the tumor, finding how each factor contributed to the outcome and finding a range of val-
ues for which the model worked was important. For that, the Taguchi orthogonal array was 
used to study the main effects of multiple parameters and levels with a minimal number of 
experiments, avoiding a full factorial design and analysis. With this, we tested how each of 
the factors contributed to the overall results and whether common assumptions of RFA in 
other tissues hold true for RFA of ACT. Blood perfusion of trabecular bone was an important 
factor determining the extension of the ablation zone. Low perfusion rates in the tissue sur-
rounding the tumor allowed the heat to be dissipated at a slower rate, and thus causing more 
local damage and increasing the ablation zone, which in literature is known as the oven effect 
[36] [37]. Similarly, as observed in the main effects plot, if the tissue surrounding the tumor 
had a lower electrical conductivity than the target tissue, a strong peak of resistive heating is 
observed at the tissue-bone interface, which could potentially lead to higher temperatures 
further away from the electrode because of the additional heat generation further away from 
the electrode. This has been demonstrated in ablation of other tissues [38] [39], and in the 
ablation of osteoid osteomas [35], another type of bone tumor, and could explain why the abla-
tion zones in bone tumors seem to grow larger than expected. Bone has a considerably lower 
electrical conductivity than soft tissues, which could cause this effect to be even greater for 
RFA of soft tissue-based tumors in bone, as was the case with the atypical cartilaginous tumors 
here studied. Furthermore, our simulations consisted of a tumor surrounded by trabecular 
bone, but this effect could be stronger in cases with a cortical wall next to the tumor, and it 
would be interesting to study its effects in a three-dimensional scenario when both cortical and 
trabecular bone are surrounding the tumor.

Although the reported value for the electrical conductivity of normal healthy cartilage is 0.2 
S/m, our results seem to indicate that some of the parameters like the electrical conductivity 
of cartilaginous tumors may be much higher than that of healthy normal cartilage because the 
simulation that approximated the clinical cases best had an electrical conductivity of 0.4 S/m. 
However, this value was from a single study, and the value at the radiofrequency range was not 
measured but inferred based on a frequency response model. Additionally, there are various 
types of cartilage (i.e., hyaline, fibro and elastic) that may have different properties, and it is 
not clear how much these types would differ. On the other hand, this much higher electrical 
conductivity should not be a surprise, as it is known that tumors, both benign and malignant, 
have higher electrical conductivities than healthy tissue, even more than twice their healthy 
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counterparts [30] [31] [32] in some cases. A next step towards more accurate patient-specific 
modeling and planning would be to characterize the properties of the tumors to then use them 
in a model like ours. With the electrical conductivity being the parameter that causes the most 
change in the outcome and thus the most important to investigate. 

One important shortcoming of this study is that the axisymmetric models described are not an 
exact representation of the clinical situation. If revolved around their axis, the models would 
represent a set of ellipsoidal box-like objects encasing one over the other. Nonetheless, the 
models seemed to be able to capture the phenomenon accurately enough. This may be because 
the heat generation and transfer occur mostly close to the electrode, and the dimensions of 
our model were able to capture these phenomena without changing its electrical and thermal 
distribution too much from the real cases. However, in cases with complex 3D structures, 
these models may not be able to accurately represent the extent of the ablation zone in all 3D 
distances and thus over- or under-estimate the results in certain directions. In these cases, a 
patient specific model or a more intricated 3D model may be a better solution. Using accurate 
patient specific 3D models has the drawback of being very computationally expensive and 
preprocessing the data for the models can be very time consuming. Furthermore, our model 
showed a good enough accuracy in models with both 2 and 3 cm active electrodes, which are 
the most frequently used for this kind of therapies. These models also had different geometrical 
shapes and ablation zone sizes, and in both cases the models resulted in accurate results that 
reflected the changes in the geometrical shapes of the models. Thus, a first approach with an 
axisymmetric model to have a first impression of what is possible and propose an adequate 
set of parameters is a great first step towards more complex representations and simulations, 
such as a patient-specific models using image segmentation from medical images to create the 
geometries. 

Another shortcoming is that assumptions had to be made on the position of the electrode based 
on the CT. Although we had access to intraoperative CT images, the electrode may be further 
moved after the final CT scan was taken, and the available retrospective CT data may thus not 
show the actual final position of the electrode. We do not expect this deviation to be large, but 
it is not uncommon to make small adjustments to the position of the electrode if the machine 
is failing to reach the target temperature. Occasionally, the tissues may heat up to the point of 
vaporization in places far from the tip of the electrode, which regulates the energy deposition. 
This causes a sudden increase in the resistance and shuts down the machine. Interestingly, we 
observed a similar phenomenon in our simulations when we modeled the geometry with the 
tip of the electrode exactly at the tumor-bone interface. The problem was solved by positioning 
the electrode slightly deeper into the tumor. This is similar to what is seen in clinical practice, 
and points towards the importance of preoperative planning, which could be done with a 
model like this one. 
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This study showed that RFA of ATC could be reliably replicated with a computer model using 
the parameters found with our parametric analysis, which could potentially be used for more 
reliable patient specific planning. 
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Computer 3D modelling of radiofrequency ablation of 
atypical cartilaginous tumours in long bones using finite 
element methods and real patient anatomy

Original article

Abstract
Background: Radiofrequency ablation (RFA) is a minimally invasive technique used for 
the treatment of neoplasms, with a growing interest in the treatment of bone tumours. 
However, the lack of data concerning the size of the resulting ablation zones in RFA of bone 
tumours makes prospective planning challenging, needed for safe and effective treatment.

Methods: Using retrospective computed tomography and magnetic resonance imaging 
data from patients treated with RFA of atypical cartilaginous tumours (ACTs), the bone, 
tumour, and final position of the RFA electrode were segmented from the medical images 
and used in finite element models to simulate RFA. Tissue parameters were optimized, and 
boundaries conditions were defined to mimic the clinical scenario. The resulting ablation 
diameters from post-operative images were then measured and compared to the ones from 
the simulations, and the error between them calculated.

Results: Seven cases had all the information required to create the finite element models. 
The resulting median error (in all three directions) was -1 mm, with interquartile ranges 
from -3 to 3 mm. The three-dimensional models showed that the thermal damage con-
centrates close to the cortical wall in the first minutes and then becomes more evenly 
distributed.

Conclusions: Computer simulations can predict the ablation diameters with acceptable 
accuracy and may thus be utilized for patient planning. This could allow interventional 
radiologists to accurately define the time, electrode length, and position required to treat 
ACTs with RFA and make adjustments as needed to guarantee total tumour destruction 
while sparing as much healthy tissue as possible.

Keywords (MESH terms): Bone neoplasms, Bone and Bones, Catheter ablation (radiofre-
quency), Computer simulation, Finite element analysis 
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Key points
•	Radiofrequency ablation is a technique with great potential to treat bone neoplasms.
•	There is, however, little information regarding the expected outcomes, making planning challenging.
•	Computer models using the finite element method could be used to simulate the interventions.
•	Computer simulations could help planning safe and effective interventions.

Declarations
Ethics approval and consent to participate

Only patients that agreed and signed a written form at the time of the intervention about 
the potential use of their anonymized data for scientific research were included in the study. 
No additional written or verbal consent was necessary, which is in accordance with the 
regulations of the Medical Ethical Review Board of our institution. 
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Background

Radiofrequency ablation (RFA) is a minimally invasive technique that has been commonly 
used for the treatment of neoplasms in liver, kidney, adrenal glands, bone, lung, and breast 
[1]. Its use for the treatment of bone tumours has been mostly focused on osteoid osteoma, 
but there has been an interest in the treatment of other types of bone tumours, particularly the 
ones in the benign spectrum, such as chondroblastoma [2] [3] [4] [5] [6] and osteoblastoma 
[7] [8] [9], but also atypical cartilaginous tumours (ACTs) [10] [11]. Due to its minimally in-
vasiveness, in contrast to more aggressive treatments such as open surgery, it allows for shorter 
recovery times, targeted tumour destruction, and low complication rates [12].

To guarantee optimal treatment, i.e., total tumour destruction while minimizing damage to 
healthy tissue [1], it is important to know the extension of the ablation zone. There is, however, 
little to no data concerning the size of the ablation zone for RFA of bone tumours, particularly 
for tumours other and larger than osteoid osteoma (i.e., > 2 cm). Given the interest of our 
research group to expand the use of RFA from osteoid osteoma to other tumours such as ACTs, 
accurate and reliable planning are needed to guarantee safe and effective tumour ablations. In 
a previous initial study by our team in patients with an ACT in which the resulting ablation 
diameters after RFA treatment were measured, it was observed that the ablation zones grew 
larger than expected, particularly in contrast to those after RFA in other tissues, such as the 
liver and kidney [11]. Similar findings were observed by Neeman et al. [13], who performed 
RFA of a chordoma and suggested the larger than expected ablation volume may be due to 
the high-water content of the tumour and its relatively poor vascularity, resulting in higher 
electrical and thermal conductivities than that of liver or kidney tissue. 

To further understand the effects of the bone and tumour tissue on the resulting ablation zone, 
a previous and yet to be published study by our research group used computer models with the 
finite element method (FEM) to simulate RFA of ACT. The implementation used a simplified 
two-dimensional (2D) geometry of the patient and a fractional factorial analysis to determine 
optimal parameters to replicate clinical cases with the computer model. These models had 
limitations, as they did not take into account the full three-dimensional (3D) characteristics of 
the anatomic location of interest. To further test the validity of these assumptions and in an at-
tempt to develop an accurate patient-specific planning system for clinical use in RFA of ACTs, 
this study aimed to develop 3D models of the patient’s anatomy and test the computational 
model’s accuracy in replicating the ablation zones seen in clinical practice.
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Methods

This study consisted of the following steps:
1) collection, segmentation, and manual registration of preprocedural and intraprocedural 

images of cases of ACT that were treated with RFA;
2) collection of the relevant clinical parameters of the intervention, such as size of the active 

RFA electrode (either 2 or 3 cm long) and the amount of time the energy was applied;
3) generation of standard triangle language (STL) files from the segmented images which were 

then transformed into 3D meshes;
4) application of a FEM utilizing the 3D patient-specific models from patient data;
5) measurement of the ablation diameters on post-RFA magnetic resonance (MR) images and 

the computer models.

Image segmentation and registration
Cases from a previous study [11] of patients that had undergone computed tomography (CT)-
guided RFA of ACT were used to create the patient-specific meshes. Only patients that agreed 
and signed a written form at the time of the intervention about the potential use of their 
anonymized data for scientific research were included in the study. Only cases in which it was 
possible to determine the final position of the RFA electrode from the intra-procedural CT 
images and in which it was possible to properly segment the tumour and surrounding bone 
were chosen. The pre-RFA MR images (were used to segment the tumour, because tumour 
boundaries are usually not clearly visible on CT. The MR images were acquired using a 1.5 
T MRI scanner (Siemens, Erlangen, Germany) with a surface coil. Fat-supressed Short Tau 
Inversion Recovery (STIR) T2-weighted sequences (TR/TE/TI: 8270/160/19 ms, 4 mm slice 
thickness) and T1-weighted images (TR/TE: 500/19 ms, 4 mm slice thickness) were acquired 
before and after the administration of an intravenous gadolinium-based contrast agent (0.1 
mmol gadoterate meglumine (Dotarem®; Guerbet) per kg of body weight). As part of the rou-
tine MRI protocol, the images were acquired in two planes (transversal and either coronal or 
sagittal). The intraprocedural CT images (Somaton Definition AS, Siemens Medical Systems, 
Erlangen, Germany; 100 kVp, 49 mAs, 0.8 mm pitch) were used to segment the bones and 
the electrode. 

All segmentations were done with Materialise Mimics (https://www.materialise.com) by the 
first author and later assessed by a musculoskeletal radiologist to confirm their accuracy. The 
segmentations were exported to STL format and Gmsh [14] (https://gmsh.info), a 3D finite 
element mesh generator, was used to generate the 3D meshes using the STL files. Because of 
the artifacts caused by the electrode on the CT data, the segmented electrode was only used to 
find the location of the electrode and then it was replaced by a modelled electrode, generated 
on Gmsh, replicating its dimensions. Gmsh was also used to create a mesh for the muscle 
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tissue, which was assumed as a large cube surrounding cortical bone. The surface of trabecular 
bone was determined by applying an offset of -2.5 mm on the surface of the segmented cortical 
bone. 

Using MeshLab [15] (https://www.meshlab.net), meshes of multiple characteristic lengths 
were created and a mesh convergence analysis was done for each of the models, with the 
electrode having the smallest triangles (0.1−0.25 mm) and the muscles having much larger 
triangles. With Autodesk Meshmixer (http://www.meshmixer.com), manual refinement and 
reduction of triangles was performed, reducing the triangles in sections of bone far away 
from the electrode and increasing them close to the tumour and electrode. All models were 
defeatured, removing fine details to reduce the tetrahedron needed and thus also reduce the 
computational requirements.

Clinical parameters
The radiologist who performed the RFA registered the amount of time with the electrode 
at the desired target temperature of 90 ° C and also indicated the amount of time with the 
applicator at a temperature higher than 60 ° C. The length of the active electrode used during 
each intervention was also registered, which was either 2 or 3 cm.

A musculoskeletal radiologist with ten years of experience measured the ablation diameters in 
three orthogonal directions on the post-RFA MR images (same sequences used before RFA) 
that were acquired three months after the intervention. The results from the simulations were 
measured by the first author, with five years of experience in image processing, and who ran 
the computer simulations. The results were measured in three orthogonal directions as to 
match the measurements by the radiologist, and both results were compared. Note that the 
first author was blinded to the radiologist’s measurements, and vice versa. The measurements 
were labelled as “longest”, “shortest”, and “other” ablation diameters, with the longest diameter 
being the diameter along the electrode axis and the other two orthogonal to it.

Finite element model
To determine the thermal damage over time of RFA of ACT with a non-cooled temperature-
controlled ablation protocol with a control temperature of 90 ° C, finite element models were 
created, in line with a previous, yet to be published, study from our research group. The 
implementation was done in FEniCS, a solver for finite element problems [16].

Equations governing radiofrequency ablation
In RFA, an alternating current of approximately 500 kHz is applied with an electrode into a 
target tissue. The current induces heating in the tissues surrounding the electrode, causing ther-
mal damage to cells exposed to high temperatures. To simulate RFA, a coupled electric-thermal 
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problem has then to be solved, where tissue heating is due to Joule heating. Additionally, 
since the thermal damage is also dependent on the time exposed to a given temperature, a cell 
death model has to be utilized to relate temperature, time, and the robustness of the tissues to 
thermal damage.

For the electrical problem, a quasi-static approach can be taken, as the tissues can be seen as 
totally resistive to the current in the RF range [17]. The heat source, 

solved, where tissue heating is due to Joule heating. Additionally, since the thermal damage is also 

dependent on the time exposed to a given temperature, a cell death model has to be utilized to relate 

temperature, time, and the robustness of the tissues to thermal damage. 

For the electrical problem, a quasi-static approach can be taken, as the tissues can be seen as 

totally resistive to the current in the RF range [17]. The heat source, QRF, is given by: 

QRF = σ𝑖𝑖𝑖𝑖(T)|𝐄𝐄𝐄𝐄|𝟐𝟐𝟐𝟐 (1)  

where σ𝑖𝑖𝑖𝑖 is the temperature dependent electrical conductivity (S/m) of each tissue and 𝐄𝐄𝐄𝐄 is the electric 

field intensity in (V/m), which is then defined by the Laplace equation, where V is the root mean 

squared value of the applied voltage V:  

∇ ⋅ σ𝑖𝑖𝑖𝑖(T)∇V = 0 (2)  

The RFA procedure used for these patients was a temperature-controlled procedure, in which 

the voltage is automatically regulated by the RFA machine to maintain a predefined target control 

temperature, set by the interventional radiologist. To mimic that, a proportional-integral controller 

can be used, defining the root mean square (RMS) voltage (V) applied at the electrode boundary, VRMS., 

as: 

V𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆. =  Kp�Ttarget − T(t)� + Ki � (Ttarget − T(t))
𝜏𝜏𝜏𝜏

0
 dt (3) 

For the controller, the initial voltage is set to zero, and then modulated as a function of the 

difference between the target temperature Ttarget and the temperature at the electrode’s tip T(t) at 

the time t, the error proportionally constant Kp, and the integral proportionality constant Ki. These 

constants are model dependent, but values of Kp = 1.15 V/K and Ki = 0.06 V/K/s have been found to 

be a good approximation for ex-vivo bone RFA [18].  

The temperature dependent properties of the electrical conductivity can be modelled with a 

piece-wise function [19]. First, there is a linear increase of 1.5%/°C until the point of tissue 

vaporization, where then a sudden drop in the electrical conductivity occurs, defined as:  

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(T) =

⎩
⎨

⎧
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 + ∆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37 °C),      T ≤ 100 °C

𝜎𝜎𝜎𝜎100°C + �𝜎𝜎𝜎𝜎vap − 𝜎𝜎𝜎𝜎100°C�
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5
,  100°C < T ≤  105 °C

𝜎𝜎𝜎𝜎vap,             T > 105 °C
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where ∆𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 corresponds to the 1.5% linear increase in the electrical conductivity per °C from the 

baseline electrical conductivity, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖, at 37 °C. 𝜎𝜎𝜎𝜎vap is the electrical conductivity of vaporized tissue, with 

a value of 𝜎𝜎𝜎𝜎vap =  10𝑥𝑥𝑥𝑥10−3 (S/m) [19]. 

The thermal problem is governed by Penne’s bioheat equation [20], which is a modified version 

of the heat equation. If tissues get close to the boiling point, tissue vaporization occurs, which has 

important effects on both the electrical and thermal problems. Additionally, to account for the phase 

change into vapor, the enthalpy method [21] is utilized: 
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The thermal problem is governed by Penne’s bioheat equation [20], which is a modified version 
of the heat equation. If tissues get close to the boiling point, tissue vaporization occurs, which 
has important effects on both the electrical and thermal problems. Additionally, to account for 
the phase change into vapor, the enthalpy method [21] is utilized:

∂ℎ
∂t

= ∇ ⋅ (𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T)∇T) + QRF − Qp

where h is the enthalpy, which is a piece-wise function that relates the density and specific heat to 

temperature and accounts for phase change at high temperatures, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the temperature dependent 

thermal conductivity (W/m ∙ K), T is the temperature, QRF the heat source (W/𝑚𝑚𝑚𝑚3), and Qp is the 

blood perfusion heat loss (W /𝑚𝑚𝑚𝑚3), defined as:  

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  

where ω𝑖𝑖𝑖𝑖 is a tissue-dependent perfusion coefficient (𝑠𝑠𝑠𝑠−1) that depends on the cell viability Ω, from 

the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 

enthalpy method [21] [19]: 

ℎ = �

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37°C),  37 °C ≤   𝑇𝑇𝑇𝑇 ≤ 99 °C
ℎ(99) + ℎfgC𝑖𝑖𝑖𝑖  (𝑇𝑇𝑇𝑇−99°C)

(100°C−99°C)
,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

ℎ(100) +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap(𝑇𝑇𝑇𝑇 − 100°C),         𝑇𝑇𝑇𝑇 > 100 °C
 (7) 

where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖c𝑖𝑖𝑖𝑖 are the baseline values of density (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and specific heat ( 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
) of each tissue, ℎfgis the 

latent heat of vaporization (2.25x106 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

), C𝑖𝑖𝑖𝑖 is the water fraction of each tissue, and 𝜌𝜌𝜌𝜌vap(370 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and 

𝑐𝑐𝑐𝑐vap (2156 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

) are the density and specific heat of vaporized tissue [19]. 

For the temperature dependence of the thermal conductivity, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖, of each tissue, a linear increase 
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𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(100 °C− 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

Finally, for the cell viability Ω, relating the robustness of each tissue to thermal damage, the 

temperature, and exposure time, the Arrhenius damage model [24] was utilized: 

Ω(𝒕𝒕𝒕𝒕) =  � 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨−
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where A, a frequency factor, and ∆𝐸𝐸𝐸𝐸, the activation energy for irreversible damage reaction, are cell-

line dependent parameters, and R is the universal gas constant. Because most of the thermal damage 

occurs in bone, osteocytes were chosen for the cell-line parameters, with values of 𝐴𝐴𝐴𝐴 =

(5)

 is a tissue-dependent perfusion coefficient 
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= ∇ ⋅ (𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T)∇T) + QRF − Qp

where h is the enthalpy, which is a piece-wise function that relates the density and specific heat to 

temperature and accounts for phase change at high temperatures, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the temperature dependent 

thermal conductivity (W/m ∙ K), T is the temperature, QRF the heat source (W/𝑚𝑚𝑚𝑚3), and Qp is the 

blood perfusion heat loss (W /𝑚𝑚𝑚𝑚3), defined as:  

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  

where ω𝑖𝑖𝑖𝑖 is a tissue-dependent perfusion coefficient (𝑠𝑠𝑠𝑠−1) that depends on the cell viability Ω, from 

the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 

enthalpy method [21] [19]: 
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where A, a frequency factor, and ∆𝐸𝐸𝐸𝐸, the activation energy for irreversible damage reaction, are cell-

line dependent parameters, and R is the universal gas constant. Because most of the thermal damage 

occurs in bone, osteocytes were chosen for the cell-line parameters, with values of 𝐴𝐴𝐴𝐴 =
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temperature and accounts for phase change at high temperatures, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the temperature dependent 

thermal conductivity (W/m ∙ K), T is the temperature, QRF the heat source (W/𝑚𝑚𝑚𝑚3), and Qp is the 

blood perfusion heat loss (W /𝑚𝑚𝑚𝑚3), defined as:  

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  
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the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 
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ℎ = �

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37°C),  37 °C ≤   𝑇𝑇𝑇𝑇 ≤ 99 °C
ℎ(99) + ℎfgC𝑖𝑖𝑖𝑖  (𝑇𝑇𝑇𝑇−99°C)

(100°C−99°C)
,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

ℎ(100) +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap(𝑇𝑇𝑇𝑇 − 100°C),         𝑇𝑇𝑇𝑇 > 100 °C
 (7) 

where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖c𝑖𝑖𝑖𝑖 are the baseline values of density (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and specific heat ( 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
) of each tissue, ℎfgis the 

latent heat of vaporization (2.25x106 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

), C𝑖𝑖𝑖𝑖 is the water fraction of each tissue, and 𝜌𝜌𝜌𝜌vap(370 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and 

𝑐𝑐𝑐𝑐vap (2156 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

) are the density and specific heat of vaporized tissue [19]. 
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where A, a frequency factor, and ∆𝐸𝐸𝐸𝐸, the activation energy for irreversible damage reaction, are cell-

line dependent parameters, and R is the universal gas constant. Because most of the thermal damage 

occurs in bone, osteocytes were chosen for the cell-line parameters, with values of 𝐴𝐴𝐴𝐴 =
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where h is the enthalpy, which is a piece-wise function that relates the density and specific heat to 

temperature and accounts for phase change at high temperatures, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the temperature dependent 

thermal conductivity (W/m ∙ K), T is the temperature, QRF the heat source (W/𝑚𝑚𝑚𝑚3), and Qp is the 

blood perfusion heat loss (W /𝑚𝑚𝑚𝑚3), defined as:  

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  

where ω𝑖𝑖𝑖𝑖 is a tissue-dependent perfusion coefficient (𝑠𝑠𝑠𝑠−1) that depends on the cell viability Ω, from 

the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 

enthalpy method [21] [19]: 
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temperature, and exposure time, the Arrhenius damage model [24] was utilized: 

Ω(𝒕𝒕𝒕𝒕) =  � 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨−
∆𝑬𝑬𝑬𝑬

𝑹𝑹𝑹𝑹𝑻𝑻𝑻𝑻(𝝉𝝉𝝉𝝉)
𝒕𝒕𝒕𝒕

𝟏𝟏𝟏𝟏
 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅, (9) 

where A, a frequency factor, and ∆𝐸𝐸𝐸𝐸, the activation energy for irreversible damage reaction, are cell-

line dependent parameters, and R is the universal gas constant. Because most of the thermal damage 

occurs in bone, osteocytes were chosen for the cell-line parameters, with values of 𝐴𝐴𝐴𝐴 =

(5)

 the specific heat of blood 
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= ∇ ⋅ (𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T)∇T) + QRF − Qp

where h is the enthalpy, which is a piece-wise function that relates the density and specific heat to 

temperature and accounts for phase change at high temperatures, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the temperature dependent 

thermal conductivity (W/m ∙ K), T is the temperature, QRF the heat source (W/𝑚𝑚𝑚𝑚3), and Qp is the 

blood perfusion heat loss (W /𝑚𝑚𝑚𝑚3), defined as:  

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  

where ω𝑖𝑖𝑖𝑖 is a tissue-dependent perfusion coefficient (𝑠𝑠𝑠𝑠−1) that depends on the cell viability Ω, from 

the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 

enthalpy method [21] [19]: 
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where A, a frequency factor, and ∆𝐸𝐸𝐸𝐸, the activation energy for irreversible damage reaction, are cell-

line dependent parameters, and R is the universal gas constant. Because most of the thermal damage 

occurs in bone, osteocytes were chosen for the cell-line parameters, with values of 𝐴𝐴𝐴𝐴 =
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 the temperature of blood (K).

To account for the temperature dependency of the heat capacity, a linear increase is first con-
sidered, followed by a sudden change in heat capacity at boiling temperatures, modelled using 
the enthalpy method [21] [19]:
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Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  
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Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  

where ω𝑖𝑖𝑖𝑖 is a tissue-dependent perfusion coefficient (𝑠𝑠𝑠𝑠−1) that depends on the cell viability Ω, from 

the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 
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(5)

, of each tissue, a linear increase 

∂ℎ
∂t

= ∇ ⋅ (𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T)∇T) + QRF − Qp

where h is the enthalpy, which is a piece-wise function that relates the density and specific heat to 

temperature and accounts for phase change at high temperatures, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the temperature dependent 

thermal conductivity (W/m ∙ K), T is the temperature, QRF the heat source (W/𝑚𝑚𝑚𝑚3), and Qp is the 

blood perfusion heat loss (W /𝑚𝑚𝑚𝑚3), defined as:  

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  

where ω𝑖𝑖𝑖𝑖 is a tissue-dependent perfusion coefficient (𝑠𝑠𝑠𝑠−1) that depends on the cell viability Ω, from 

the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 

enthalpy method [21] [19]: 

ℎ = �

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37°C),  37 °C ≤   𝑇𝑇𝑇𝑇 ≤ 99 °C
ℎ(99) + ℎfgC𝑖𝑖𝑖𝑖  (𝑇𝑇𝑇𝑇−99°C)

(100°C−99°C)
,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

ℎ(100) +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap(𝑇𝑇𝑇𝑇 − 100°C),         𝑇𝑇𝑇𝑇 > 100 °C
 (7) 

where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖c𝑖𝑖𝑖𝑖 are the baseline values of density (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and specific heat ( 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
) of each tissue, ℎfgis the 

latent heat of vaporization (2.25x106 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

), C𝑖𝑖𝑖𝑖 is the water fraction of each tissue, and 𝜌𝜌𝜌𝜌vap(370 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and 

𝑐𝑐𝑐𝑐vap (2156 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

) are the density and specific heat of vaporized tissue [19]. 

For the temperature dependence of the thermal conductivity, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖, of each tissue, a linear increase 

(∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖) of 0.33% per degree Celsius was considered until the point of vaporization, at which a maximum 

value was set [22] [23], as defined by: 

𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T) = �𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37 °C),       𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(100 °C− 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

Finally, for the cell viability Ω, relating the robustness of each tissue to thermal damage, the 

temperature, and exposure time, the Arrhenius damage model [24] was utilized: 

Ω(𝒕𝒕𝒕𝒕) =  � 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨−
∆𝑬𝑬𝑬𝑬
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 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅, (9) 

where A, a frequency factor, and ∆𝐸𝐸𝐸𝐸, the activation energy for irreversible damage reaction, are cell-

line dependent parameters, and R is the universal gas constant. Because most of the thermal damage 

occurs in bone, osteocytes were chosen for the cell-line parameters, with values of 𝐴𝐴𝐴𝐴 =

(5)

 of 0.33% per degree Celsius was considered until the point of vaporization, at which a 
maximum value was set [22] [23], as defined by:

∂ℎ
∂t

= ∇ ⋅ (𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T)∇T) + QRF − Qp

where h is the enthalpy, which is a piece-wise function that relates the density and specific heat to 

temperature and accounts for phase change at high temperatures, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the temperature dependent 

thermal conductivity (W/m ∙ K), T is the temperature, QRF the heat source (W/𝑚𝑚𝑚𝑚3), and Qp is the 

blood perfusion heat loss (W /𝑚𝑚𝑚𝑚3), defined as:  

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  

where ω𝑖𝑖𝑖𝑖 is a tissue-dependent perfusion coefficient (𝑠𝑠𝑠𝑠−1) that depends on the cell viability Ω, from 

the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 

enthalpy method [21] [19]: 

ℎ = �

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37°C),  37 °C ≤   𝑇𝑇𝑇𝑇 ≤ 99 °C
ℎ(99) + ℎfgC𝑖𝑖𝑖𝑖  (𝑇𝑇𝑇𝑇−99°C)

(100°C−99°C)
,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

ℎ(100) +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap(𝑇𝑇𝑇𝑇 − 100°C),         𝑇𝑇𝑇𝑇 > 100 °C
 (7) 

where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖c𝑖𝑖𝑖𝑖 are the baseline values of density (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and specific heat ( 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
) of each tissue, ℎfgis the 

latent heat of vaporization (2.25x106 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

), C𝑖𝑖𝑖𝑖 is the water fraction of each tissue, and 𝜌𝜌𝜌𝜌vap(370 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and 

𝑐𝑐𝑐𝑐vap (2156 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

) are the density and specific heat of vaporized tissue [19]. 

For the temperature dependence of the thermal conductivity, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖, of each tissue, a linear increase 

(∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖) of 0.33% per degree Celsius was considered until the point of vaporization, at which a maximum 

value was set [22] [23], as defined by: 

𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T) = �𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37 °C),       𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(100 °C− 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

Finally, for the cell viability Ω, relating the robustness of each tissue to thermal damage, the 

temperature, and exposure time, the Arrhenius damage model [24] was utilized: 

Ω(𝒕𝒕𝒕𝒕) =  � 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨−
∆𝑬𝑬𝑬𝑬
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 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅, (9) 

where A, a frequency factor, and ∆𝐸𝐸𝐸𝐸, the activation energy for irreversible damage reaction, are cell-

line dependent parameters, and R is the universal gas constant. Because most of the thermal damage 

occurs in bone, osteocytes were chosen for the cell-line parameters, with values of 𝐴𝐴𝐴𝐴 =

(5)

Finally, for the cell viability Ω, relating the robustness of each tissue to thermal damage, the 
temperature, and exposure time, the Arrhenius damage model [24] was utilized:
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= ∇ ⋅ (𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T)∇T) + QRF − Qp

where h is the enthalpy, which is a piece-wise function that relates the density and specific heat to 

temperature and accounts for phase change at high temperatures, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the temperature dependent 

thermal conductivity (W/m ∙ K), T is the temperature, QRF the heat source (W/𝑚𝑚𝑚𝑚3), and Qp is the 

blood perfusion heat loss (W /𝑚𝑚𝑚𝑚3), defined as:  

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  

where ω𝑖𝑖𝑖𝑖 is a tissue-dependent perfusion coefficient (𝑠𝑠𝑠𝑠−1) that depends on the cell viability Ω, from 

the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 

enthalpy method [21] [19]: 

ℎ = �

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37°C),  37 °C ≤   𝑇𝑇𝑇𝑇 ≤ 99 °C
ℎ(99) + ℎfgC𝑖𝑖𝑖𝑖  (𝑇𝑇𝑇𝑇−99°C)

(100°C−99°C)
,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

ℎ(100) +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap(𝑇𝑇𝑇𝑇 − 100°C),         𝑇𝑇𝑇𝑇 > 100 °C
 (7) 

where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖c𝑖𝑖𝑖𝑖 are the baseline values of density (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and specific heat ( 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
) of each tissue, ℎfgis the 

latent heat of vaporization (2.25x106 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

), C𝑖𝑖𝑖𝑖 is the water fraction of each tissue, and 𝜌𝜌𝜌𝜌vap(370 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and 

𝑐𝑐𝑐𝑐vap (2156 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

) are the density and specific heat of vaporized tissue [19]. 

For the temperature dependence of the thermal conductivity, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖, of each tissue, a linear increase 

(∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖) of 0.33% per degree Celsius was considered until the point of vaporization, at which a maximum 

value was set [22] [23], as defined by: 

𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T) = �𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37 °C),       𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(100 °C− 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

Finally, for the cell viability Ω, relating the robustness of each tissue to thermal damage, the 

temperature, and exposure time, the Arrhenius damage model [24] was utilized: 

Ω(𝒕𝒕𝒕𝒕) =  � 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨−
∆𝑬𝑬𝑬𝑬
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where A, a frequency factor, and ∆𝐸𝐸𝐸𝐸, the activation energy for irreversible damage reaction, are cell-

line dependent parameters, and R is the universal gas constant. Because most of the thermal damage 

occurs in bone, osteocytes were chosen for the cell-line parameters, with values of 𝐴𝐴𝐴𝐴 =

(5)
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where A, a frequency factor, and 
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= ∇ ⋅ (𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T)∇T) + QRF − Qp

where h is the enthalpy, which is a piece-wise function that relates the density and specific heat to 

temperature and accounts for phase change at high temperatures, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the temperature dependent 

thermal conductivity (W/m ∙ K), T is the temperature, QRF the heat source (W/𝑚𝑚𝑚𝑚3), and Qp is the 

blood perfusion heat loss (W /𝑚𝑚𝑚𝑚3), defined as:  

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  

where ω𝑖𝑖𝑖𝑖 is a tissue-dependent perfusion coefficient (𝑠𝑠𝑠𝑠−1) that depends on the cell viability Ω, from 

the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 

enthalpy method [21] [19]: 

ℎ = �

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37°C),  37 °C ≤   𝑇𝑇𝑇𝑇 ≤ 99 °C
ℎ(99) + ℎfgC𝑖𝑖𝑖𝑖  (𝑇𝑇𝑇𝑇−99°C)

(100°C−99°C)
,  99°C < 𝑇𝑇𝑇𝑇 ≤  100 °C

ℎ(100) +  𝜌𝜌𝜌𝜌vap𝑐𝑐𝑐𝑐vap(𝑇𝑇𝑇𝑇 − 100°C),         𝑇𝑇𝑇𝑇 > 100 °C
 (7) 

where 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖c𝑖𝑖𝑖𝑖 are the baseline values of density (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and specific heat ( 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
) of each tissue, ℎfgis the 

latent heat of vaporization (2.25x106 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

), C𝑖𝑖𝑖𝑖 is the water fraction of each tissue, and 𝜌𝜌𝜌𝜌vap(370 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3) and 

𝑐𝑐𝑐𝑐vap (2156 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

) are the density and specific heat of vaporized tissue [19]. 

For the temperature dependence of the thermal conductivity, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖, of each tissue, a linear increase 

(∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖) of 0.33% per degree Celsius was considered until the point of vaporization, at which a maximum 

value was set [22] [23], as defined by: 

𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T) = �𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇 − 37 °C),       𝑇𝑇𝑇𝑇 ≤ 100 °C
𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∆𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(100 °C− 37 °C),  𝑇𝑇𝑇𝑇 > 100 °C (8) 

Finally, for the cell viability Ω, relating the robustness of each tissue to thermal damage, the 

temperature, and exposure time, the Arrhenius damage model [24] was utilized: 

Ω(𝒕𝒕𝒕𝒕) =  � 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨−
∆𝑬𝑬𝑬𝑬

𝑹𝑹𝑹𝑹𝑻𝑻𝑻𝑻(𝝉𝝉𝝉𝝉)
𝒕𝒕𝒕𝒕

𝟏𝟏𝟏𝟏
 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅, (9) 

where A, a frequency factor, and ∆𝐸𝐸𝐸𝐸, the activation energy for irreversible damage reaction, are cell-

line dependent parameters, and R is the universal gas constant. Because most of the thermal damage 

occurs in bone, osteocytes were chosen for the cell-line parameters, with values of 𝐴𝐴𝐴𝐴 =

(5)

, the activation energy for irreversible damage reaction, 
are cell-line dependent parameters, and R is the universal gas constant. Because most of the 
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the extension of the ablation zone, a value of Ω = 4.6, corresponding to a 99% probability of cell death, 

was chosen as threshold, which was also the threshold to stop blood perfusion in equation (23).  

Boundary conditions 

A Dirichlet boundary condition [26] corresponding to the body temperature (37 °C) and one of zero 

voltage corresponding to the grounding pad were set at the outer boundaries of muscle tissue for the 

thermal problem and electrical problems, respectively. At the electrode surface, a Dirichlet boundary 

condition equal to the applied RMS voltage was also set, which varies on time as defined by the 

proportional-integral controller. At the bottom side of the electrode, however, a Neumann boundary 

condition of zero was set for both the thermal and electrical problems, as that side is, in practice, part 

of a larger insulated piece with no heat or electrical flux. The insulated section of the electrode, which 

comes from the outside of the patient to the target site, was not modelled to simplify the 3D meshes. 

A cross section of one of the resulting meshes and the different tissues is shown in Fig. 1.   

Fig. 1. Cross sectional view of one of the cases. The numbers indicate: 1) the electrode, 2) 

tumor, 3) trabecular bone, 4) cortical bone, 5) muscle. Boundary conditions were applied on 
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= ∇ ⋅ (𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(T)∇T) + QRF − Qp

where h is the enthalpy, which is a piece-wise function that relates the density and specific heat to 

temperature and accounts for phase change at high temperatures, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 is the temperature dependent 

thermal conductivity (W/m ∙ K), T is the temperature, QRF the heat source (W/𝑚𝑚𝑚𝑚3), and Qp is the 

blood perfusion heat loss (W /𝑚𝑚𝑚𝑚3), defined as:  

Qp = ω𝑖𝑖𝑖𝑖(Ω)ρbcb[T− Tb] (6)  

where ω𝑖𝑖𝑖𝑖 is a tissue-dependent perfusion coefficient (𝑠𝑠𝑠𝑠−1) that depends on the cell viability Ω, from 

the cell death model, and indicates whether a cell is alive (with blood perfusion) or death (without 

blood perfusion). ρb is the density of blood (kg/𝑚𝑚𝑚𝑚3), cb the specific heat of blood (J/kg ∙ K), and Tb the 

temperature of blood (K). 

To account for the temperature dependency of the heat capacity, a linear increase is first 

considered, followed by a sudden change in heat capacity at boiling temperatures, modelled using the 

enthalpy method [21] [19]: 
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) are the density and specific heat of vaporized tissue [19]. 
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condition equal to the applied RMS voltage was also set, which varies on time as defined by the 

proportional-integral controller. At the bottom side of the electrode, however, a Neumann boundary 

condition of zero was set for both the thermal and electrical problems, as that side is, in practice, part 

of a larger insulated piece with no heat or electrical flux. The insulated section of the electrode, which 

comes from the outside of the patient to the target site, was not modelled to simplify the 3D meshes. 

A cross section of one of the resulting meshes and the different tissues is shown in Fig. 1.   

Fig. 1. Cross sectional view of one of the cases. The numbers indicate: 1) the electrode, 2) 
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. [25]. Additionally, to assess the thermal damage 
and measure the extension of the ablation zone, a value of Ω = 4.6, corresponding to a 99% 
probability of cell death, was chosen as threshold, which was also the threshold to stop blood 
perfusion in equation (6).

Boundary conditions
A Dirichlet boundary condition [26] corresponding to the body temperature (37 °C) and one 
of zero voltage corresponding to the grounding pad were set at the outer boundaries of muscle 
tissue for the thermal problem and electrical problems, respectively. At the electrode surface, a 
Dirichlet boundary condition equal to the applied RMS voltage was also set, which varies on 
time as defined by the proportional-integral controller. At the bottom side of the electrode, 
however, a Neumann boundary condition of zero was set for both the thermal and electrical 
problems, as that side is, in practice, part of a larger insulated piece with no heat or electrical 
flux. The insulated section of the electrode, which comes from the outside of the patient to the 
target site, was not modelled to simplify the 3D meshes. A cross section of one of the resulting 
meshes and the different tissues is shown in Fig. 1.  

Fig. 1. Cross sectional view of one of the cases. The numbers indicate: 1) the electrode, 2) tumor, 3) trabecular bone, 4) 
cortical bone, 5) muscle. Boundary conditions were applied on the surface of the electrode and the outer surface of the 
muscle layer. * Indicates the bottom surface of the electrode, were thermal and electrical no-flux boundary conditions were 
applied.
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Tissue properties
In a previous and yet to be published by our research group, optimal values tissues’ properties 
were found by taking the average values of electrical conductivity, blood perfusion, density, 
specific heat, and thermal conductivity of each tissue. For the tumour and its immediate sur-
rounding tissue, trabecular bone, a special consideration was taken, where their values were 
varied within the maximum and minimum ranges reported in order to find the best fitting 
values. Additionally, for tumour tissue (ACT), the values from healthy cartilage were taken, 
except for the electrical conductivity, were twice the value of the electrical conductivity of 
healthy cartilage was needed in order to replicate the clinical cases, which was assumed based 
on the fact that multiple tumorous tissues have electrical conductivities higher than twice 
that of their healthy counterparts [27][28][29]. With all other properties kept at their average 
reported values, multiple combinations of the values for tumour and trabecular bone were 
tested. Using a fractional factorial model to avoid a full factorial analysis, the Taguchi method, 
with an array with ten variables and three levels (the five tissue properties of tumour and 
trabecular bone with their minimum, average, and maximum values), was utilized. A simpli-
fied 2D axisymmetric FEM model was utilized for this, replicating a simplified version of an 
actual clinical case, until the resulting ablated zone from the simulations was within acceptable 
range from the clinical results. The resulting optimized parameters replicated the ablated zone 
in the direction along the electrode, but slightly over-estimated the results on the direction 
perpendicular to it. These resulting parameters were tested in another 2D axisymmetric model 
of a different patient with similar results. The resulting values are shown in Table 1.

Ablation time
The radiologist who performed the RFA procedure reported the ablation time in two ways: 
time ≥ 60 °C and time at 90 °C. The most important duration is the time at 90 °C, which 
is the desired target temperature for the procedure. Since the interventional radiologist may 
have difficulties reaching the target temperature, and because 60 °C is seen as an important 
threshold for tissue damage, both of these durations were reported to highlight the time needed 

Table 1 Tissue and material properties 

Material / 
tissue

Electrical
conductivity
(S/m)

Blood perfusion
coefficient
(x10-3s-1)

Density
(kg/m3)

Specific heat 
(J/kg ∙ K)

Thermal
conductivity
(W/m/K)

Active electrode a 1.00E+08 0 6450a 840 18

Tumor 0.4 b 0 1150 3664 0.487

Trabecular bone 0.05 0.167 1080 2060 0.36

Cortical bone 0.022 0.167 1908 1313 0.32

Muscle 0.446 .6167 1090 3421 0.49

All values were obtained from [30], except where indicated. a values as described in [31], which are of a nickel-titanium electrode, b as-
sumptions for the electrical conductivity of the tumour, which are twice the value of normal healthy cartilage, also obtained from [30]. 



97

3D modelling of  RFA of  ACT using real patient anatomy

Ch
ap

te
r 

5

to reach the target temperature and the time since thermal damage was certain to be happen-
ing. To replicate the cases, the simulated proportional-integral controller was set to 60 °C, and 
once reached, the target temperature was linearly increased depending on the time difference 
between both reported durations and the remaining 30 °C needed to reach 90 °C, after which 
it was finally set to 90 °C for the time indicated by the interventional radiologist as time at 90 
°C.

Results 

From the fifteen patient cases available, seven cases were found where the final position of the 
electrode was visible and the imaging data allowed for good segmentation and registration of 
the MR and CT images. Eight cases were excluded because the final position of the electrode 
was missing or because of a limited field of view or resolution that did not allow for a good 
image segmentation or registration. Fig. 2 shows the pre- and intra-operative images of one 
of the cases, indicating the tumour and electrode, whereas Fig. 3 shows the resulting image 
segmentation of the same case.

Fig. 2. Panels a, b, and d show preoperative magnetic resonance images in different planes to evaluate an atypical carti-
laginous tumour located in the metaphysis of the distal femur, with the tumour being indicated by the red notched arrow. 
c shows an intraprocedural computed tomography image demonstrating the final location of the tip of the radiofrequency 
ablation electrode.
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The ablation diameter on the post-RFA images seemed to stop at the boundary with cortical 
bone. However, this was not observed in the computer simulations, where the ablation radius 
extended beyond cortical bone, as seen in Fig. 4 a,c. The reported ablation radius from the 
simulations was the full diameter beyond cortical bone, and this was the source of the larg-
est discrepancies between the simulations and the radiological measurements, except for case 
number two, where there was an unexpectedly large ablation diameter along the electrode. 

 

Fig. 3. Example of the resulting three-dimensional models from the image segmentations. The 

electrode is shown in blue, the tumour in pink, and the bones in different shades of grey. The 

model corresponds to the case shown in Fig. 1. 

 

The ablation diameter on the post-RFA images seemed to stop at the boundary with cortical bone. 

However, this was not observed in the computer simulations, where the ablation radius extended 

beyond cortical bone, as seen in Fig. 4 a,c. The reported ablation radius from the simulations was the 

full diameter beyond cortical bone, and this was the source of the largest discrepancies between the 

simulations and the radiological measurements, except for case number two, where there was an 

unexpectedly large ablation diameter along the electrode.  

Fig. 3. Example of the resulting three-dimensional models from the image segmentations. The electrode is shown in blue, 
the tumour in pink, and the bones in different shades of grey. The model corresponds to the case shown in Fig. 1.

Fig. 4. a, b Resulting ablation diameters on the magnetic resonance imaging (MRI) study performed three months after 
the radiofrequency ablation (same case of Figs. 2 and 3). c, d Resulting ablation diameters from the simulations. The 
ablation zones are represented as a transversal cut at the height of the electrode, inside the three-dimensional geometry, to 
match the direction of the MRI measurements. In c, the green line is the measurement of the ablation diameter as if it 
were to be taken until cortical bone, and is shown here as an example of the main difference between the results from the 
simulations and the radiological measurements.
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A total median error of -1 mm was achieved with interquartile ranges from -3 mm to 3 mm. 
The ablation diameters for the radiological images and computer models are shown in Table 
2. The error, calculated as the radiological measurements minus the results from the computer 
models, is presented in Table 3, and shown as boxplots in Fig. 5. The computer simulations 
overestimated the shortest ablation diameter in most of the cases and underestimated it in the 
other two directions. 

Table 2 Cases, length of the electrode used, timings, and the resulting ablation diameters from the radiological 
measurements and the simulations

Case
Electrode 
length 
(cm)

Time 
(min) 
> 60° 
C

Time 
(min) 
at 90° 
C

Ablation 
shortest 
(mm)

Ablation 
other 
(mm)

Ablation 
longest 
(mm)

Simulation 
shortest 
(mm)

Simulation    
other (mm)

Simulation 
longest 
(mm)

1 2 12 10 26 40 42 36 39 41

2 3 10 8 41 52 63 42 42 54

3 3 10 6 28 39 48 36 36 48

4 2 10 9 40 42 43 39 40 43

5 2 9 9 43 48 51 42 42 45

6 3 10 8 37 34 46 45 38 41

7 2 10 9 24 30 30 27 29 37

Table 3 Absolute (in mm) and relative (as percentage) errors, including the median and interquartile ranges (IQR) 
per measured direction, and the total error taking every measurement into account

Case
Error shortest (mm) / 

percentage
Error other (mm) / 

percentage
Error longest (mm) / 

percentage

1 10 138% -1 98% -1 98%

2 1 102% -10 81% -9 86%

3 8 129% -3 92% 0 100%

4 -1 98% -2 95% 0 100%

5 -1 98% -6 88% -6 88%

6 8 122% 4 112% -5 89%

7 3 113% -1 97% 7 123%

Error interquartile ranges (IQR) Total Error

IQR1 (mm) 0 -4.5 -5.5 -3

Median (mm) 3 -2 -1 -1

IQR3 (mm) 8 -1 0 3
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The effect of the more complex 3D anatomy was particularly noticeable in the early stages of the 
ablation procedure but less so towards the end. After the procedure had reached steady state, 
as shown in Figure 6a, heat concentrated close to the cortex causing damage more quickly in 
that direction. However, as time passed, the thermal damage became more evenly distributed, 
as shown in Fig. 6b. 

Discussion

This study demonstrated that patient-specific simulations of RFA of bone tumours could 
potentially be used to predict the resulting ablation zone. Although the number of patients 

Fig. 5. Boxplots of the errors of the resulting diameters for the three directions measured and the “total error” taking into 
account every measurement. All values are in mm.

Fig. 6. Progression of the ablation zone of case three with an atypical cartilaginous tumour in the distal femoral metaphysis 
at two selected times. Both ablation zones are represented as a transversal cut at the height of the electrode, inside the three-
dimensional geometry. Panel a shows the ablation zone after 150 s, when the ablation zone is still rapidly growing. Panel 
b shows the ablation zone at the end of the procedure, after steady state has been reached. The measurements were taken 
from the centre of the electrode and perpendicular to it. All measurements are in cm. 
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was relatively limited in our series, with a median error of < 3 mm in all directions measured, 
the tissue properties utilized in the simulations seem to be accurate enough to predict the 
outcomes within a reasonable range, and could potentially be used for patient planning. 

The simulations tended to produce uniform ablation zones, with the largest ablation diameter 
in the direction of the longitudinal axis of the electrode, and with an ablation diameter that 
was roughly uniform in length in all perpendicular directions measured. In contrast, patient 
data showed more variations, which could also be due to anisotropies in bone that were not 
taken into account in our models. On the clinical post-RFA MRI scans, ablation zones did not 
seem to extend beyond bone in most cases, but our simulations did not show this effect. In fact, 
when the tumour was next to cortical bone, heat seemed to concentrate in that area. This effect 
was, however, not noticeable in the steady state of the system after several minutes had passed, 
where the ablation zone was more evenly distributed. 

Given the slow rate at which bone heals in contrast to muscle and that the post-RFA MR 
images were taken approximately three months after the procedure, it is possible that the 
damage to muscle may not have been visible anymore. Lee et al. performed RFA in the distal 
healthy femurs of seven dogs, showing that MR images could be reliably used to measure 
the extent of the ablation zone and that the resulting ablation zones clearly extended beyond 
cortical bone, as shown on contrast-enhanced fat-suppressed T1-weighted images taken four 
to seven days after the procedure [32]. Thus, it is possible that the apparent overestimation in 
our simulations, with the ablation zones extending beyond the cortex, could be much more 
accurate than it seems. This difference was particularly remarkable in cases 1, 3, and 8, which 
were tumours close to a cortical wall, and which had errors of 10, 8, and 8 mm, respectively, 
in the “shortest direction”, whereas the errors were small when the simulated ablation zone did 
not extend significantly beyond the cortical wall.

Another issue of our study was the relatively low resolution of the MR images. The original 
idea was to compare the volumes of the segmentation on post-RFA MR images to those of the 
simulations, but this proved to be very imprecise due to the large MR slice thickness (5 mm), 
making the segmentation of the ablation zone very difficult and imprecise at the boundaries, 
particularly because of the diffuse ring that defines it. These errors compound when taking 
all directions into account as in the 3D segmentations, which could result in large differences 
in volume. Because of this, we opted to report and compare the diameters rather than the 
volumes. Moreover, the ablation diameters are what radiologists usually report and clinicians 
use for follow-up purposes.

Another source of uncertainty came from the reported durations of the procedure, as in case 
number five, which stated identical durations at temperature ≥ 60 °C and at 90 °C, and thus 
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it was not clear what the time was to reach from 60° C to 90° C. The durations where not 
reported in detail, and some assumptions had to be done. Additionally, the electrode could 
have been moved during the intervention, and the final CT scan taken may not represent 
the actual final position of the electrode. Given how much both the procedural time and the 
position of the electrode affect the ablation zone, this may have affected the predicted size of 
the ablation zone. In case number two, for example, where the resulting ablation zone was 
considerably larger even when compared to cases with almost identical parameters (like case 
number 6), it seems possible that the large error in the unusually large ablation zone may be 
due to a repositioning of the electrode that was not registered, and thus also resulting in a large 
error when compared to our simulations.

There are currently no guidelines to predict the resulting ablation zone in RFA of ACT in 
the long bones, which are needed for accurate and safe patient planning. Our results seem to 
indicate that, if planned prospectively, with an accurate position of the electrode and exact 
duration of the procedure, computer simulations could predict the ablation diameters within 
a reasonable accuracy and be thus utilized for patient planning, as shown in our results, where 
a total median error of -1 mm was achieved. The tissue properties of the tumours have not 
been studied yet, but this study demonstrated that they could be reverse-engineered within 
reasonable accuracy for planning, and they could be made more reliable with more patient 
data to fit the loss function. This could allow interventional radiologists to accurately define the 
time, electrode length, and position required to treat ACT with RFA and make adjustments as 
needed to guarantee total tumour destruction while sparing as much healthy tissue as possible.
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With recent technological advancements, the use of minimally invasive procedures in patients 
with bone tumors has become more and more common, allowing the treatment of patients 
with minimal risks, morbidity, and complications in comparison to open surgery. Likewise, 
computational models for assessment and prediction in medicine are increasingly becoming 
part of the daily tools of caregivers, becoming essential for applications such radiotherapy 
planning, where computational models calculate the dosage in an area of interest to assure the 
quality and consistency of the treatment [1]. By combining computational models and medical 
imaging techniques it is possible now to build models to plan and predict what the outcome 
of a procedure may be, easing risks to patients and allowing for optimal treatment. This thesis’s 
purpose was to understand the factors that influence the generation and distribution of heat 
in patients with bone tumors and to create computer models that could allow us to investigate 
these factors and to be able to accurately replicate the clinical results. With a working model, 
it could therefore be possible to accurately predict, modify, and plan the clinical interventions 
prospectively to guarantee optimal treatment. 

In chapter 2, we reported the resulting ablation zones on patients treated for ACTs. Here, 
the attempt was to try to find factors that affected the size of the ablation zone, such as the 
anatomical location of the tumor, ablation time, tumor size, among others. For that, an experi-
enced radiologist measured the post-RFA ablation zone diameters of patients that were treated 
for RFA of ACT. To reduce possible confounding factors, only patients that were treated with a 
single RFA application were included. However, it was not possible to find strong correlations 
between the factors analyzed and variations on the resulting ablation zones. A possible reason 
may be because of the few patients available, and because those patients were treated following 
almost identical protocols in terms of temperature and time. Nonetheless, it was clear that the 
ablation zones were larger than what would be expected in other tissues, such as RFA in liver, 
and that the variations on the protocol by the interventionalists were hard to quantify. It was 
clear that a more systematic and quantifiable approach was needed if the ablation zones were 
to be predicted.

In chapter 3, it was found in literature that multiple variations in the protocol exist RFA of 
bone tumors, particularly of osteoid osteoma, and particularly in terms of the ablation time and 
control temperature, as interventionalist try to give the best protocol possible. The question of 
finding the optimal protocol for RFA of bone tumors also emerged in our research group, if a 
tumor would be smaller or larger than usual (relative to the size of the active electrode), the idea 
that perhaps a longer or shorter ablation time, or a higher or lower control temperature, may be 
best for a given tumor had not been clearly studied. These variations in the protocol are often 
performed following the interventionalist’s intuition and experience and not in a systematic 
quantifiable approach. Therefore, to quantitatively test the effects of variations on temperature 
and time in the resulting size of the ablation zone, we created computer models of osteoid 
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osteoma and systematically varied the target temperature. The models were run for a maximum 
of 15 minutes, which was the maximum ablation time found in literature, and the ablation 
zone diameters were plotted in line graphs to study and compare their behavior in time and 
in contrast to the various settings. With this chapter, we showed that the control temperature 
is far more important defining the size of the ablation zone than the ablation time and that 
extending the duration of the ablation time may not be enough to produce a larger ablation 
zone when using lower temperatures (as compared to ablation zones with higher temperatures 
but shorter durations). Additionally, we showed that the level of sclerosis of the tumor play an 
important role, especially at steady state.

In chapter 4, a finite element method model of RFA of ACT was proposed. Parameters to repli-
cate the ablation zones from clinical data were tested, and an optimal configuration was found. 
To simulate the generation and propagation of heat, some thermal and electrical properties of 
the tissues of interest are needed. These properties are the thermal conductivity, heat capacity, 
density, electrical conductivity, and the blood perfusion. In the case of ACTs, none of these 
properties have been studied experimentally. Therefore, to study and replicate the clinical cases 
using the finite element method, the clinical results were used as the true size of the ablation 
zone to be obtained from the simulations. The properties’ values were explored and optimized 
to minimize the difference between the ablation zones from the clinical results and from the 
simulations.

Given the vast amount of computationally expensive simulations needed to explore all the 
possible combinations of parameters to minimize the error to the clinical cases it was decided 
to bound the property’s values based on the biological characteristics of the ACTs. Thus, the 
properties of healthy cartilage were used as baseline, and, since tumors tissues are known to 
have very high electrical conductivities, the bounds of the electrical conductivity were within 
what was observed for other tumorous tissues (around twice the value of healthy normal 
tissue). Additionally, to reduce the computational requirements and as a first step towards 
modelling of ACT, 2D-axysimmetric models were utilized. To avoid a full factorial analysis of 
each parameter, the Taguchi method was utilized, greatly reducing the number of experiments 
needed. In this chapter we were able to propose a model with parameters that allowed to 
replicate RFA of ACT using the finite element method.

In Chapter 5, the previously developed finite element models of RFA of ACT were expanded to 
test our assumptions using real patient anatomy. This was achieved by using image segmenta-
tion and registration techniques on CT and MR data from actual clinical cases and obtaining 
the actual shape and location of bones, tumor, and the final position of the electrode at the 
time of the procedure. These models were thus 3D models that allowed us to test the applica-
tion in the complex 3D structures of the patient’s anatomy. The results had a median error 
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of – 1 mm in the diameters of the measured ablation zones, indicating that the models could 
reliably simulate and predict the ablation zones and thus be used for planning the interven-
tions. There were however important differences, as the models predicted the ablation zones to 
extend beyond cortical bone whereas the post-procedural images showed that the ablation zone 
was confined to bone only, which could be explained because the post-procedural images were 
taken 3 months after the intervention took place and muscle heals much faster than bone. If 
this were true, most of the outliers would be accounted for, and the simulations would prove 
to be very accurate, and thus useful for prospective planning. This tool could allow to test 
assumptions beforehand to find the optimal configurations such as the ablation time, position 
of the electrode, or target temperature, to guarantee optimal treatment.

With this thesis, a systematic approach to studying the effects of time and temperature in OO 
and ACT was taken, allowing for a better understanding of the interplay between two of the 
main parameters used in RFA. The use of the finite element method, a common and reliable 
method to simulate RFA [2], allowed to control for multiple of the possible confounding 
factors that could affect the size of the ablation zone, such as the size of the tumor, its location, 
the position of the electrode, accuracy of the ablation zone measurements, etc. 

We showed that the tissues after the tumor are also crucial in defining the size of the ablation 
zone. Here, we highlight that one of the factors that makes the size of the ablation zone larger 
than in tissues such as liver, is the low electrical conductivity of bone surrounding the tumors. 
Here we emphasized the importance of this effect in the treatment of bone tumors, where soft 
tissue tumors with high electrical conductivity will be surrounded by bone with a much lower 
electrical conductivity. In the case of tumors like ACT, because of the reasons stated before, the 
effect may be much greater than in the case of, for example, liver tumors surrounded by liver 
tissue. These findings stress the importance of validating and basing assumptions on the actual 
tissues of interest, and highlight the difficulties of translating findings from one anatomical site 
to another. 

Another interesting finding is that the so-called oven effect [3], which greatly affects the heat 
distribution of heat and that has been studied mostly in liver ablations, also plays an interest-
ing and important role in the case of RFA of ACT and OO. When a low-perfused tissue 
surrounds a higher-perfused tissue, the low blood perfusion hampers heat dissipation from 
the area it surrounds, allowing higher temperatures for longer times in the area of interest and 
therefore allowing larger ablation zones. In the case of RFA in bone, it was found that during 
the first few 2-3 minutes, the lower thermal conductivity and blood perfusion of cortical bone 
concentrated heat at the tumor-cortical bone interface. However, after some time, heat became 
evenly distributed. As seen in chapter 1, where we studied RFA of OO, the model with a long 
cortical bone structure was able to reach high temperatures deeper in the direction of cortical 
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bone due to the lack of heat sinks in the direction of cortical bone. When the ablation zone 
reached muscle tissue its growth was hindered due to its higher thermal conductivity and 
increased blood flow, acting as a heat sink. Thus, RFA of a bone tumor in a long bone may 
yield larger ablation zones in the direction of bone. This is an important consideration, because 
bone is often seen as an insulating structure, able to protect structures at risk, but given enough 
time, it may concentrate heat and it may cause thermal damage in unexpected ways. Similar 
to what happens with a cup of coffee, at first it protects from heat, but if the heat is strong 
enough and enough time has passed, it will be very hot to touch and it will concentrate that 
heat for a long time. 

Furthermore, most of the simulations of RFA have been using simplified models like 2D-
axisymetric models or simplified 3D models [2] with just a few using real patient anatomy 
[3] [4]. The simplified models have been useful to explore parameters and idealized scenarios, 
similar to what was explored in the first chapters of this thesis, while the ones using real 
patient anatomy have been developed with the intention to serve as planning systems for future 
interventions, as in the case of the last chapter of this thesis. The models seen in literature 
focused on liver, kidney, lung, or heart ablation, and now with this thesis we have developed a 
patient-specific model that, after more validations, could be used for patient planning of bone 
ablations. 

Some of the main limitations of this thesis are the few data to validate the models, and that 
they were validated retrospectively. For the same reason, it was not possible to make any strong 
statistical inferences from the clinical data. Additionally, although the models are meant to be 
used for patient planning, they were validated retrospectively. Another limitation is that setting 
and running the models for the simulations can be very time consuming, because of difficulties 
segmenting and registering the patient data, and because of the long time required to run the 
simulations, making it difficult to incorporate the models into regular clinical practice. Finally, 
tumors and bones may have different characteristics among patients: some tumors are fleshier 
and bloodier whereas others are denser and even have calcifications, which could affect the 
results. 

As a future perspective, the use of technologies such as augmented and mixed reality could be 
of great use to RFA guidance. By using CT and MR data, models of the patients could be cre-
ated and by creating a virtual RFA applicator, we could overlap these images on a patient, and 
a virtual resulting ablation zone could be overlapped to guarantee that the ablation zone covers 
the tumor. These models would be the same as the ones used for the simulations and little extra 
effort would be needed to use them once the initial application is developed. Systems like this 
have already been developed for liver interventions [6], where they are most needed, but also 
where the application is harder to make work right due to the deformity of soft tissues and the 
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movement of the internal organs. These problems are, however, not present in the rigid bone 
structures, and could improve the speed and accuracy of the interventions. 

Additionally, GPU-based RFA simulations [7] could work as a faster alternative to the finite 
element method. The use of GPUs could greatly reduce the time needed to simulate the inter-
ventions, allowing to plan and test multiple approaches in a faster and more practical way. In 
an ideal system, we could thus deploy an application with augmented reality, register the final 
position of the electrode once it has been inserted, and use the GPUs to quickly simulate the 
resulting ablation zone. 

To conclude, RFA of bone tumors can be simulated and used for planning. RFA of ACT is 
effective and the size of the ablation zone is usually larger than the ablation zones seen in tissue 
such as liver. The effects of ablation time and control temperature were studied and how they 
affect the resulting ablation zone, with the target temperature perhaps as the most defining 
factor for the total size of the ablation zone and time for how evenly it is distributed. Although 
the physical properties of ACT have not been studied experimentally, these were obtained 
by minimizing the error from a set of possible values to target ablation zone size obtained 
from clinical studies. With these properties, RFA results in ACT could be calculated with 
sufficient accuracy and could be used for patient planning. The results from this thesis could 
help interventionalists to make more informed decisions regarding the interplay between target 
temperature and ablation time and make more informed decisions when choosing a configura-
tion to treat a tumor. The results from this thesis are the first steps towards patient-specific 
planning of RFA of bone tumors and be part of the clinical pipeline once the results are better 
validated and the simulations optimized for better computational performance.
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Summary

Surgical resection has been the standard treatment of choice for most solid tumors, yet it can 
be painful and debilitating, with high associated risks, particularly in patients that already have 
coexisting comorbidities. 

Radiofrequency ablation (RFA) is a minimally invasive technique that has become increasingly 
popular for the treatment of solid tumors, and which is used for palliative and curative care. 
In RFA, a small electrode is placed into the patient, which then induces heat in the target area, 
increasing the temperature of the surrounding tissues with the objective to induce coagulation 
necrosis in the whole tumor. It is commonly used for the treatment of liver, kidney, and lung 
tumors, and for the small benign bone tumors called osteoid osteoma. Minimally invasive 
procedures such as RFA can be a great alternative for patients that are not surgical candidates 
and in cases where a more aggressive form of treatment does not seem to outweigh the benefits 
for the patient. RFA has high success rates and low complication rates, requiring little to no 
patient hospitalization. Because of this, it has great potential to become the standard of care 
for tumors such as ACT.

However, there is little experience on the treatment of bone tumors with RFA, making it 
hard to predict the outcomes of the technique for large bone tumors such as ACTs, one of 
the most common type of tumor encountered in orthopaedic oncology. Clinical experience 
is often based on the treatment of small (<2 cm) and heavily calcified tumors such as osteoid 
osteomas, or on the ablation of other tissues such as the liver. Thus, doctors have to rely on 
rough estimations, which may result in unnecessary damage to healthy structures or in tumors 
that are not destroyed completely.

To solve this problem, computational methods simulating RFA in bone tumors could help 
doctors plan their procedures in a safe and effective way. The objective of this thesis is to 
understand better how is heat generated and propagated in RFA of bone tumors. The findings 
from this thesis could increase the interventional radiologist’s understanding of RFA of bone 
tumors, allowing them to make better informed decisions. Additionally, by using clinical data 
and computational models, patient-specific planning could be done on a per-case basis, which 
could potentially increase the safety and effectiveness of the treatment.

In chapter 2, a retrospective study to determine the size of the ablation zone on patients treated 
with radiofrequency ablation of ACTs was performed. To reduce variability, only patients that 
had undergone a single-session single-application CT-guided temperature-controlled RFA, and 
which had received a follow-up MRI scan 3 months after the procedure, were included. The 
ablation zones were measured on the post-operative MRI images, and this chapter demon-
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strated that ablation zones in bone could be larger than what would be expected from other 
tissues, such as the ex-vivo liver recommendations given by the RFA manufactures. The results 
highlight the need for more data or models that could help interventional radiologist’s plan the 
procedures, as the current information is not enough to accurately plan the procedures. 

In Chapter 3, an initial computational model built upon existing literature models for radio-
frequency ablation of osteoid osteomas was created to study the effects of control temperature, 
ablation time, and the different tissues surrounding the tumor. The model used the finite 
element method to simulate the generation and propagation of heat, and a cell death model 
to study the damage caused to the tissues over time. Three different anatomical configurations 
were considered and multiple control temperatures were chosen to study their effects on the 
ablation zone. Here it was demonstrated that the ablation zone’s size has a clear dependency 
not only in the properties of the tumors but also on the background tissues surrounding them. 
In particular, the sharp difference on electrical conductivity between soft tissue (tumor) and 
bony tissue seemed to have large influence on the results.

In Chapter 4, computational models for ACTs were created and tested in 2D as an initial proof 
of principle with the aim to replicate selected clinical cases. The main purpose of this chapter 
was to find the right tissue parameters to fit the model to the measured clinical outcomes. 
However, the models have multiple parameters with multiple possible values, and doing a 
full factorial analysis is not a viable option. Key values were selected and a fractional factorial 
analysis was used to evaluate the effects of the parameters on the outcome with a much lower 
number of experiments and the most appropriate set of properties was selected to fit the models 
to the measured outcomes. Once the optimal parameters were found, the model was able to 
accurately replicate with the measured results seen in the post-operative images.

Chapter 5 used the previously obtained optimized parameters and tested their accuracy on a 
larger dataset and using patient-specific 3D models. The models showed that the previously 
obtained assumptions can predict the ablation diameters with acceptable accuracy and could 
thus potentially be utilized for patient planning. It also highlighted the importance of studying 
the heat generation and propagation in 3D, particularly in cases of complex 3D anatomical 
structures with large differences in tissue properties. The models presented in this chapter could 
allow interventional radiologist to plan procedures with much more accuracy, selecting the 
right electrode length, its position, and the amount of time needed to guarantee total tumor 
destruction while sparing as much healthy tissues as possible. 

Chapter 6, presents a more extensive discussion of the major findings of this thesis. The results 
are put into context and recommendation for the future are also given. A systematic approach 
to study the effects of the various tissues, their interplay, and how they are affected by the 
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different ablation times and control temperatures utilized, could lead to a better understanding 
of RFA and lead to better informed decisions by interventional radiologists. The thesis also 
showed how crucial the electrical conductivity was for the predicting the ablation zone, not 
only the one from the target tissue but also the one from the surrounding tissues, which is 
contrasted even more in the case of bone tumors than in other anatomical areas with more 
homogeneity on their tissue properties. Blood perfusion, which is a crucial factor for ablations 
in other anatomical areas, does not seem to play such an important factor in the case of bone 
tumors, as the tumors and surrounding bony structures possess little vascularity and there 
are no large blood vessels acting as heat sinks. Although the actual tissue properties of the 
cartilaginous tumors studied here are not known, it is possible to estimate their values by 
fitting the models to the clinical outcomes. The models generated by the simulations could be 
incorporated into planning and guidance tools, by generating 3D images of the simulations 
and super-imposing them onto DICOM images or other tools such as virtual reality glasses, 
and be thus fully integrated into the clinical workflow for safe and effective tumor planning.
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Samenvatting

Chirurgische resectie is de standaardbehandeling voor de meeste solide tumoren, maar het kan 
pijnlijk en slopend zijn, met hoge bijbehorende risico’s, vooral bij patiënten die al comorbidit-
eiten hebben.

Radiofrequente ablatie (RFA) is een minimaal invasieve techniek die steeds populairder is 
geworden voor de behandeling van solide tumoren en die wordt gebruikt voor palliatieve 
en curatieve zorg. Bij RFA wordt een kleine elektrode in de patiënt geplaatst, die vervolgens 
warmte in het doelgebied induceert, waardoor de temperatuur van de omliggende weefsels 
wordt verhoogd met als doel coagulatienecrose in de hele tumor te induceren. Het wordt vaak 
gebruikt voor de behandeling van lever-, nier- en longtumoren en voor de kleine goedaardige 
bottumoren die osteoïd osteomen worden genoemd. Minimaal invasieve procedures zoals RFA 
kunnen een geweldig alternatief zijn voor patiënten waarbij chirurgie geen optie is en in geval-
len waarin een agressievere vorm van behandeling niet opweegt tegen de voordelen voor de 
patiënt. RFA heeft hoge slagingspercentages en lage complicaties, waardoor er weinig tot geen 
ziekenhuisopname nodig is. Hierdoor heeft het een groot potentieel om de standaardbehandel-
ing te worden voor tumoren zoals ACT.

Er is echter weinig ervaring met de behandeling van bottumoren met RFA, waardoor het 
moeilijk is om de resultaten van de techniek te voorspellen voor grote bottumoren zoals ACT’s, 
een van de meest voorkomende soorten tumoren die in de orthopedische oncologie worden 
aangetroffen. Klinische ervaring is vaak gebaseerd op de behandeling van kleine (<2 cm) en 
zwaar verkalkte tumoren zoals osteoïd osteomen of op de ablatie van andere weefsels zoals de 
lever. Artsen zijn dus afhankelijk van ruwe schattingen, wat kan leiden tot onnodige schade aan 
gezonde structuren of tot tumoren die niet volledig worden vernietigd.

Om dit probleem op te lossen zouden rekenkundige methoden die RFA van bottumoren 
simuleren artsen kunnen helpen bij het plannen van hun procedures op een veilige en effectieve 
manier. Het doel van dit proefschrift is om beter te begrijpen hoe warmte wordt gegenereerd en 
gepropageerd in RFA van bottumoren. De bevindingen van dit proefschrift zouden het begrip 
van de interventieradioloog van RFA voor bottumoren kunnen vergroten, waardoor ze beter 
geïnformeerde beslissingen kunnen nemen. Bovendien zou door het gebruik van klinische 
gegevens en computermodellen patiënt specifieke planning kunnen worden gemaakt, wat de 
veiligheid en effectiviteit van de behandeling mogelijk zou kunnen vergroten.

In hoofdstuk 2 werd een retrospectieve studie uitgevoerd om de grootte van de ablatiezone 
te bepalen bij patiënten die werden behandeld met radiofrequente ablatie van ACTs. Om de 
variabiliteit te verminderen, werden alleen patiënten geïncludeerd die een single-sessie single-
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application CT-geleide temperatuur-gecontroleerde RFA hadden ondergaan en die 3 maanden 
na de procedure een follow-up MRI-scan hadden gekregen. De ablatiezones werden gemeten 
op de postoperatieve MRI-beelden en dit hoofdstuk toonde aan dat de ablatiezones in bot 
groter zouden kunnen zijn dan wat zou worden verwacht van andere weefsels, zoals de ex-vivo 
leveraanbevelingen gegeven door de RFA-fabrikanten. De resultaten benadrukken de behoefte 
aan meer gegevens of modellen die interventieradiologen kunnen helpen bij het plannen van de 
procedures, aangezien de huidige informatie niet voldoende is om de procedures nauwkeurig 
te plannen.

In Hoofdstuk 3 werd een initieel computermodel, gebaseerd op bestaande literatuurmodellen 
voor radiofrequente ablatie van osteoïde osteomen, gecreëerd om de effecten van controle-
temperatuur, ablatietijd en de verschillende weefsels rond de tumor te bestuderen. Het model 
gebruikte de eindige-elementenmethode om de opwekking en verspreiding van warmte te 
simuleren en een model om de schade aan de weefsels in de loop van de tijd te bestuderen. 
Er werden drie verschillende anatomische configuraties overwogen en er werden meerdere 
controletemperaturen gekozen om hun effecten op de ablatiezone te bestuderen. Hier werd 
aangetoond dat de grootte van de ablatiezone een duidelijke afhankelijkheid heeft, niet alleen 
van de eigenschappen van de tumoren, maar ook van de achtergrondweefsels eromheen. Vooral 
het scherpe verschil in elektrische geleidbaarheid tussen zacht weefsel (tumor) en botweefsel 
leek grote invloed te hebben op de resultaten.

In Hoofdstuk 4 werden rekenkundige modellen voor ACTs gecreëerd en getest in 2D als pilot 
met als doel geselecteerde klinische gevallen te repliceren. Het belangrijkste doel van dit hoofd-
stuk was om de juiste weefselparameters te vinden om het model aan te passen aan de gemeten 
klinische resultaten. De modellen hebben echter meerdere parameters met meerdere mogelijke 
waarden, en het uitvoeren van een volledige factoriële analyse is geen haalbare optie. Er werden 
sleutelwaarden geselecteerd en een fractionele factoriële analyse werd gebruikt om de effecten 
van de parameters op de uitkomst te evalueren met een veel lager aantal experimenten en de 
meest geschikte set eigenschappen werd geselecteerd om de modellen aan te passen aan de 
gemeten resultaten. Nadat de optimale parameters waren gevonden, kon het model nauwkeu-
rig worden gerepliceerd met de gemeten resultaten die postoperatief werden waargenomen.

Hoofdstuk 5 gebruikte de eerder verkregen geoptimaliseerde parameters en testte hun nau-
wkeurigheid op een grotere dataset en met behulp van patiënt-specifieke 3D-modellen. De 
modellen toonden aan dat de eerder verkregen veronderstellingen de ablatiediameters met ac-
ceptabele nauwkeurigheid kunnen voorspellen en dus mogelijk kunnen worden gebruikt voor 
de planning van de patiënt. Het benadrukte ook het belang van het bestuderen van de warm-
teontwikkeling en -voortplanting in 3D, met name in het geval van complexe 3D-anatomische 
structuren met grote verschillen in weefseleigenschappen. De modellen die in dit hoofdstuk 
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worden gepresenteerd, zouden de interventieradioloog in staat kunnen stellen procedures veel 
nauwkeuriger te plannen, te helpen bij het selecteren van de juiste elektrodelengte, de positie 
en de hoeveelheid tijd die nodig is om totale tumorvernietiging te garanderen terwijl zoveel 
mogelijk gezond weefsel wordt gespaard.

Hoofdstuk 6 presenteert een meer uitgebreide bespreking van de belangrijkste bevindingen 
van dit proefschrift. De resultaten worden in context geplaatst en er worden ook aanbevelingen 
voor de toekomst gegeven. Een systematische benadering om de effecten van de verschillende 
weefsels, hun wisselwerking en hoe ze worden beïnvloed door de verschillende gebruikte ab-
latie tijden en temperaturen te bestuderen, zou kunnen leiden tot een beter begrip van RFA 
en leiden tot beter geïnformeerde beslissingen door interventieradiologen. Het proefschrift 
toonde ook aan hoe cruciaal sommige parameters zijn die de ablatiezone beïnvloeden, zoals de 
elektrische geleidbaarheid van zowel het doelweefsel als het omringende weefsel, dat bij bottu-
moren nog sterker contrasteert dan in andere anatomische gebieden met meer homogeniteit op 
hun weefseleigenschappen. De modellen die door de simulaties worden gegenereerd, kunnen 
worden opgenomen in plannings- en begeleidingstools, door 3D-beelden van de simulaties te 
genereren en deze op DICOM-beelden of andere tools zoals virtual reality-brillen te super-
poneren, en zo volledig te worden geïntegreerd in de klinische workflow voor een veilige en 
effectieve tumorplanning.
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