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“The truth is rarely pure and never simple”
- Oscar Wilde , The Importance of Being Earnest -





Propositions

1. Co-expression networks generated using bulk multi-tissue RNA sequencing 
provide broad insights into which pathways are impacted by the genetic basis 
of complex traits. However, these networks lack both directionality and specifici-
ty, which hampers interpretation. This is especially true for complex traits whose 
key tissues or cell-types are under-represented in the data used to construct the 
co-expression network (Chapter 3).

2. The search for core genes may prove fruitful for finding disease-relevant genes 
that have a big enough impact on disease risk to be effectively targeted by drugs 
but that are also not critical for cell survival (Chapter 3).

3. Expression quantitative trait loci exert their effects in a cell-type- and context-spe-
cific manner (Chapters 4 & 5). Some of these cell-type-specific effects can be 
reconstructed from bulk RNA sequencing data using cell-type deconvolution 
techniques (Chapter 4).

4. Cytokine production by immune cells is determined by genetics to a varying 
degree, depending on the biological process central to inducing production 
(Chapters 5 & 6). This genetic basis may have been shaped by evolutionary 
pressures (Chapter 7).

5. Gluten-specific T cells display a dynamic response profile to in vitro stimulation 
that shows overlap with in vivo activated gluten-specific T cells. This profile may 
be modulated by genetic factors causal for coeliac disease (Chapter 8).

6. Fine-mapping of the genetic factors causal for coeliac disease, or indeed any 
complex trait, should be performed using multiple assays, each with different 
fundamental assumptions (Chapter 9). 

7. Advances in our theoretical understanding of complex trait genetics will be 
increasingly dependent on landmark advances in technology and experimental 
design.

8. “Genetics and Statistics, then, have in common that each in its own field represents 
a distinctive point of view, which profoundly influences the intellectual processes 
with which scientific work is approached.” 

      - R.A. Fisher
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A broad view of the 
genetics underlying 

disease

Joi:
“Mere data makes a man. A and C and T and G.  The alphabet of you.  

All  from four symbols. Where I am only two.  1 and 0.”
K:

“Half as much, but twice as elegant sweetheart.”

ATG TCT CTA CTC GCT CAC
CTG TCC AAG TTA TCG TGG
CCC TCA CAT ACT AGG TTA
ACC AAG CAA AAT ACG GAC
GTC CAG GTT TTC CAA AAA
ACA AGG CGT TGG TAC CTC
TTT CGG ACT GCC CGG AAA
ACC GAT TTG AAC TGT AAG
ATA CGT GAC AGA CGC CAC
GTA GGG ACT GTC TTC CAC
CTT CGA CTC ATA GTG GAG
CAG ATT CAC GGC CAA CAT
TTG GTG ACA ATC ACT GGA
AGC CGT CTG CAA GGC CGG
TTC ACT ACT GGC TGT TTT
CTC GAG GTT GCT CGA TCT
CCC TCC AAG GCC GAT AAG
GGG GAT TTT TTG AAG GCC
GAT AAA AAC AAC CTT CAG
GAC AGT TCA TTG TTT TTA
GGG CCG CCG CGC ACT TCC
TTG TTG GTC ATA CTC ATT
ATG CGC ATC CTC GAA TTA
AAC CCC TCC TCC TTG TCT
GGT GCT AAT ACG CCT ATG
GCA GCT GCG GGT CAA CCG
GCA GTT TCT CCA GAC TTG
CAG CGC CAA GTA CCC CGC
GAA CCA CTC ACC GCA AGT
AAA ACC CGC CCT TAC CTA
GCC GTC TGT CAA CCT ACA

ATG TCT CTA CTC GCT CAC
CTG TCC AAG TTA TCG TGG
CCC TCA CAT ACT AGG TTA
ACC AAG CAA AAT ACG GAC
GTC CAG GTT TTC CAA AAA
ACA AGG CGT TGG TAC CTC
TTT CGG ACT GCC CGG AAA
ACC GAT TTG AAC TGT AAG
ATA CGT GAC AGA CGC CAC
GTA GGG ACT GTC TTC CAC
CTT CGA CTC ATA GTG GAG
CAG ATT CAC GGC CAA CAT
TTG GTG ACA ATC ACT GGA
AGC CGT CTG CAA GGC CGG
TTC ACT ACT GTC TGT TTT
CTC GAG GTT GCT CGA TCT
CCC TCC AAG GCC GAT AAG
GGG GAT TTT TTG AAG GCC
GAT AAA AAC AAC CTT CAG
GAC AGT TCA TTG TTT TTA
GGG CCG CCG CGC ACT TCC
TTG TTG GTC ATA CTC ATT
ATG CGC ATC CTC GAA TTA
AAC CCC TCC TCC TTG TCT
GGT GCT AAT ACG CCT ATG
GCA GCT GCG GGT CAA CCG
GCA GTT TCT CCA GAC TTG
CAG CGC CAA GTA CCC CGC
GAA CCA CTC ACC GCA AGT
AAA ACC CGC CCT TAC CTA
GCC GTC TGT CAA CCT ACA

- From Blade Runner 2049 (2019) by Denis Villeneuve -
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Part I





Chapter 1 
General introduction



14



C
ha

pt
er

1

15

I  The key idea in Roman stoic philosophy is to ‘live in accordance with Nature’ which manifests itself as the 
recognition and acceptance of factors that are beyond your control and the rationalization of emotion. 
Stoics are commonly viewed as cold and completely repressing emotion, an alternative interpretation is 
that it is about accepting factors beyond your control, and not letting them control your decision making.

Observational omics: A type of data that is based on measuring an ‘-ome’ such as the genome (ome 
referring to the totality of the measurement). The field of study for this -ome would be its corresponding 
‘-omic’, for instance genomics. Observational: In the sense in that observations are done, on for instance, 
a patient population, but there is no functional intervention either in vivo or in vitro. 

Prologue: Observational omics and the stew of mixed ingredients

Around 2000 years ago, the Roman emperor and stoic philosopher Marcus Aurelius 
wrote down his inner thoughts in a work now known as the Meditations I. In his Medita-
tions, Marcus Aurelius often reflects on the nature of the universe and our place within 
it. One of these meditations stuck with me, as I feel it almost perfectly expresses the 
complexity of biology and life as whole:

“Either an ordered universe, or a stew of mixed ingredients, yet still coherent 
order. Otherwise, how could a sort of private order subsist within you, if 
there is disorder in the Whole? Especially given that all things, distinct as 
they are, nevertheless permeate and respond to each other” 

– Marcus Aurelius, Meditations 4.27 

Here Marcus Aurelius reflects on the materialistic idea of the universe being an infinite 
set of atoms randomly bumping into each other, stating that there must be some sort of 
order in the chaos if we are going to be able to take control of our own mind. I find that 
this line of thinking applies perfectly to the world of biology, which can get so chaotic 
and complex that a sense of nihilism starts to set in, “Are we ever going to understand 
this vast complexity?” The analogy of a stew is particularly applicable to interpreting 
the biological processes foundational to complex disease. Stew is an ever-moving liquid 
that constantly changes state, in which ingredients interact with each other to form 
something new. Yet there is still order to a stew. Follow the recipe, and you get the same 
stew. Add in different ingredients, and the stew changes. In computational biology, it 
often feels like we are chefs trying to discover the recipe of our favourite stew by taste 
alone. Furthermore, I find Marcus Aurelious’s notion that “all things distinct as they are, 
nevertheless permeate and respond to each other” very fitting when it comes to inter-
preting the relationships between human phenotypes, genes and diseases.

In this thesis the genetic basis for a variety of complex traits and diseases is studied 
from different perspectives, with the overarching goal of better understanding the 
fundamental principles with which genetic variants impact us. We have made use of 
observational omics data as well as more bespoke experimental setups to study: 
1) how disease-associated genetic variants work together to affect gene expres-
sion (Chapters 2 and 3), 2) how the cellular context affects the discovery of genetic 
factors that impact gene expression (Chapter 4) and 3) how genetic factors impact 
our immune system and how this may have evolved over time (Chapters 5, 6 and 7). 
The third part of this thesis assesses how the genetic variants associated to a common 
auto-immune disorder, coeliac disease, might be mediating their effects on disease risk 
in specific cellular contexts (Chapters 8 and 9).  Finally, in Chapter 10, the work in this 
thesis is reflected upon in the contect of the fields and future perspectives discussed. 
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Interpreting the genetics of complex traits

Perhaps the best example of a field where observational omics research has been 
successful is that of complex trait genetics. When the first draft of the human genome 
project was completed in 2000, there were grand ambitions that this would shed light 
on the nature of all diseases. While we have learned a great deal from this effort, twenty 
years later we now know that the truth is far more complex than originally thought. The 
field, while still young, has progressed rapidly and massively, from the first sequence 
taking more than a decade to complete to it now being a more or less routine effort to 
sequence thousands of genomes, even in single cells.

The first enterprises in modern disease genetics looked within families where 
disease-causing mutations were clearly inherited and followed a Mendelian inheri-
tance pattern. These studies confined themselves to specific loci, and the disease-caus-
ing mutation could be linked back to a single gene 1. It was later shown that loci could 
be screened for disease-causing mutations using the pattern of linkage disequilib-
rium (LD) between alleles 2,3, paving the way towards genome-wide assessment of 
disease-associated variants in genome-wide association studies (GWASs). The first 
GWAS was completed in 2002 and, in the 20 years since, there has been an explosion 
of GWASs examining a plethora of traits 4. This explosion has been facilitated by the 
invention of genotyping arrays that measure genetic variation on specific sites for a 
fraction of the cost of sequencing. These many GWASs have provided invaluable insights 
into many traits and diseases 5 (for the sake of brevity, I will be considering disease a 
trait from here onward). For example, we now know that complex traits are extremely 
polygenic and likely result from a complex interplay of environment and genetics. The 
major limiting factor of GWASs is that their results have proven challenging to interpret, 
for several reasons.

Firstly, as the majority of the genome consists of non-coding regions, most variants 
associated to disease in GWASs fall within these non-coding regions. These variants 
don’t directly alter the structure or function of a protein, as opposed to coding variants 
which can have an impact on the protein product of the gene they are located in. For 
non-coding variants, it is not obvious which genes and proteins are affected by the 
trait-associated variants. This is compounded by the LD between trait-associated 
alleles, making it hard to know which exact allele within an LD block is causal for the 
trait. In a process called fine-mapping, attempts are made to integrate the associations 
obtained from GWASs with other functional omics in order to prioritise likely causal 
variants within disease loci (as in Chapter 2).

An additional challenge is that, for many GWAS traits, much of the heritability still 
cannot be fully explained by GWASs when compared to observations made in family-
based study designs 6. This is referred to as the missing heritability problem. There 
are many potential explanations for this issue, including detection power, missing low 
frequency variants (minor allele frequency (MAF)<1%), missing structural variants, 
variant–variant interactions and inaccurate phenotyping. This issue may impact inter-

Mendelian: Referring to Gregor Mendel’s principles of inheritance.
Linkage disequilibrium (LD): A non-random association between two alleles. A way to think of LD is as the 
correlation between the alleles in the population.
Polygenic: Involving multiple genes, usually meaning hundreds to thousands.
LD block: A genomic region containing a set of genetic variants which are in linkage disequilibrium. 
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pretation of GWAS results, as underpowered GWASs are especially likely to miss associ-
ations near genes relevant to trait biology, thereby potentially giving a skewed view 
of the true genetic basis of a trait. Indeed, it is well known that as power for a GWAS 
increases, so do the number of associated loci 7.

However, even if fine-mapping reveals all the causal variants, it still leaves the question 
of which gene is affected by the variant. There are several ways of prioritising the genes 
affected by GWAS variants or loci. Ultimately, most of these approaches operate under 
the assumptions of the central dogma of molecular biology, hence the most logical 
place to search for the connections between disease variants and genes is between the 
DNA and RNA levels. This is done in so-called expression quantitative trait loci (eQTL) 
studies. eQTL are genetic variants that are associated with the (mRNA) expression 
of genes. eQTLs can affect the expression of genes locally (cis-eQTLs) or of genes far 
away through a regulatory cascade (trans-eQTLs). One important way the eQTL can do 
this is by disrupting the binding of transcription factors (TFs) in enhancer or promoter 
regions, leading to a disruption of the mRNA expression (see Chapter 2).

While identification of eQTLs has proven useful to prioritise disease genes in some 
specific contexts, substantial gaps remain when using current eQTL resources to explain 
the links between GWAS variants and genes (see Chapter 10). While every non-cod-
ing GWAS variant that has a causal effect must impact expression in some way (either 
by affecting enhancers, promoters, splicing, chromatin or methylation), we currently 
cannot detect these effects accurately enough to explain GWAS loci. There are several 
reasons for this. Firstly, there are several post-transcriptional mechanisms in place that 
can buffer the effects on mRNA expression, so the protein levels are not altered, leading 
to eQTL that do not have a clear functional effect. Secondly, it has been suggested that 
studying the correct context and cell types for the traits under study is of paramount 
importance if the eQTL is going to be informative. Thirdly, due to technical limitations, 
trans-eQTL studies are currently rare and generally underpowered, even though it has 
been suggested that this is the most informative type of eQTL to study 8,9.

A final hurdle to interpreting GWASs lies in the fact that the effect sizes of the individual 
variants are very small, which means they are harder to interpret. In fact, the effect 
sizes of variants are getting so small that it has been suggested that any variant in the 
genome that influences an expressed gene is causal to a trait in some way 7,8. This idea 
was first proposed by Ronald Fischer in 1918, when he described that a quantitative 
trait could result from an infinite number of genes, each influencing the trait with an 
infinitely small effect size. In 2017, Boyle et al. expanded upon this idea in the omnigenic 
model, which postulates that all genetic variants affecting a gene that is expressed are 
causal for a trait 8. These authors further describe that these variants are on the edge of 
a gene regulatory network and mostly influence peripheral genes not directly involved 
in causing disease. Together, these peripheral genes affect core genes that are directly 
causal for disease. However, this model has not yet been empirically proven, and for 
now, remains theoretical.
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Evolution and complex traits

There are many traits for which there is evidence that important genes have been 
impacted by natural selection. For example, variants in fatty acid desaturase enzymes 
have been selected for in Inuit populations, allowing them to adjust to the arctic environ-
ment and a diet high in polyunsaturated fatty acids 10. Another well-known example of 
recent local adaptation is the ability to process lactose in adulthood. Around 5,000–
10,000 years ago the domestication of cattle in the Middle East, North Africa and 
Europe introduced a strong selective pressure, leading to selection for variants in the 
lactase locus 11. While these are both fairly straightforward and explainable traits and 
evidence for selection exists for complex traits like BMI, skin pigmentation and height 
12, the evolution of the genetic basis for many complex traits remains unknown. Under-
standing which loci are impacted by selection can be helpful in pinpointing which genes 
might be key for trait biology 13. For instance, variants that occur in highly conserved 
genes are more likely to lead to Mendelian disease 13. Furthermore, positive selection 
can be used to identify cancer driving genes and mutations 14. For complex traits, it is 
also hypothesised that variants that may have been beneficial in the past are now detri-
mental due to our vastly different environment. For example, variants that may have 
given increased protection against infection in the past may now modulate susceptibili-
ty to immune disease 15. This is in line with epidemiological evidence showing a substan-
tial increase in auto-immune and allergic diseases in recent years 16.

Much as with the progression to the polygenic view of disease genetics, so too have 
new models been developed to explain the massive complexity of complex traits in the 
evolutionary context 17,18. As opposed to the classic hard or soft sweep models (Fig. 1A, 
B), where standing or de novo variants are strongly selected for and only a few prefer-
ential haplotypes remain in the population, the polygenic adaptation model allows for 
a more gradual gradient of different haplotypes to exist (Fig. 1C). This is also more in 
line with how one would expect variants acting on complex traits to develop, as they 
usually do not cause mortality before the age of reproduction due to the small effect of 
individual variants. Most tests that assay selection either operate by assaying changes 
in allele frequency between modern populations or look at the length of haplotypes 
around a variant in modern populations. However, these methods have difficulties to 
detect polygenic adaptation or soft-sweeps because of the very minor shifts in allele 
frequency that occur. 

The recent development of protocols to extract (relatively) high-quality ancient DNA 
from human remains has opened a wealth of knowledge on our past 19. This break-
through has allowed for the direct observation of the scope of genetic variation in 
ancient individuals and made it possible to call genetic variants for thousands of ancient 
individuals 20. As such, these genetic profiles could be integrated with modern GWAS 
data to see how trait-associated variants have changed over time. There are however 
major challenges with ancient DNA data, such as the sparsity of samples, significant 
DNA damage and the potentially different haplotype structure compared to modern 

Local adaptation: The process of a population adapting to the local environment in the precense of a 
selective pressure.
Conserved: Referring to sections of DNA that remain highly similar between, or within, species, even in 
the precense of evolutionary pressures. 
Ancient DNA: Referring to DNA extracted from ancient (pre-historic) human remains. 
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Fig. 1. illustrations of selection. 
A) In the hard sweep model, a de novo genetic variant is introduced and, after a selection event, the entire 
population carries the beneficial allele. B) In the soft sweep model, either a standing genetic variant is pres-
ent or a de novo genetic variant is introduced. When the selection event occurs, one of the possible alleles 
affecting the gene is kept. C) In polygenic adaptation, a complex standing variation exists in the population 
and minor changes are made slowly over time due to selective pressure, leading to a spectrum of possible 
alleles, leading to the phenotype. Figure inspired by Fan et al. Science 2016 12 and Lluís Quintana-Murci et 
al. Nat. Rev. Immunol. 2013 13.

Time
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de novo
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B)
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populations. In spite of these, such approaches could give new insight into how the 
genetic basis of complex traits evolved. Furthermore, by studying selection, we can 
gain insight into what variants are causal and help us understand what processes are 
foundational to shaping complex traits.
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The (genetic) factors impacting human immune variation 

While building a fundamental understanding of the genetic mechanisms underlying all 
complex traits provides a foundation to understand any specific trait, each trait has 
its idiosyncrasies. Applying and adapting the knowledge gained from the fundamental 
models to a specific trait is just the first of many steps in translating genetic insight to 
treatment.

One complex trait that exemplifies the concept of a “stew of mixed ingredients” is the 
human immune response. Human immune responses are very complex, and variation 
exists on many levels within them. Variation in immune responses generally classifies 
into two categories. Intra-individual variation occurs when immune activity changes 
over time within the same individual, for example during an infection or because of 
ageing. Inter-individual variation describes the substantial variation in immune function 
between individuals, both in health and disease 21. The disruption of immune homeo-
stasis by environmental or genetic factors can have wide-reaching consequences for 
the individual. Simply put, if the immune system is underactive, an individual is more 
susceptible to infection, whereas an individual with an over-active immune system 
would be more susceptible to developing auto-immune disease.

In principle, foreign substances are first recognised by innate immunity, which is 
made up of monocytes, macrophages and granulocytes. The substances are taken 
up, processed by antigen-presenting cells which activate adaptive immunity. The 
adaptive immune response (consisting of T and B cells) activates upon presentation of 
antigens and the activation of co-stimulatory checkpoints, which ultimately leads to it 
removing the foreing substance. During the activation of immune cells, many pathways 
are activated, leading to the activation of downstream target genes that encode for 
important immune proteins. For example, immune cells release signalling molecules, 
including cytokines, that are used to control the inflammatory response by, for example, 
recruiting more immune cells to the site of inflammation or signalling to the target cells 
to proliferate or regulate cell survival 22. Besides cytokines, many other levels are central 
in determining the immune response to foreign substances, for instance, antibodies, 
TFs, epigenetic immune memory, chemokines, the immune receptor repertoire and 
many more. Cytokine levels are, a good trait to study because they can be accurately 
quantified and are a good indication of inflammatory state and immune function.

There are many cytokines, each with their own function and role, but they generally fulfil 
one of the three roles outlined above (recruitment, proliferation and survival of target 
cells). Some cytokines are preferentially produced by certain immune cell subtypes, 
such as interleukin-17 by T helper 17 cells. As such, the levels of certain cytokines are 
good indicators for active inflammation and can point to which parts of the immune 
system are activated. However, the context in which immune cells are activated is key, 
as different immune cells can excrete the same cytokines, but these can have different 
functions, depending on the context 23.

Cytokine levels are influenced by the abundance of the immune cells that produce 
them, and the abundance of immune cells is, in turn, influenced by the immune context, 
e.g. an inflamed state 21,24. Hence it is critical to account for cell-type-abundance when 
studying cytokine function, or indeed, any other immune function. Another source of 
inter-individual variability in the cytokine response is the genetics of the individual. 
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Recent work has suggested that the cytokine responses to stimulation, as well as the 
immune cell proportions, have a strong genetic basis 24–27. The full extent of the polyge-
nicity behind regulation of cytokine responses and how this interacts with the environ-
mental influences is, however, still poorly understood. This extends to other compo-
nents of the immune system and to its response to antigens. Importantly, deregulation 
of these components may lead to either infectious or auto-immune disease, making it 
essential to unravel these fundamental processes.

The genetics of coeliac disease

While variation in immune response caused by a combination of genetics and environ-
mental factors is often balanced and innocuous, there are many examples of complex 
immune-mediated disorders. Viewed from the genetic perspective, there are many 
loci that confer risk for different diseases, potentially stemming from the fact that the 
cell types and processes involved in these diseases are partly shared, as well as from 
selective pressures 28. An example of a complex trait that shares a common genetic 
basis with several other immune disorders is coeliac disease (CeD). However, like all 
complex traits, CeD has its own specific characteristics that complicate translation of 
general models to actionable findings.

CeD is an auto-immune disorder where an immune response to gluten triggers the 
atrophy of the small intestinal lining (Fig. 2). In CeD, gluten peptides present in wheat-, 
barley- and rye-derived foodstuffs are first modified by trans-glutaminase 2. These 
modified peptides are then presented to CD4+ gluten-specific T cells by HLA-DQ2- 
or DQ8-positive antigen-presenting cells 29. This triggers a downstream immune 
response where B cells are activated to produce autoantibodies to trans-glutaminase 2 
and gluten. In addition, cytotoxic lymphocytes are activated that damage the epithelial 
barrier of the small intestine 29,30. This damaged epithelium can cause CeD patients to 
suffer from malnutrition and various gastrointestinal complaints. By far the strongest 
genetic signals for CeD are the HLA-DQ2 and DQ8 haplotypes, as these are necessary 
but not sufficient for someone to develop CeD. Besides the HLA complex, there are 43 
currently known genetic loci that are associated with CeD risk 31,32.

Genes in these loci – CD28, IL2 and TAGAP – have indicated a strong role for T and B cell 
biology 33,34. Although CeD pathophysiology is fairly well understood, many outstanding 
questions remain. For example, the way in which genetic loci play a role in the disease 
process remains unclear. Moreover, the interplay between the epithelial barrier and 
the various immune cells that play a role in CeD is also still unclear. As we have a good 
understanding of the cause and effect with which CeD develops, it is a good model 
to study how genetic variation plays a role in a complex trait that has its own specific 
characteristics, context and components.

CD4+ gluten-specific T cells: A immune cell subtype that has a T cell receptor that recognizes 
processed gluten peptides presented by antigen presenting cells.
HLA-DQ2 and DQ8: Cell surface receptors expressed by antigen presenting cells that bind to the T cell 
receptor of CD4+ T cells (T helper) during antigen presentation. There are many other human leukocyte 
antigen (HLA) isoforms besides the DQ2 and DQ8, but these are required for the development of coeliac 
disease. 
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Thesis outline

In this thesis the genetic underpinnings of complex disease are discussed from several 
perspectives. It is structured in four parts. Part I,  takes a broader view on interpreting 
the genetics of complex traits and assess current techniques for arriving at disease 
mechanisms. It also assesses how the genetics of complex traits impact gene regulato-
ry networks and link our observations to the recently introduced omnigenic model. Part 
II describes how both environmental and genetic factors can impact immune function, 
and how immune function can impact the discovery of genetic factors. Addtionally, it 
discusses how the genetic basis of cytokine production may have been influenced by 
selective pressures. Part III, dives deeply into the genetics of CeD, a common auto-im-
mune disorder, and tries to identify the functional genetic elements that govern CeD 
risk in a cell-type-specific manner. Finally, in Part IV, reflects on the work presented and 
places it into the grander scientific context.

Part I: A broad view of the genetics underlying disease.

In Chapter 2, we discuss current approaches for fine-mapping the genetic under-
pinnings of complex disease as well as those methods aiming to prioritise relevant 
disease genes. As it is becoming clear that the role of genetics in complex disease is 
more difficult to interpret than originally thought, we place the outcomes in the bigger 
picture of their relevance to interpreting the genetics of complex disease.

In Chapter 3, we take a broad view of the genetics underlying both complex and 
Mendelian disease and attempt to link them together by integrating GWAS results 
with co-expression networks. We observe that the gene regulatory networks associ-
ated with complex disease are highly inter-connected and that the genes located in 
the centre of these networks are more likely to harbour Mendelian variants. We further 
discuss challenges associated with the re-construction of such networks and highlight 
a roadmap of how these could be overcome in future.

Part II: Genetics and human immune variation

In Chapter 4, we develop a new method, Decon-2, to identify cell-type-specific eQTL 
effects using bulk gene expression data. By jointly modelling the cell-type proportions 
and the eQTL effects, cell-type-specific eQTL effects can be identified. We extensively 
validate these effects in eQTL data from purified cell types and single-cell eQTL data.

In Chapter 5, we assess the shared genetic basis for ex vivo cytokine responses to 
stimulation by jointly modelling cytokine QTL effects on correlated cytokine levels. This 
multivariate strategy increases the power to detect genetic effects. We subsequently 

Left: Fig. 2. Schematic view of the diseasse process and immune response in coeliac disease. 
A) Ingestion of gluten leads to severe epithelial damage. B) Schematic representation of the currently 
known immune regulatory cascade in coeliac disease. Gluten in the lumen is digested by proteases into 
gluten peptides that make their way into the lamina propia, where they are further digested by tissue 
tranglutaminase 2 (TG2) and subsequently taken up by HLA DQ2- or DQ8-positive antigen-presenting 
cells (APC). These APC subsequently present the digested gluten peptides to gluten-specific CD4+ T cells, 
which start to produce a host of cytokines, which in turn activates CD8+ cytotoxic T cells, inter-epithelial 
lymphocytes (IEL) and B cells. The cytotoxic T cells then start to degrade the epithelial cells, and the B cells 
start to produce antibodies against TG2. C) Overview of the currently known genetic loci associated with 
coeliac disease. Purple bars indicate loci on the chromsome that contain associations to coeiliac disease 
Panel B is based on Moerkens & Mooiweer et al. 35
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link the cytokine QTL effects to stimulation-specific eQTL effects and complex disease 
loci.

In Chapter 6, we describe the genetic and environmental underpinnings of the cytokine 
response to stimulation. We find that we can explain varying levels of variation using a 
multitude of host factors, such as genetics, circulating metabolite levels and immune 
markers, gut microbiome and immune cell proportions. The accuracy of the predictions 
depends on the stimulation used, with some responses more accurately predicted than 
others.

In Chapter 7, we assess if the genetic basis for immune variation has been shaped by 
selective pressures acting in a polygenic manner. We apply an approach based on 
polygenic risk scores to identify how the collective of genetic effects changed over time 
in ancient individuals. This has been made possible due to relatively good quality DNA 
that can be extracted from the wealth of archaeological finds. We applied these scores 
for immune traits and immune-mediated disorders. We observed a switch towards 
tolerance against intracellular pathogens and inflammatory responses to extracellular 
pathogens at the start of the Neolithic period.

Part III: The genetics of CeD in different contexts

In Chapter 8, we study the activation of a specific immune cell type, CD4+ gluten-spe-
cific T cells, and their role in the CeD-specific immune response. We describe the activa-
tion of these gluten-specific T cells in terms of mRNA expression, protein excretion and 
chromatin state and attempt to link this to known genetic factors influencing CeD risk.

In Chapter 9, we take a deep dive into the genetics of CeD and fine-map genetic factors 
that may influence epithelial cells in the small intestine. To do so, we assess the effect 
of CeD-associated genetic variants using a LD-independent assay that quantifies 
allele-specific enhancer and promoter activity.

Part IV: Reflections

Chapter 10, reflects on the work presented in this thesis. It discusses several aspects 
of interpreting the genetic basis of complex disease, and the impact on interpretability 
of the approaches applied in this thesis. It reflects on some of the limits of, and future 
opportunities for, the models that are commonly used in the field and discusses the 
inherent limitations of observational data where causality is concerned. Finally, a more 
philosophical view is taken to test what (cognitive) biases are present in this work and 
what is driving them. 
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Abstract 

Over the past 15 years genome-wide association studies (GWASs) have enabled the 
systematic identification of genetic loci associated with traits and diseases. However, 
due to resolution issues and methodological limitations, the true causal variants and 
genes associated to traits remain difficult to identify. In this post-GWAS era, many 
biological and computational fine-mapping approaches now aim to solve these 
issues. Here we review fine-mapping and gene prioritization approaches that, when 
combined, will improve understanding of the underlying mechanisms of complex traits 
and diseases. Fine-mapping of genetic variants has become increasingly sophisticated: 
Initially, variants were simply overlapped with functional elements, but now the impact 
of variants on regulatory activity and direct variant-gene 3D-interactions can be identi-
fied. Moreover, gene manipulation by CRISPR/Cas9, the identification of expression 
quantitative trait loci, and the use of co-expression networks have all increased our 
understanding of the genes and pathways affected by GWAS loci. However, despite 
this progress, limitations including the lack of cell-type- and disease-specific data and 
the ever-increasing complexity of polygenic models of traits pose serious challeng-
es. Indeed, the combination of fine-mapping and gene prioritization by statistical, 
functional and population-based strategies will be necessary to truly understand how 
GWAS loci contribute to complex traits and diseases.

Keywords

GWAS, fine-mapping, causal variants and genes, SNPs, complex traits, polygenic 
diseases
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Fig. 1. Outline of the current post-GWAS workflow. A) Firstly, the correct context needs to be identi-
fied for the trait under study. B) Subsequently, causal variants can be fine-mapped to better understand 
the fundamental mechanisms of transcription. Here the causal variant (star) is not the strongest GWAS 
signal, but rather a variant in strong LD with the top effect located in an active enhancer region C) To 
gain insights into the biological processes leading to the phenotype, genes can be prioritized and causal 
networks constructed. GWAS variants are generally common in the population and have smaller effect-siz-
es (blue). Thus the genes that they impact are more likely to have a small effect on the phenotype as well 
(peripheral genes). The genes on which many peripheral genes converge (core genes) generally have 
stronger effects (red) on the phenotype. As such the variants that affect core genes are more likely to be 
Mendelian disease variants.

Introduction

Most, if not all, phenotypic traits and diseases have a genetic component that influenc-
es their development, susceptibility, or characteristics. Which genetic regions (loci) 
are linked to phenotypic traits has largely been determined by genome-wide associ-
ation studies (GWASs) (Fig. 1A). GWASs compare and associate millions of relatively 
common genetic variants, usually single nucleotide polymorphisms (SNPs), between a 
baseline (healthy) population and one with a trait of interest such as type 1 diabetes 1, 
coeliac disease 2 or height 3. The trait-associated genetic loci obtained by GWASs are 
marked by specific variants referred to as marker- or top-variants. Each marker-variant 
signifies a haplotype containing many nearby variants that are in high linkage disequi-
librium (LD), indicating that they are most likely inherited together 4 (Fig. 1B). Over 
4000 GWASs have been published since 2002 5, yielding almost 150,000 marker-vari-
ant associations to hundreds of traits 6. However, despite the method’s great initial 
promise, GWASs have not provided immediate insights into the underlying biological 
mechanisms of each trait due to two major complicating factors.

B) Fine-mapping
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Firstly, GWASs cannot distinguish the marker-variant signal from that of the other 
varaints that are in high LD. Over 95% of the variants in high LD (R2>0.8) are located 
outside of genes in the non-coding DNA 7 and can be located up to 500 kilobase-pairs 
(kb) apart 8. Consequently, any of them could be the actual causal variant (Fig. 1B).

Secondly, the effects of non-coding causal variants can be highly cell-type-, context- 
and disease-specific 9. Non-coding DNA contains regulatory regions—enhancers and 
promoters—that can bind transcription factor (TF) proteins and regulate gene expres-
sion 10. Which enhancers and promoters are utilized depends on the cell-type-specific 
abundance of ~1600 human TFs and their epigenetically regulated accessibility to a 
given regulatory region 11. Variants can disrupt the binding of any of these TFs, resulting 
in changed enhancer or promoter activity. This, in turn, affects gene expression 12 and 
cellular pathways 13. Thus, the cell-type and tissue- or disease-specific micro-environ-
ment greatly affect which variants, TFs, genes and pathways are involved (Fig. 1). These 
complexities make it difficult to understand how GWAS loci contribute to their associ-
ated traits and have significantly hampered the interpretation and application of GWAS 
results. To address this, many different fine-mapping approaches have been developed 
in the post-GWAS era with the aim of identifying the important variants and genes and 
interpreting their biological impact on diseases and traits 14–17.

Important to note, is that to reduce fine-mapping complexity, most approaches assume 
that only a single variant per locus contributes to a trait. This is however not a proper 
reflection of reality as multiple variants within a single GWAS locus can have an effect 
on a single gene’s expression. This can occur in one of two ways, either the effect of 
the variants adds up in a linear way (additive effect) or an interaction between two or 
more variants is required to affect gene expression (epistatic effect) 18,19. Thus, multiple 
variants may play a role in a single locus, either within a single cell-type, or in a context- 
and cell-type-specific manner 18. This further complicates performing and interpret-
ing fine-mapping and gene prioritization approaches. For simplicity, throughout this 
review we continue to address variants that affect gene regulation and pathways in 
association to a GWAS trait in any way as causal, even though a collective of smaller 
contributing effects acting in unison per locus may be necessary to elicit a functional 
effect on a GWAS trait.

Here we assess fine-mapping and gene prioritization approaches that have been used 
to translate GWAS loci to a functional understanding of the associated trait, while 
taking cell-type- and disease-specific context into account. Specifically, we review the 
genetics of lower effect-size common variants identified through GWASs rather than 
high effect-size mendelian disease variants (Fig. 1C). Moreover, we discuss the impact 
of the recent paradigm shift towards polygenic models and how these can be used to 
aid in the identification of gene networks that highlight core disease genes (Fig. 1C).
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2) Fine-mapping from the variant perspective

Fine-mapping variants in GWAS loci requires an understanding of the underlying 
mechanism by which a variant can contribute to a trait. Overcoming LD and identi-
fying the context-specific variants that are causal to a trait is imperative for under-
standing disease mechanisms and confidently identifying which downstream genes 
and pathways are affected. Many functional and computational (high-throughput) 
fine-mapping methods have been developed and applied for this purpose. Below we 
review several fine-mapping methods according to their increasing ability to describe 
the complex role of variants in GWAS traits and diseases.

2.1 Identifying overlap with functional elements

The most straightforward fine-mapping approach is to overlap GWAS variants in high 
LD with functional elements such as promoters and enhancers (Fig. 2A). Currently, the 
best resource for functional elements has been compiled by the epigenome roadmap 
consortium 20 (electronic supplementary material, Suppl. Tab. 1), which used ChIP-seq 
(electronic supplementary material, Suppl. Tab. 2) to measure histone marks to 
determine the location of functional elements in 127 different cell and tissue types 20,21. 
Fine-mapping of GWAS variants from 21 autoimmune diseases using the epigenome 
roadmap and similar data estimated that ~60% of candidate causal variants map to 
immune cell enhancers, and another ~8% to promoters 12. This was also reflected in the 
tissue-specific enrichment of type 1 diabetes susceptibility variants in lymphoid gene 
enhancers 22. Moreover, candidate causal variants were enriched in enhancers defined 
by the histone mark H3K 27Ac in specific subsets of CD4+ T cells, CD8+ T cells and B 
cells 12. This was also the case in another study in monocytes, neutrophils and CD4+ T 
cells 23. Other studies have also identified tissue-specific enrichments of disease-asso-
ciated variants via overlap with functional elements, showing that this approach can 
help specify which variants play a role in certain cell-types 23,24.

Other ways of detecting regulatory regions that can be used to fine-map GWAS variants 
are either based on DNA accessibility, e.g. ATAC-seq 25 and DNase-seq 26 (electronic 
supplementary material, Suppl. Tab. 2), or identify the inherent transcriptional activity 
of enhancers and promoters 27,28, e.g. GRO-seq 29, PRO-seq 30 and CAGE 31 (electron-
ic supplementary material, Suppl. Tab. 2). Collective public databases utilizing these 
techniques—like the epigenome roadmap consortium 20, ENCODE 32, FANTOM5 33 and 
the IHEC consortium 34—are indispensable context-specific resources (electronic 
supplementary material, Suppl. Tab. 1). However, it appears to be more difficult than 
originally anticipated to specify the exact location of regulatory regions since all these 
methods show different sensitivities and accuracies in the mapping of active regulato-
ry regions 35. Moreover, overlap of a variant with an active regulatory region may not 
result in functional disruption of these elements, and thus does not definitively point 
to causality. This uncertainty limits the accuracy of fine-mapping through overlap with 
functional elements and still leaves us with a multitude of candidate causal variants.

2.2 Inferring allele-specific variant effects

In high-throughput methods such as ATAC-seq, the sequencing reads containing a 
variant can be separated based on its allele. The allele-specific abundance of sequenc-
ing reads can then directly inform us about the functionality of this variant on the open 
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TF-binding.
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chromatin region. Variants that cause allelic imbalance in regulatory regions are called 
chromatin accessibility quantitative trait loci (caQTLs, Fig. 2A) 25,36. Many caQTLs were 
identified in primary CD4+ T cell ATAC-seq peaks, and these showed a strong enrich-
ment in candidate causal autoimmune variants 36. Similarly, the existence of variants 
or histone-QTLs that affect regulatory regions by altering enhancer-associated 
H3K27Ac or H3K4Me1 histone peaks also implies that these variants have an effect on 
cell-type-specific enhancer activity 23. Due to their functional effect on DNA accessibil-
ity and epigenetic marks, these variants are more likely to be causal variants for GWAS 
traits.

Another mechanism by which non-coding GWAS variants can have an allelic effect on 
gene expression is alternative splicing of genes. GWAS-associated variants have the 
potential to induce cell-type specific alternative splicing (sQTL) or could affect trans-act-
ing splicing regulation genes 37,38. This was shown in a genome-wide approach where 
622 exons with intronic sQTLs were identified. 110 of these exons harbored variants in 
linkage disequilibrium with GWAS marker-variants 37. In a more specific example, the 
multiple sclerosis associated PRKCA gene is seemingly affected by an intronic sQTL 
that increases the expression of a gene isoform more prone to nonsense-mediated 
decay, thereby reducing the likely protective PRKCA mRNA levels post-transcription-
ally 39. However, sQTLs appear to also act through more complex mechanisms such as 
indirectly through caQTLs 40, or by inducing alternative upstream transcription start 
sites 41. These, and many other examples 38 suggest that sQTLs may be an important but 
complex mechanism by which GWAS-associated variants affect a trait.

2.3 Identifying variants that disrupt underlying TF binding sites

Further prioritization of variants in regulatory regions that show allelic-imbalances 
can be done by computational or functional analysis of the underlying TF binding sites 
(TFBS) or motifs. Regulatory regions consist of both very strict and more degenerate 
DNA motifs 42 to which TFs can bind in order to initiate local transcription (e.g. enhancer 
RNAs) and regulate nearby or distant genes 10,27. Variants can change the TFBS, altering 
the binding affinity of the TF and changing the activity of a regulatory region (Fig. 2A) 
18,43,44. The specificity and location of potential TFBSs have been collected for many 
cell-types in large databases such as JASPAR 45, FANTOM5 33 and ENCODE 32 (electron-
ic supplementary material, Suppl. Tab. 1), mostly using ChIP-seq and HT-SELEX 46 
(electronic supplementary material, Suppl. Tab. 2). 

An enrichment of TFBS disruption by putatively causal variants has been identified for 
44 families of TFs 18. For TFs like AP-1 and the ETS TF-family, regulatory regions contain-
ing these disrupted TFBSs also show effects on chromatin accessibility, indicating that 
the effect of variants on TF binding affinity leads to caQTLs 18. Similarly, upon identifi-
cation of nearly 9,000 DNase-seq locations affected by allelic-imbalances, it was found 
that the alleles associated with more accessible chromatin were also highly associated 
with increased TF binding 43. In a more specific case, TFBS disruption analyses and in 
vitro confirmation by ChIP-seq led to the identification of rs17293632 as a likely causal 
SNP that increases Crohn’s disease risk by disrupting an AP-1 TFBS 12. Interestingly, 
this effect on AP-1 TFBSs was stimulation-specific: H3K 27Ac peaks with affected AP-1 
TFBSs were enriched in stimulated CD4+ T cells compared to non-stimulated cells 
12. This highlights the importance of context-specificity and the need for tissue- and 
disease-relevant stimulations in experimental setups (Fig. 2B) 12,47. Finally, in a study 
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of leukaemia patients, a small DNA insertion resulting in a TFBS for MYB created an 
enhancer near TAL1, this led to activation of this oncogene and the onset of leukaemia 
48. Thus, decreased or increased affinity of TFs due to genetic variants or small DNA 
changes can have far-reaching effects. 

Currently, only 10-20% of the potentially causal non-coding GWAS variants defined by 
allelic imbalances within a regulatory region can be shown to disrupt a known TFBS 12. 
Therefore, the actual causal variants may potentially act through a different mechanism, 
or our understanding of TF binding may still be insufficient 49. One complicating factor 
here is the potential cooperative binding of more than one TF at an overlapping 
TFBS. Detection of these cooperative binding motifs is currently being improved by 
both biological methods (such as SELEX-seq 50) and computational methods (such as 
No Read Left Behind (NRLB) 44) (electronic supplementary material, Suppl. Tab. 3). 
A striking example of context-specific cooperative binding of TFs is illustrated by an 
increased TFBS enrichment of p300, RBPJ and NF-kB in risk loci of GWAS traits as a 
consequence of the presence of Epstein-Barr virus (EBV) EBNA2 protein 51. In this 
study, ChIP-seq data from EBV-transformed B cell lines was used, together with the 
RELI algorithm (electronic supplementary material, Suppl. Tab. 3), to systematically 
estimate enrichment of variants in TFBS 51. In six out of the seven autoimmune disorders 
tested, RELI identified that 130 out of 1,953 candidate causal variants 12 overlapped 
with EBNA2 binding sites in B cell lines identified by ChIP-seq 51. Interestingly, many 
autoimmune diseases, including coeliac disease and multiple sclerosis 52,53, are thought 
to be partially triggered by viral infections, suggesting that variants may only be causal 
when viral factors are also present. Moreover, TF motifs can be highly degenerate, and 
a small change in TF binding affinity can induce a subtle dosage effect on the activity 
of a regulatory region 44. While this effect may be subtle, downstream genes could be 
affected sufficiently 44 to induce or affect a trait. Thus, a better understanding of how 
TF binding affinity to DNA motifs is mediated is necessary to comprehend how variants 
affect the functionality of a regulatory region.

2.4 Fine-mapping by detection of regulatory region activity 

A more immediate fine-mapping approach is to directly measure the effect a variant 
can have on the strength of a regulatory region. Active promoters and enhancers have 
transcription start sites (TSSs), and the activity of an enhancer or promoter is directly 
correlated with the active transcription from these TSSs 27. However, some promoter 
RNAs, and most enhancer RNAs, are very short lived, making them difficult to detect 
with most RNA sequencing methods 10,27. CAGE (electronic supplementary material, 
Suppl. Tab. 2) does allow for identification of exact TSS locations, as well as expres-
sion levels of genes, by sequencing 5’-capped transcripts regardless of their stability 30. 
CAGE has identified promoter and enhancer effects and showed that 52% of the effects 
observed in promoter regions were in secondary CAGE peaks, highlighting that genes 
can have multiple active promoters depending on the genotype 54. CAGE QTLs have 
been observed for loci associated with systemic lupus erythematous (SLE) and inflam-
matory bowel disorder 54, supporting their relevance in immune disease. 

Reporter-plasmid assays can also be applied to directly measure the effects of variants 
on enhancer or promoter TSS activity by moving variant-containing DNA fragments 
from their natural environment to a plasmid and transfecting these into a cell-type of 
interest. The most traditional reporter-plasmid assay, the luciferase assay (electron-
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ic supplementary material, Suppl. Tab. 2), was used to confirm a functional effect of 
rs1421085, which is associated to obesity risk, by showing that the risk-allele induces 
an increase in enhancer activity 55. However, high-throughput reporter assay methods 
with high resolution are required to fine-map all potentially causal variants within entire 
GWAS loci based on regulatory region activity. 

One such method, the massively parallel reporter assay (MPRA, electronic supplemen-
tary material, Suppl. Tab. 2), can test over 30,000 candidate variants by synthetical-
ly creating 180Bp DNA-fragments containing both alleles of a variant with a unique 
barcode and integrating these into GFP-reporter plasmids that are subsequently 
transfected into different cell lines 56. An MPRA was used to identify expression of 12% 
(3,432) of the 30,000 candidate DNA fragments in three cell lines, with 842 showing 
allelic imbalances caused by SNPs. Indeed, 53 of these SNPs had previously been associ-
ated to GWAS traits 56. Similar high-throughput fine-mapping methods that use 
patient-derived DNA instead of synthetically generated DNA sequences are STARR-seq 
57 and SuRE 58 (electronic supplementary material, Suppl. Tab. 2). Using a whole-ge-
nome approach, the SuRE method managed to screen 5.9 million SNPs in the K562 red 
blood cell line, identifying over 30,000 SNPs that affect regulatory regions and allowing 
for in-depth fine-mapping of SNPs for 36 blood-cell-related GWAS traits 59. Follow-up 
research on these reporter assays has identified a causal SNP (rs9283753) in ankylos-
ing spondylitis 56 and another (rs4572196) in potentially up to 11 red blood cell traits 
59. Despite the obvious advantages of high-throughput fine-mapping screens, a major 
drawback is that these methods are usually applied in cancer or EBV-transformed cell 
lines. These cell lines can be significantly different from trait-specific tissue-derived 
cell-types 60 and have often accumulated many somatic mutations as a consequence of 
years of culturing 61. Thus, the wrong variants may be identified as causal because the 
relevant cell-type and context-specific effects have not been considered 62. 

2.5 From causal variant to gene using the 3D-interactome

When a causal variant has been identified, the gene expression effects of that variant 
can be directly assessed by mapping the necessary physical interaction of the regulato-
ry region it affects with its target genes (Fig. 2A) 63,64. For example, H3K 27Ac regions 
containing autoimmune-disease-prioritized variants were linked to the TSS of genes 
using HiChIP (electronic supplementary material, Suppl. Tab. 2) and shown to contain 
cell-type-specific interactions between the TSS of the IL2 gene and rs7664452 in Th17 
cells and between rs2300604 and target gene BATF in memory T cells 63. Interestingly, 
for 684 autoimmune-disease-associated variants assessed with HiChIP, 2,597 gene–
variant interactions were identified, indicating that autoimmune disease variants can 
regulate a multitude of genes. Moreover, only 14% (367) of these gene–variant inter-
actions were with the gene closest to the variant 63. Another example of a long-range 
interaction of a causal variant is that of the previously mentioned rs1421085, which is 
associated with obesity risk and located in an intron of FTO. TFBS disruption analyses 
have shown that rs1421085 disrupts the ARID5B TF-binding motif and affects the 
activity of an enhancer that regulates IRX3 and IRX5, genes located 1.2Mbp upstream, 
instead of the initially expected co-localized FTO gene itself 55,65. Thus, fine-mapping 
and interaction analysis has identified additional causal genes in this obesity-associated 
risk locus.
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Hi-C (electronic supplementary material, Suppl. Tab. 2) is another high-throughput 
method for identifying specific promoter and enhancer gene interactions 19,66–68. For 
example, Hi-C was used to prioritize four rheumatoid arthritis genes by overlapping 
promoter–gene interactions of various primary immune-cells with rheumatoid arthritis 
GWAS variants 19. Another study analysed Hi-C datasets of 14 primary human tissues 
and showed that frequently interacting regions (FIREs) are enriched for disease-associ-
ated GWAS variants 68. However, the resolution limitations of Hi-C and other interaction 
data make it difficult to precisely pin-point the causal variant within a regulatory region 
63,64,68. In addition, cell-type and environmental effects influence regulatory region 
interactions with genes, as shown by the fact that 38.8% of FIREs were identified in only 
one tissue or cell-type 68. Thus, multiple strategies as described here and collected in 
databases such as the EnhancerAtlas2.0 69 (electronic supplementary material, Suppl. 
Tab. 1) should be combined to confidently fine-map causal variants and link them to 
genes that play a role in GWAS traits.

3) Gene prioritization using GWAS traits

Traditional fine-mapping approaches focus on identifying the causal variants that 
affect a trait of interest. While very important, knowing which variants are causal does 
not identify the downstream effects of the variant on the trait. One way to gain such 
insights is by identifying the genes that are affected by each GWAS locus. Moreover, 
if the causal genes affected by a locus are known, this can reduce the credible set of 
potentially causal variants. Recent efforts in systems biology have focused on identify-
ing such causal genes and their downstream effects.

3.1 Gene prioritization using expression quantitative trait loci

A more comprehensive approach to identifying the genes affected by a GWAS locus is 
through the use of quantitative trait loci (QTL, Fig. 3A). While caQTLs are often indic-
ative of a causal variant or regulatory region, a specific subset of QTLs called expres-
sion QTLs (eQTL) can be used to identify the genes affected by a GWAS locus 70–72. The 
simplest way to perform gene prioritization using eQTL analysis is simply to overlap 
the marker-variant of a GWAS locus with the top eQTL variant. An example of this is 
a SLE risk variant that is also a cis-eQTL for the TF IKF1. The eQTL on IKF1 affected the 
transcription of ten genes in trans that are all regulated by IKF1 70, highlighting this 
gene as a likely candidate causal gene for SLE. Additionally, these types of effects can 
be context-specific, as was shown for a cis-eQTL on TLR1 after stimulation of periph-
eral blood mononuclear cells (PBMCs) with E. coli 73. This cis-eQTL was also a strong 
trans regulator of the E. coli-induced response network, regulating another 105 genes 
73, showing that an eQTL can strongly influence the immune response to pathogens. 

However, the top eQTL variant might not always be the same as, or in LD with, the top 
GWAS marker-variant due to noise in the eQTL data 74 or to multiple causal effects on a 
gene or disease in a locus 75. As a result, many statistical frameworks have been created 
to give more accurate estimates of overlap or causality between a GWAS locus and a 
QTL locus, including FUMA 76, COLOC 77 and Mendelian Randomization (MR, electronic 
supplementary material, Suppl. Tab. 3). MR is commonly used to estimate causality 
between GWAS and QTL profiles 78–84 and has been successfully applied to identify genes 
causally linked with complex traits 3,79–81. For example, MR studies were able to identify 
a causal role for SORT1 on cholesterol levels 79,81, a role which has been experimentally 
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validated 85. Still, MR can be challenging as multiple variants in LD can affect the same 
gene (linkage), and several genes can be affected by the same causal variants (pleiot-
ropy) 70,73,86. More recent work on MR has focussed on more accurately controlling 
for pleiotropy and linkage 79,81,82,84. Independent variant selection for MR is currently 
done by either LD-based clumping or some form of stepwise regression using tools like 
GCTA’s COJO 75 (electronic supplementary material, Suppl. Tab. 3), which only select 
for independence and not causality. Accurate fine-mapping can potentially help these 
efforts by improving the independent variant selection for MR since fine-mapping can 
reveal the true causal variants independent of linkage.

Recently, it has been suggested that ~70% of the heritability in mRNA expression is 
due to trans-eQTLs 87,88, which highlights the importance of trans-eQTL relationships. 
While trans-eQTLs have the potential to further our understanding of complex traits, 
the multiple testing burden is very large due to the large number of comparisons that 
have to be made when doing genome-wide trans-eQTL mapping (in the worst case 
millions of variants times ~60,000 genes) 70,72. Therefore, many eQTL studies opt to 
only map cis-eQTL effects genome-wide, as this dramatically reduces the number of 
comparisons that have to be made 70–72,74. Another approach is to limit the number of 
comparisons by only mapping trans effects for a predefined subset of variants or genes 

70,72,73,86. However, since a full trans-eQTL mapping dataset is rarely available, overlap 
between trans acting genes and GWAS loci will be missed. 

An additional challenge with QTL-based gene prioritization approaches lies in the 
context-specificity of the QTL data used, as different tissues, cell-types, time points 
and stimulation conditions can induce many different expression patterns and different 
interactions with the variants in a GWAS locus 23,73,89–92. Consequently, the QTL informa-
tion that is available might not be informative for the trait under study. This is especial-
ly challenging when studying traits that are present in a tissue other than blood, as 
is the case for neurological disorders 93,94, because sufficiently powerful cell-type- or 
context-specific QTL studies are usually not available. However, with the advent of 
single-cell RNA sequencing (scRNAseq) and the increasing availability of large-scale 
datasets for tissues other than blood, some of these challenges are being overcome 
70,72,90,91. scRNAseq (electronic supplementary material, Suppl. Tab. 2) allows for 
high-throughput eQTL analysis in individual cell-types instead of a bulk population, as 
shown for PBMCs 90. This allows for an increase in resolution and can help to assess only 
the trait-relevant cell-types 91, as shown for eQTLs on TSPAN13 and ZNF414, which were 
only present in CD4+ T cells and not in bulk or other specifically assessed cell-types 90. 
Consortia that are amassing single-cell data at a large scale in many different tissues—
like the human cell atlas 95, single cell eQTLgen 96 and the Lifetime consortium 97 
(electronic supplementary material, Suppl. Tab. 1)—will facilitate the use of single-cell 
sequencing data for traits where bulk RNA-seq obtained from blood is not informative.     

3.2 Identifying downstream effects of GWAS loci using other QTLs

Beyond gene-expression-based eQTL, a plethora of other QTL types exist that affect the 
abundance of proteins (pQTL) 98,99, metabolites (mQTL) 100, DNA methylation (meQTL) 
101, microbiota (miQTL) 102 and cells (cell-count or ccQTL) 103,104. Naturally, these can all 
be overlapped with GWAS loci to obtain insights into their pathology. For example, the 
ex vivo cytokine response to stimulation has been shown to have strong genetic regula-
tors 99. Interestingly, all the associated effects found were trans (i.e. not in proximity to 
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Fig. 3. Aspects of fine-mapping genes from GWAS loci. 
A) Using eQTLs (dark blue) and CRISPRi/a-based assays, 
GWAS loci can be linked to genes when using the correct 
context. B) Not every relationship between genetics and 
expression can be described additively. Epistatic effects 
(dark red) describe a relationship where two (or more) 
mutations are needed to arrive at the phenotype. C) Using 
co-expression, regulatory relationships between genes 
can be quantified, but the specific role of genetics in these 
relationships is unknown. D) Using polygenic scores, the 
joint effects of GWAS loci can be assessed, sacrificing 
resolution to obtain higher-level insights into the pathways 
affected by the genetics associated with a phenotype. E) 
When assessed at single cell resolution, the total network 
can be deconstructed into the cell-type relevant compo-
nents. Affected cells can subsequently display an altered 
interaction with other cells within a tissue or individual, 
leading to a changed tissue- or individual wide outcome for 
a phenotype.
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the cytokine genes), suggesting that the release of cytokines is controlled by genes in 
the receptor’s pathways rather than being directly controlled by the mRNA levels of the 
cytokine. Moreover, context-specificity is important, as QTLs affecting cytokines from 
T cells were found to be enriched in autoimmune GWAS loci, whereas QTLs affecting 
cytokines from monocytes were more enriched in infectious-disease-associated loci 
99. Thus, the effects of genetics on traits should not only be studied at the level of gene 
expression, but also at levels more directly related to a phenotype. 

3.3 Functional approaches to mapping genetic effects on expression

While eQTL analysis provides invaluable insights into the genes that affect a trait or 
disease, context- and cell-type-specific biases in the expression data and LD structure 
in GWAS loci cause potential errors in gene prioritization. With the recent introduction 
of CRISPR/Cas9-based screens 105 (electronic supplementary material, Suppl. Tab. 2), 
it is now possible to functionally validate eQTL effects in a high-throughput manner 
independent of LD structure and in a cell-type relevant to the trait of interest. 

CRISPR-based assays use guide RNAs to bind specific regions of the genome and either 
activate (CRISPRa) or interfere (CRISPRi) with the transcription of genes or enhancers 
106. Recent advances in both scRNAseq and CRISPRi/a have facilitated methodolo-
gies that evaluate enhancer effects on genes in single cells 107. For example, a recent 
effort evaluated the effects of 5,920 candidate enhancers on gene expression using 
CRISPRi 107. Strikingly, 664 showed a significant effect on gene expression in K562 
cells. Thus, CRISPRi-based assays are capable of identifying enhancer–gene pairs in a 
high-throughput manner. However, as only ~10% of candidate enhancers were actually 
found to affect gene expression, identifying which enhancers are active based on 
already available data might not always be straightforward, even for a very well charac-
terized cell-line such as K562 20,32,34,58,59.

In addition to mapping active enhancer gene pairs, CRISPRi/a-based assays can be 
used to identify epistatic interactions between genes and to generate gene networks 
based on changes in co-expression in perturbed versus non-perturbed cells (Fig. 3B). 
Genes that are strongly co-expressed are likely to be regulated by a shared mechanism 
86. Therefore, identifying such genes can help reveal the gene network that leads to 
a disease-associated trait 94,108,109. Indeed, a CRISPRi screen that targeted 12 TFs, 
chromatin modifying factors and non-coding RNAs was able to identify epistatic effects 
in cells perturbed by two guide RNAs 110. In these cells, chromatin accessibility remained 
relatively stable in loci associated to auto-immune disease in cells with one perturbed 
TF. However, significant changes were observed when evaluating the chromatin acces-
sibility for the same loci in cells also perturbed for NFKB1. This again highlights the 
importance of taking the entire context of a trait into account when fine-mapping or 
interpreting the role of a GWAS locus.

A major drawback of the majority of CRISPRi/a screens is that they are very laborious 
and therefore usually performed in easily manipulated, but also highly modified, cancer 
cell-lines 61. Fortunately, recent studies have shown that CRISPRi screens can be applied 
to primary T cells 111,112. This, while challenging, needs to be extended to other tissues 
and model systems. These studies will greatly assist variant, regulatory region and gene 
fine-mapping efforts because they directly identify the active enhancer–gene pairs 
and the downstream gene network affected in specific cell-types.  In addition, future 
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work could focus on performing CRISPRi/a screens in patient-derived cells that contain 
relevant risk genotypes to fully reach variant-level resolution.

3.4 Mapping gene–gene regulatory interactions using population data

Co-expression can also be modelled based on inter-individual variation in expres-
sion, which can be used to prioritize disease genes and make inferences about the 
downstream consequences of diseases (Fig. 3C) 94,108,109,113. For example, DEPICT 
(electronic supplementary material, Suppl. Tab. 3), integrates gene co-regulation 
with GWAS data to provide likely causal genes and pathways relevant for the trait 113. 
Moreover, the GADO tool (electronic supplementary material, Suppl. Tab. 3) correctly 
identified causal genes in 41% of a cohort of 83 patients with varying mendelian 
disorders, and prioritized several novel causal candidate genes by combining trait-spe-
cific gene sets with a co-expression network 109. Finally, eMAGMA (electronic supple-
mentary material, Suppl. Tab. 3) utilized co-expression together with tissue-specific 
eQTLs in brain regions to prioritize 99 candidate causal genes for major depressive 
disorder 94. These co-expression modules were enriched in brain regions but not in 
whole-blood, highlighting the tissue-specific nature of the co-expression networks 94.

Population-based co-expression networks describe the relationships between genes 
through both genetics and environment. Consequently, based on the co-expression 
alone, it is not possible to separate which part of the co-expression is due to genetics. 
Therefore, these networks have limited use for fine-mapping causal variants and are 
mainly used to identify genes and pathways affected by GWAS loci after gene prioritiza-
tions have been made. In addition, co-expression networks are not directed 108. Genetic 
information of the individuals used to generate the co-expression network would solve 
this issue, as the genetic and environmental components could be separated and direc-
tionality could be added into the network 108, although this is not a trivial task. Fine-map-
ping would be of great value in modelling the genetic component of the network by 
facilitating the selection of true causal variants. 

3.5 Fine-mapping under the omnigenic model

As discussed throughout this review, it is becoming increasingly clear that complex 
traits are highly polygenic and that many variants can deregulate cis- and trans-act-
ing factors in a variety of ways (Fig. 2A). In light of this, Boyle et al. 87 proposed an 
omnigenic model for complex traits in which each gene that is expressed in the cell will 
have an effect on the trait or disease in some way (Fig. 1C) 87,88. For example, height is 
so polygenic that most 100kb genomic windows seem to contribute to explaining its 
variance. Given that the effect sizes of the individual variant are getting so small, it begs 
the question: What does the causality of the individual variant mean in a complex trait 
87,88,114? If the omnigenic model is true, it presents a major challenge for fine-mapping 
GWAS loci, particularly for the interpretation of the downstream consequences as the 
complexity of genetic effects on traits will only increase. In addition, current functional 
assays may not be suited to model the small and subtle variant effects and gene–gene 
or gene–environment interactions observed in population studies using millions of 
individuals. 

Instead, the complete GWAS signal from all loci associated with a trait can be used to 
estimate a polygenic score (PGS) that describes an individual’s genetic predisposition 
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for the given trait. In its most basic form, a polygenic score constitutes the linear combi-
nation of all independent risk genotypes weighted by the GWAS effect size, but many 
more sophisticated methods exist (Fig. 3D) 115–117. The PGS for a trait can be associated 
to the expression level of genes (and proteins) in a population 72,118. If there are strong 
correlations, GWAS loci together, as represented by the PGS, are jointly influencing 
these genes. These genes likely represent core genes in a disease-associated co-ex-
pression network. Although PGS have issues when it comes to broad applicability across 
populations 119, they can be a useful abstraction layer to make sense of a polygenic trait. 

Given we are becoming aware of the likely poly- and even omni-genic nature of traits, 
fine-mapping the individual GWAS locus seems like an impossible task. However, with 
current approaches the stronger, and arguably more important, genetic effects associ-
ated with traits and diseases can be elucidated 70,72,73. Moreover, by using abstraction 
layers such as PGS, inferences can be made about the joint consequences of these 
effects 72. Indeed, the genes and pathways associated with stronger or joint genetic 
effects are more likely candidates for drug interventions 120 (electronic supplementary 
material, Suppl. Tab. 1). Although we might never fully comprehend all the tiny effects 
and interactions underlying a trait, we will likely see an increase in clever ways to arrive 
at the interpretable biological mechanisms behind traits. 

Future perspectives

We have reviewed recent high-throughput GWAS fine-mapping approaches that can 
identify variants and genes causal for a trait or disease. The complexity and uncertain-
ty present in aspects of these approaches illustrates that a single approach does not 
suffice to grasp the full cause and effect of candidate variants and genes. In addition, 
while large datasets, mostly in blood, have identified many potentially causal variants 
and genes associated with traits, these candidates need to be refined and validated 
using tissue- and cell-type-specific resources in combination with trait-specific 
environmental factors to recapitulate the true biological state of each trait as closely 
as possible. An additional challenge lies in translating these disease genes into clinical 
practice, as prioritized genes might not be existing, nor practical, drug targets. 

Despite these challenges, we believe that combining the use of patient-derived 
material, with methods that find regulatory regions and their downstream genes will 
aid drug target identification for complex diseases. In addition, this knowledge could 
be used to generate prediction models that aid in the fast and non-invasive identifi-
cation of trait-specific variants and genes in the general population. This will form the 
foundation of our understanding of complex traits, aid drug development and will allow 
tailored precision medicine in the near future. 
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Media summary

Complex diseases like type 1 diabetes or cardiovascular disease all have genetic under-
pinnings that can increase risk or exacerbate symptoms. However, how genetics 
contributes to disease is not very well understood. This review describes the ways in 
which science has tried to elucidate the effects of genetics on the molecular mecha-
nisms, genes and pathways that are important for diseases. Moreover, as it is becoming 
clear that the role of genetics in disease may be more complex than initially thought, we 
speculate on how the field should progress to ensure that genetics can truly contribute 
to the understanding of complex diseases.
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Abstract

Genetic variants identified through genome-wide association studies (GWAS) are 
typically non-coding and exert small regulatory effects on downstream genes, but 
which downstream genes are ultimately impacted and how they confer risk remains 
mostly unclear. Conversely, variants that cause rare Mendelian diseases are often 
coding and have a more direct impact on disease development. We demonstrate that 
common and rare genetic diseases can be linked by studying the gene regulatory 
networks impacted by common disease-associated variants. We implemented this in 
the ‘Downstreamer’ method and applied it to 44 GWAS traits and find that predicted 
downstream “key genes” are enriched with Mendelian disease genes, e.g. key genes 
for height are enriched for genes that cause skeletal abnormalities and Ehlers-Danlos 
syndromes. We find that 82% of these key genes are located outside of GWAS loci, 
suggesting that they result from complex trans regulation rather than being impacted 
by disease-associated variants in cis. Finally, we discuss the challenges in reconstruct-
ing gene regulatory networks and provide a roadmap to improve identification of these 
highly connected genes for common traits and diseases.
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Introduction

Genetic variation plays a major role in the development of both common and rare 
diseases, yet the genetic architectures of these disease types are usually considered 
quite different. Rare genetic disorders are thought to primarily be caused by a single, 
mostly protein-coding genetic variant that has a large effect on disease risk. As a 
consequence, the causal genes for a rare disorder can often be identified by sequenc-
ing individual patients or families. In contrast, the genetic risks for common diseases 
are modulated by a large number of mostly non-coding variants that individually exert 
small effects. These variants are typically identified through genome-wide association 
studies (GWASs). However, identification of the causal variants and genes affected by 
GWAS loci remains challenging, in part due to linkage disequilibrium (LD) and small 
effect-sizes 1,2.

Despite the differences between rare and complex diseases, it has been shown that 
GWAS loci for multiple traits are enriched for genes that can cause related rare diseases 
when damaged 3,4. For instance, common variants associated to PR interval, a measure-
ment of heart function, have been found within the MYH6 gene 5, which is known to 
harbour mutations in individuals with familial dilated cardiomyopathy 6. Moreover, 
eQTL studies have found examples of rare disease genes that are affected by distal 
common variants in trans, such as the immunodeficiency gene ISG15, which is affected 
by multiple systemic lupus erythematosus–associated variants 7. These results indicate 
that common and rare diseases can result from damage to or altered regulation of the 
same genes, suggesting that the same biological pathways underlie these conditions 4. 
However, it is not fully known to what extent specific genes and pathways are shared 
between rare and common diseases. 

Over the years, many pathway-enrichment methods have been developed that can 
identify which biological pathways are enriched for common diseases 8–10 as well as 
highlighting their most likely cellular context(s) 11,12. In addition, several methods can 
prioritize individual genes within GWAS susceptibility loci by studying how they are 
functionally related to genes in other susceptibility loci 8,13–16. However, these methods 
confine themselves to genes in GWAS loci, potentially missing relevant trans-regu-
lated up- or downstream effects. In blood, expression quantitative trait locus (eQTL) 
mapping has been successful in identifying the downstream trans regulatory conse-
quences of GWAS-associated variants (i.e. trans-eQTLs and eQTSs, where polygenic 
scores are linked to expression levels) 7. Unfortunately, large eQTL sample sizes are 
required to detect such effects, and such datasets are not yet available for most tissues.

Here we build upon the ‘omnigenic model’ hypothesis, which states that the genes that 
are most important in complex diseases are those that are modulated by many different 
common variants through gene regulatory networks 17,18. The omnigenic model postu-
lates that a limited number of core genes exist that drive diseases, but that many 
peripheral genes, which contain associated variants, contribute indirectly to disease 
development by modulating the activity of the core genes. Since the omnigenic model 
predicts that many core genes map outside GWAS loci, these genes will be missed by 
methods that prioritize genes within GWAS loci. The omnigenic model hypothesis is 
supported by recent works assessing RNA levels of blood cells 19 and molecular traits 
20 and a large-scale in vitro knockdown experiment 21. However, these studies were 



52

performed in blood, limiting their conclusions to GWAS studies on blood-related traits 
and immunological disorders.

To take this work further, we integrated (mRNA level) gene regulatory networks with 
GWAS summary statistics to prioritize key genes that we suspect are more likely to 
directly contribute to disease predisposition than genes in GWAS loci. We have imple-
mented this strategy in a software package called ‘Downstreamer’ that uses GWAS 
summary statistics and gene co-regulation based on 31,499 multi-tissue RNA-seq 
samples in order to prioritize these key genes. We also provide pathway, rare disease 
phenotype (coded by HPO terms) and tissue enrichments to aid in the comprehensive 
interpretation of GWAS results.

We applied Downstreamer to 44 GWASs for a wide variety of traits (Suppl. Tab. 1) 
and show that the identified key genes are enriched for intolerance to loss-of-func-
tion (LoF) and missense (MiS) mutations and for Mendelian disease genes that lead 
to similar phenotypic outcomes as the GWAS trait. Specifically, we find that key genes 
for height are strongly enriched for severe growth defects and skeletal abnormali-
ties in humans and mice. Additionally, key genes for auto-immune diseases point to 
lymphocyte checkpoints and regulators and those for glomerular filtration rate (GFR; a 
measure of kidney function) are transporters for several metabolites.

Key genes that cause Mendelian disease can therefore highlight the molecular pathways 
driving the complex disease. Conversely, predicted key genes may aid in identifying 
new Mendelian disease genes. 
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Results

To enable identification of GWAS key genes, we developed Downstreamer (Methods), 
a tool that integrates GWAS summary statistics with gene expression–based co-reg-
ulation networks. Downstreamer first converts individual variant associations to gene 
p-values by aggregating associations within a 25kb window around the gene body for all 
protein-coding genes while correcting for LD between variants 9 (Fig. 1A). These gene 
p-values are then converted to z-scores. We calculated gene z-scores for 44 GWAS 
summary statistics reflecting a wide variety of disorders and complex traits (Suppl. 
Tab. 1).

Association signals for polygenic traits cluster around transcription factors

We observed that the z-scores of individual GWASs were often weakly positively 
correlated (Suppl. Fig. 1A), especially for traits for which many loci have been identi-
fied (Suppl. Fig. 1B). For instance, the gene-level z-scores for height correlated 
positively with the gene-level z-scores of all other traits. To investigate the source of 
this shared signal, we calculated the average gene-level significance across all 44 traits 
while correcting for bias that might be introduced for traits that are strongly correlated 
(see Methods). 

We observed that 30% of the variation in this ‘average GWAS’ signal could be explained 
by both the extent of LD around a gene and by the local gene density (Suppl. Fig. 2). 
The more extensive the LD around a gene, the higher the chance that genetic variants 
within the gene are associated, especially for highly polygenic traits 22,23. Consequent-
ly, the gene-level z-score for these genes increases. Hence, when collapsing GWAS 
summary statistics into gene z-scores, some amount of correlation between well-pow-
ered GWAS studies is to be expected. However, this is unwanted when using gene 
z-scores in a pathway-enrichment analysis. We next evaluated if the remaining 70% of 
the average signal was enriched for any biological processes. After correcting for LD 
and gene density, we observed that 79 of the top 500 genes are transcription factors 
(OR: 2.22, p-value: 4.25×10-9). We also saw enrichment among the top 500 genes 
for pathways related to DNA binding and transcription, for example, transcription 
regulator activity (OR: 1.98, p-value: 2.24×10-11) (Suppl. Tab. 2). Additionally, genes 
with a higher average gene z-score were enriched for intolerance to LoF (Suppl. Fig. 
3). These enrichments suggest that there is a set of genes, enriched for GWAS hits, that 
confer risk to many different types of traits. This is consistent with previous observa-
tions that broad functional categories tend to be enriched for many traits 17.

However, as these often-associated genes obscure the specific pathways and key genes 
for a trait, we corrected the individual gene z-scores for the average gene z-score 
in order to get disease-specific gene-level significance scores that were as specific 
as possible. Downstreamer then correlates these corrected gene z-scores to gene 
expression patterns, pathway memberships and tissue expression through a general-
ized least squares (GLS) model that accounts for gene–gene correlations resulting from 
the relationship between LD and sharing of biological functionality (Fig. 1B, Methods). 
This results in a z-score that represents the significance of the association of a gene, 
pathway or tissue
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Identification of key genes using gene co-expression

To identify key genes, we searched for genes that are co-regulated with the genes 
within a given trait’s GWAS loci. We used a gene expression database containing 31,499 
tissue and cell-line RNA-seq samples 24 to calculate gene co-regulation (a measure of 
the similarity of expression) for each pair of protein-coding genes (Fig. 1, Methods). 
Co-regulation is defined as the correlation between standardized eigenvector coeffi-
cients derived from the expression data (Fig. 1B). Since each component is given equal 
weight, co-regulation is less sensitive to the major tissue effects that can confound 
co-expression correlations calculated using expression data from a set of heteroge-
neous tissue samples. To ensure that no bias was introduced by GWAS loci located in 
highly co-regulated gene clusters, co-regulation relationships between genes within 
250kb were removed to further compensate for these gene clusters resulting from 
genomic organisation. We then associated the gene z-scores to gene co-regulation 
using a GLS model. We use permutations to determine the significance of the associ-
ation. The resulting association z-score reflects the overall connectivity of that gene 
to the GWAS genes in the network (Fig. 1B, Methods). We call this z-score the ‘key 
gene score’ throughout the manuscript, and we call the genes that pass Bonferroni 
significance and have a positive association ‘key genes’. Besides detecting key genes, 
Downstreamer is also able to identify pathway and tissue enrichments for GWAS traits, 
using reconstituted gene sets that provide increased statistical power to identify signif-
icant pathway enrichment (Note S1, Note S2). Pathway and tissue enrichments results 
yielded plausible results consistent with previous findings, indicating that correction 
for the average GWAS signal is a useful addition.

In total, we identified 3,648 key genes over the 44 tested traits, with most key genes 
arising from GWASs for white blood cell composition and other haematological factors 
(Fig. 2A). The number of samples and independent loci for a GWAS is positively 
correlated to the number of detected key genes (Pearson R: 0.38 and 0.33, p-values: 
1×10-2 and 2.8×10-2, respectively; Suppl. Fig. 4), which is to be expected as larger 
GWASs typically contain more signal. To determine how similar the key gene predic-
tions are, we correlated the key gene scores of the 44 different traits to each other 
and observed that traits of the same class cluster together (Fig. 2B). For example, 
the immune diseases (inflammatory bowel disease (IBD), coeliac disease (CeD), type 
1 diabetes (T1D), rheumatoid arthritis (RA), asthma and multiple sclerosis (MS)) 
clustered together, neighboured by traits representing white blood cell composition. 
Other distinct clusters were found for psychological traits (educational attainment, 
schizophrenia, major depressive disorder, body mass index (BMI)) and cardiovascular 
traits (pulse pressure, diastolic and systolic blood pressure, coronary artery disease), 
further showing that the gene regulatory networks downstream of GWAS signals are 
partially shared between related traits. To some extent, this sharing is expected, given 
known co-morbidities between, for example, CeD and T1D 25 and the widespread 
genetic correlations of related complex traits 26.

Left: Fig. 1 A) Downstreamer works on the idea that many genes identified through GWAS jointly affect 
a set of key genes that strongly impact disease development. B) Schematic overview of Downstream-
er methodology. C) The 31,499 RNA-seq samples used for the study visualized using Uniform Manifold 
Approximation and Projection (UMAP). The zoom-in on the right shows a detailed view of the various 
primary tissues in the dataset.
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On average, 82% of predicted key genes are located outside GWAS loci (≥ 250kb from 
the lead variant) (Fig. 2C). This indicates that the key genes may be under trans regula-
tion by the genes within the GWAS loci, rather than being impacted by a GWAS variants 
directly in cis, as is the case for most genes in GWAS loci. The other 18% of key genes 
are located within GWAS loci, suggesting that there is both a cis effect by a genetic 
variant that directly perturbs the function of these genes and a trans effect where the 
other GWAS loci modulate these genes. 

Of note, out of the 3,648 key genes detected, 2,036 (55%) were detected in multiple 
GWAS traits. However, this number is largely driven by the genes we detected for 
highly correlated traits such as blood cell composition (Fig. 2A, Suppl. Fig. 5). To 
better determine if key genes are trait-specific or shared among different diseases, 
we assigned each of the 44 traits to 10 broader classes such as auto-immune disease 
or blood cell composition. We then observed that 1,032 (28%) of the key genes are 
shared between at least two different classes (Suppl. Fig. 5A). This is largely driven by 
the overlapping key genes of blood cell composition and auto-immune disease, which 
account for 413 of the 1,032 overlapping key genes.

Below we highlight key genes for a few traits. For prostate cancer, we prioritized 14 key 
genes, 10 of these are outside the GWAS loci (Fig. 2D). The most notable are KLK3, 
which encodes for PSA (prostate-specific antigen), the marker that is used to screen 
for prostate cancer 27, and KLK2, which is known to activate KLK3 28. Additionally, many 
other key genes we identified have either been implicated in prostate cancer 29–32 
(TMC5, MLPH, OVOL2 and CHD1) or in other types of cancer (TFAP2C, BAIAP2L1 and 
PLEKHN1)33–35.

The GWAS for GFR, a measurement of kidney function, revealed 32 key genes (Fig. 
2E), of which 6 genes are solute carriers (a group of membrane transporters). Two of 
these, SLC22A12 and SLC17A1, are known to be urate transporters, fitting the known 
relationship between urate levels and GFR 36. Other notable GFR key genes include four 
glucuronosyltransferases (UGT1A9, UGT2B7, UGT2A3 and UGT1A6) that are important 
in drug metabolism and clearance of drugs by the kidneys 37–39 and four genes (UMOD, 
SLC22A12, SLC36A2 and NPHS2) known to cause rare forms of kidney disease 40. 

The auto-immune diseases shared several key genes, such as IL-2RA, ICOS and CD48, 
indicating an adaptive immune signature. Recently, a large-scale CRISPR assay assessing 
the regulators of IL-2, IL-2RA and CTLA4 systematically knocked down thousands of 
immune genes in primary CD4+ T cells in order to assess how these genes are co-regu-
lated 21. The genes regulating IL-2RA formed a highly inter-connected network, with the 
members of this network being significantly enriched for harbouring GWAS signals for 
MS. We prioritize IL-2RA as one of the most significant key genes for MS, but IL-2RA is 

Right Fig. 2 A) Number of key genes detected for each GWAS tested. B) Pearson correlations between 
the gene z-scores after correction for the mean signal (lower triangle) and the key gene scores (upper 
triangle). Correlations were calculated using all protein-coding genes (including non-significant ones). C) 
Boxplots showing key gene scores in relation to the independent significant top SNPs from the GWAS. D) 
The gene regulatory network for prostate cancer. The network shows how prostate cancer GWAS genes 
and key genes are interconnected. Grey nodes represent GWAS genes. Red nodes indicate key genes. A 
key gene may also be located in a GWAS locus. Only positive co-regulation relationships with a z-score >4 
are drawn as an edge in the network. E) As D, but showing the network for the GWAS and key genes for 
glomerular filtration rate. F) As D, but showing the network for the GWAS and key genes for inflammatory 
bowel disease.
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also a key gene for IBD, asthma, CeD, RA and white blood cells, consistent with the role 
of T cells in these diseases. For IBD, low-dose IL-2 has been shown to alleviate symptoms 
of DSS-induced colitis in mice, highlighting this pathway as a potentially viable thera-
peutic target 41. Additionally, a duplication found in the IL-2RA locus, causing excessive 
IL-2 signalling, may predispose carriers to early-onset colitis 42.

Among the key genes identified for IBD (Fig. 2F), there are several known drug targets. 
Some targets were already identified through GWAS (e.g. TNF, JAK2 and PRKCB). 
Others are located outside the GWAS loci, including ITGB7, which is one of the targets of 
Vedolizumab 43; JAK3, which is targeted by JAK inhibitors 44 and S1PR4 which is targeted 
by Amiselimod 45. Additionally, RGS1 has been proposed to be a druggable target that 
protects against colitis when downregulated 46–48. While RGS1 has been associated to 
CeD 49 and MS 50, its loci were not identified by the IBD GWAS.

Similarly, for schizophrenia, we identify key genes within GWAS loci that are targeted 
by schizophrenia drugs (RM3, GRIA1 and GRIN2A), as well as key genes located outside 
of the GWAS loci that are established drug targets or being tested as drug targets. 
These include HTR1A, which is target of aripiprazole 51; HTR5A and HTR1E, which are 
both targeted by amisulpride 52 and GRIA2 and GRIA3, which are both targets of topira-
mate 53.

Key genes can be depleted or enriched for cis-eQTL effects

It has been observed in blood that genes without a detectable cis-eQTL effect are more 
intolerant to loss-of-function mutations 7. This is possibly explained by more extensive 
buffering of regulatory effects on these important genes 54. This has implications for 
the use of cis-eQTLs to identify disease-relevant genes. Here, we assessed whether key 
genes have fewer cis-eQTL effects than expected by chance. We did not observe consis-
tent depletion of cis-eQTL. When testing 28 traits for which Downstreamer predicted 
at least 10 key genes, using blood-based cis-eQTLs from the eQTLgen consortium (Fig. 
3A), we found Bonferroni significant enrichments for five traits (IBD and four different 
white blood cell count measurements, ORs: 2.36 – 2.93, p-values: 1.31×10-3 – 2.45×10-

7). Two traits were significantly depleted for blood cis-eQTLs: C-reactive protein levels 
(OR: 0.19, p-value: 4.68×10-4) and BMI (OR: 0.47, p-value: 1.19×10-3) (Fig. 3A). When 
using brain-based cis-QTLs from the MetaBrain project 55, we found three traits for 
which the key genes are significantly depleted for being cis-eQTLs: educational attain-
ment (OR: 0.69, p-value 7.40×10-7), BMI (OR: 0.63, p-value 1.17×10-7), and schizophre-
nia (OR: 0.61, p-value 4.54×10-8) (Fig. 3B), and observed no significant enrichment. 

Overlap between key genes and trans regulatory targets

To investigate if the key genes result from trans regulation originating in the GWAS 
loci, we assessed if there was a correlation between the key gene scores and trans-

Right: Fig. 3 A) Enrichment of cis-eQTL genes and key genes. Cis eQTL genes are genes that have a signif-
icant cis eQTL effect in eQTLgen. * Indicates Bonferroni-adjusted p-values < 5x10-2 corrected for 28 tests. 
B) As A, but using MetaBrain cis eQTLs. C) Pearson correlation coefficients between key gene scores and 
the sum chi square statistics (see Methods) of the trans eQTL effects from significant independent GWAS 
SNPs. * Indicates Bonferroni-adjusted p-values < 5x10-2 corrected for 44 tests. D) Key gene scores for 
genes found to be in eQTS in the eQTLgen consortium for CeD, IBD and asthma. Nominal p-values of a 
t-test between the eQTS and non-eQTS groups are indicated. * Indicates Bonferroni-adjusted p-values < 
5x10-2 corrected for 11 tests. 
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eQTL effects from the eQTLgen consortium 7. To do so, for each gene, we summed the 
squared z-scores of trans-eQTL effects from the independent top hits for each GWAS. 
This results in a chi-square score for each gene that depicts to what extent the top GWAS 
variants of a trait affect the expression of those genes. We then correlated these scores 
with key gene scores. We found a significant association between the Downstreamer 
key gene scores and chi-square statistics of the eQTL effects for 24 of the 44 traits 
(Bonferroni-adjusted P≤0.05, Fig. 3C). Not surprisingly, the strongest associations 
were for the GWASs representing blood cell traits and auto-immune diseases. Inter-
estingly, three non-blood traits – height, BMI and GFR – displayed significant negative 
correlations, which suggests the unsuitability of blood trans-eQTLs for interpreting 
non-blood traits, likely due to low expression of the relevant genes in blood 7.

Since trans-eQTL effects are typically small and current datasets are only powered to 
detect a fraction of these effects 7, the eQTLGen consortium correlated the polygenic 
scores for a diverse set of traits to gene expression levels. The genes with significant-
ly lower or higher expression depending on the polygenic scores of the individuals 
(so-called eQTS genes) were prioritized as relevant for the trait. We observed that 
eQTS genes had higher key gene scores for three traits (t-test p-values, IBD: 1.8×10-3, 
CeD: 8.3×10-5 and asthma: 8.5×10-3), suggesting that key genes are more likely to be 
influenced by converging trans-eQTL effects (Fig. 3D).

We identified two genes that were both key genes and eQTS genes for asthma: RELB 
and CST7. RELB is a member of the NF-κB family of transcription factors that activate 
the non-canonical NF-κB pathway 56 and has been linked defects in T and B cell matura-
tion, leading to combined immunodeficiency and auto-immune responses 57. CST7 has 
been described as a critical factor in maintaining eosinophile function 58, and eosino-
philes are known to be one of the key cell types in asthma 59.

Key genes tend to be highly expressed in relevant tissues and cell types

As GWASs in the same class tended to show enrichment in the same cell types (Data 
S1, Suppl. Fig. 7) and shared key genes, we next tested if key genes were highly 
expressed in the cell types relevant for the corresponding trait. To determine the tissue 
specificity of each gene for a given tissue, we calculated a statistic for how highly a 
gene is expressed in that tissue by subtracting the mean expression of the samples of 
that tissue from the mean of all other samples in our dataset. This revealed significant 
association between the key gene scores and the expression level of genes in seemingly 
relevant tissues (Fig. 4, Suppl. Fig. 8-10), highlighting that the key genes tend to be 
highly expressed in the cell types where the GWAS is most enriched.

For example, several key genes for prostate cancer, such as KLK3 (coding for the 
prostate-specific antigen), are highly expressed in prostate (Fig. 4). However, we also 
identified key genes for prostate cancer, such as GPRS158, that showed average expres-
sion in prostate but were much more highly expressed in other tissues such as muscle. 
Additionally, we also observed genes that were highly expressed in the prostate that 
were not key genes, such as NKX3-1. We saw similar examples for GFR and IBD (Suppl. 
Fig. 9, Suppl. Fig. 10). This indicates that the key gene prioritizations are in all likeli-
hood not purely driven by tissue specific expression.



61

C
ha

pt
er

3

−3

0

3

5 10 150

Prostate cancer key genes
Other genes

GPR157

KLK3

NKX3-1

Gene �ssue specificity of prostate

Pr
os

ta
te

 c
an

ce
r k

ey
 g

en
e 

z-
sc

or
es

Pearson R: 0.2
p-value: 4.9×10-180

6

Brain

AML

Whole blood

LCL

H1−hESC

MCF−7

Heart

iPSC

HEK293

Monocytes

Muscle

HAP1

HeLa

Cord blood
LCL

PBMCs
Pancreas

HCT116

T−cells

K562

Liver

HepG2

H9−hESC

B−cells

MDA−MB−231

A549

MCF−10A

T−47D

Leukocytes

Placenta

DLBCL

Blood CD34+

Neutrophils Prostate

0 10 20

Expression of: KLK3

0 8 16

Expression of: NKX3−1

Brain

AML

Whole blood

LCL

H1−hESC

MCF−7

Heart

iPSC

HEK293

Monocytes

Muscle

HAP1

HeLa

Cord blood
LCL

PBMCs
Pancreas

HCT116

T−cells

K562

Liver

HepG2

H9−hESC

B−cells

MDA−MB−231

A549

MCF−10A

T−47D

Leukocytes

Placenta

DLBCL

Blood CD34+

Neutrophils Prostate

0 7.5 15

Expression of: GPR157

Brain

AML

Whole blood

LCL

H1−hESC

MCF−7

Heart

iPSC

HEK293

Monocytes

Muscle

HAP1

HeLa

Cord blood
LCL

PBMCs
Pancreas

HCT116

T−cells

K562

Liver

HepG2

H9−hESC

B−cells

MDA−MB−231

A549

MCF−10A

T−47D

Leukocytes

Placenta

DLBCL

Blood CD34+

Neutrophils Prostate

Fig. 4 Scatterplot showing the specificity of expression of a gene in prostate (x-axis) versus the key gene z-score 
of prostate cancer (y-axis). The Pearson correlation is 0.2 (p-value: 4.9×10-180). Specificity of expression was 
determined by taking the mean in prostate samples and subtracting the mean from all other annotated samples 
in the dataset. The three panels show the expression of the highlighted genes, revealing that some key genes are 
specifically expressed in prostate but there are also key genes that are not prostate-specific and, vice-versa, there 
are prostate-specific genes that are not predicted to be key genes. 
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Key genes are more often constrained

We next reasoned that if key genes are essential to fundamental biological processes, 
they would be more likely to be more evolutionarily constrained. We therefore 
compared the key gene scores to the MiS and LoF z-scores from gnomAD 60. These 
z-scores describe the tolerance level of a gene to MiS or LoF variants. The higher the 
score, the less tolerant the gene is to these types of variants. We observed significant 
association between the key gene scores and the MiS (Pearson R: 0.12, p-value: 3.7×10-

57) and LoF (Pearson R: 0.13, p-value: 1.4×10-7) z-scores (Suppl. Fig. 11). Compared to 
the key genes, genes that map within GWAS loci had a lower LoF association (Pearson 
R: 0.07, p-value: 1.2×10-05), but similar association with MiS (Pearson R: 0.12, p-value: 
1.3×10-12). Next, we evaluated if this association was driven by genes that have more 
connections in the gene network (i.e. whether a gene is a ‘hub’ gene or not), as we 
observed that the number of connections a gene has in the network is associated to the 
key gene score (Suppl. Fig. 13). After correcting for the number of connections a gene 
has, the associations for MiS and LoF remained, but were reduced (Pearson R: 0.07, 
0.08, p-value 6.31×10-21 and 3.9×10-24, respectively). Together, these results suggest 
that key genes tend to be evolutionarily constrained and are especially intolerant to LoF 
variants compared to the PASCAL gene p-values.

Key genes are enriched for Mendelian genes for related phenotypes

Genes in GWAS loci are known to be enriched for causing Mendelian diseases 3. We 
observe that these enrichments of Mendelian disease genes are even stronger for the 
key genes that we prioritize. For example, we identified 398 Bonferroni-significant key 
genes for height and 90 (22.6%) of those are Mendelian disease genes causing “Abnor-
mality of the skeletal system” (p-value: 5.18×10-9, OR: 2.13, Data S4). This enrichment 
is stronger than for genes in the GWAS loci, where 319 of the 1,951 (16.4%) genes are 
annotated to cause “Abnormality of the skeletal system” (p-value: 7.86×10-9, OR: 1.47, 
Data S2). Even when only considering the closest gene near the lead height GWAS hits, 
the enrichment of key-genes remains stronger (p-value: 7.02×10-12, OR: 1.85, Data S3)

The most significant enrichment for height key genes is for “Abnormal lower limb 
bone morphology”: 43 key genes are annotated to this HPO term (p-value: 6.86×10-

15, OR: 4.71). When also considering phenotypes based on mouse orthologs, we found 
78 that are associated to growth and 128 that are pre- or post-natal lethal. In total, 
we can hereby explain 171 of the 398 (43%) associated height genes. These key genes 
are enriched for various pathways (Fig. 5A) including ‘Collagen fibril organisation’, 
‘Embryonic digit morphogenesis’ and ‘Extracellular matrix organisation’.

Among the Bonferroni-significant key genes for height are 9 of the 21 known Ehlers-Dan-
los genes (Fig. 5A). When using a less stringent FDR of 5%, we predict 17 out of the 21 
Ehlers-Danlos genes to be key genes for height. Ehlers-Danlos syndromes are disorders 
of the connective tissues that often result in skeletal malformities 61. These syndromes 
are caused by defects in, or related to, the collagen formation needed for the extracel-
lular matrix. This is in line with the pathway enrichments of the height key genes and 
earlier findings 62. 
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Three genes with a Bonferroni significant gene p-value for IBD (SKIV2L, NOD2, RTEL1) 
overlapped with the 36 HPO-annotated colitis genes (OR: 4.87, p-value: 2.8×10-2). The 
enrichment for colitis genes improved when assessing the key genes, which increased 
the overlap to six genes (IL10RA, RASGRP1, NCF4, TNFAIP3, FASLG, ZAP70; OR: 11.46, 
p-value: 3.3×10-5). IL10RA, RASGRP1, NCF4 and ZAP70 were all located further than 
250kb from an independent GWAS hit in the GWAS used, meaning that these genes 
would not have been identified by overlapping IBD GWAS loci with known Mendelian 
genes. Other phenotypes that were significantly enriched among the key genes for IBD 
included those related to recurrent (fungal) infections and various phenotypes relating 
to immune function. Enriched mouse phenotypes included many related to T and B cell 
function and abundance (Data S1). 

We matched each of the 44 GWAS traits to a best-fitting HPO term based on the pheno-
typic descriptions (Suppl. Tab. 3). We observed that 22% of the identified key genes 
are linked to rare diseases that cause related phenotypes (Fig. 6A, Suppl. Tab. 4). We 
found that the key genes for 18 of the 44 traits are significantly enriched (adjusted for 
44 tests) for related rare disease genes (Fig. 6B; p-values: 2.98×10-4 to 4.91×10-29, 
OR: 1.79 to 71.83). Another eight traits showed nominally significant overlap between 
key genes and related rare disease genes. For the 18 traits without significant overlap, 
we found between 0 and 20 key genes, indicating that our power for these traits was 
limited (Fig. 6D). The only exception to this was the GWAS for c-reactive protein levels, 
for which we found 148 key genes but only 6 genes were linked to its HPO term. Despite 
the limited power for these 18 traits, 9 traits had significantly larger key gene scores for 
the HPO-associated genes (U-test p-values: 8.73×10-12 to 8.28×10-4), indicating that 
the key gene scores still have some predictive power for detecting rare disease genes 
(Fig. 6C). 
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Fig. 5 A) 43% of height key genes are known to result in growth abnormalities in either humans or mice, indicating 
that these key genes are important genes for height. B) The height key genes are enriched with different, only partly 
overlapping, pathways, indicating that the key genes are part of multiple biological processes. C) Nine of the height 
key genes are known to cause Ehlers-Danlos syndromes, which involve abnormalities of the skeletal system. Most of 
these are annotated to the GO pathways for “Extracellular matrix organization” and “Collagen fibril organization”. 
It may be that the key genes that we now link to height and that are part of the collagen or extracellular matrix 
pathways also contribute to Ehlers-Danlos syndromes. D) The Ehlers-Danlos genes are co-expressed with many 
height GWAS loci genes.
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Fig. 6 A) Overview of the overlap between key genes, the genes for the 44 HPO terms we matched to their respec-
tive GWAS and the Bonferroni-significant genes identified by PASCAL. B) Comparison between the odds ratios of 
the HPO enrichment done using key genes and Bonferroni-significant GWAS genes identified by PASCAL. Each dot 
represents the HPO term matched to that GWAS. 95% confidence intervals of the odds ratios are represented. C) 
As in B but showing the AUC values calculated using the entire key gene z-score or GWAS gene p-value vector for 
all protein-coding genes. D) Association between the AUC values and the number of genome-wide significant hits 
for each GWAS.

0

2

4

6

0 2 4 6
log2(OR) HPO enrichment for GWAS genes

lo
g2

(O
R)

 H
PO

 e
nr

ic
hm

en
t f

or
 k

ey
 g

en
es

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
AUC HPO enrichment for GWAS genes

AU
C 

H
PO

 e
nr

ic
hm

en
t f

or
 k

ey
 g

en
es

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000
Number of independent genome wide significant hits

AU
C 

H
PO

 e
nr

ic
hm

en
t f

or
 k

ey
 g

en
es

Pearson R: 0.39
p−value: 9.1x10−3

A B

C D

GWAS genes
(pascal)

5570
HPO genes

2276

Key genes
2194

513

567
276

81



66

Discussion

In this work, we present Downstreamer, a method that integrates gene co-regula-
tion with GWAS summary statistics to prioritize genes central in the respective trait’s 
network. We applied Downstreamer to 44 GWAS studies and prioritized genes that are 
not directly implicated by GWAS, yet are good candidates based on pathway annota-
tion and their involvement in Mendelian diseases. Some of the genes showed evidence 
of being directly regulated by trans-acting genetic factors. The key genes are enriched 
for being evolutionarily constrained, indicating they more often have crucial biological 
functions. These findings suggest that the small effects of GWAS-associated variants 
ultimately converge on key disease genes.

We observed that the gene prioritization scores of related traits are often correlated 
(Fig. 2B). To some extent this is expected given the known shared genetic signature 
of, for instance, auto-immune disorders. It could also potentially indicate that the gene 
prioritizations are confounded by cell type–specific expression levels. Indeed, we found 
the genes prioritized for a trait to be more abundantly expressed in the samples that 
best match that trait (Fig. 4, Suppl. Fig. 8). However, this was not the sole driver of 
our key gene prioritization. We also found several examples of key genes that are not 
specifically expressed in the relevant tissues, as well as genes with very low key genes 
scores that show similar tissue-specific expression to the key genes. For instance, 
GPR157 is predicted to be a key gene for prostate cancer, but it is highly expressed in 
many tissues (Fig. 4, Suppl. Fig. 9, Suppl. Fig. 10). Additionally, high expression of key 
genes in the disease-relevant tissue is to be expected because rare disease genes are 
also highly expressed in the tissue relevant to those diseases 63. 

We recently also applied a pre-release version of Downstreamer to several neurode-
generative diseases, while using a comprehensive brain-specific gene co-regulation 
network of the MetaBrain project. This revealed that the signal of underrepresented 
cell types and tissues can be overshadowed by more abundant tissues in our expres-
sion data 55. This might be especially relevant for diseases in which uncommon or rare 
cell types are instrumental to disease pathophysiology, such as gluten-specific T cells 
in CeD 64. We therefore expect that key gene prioritizations can benefit from creating 
tissue- or even cell type–specific gene regulatory networks, should enough samples be 
available for the relevant tissue or cell type to accurately calculate co-expression. The 
future generation and inclusion of single-cell RNA-seq data should also be able to solve 
the issues regarding confounding by cell-type composition.

We observe that genes with cis-eQTL effects in blood are enriched for being key 
genes for blood traits. For instance, for IBD the key genes are more likely to be blood 
eQTLs than is expected by chance (Fig. 3A). A similar enrichment is seen at nominal 
significance levels for rheumatoid arthritis and asthma. Different results were found 
when using brain-derived cis-eQTLs. Using MetaBrain eQTLs, we found a depletion of 
cis-eQTL genes among the key genes of several brain related traits (Fig. 3B). This might 
indicate that genes that are important for the brain are more tightly controlled and are 
therefore not as easily affected by eQTL effects compared to important immune genes.

When comparing our prioritized genes to the results of a large blood-based trans-
eQTL and eQTS analysis, we found an overlap in identified genes (Fig. 3C). As expected, 
this primarily holds for traits manifesting in blood, such as immune disorders and blood 
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cell proportions. This confirms that a portion of the genes identified by Downstreamer 
are modulated by disease-associated variants in trans. We suspect four main causes 
for why there are key genes for which we cannot confirm trans regulation using blood-
based trans-eQTLs or eQTSs: 1) the gene is not expressed in blood or the regulation is 
not present in blood, 2) the effects of genetic variants that only act in rarer blood cell 
types that are diluted by the expression levels in the more common cell types 65, 3) 
some trait-associated eQTLs depend on specific environmental stimuli 66, which can 
hinder the ability of population cohort studies to identify the regulatory consequences 
of disease-associated variants, and 4) Downstreamer works by integrating the many 
small effects originating from many different loci. Individually these effects might be 
too weak to currently be detected as trans-eQTL effects. We therefore conclude that 
co-expression-based methods such as Downstreamer are complementary to existing 
studies that link disease-associated variants to gene profiles.

One assumption we make when calculating the gene p-values is that the genes within 
25kb of a GWAS signal are affected by the GWAS variants, but this might not the case 
for all genes. However, recent work has suggested that except for integrating epigen-
etic and HiC contact data, the next best predictor of causality is the closest gene to the 
top of the GWAS signal and this approach outperforms eQTL-based approaches 67. We 
therefore decided not to integrate any prior eQTL information when calculating gene 
p-values, as this would often lead to incorrect prioritizations. In addition, the genes 
affected by GWAS variants are also likely to be tissue-specific, further complicating the 
prioritizations, and we would need extensive prior information to select the correct 
eQTLs or epigenetic information. This presents an area where major improvements 
could be made in future, when more accurate and systematic predictions can be made 
about which genes are regulated by GWAS variants in cis.

Our findings are in line with the infinitesimal model 68 that postulates that a quanti-
tative trait or complex genetic disease can result from an infinite number of variants, 
each exerting an infinitely small effect size. An extension of the infinitesimal model is 
the omnigenic model 17, which predicts that all genes that are expressed in the relevant 
tissue or cell type will have a non-zero effect on disease outcome. The omnigenic 
model also postulates the existence of core genes that are pivotal in the development 
of a disease or trait. These core genes are expected to be enriched for genes that are 
involved in rare Mendelian diseases. The fact that key genes tend to be highly expressed 
in the relevant tissues for a trait, together with the enrichments of rare disease genes 
among the key genes, fits the regulatory pattern hypothesized in the omnigenic model. 
Hence, (some proportion of) the key genes we predict using Downstreamer could be 
the core genes described in the omnigenic model.

There is an important implication of the enrichment of key genes among known 
Mendelian disease genes for rare disease diagnostics. On average, a genetic cause is 
currently identified for only 30% of the patients with a suspected rare disease 69. One 
of the reasons for this low diagnostic yield is that if a rare variant is found in a gene with 
an unknown function, it is difficult to determine if this variant could be causative for a 
patient’s phenotype. We expect that in the future approaches like ours could be used 
to leverage the key genes of common diseases and traits to prioritize candidate rare 
disease genes in a manner similar to what we did previously using GADO 24.
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In summary, we present Downstreamer, a method that integrates multi-tissue gene 
regulatory networks with GWAS summary statistics to prioritize key genes central in 
the gene network. These key genes were enriched for Mendelian variants that cause 
related phenotypes, highlighting that GWAS signals partially converge on Mendelian 
disease genes. While gaps remain in our understanding of the trans regulatory architec-
ture of GWAS traits and diseases, assessing the genes most central in their respective 
regulatory network presents a promising way forward for interpreting both complex 
and rare disease genetics. 
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Methods

GWAS summary statistics

We downloaded the publicly available summary statistics from either the GWAS 
catalogue 70 or supplementary data files. A full list of the summary statistics used is 
available as Suppl. Tab. 1. Downstreamer requires rs identifiers (rsId) of the variants 
as well as the p-values. These were extracted from the summary statistic files, and any 
duplicate variants or variants without a rsId were removed. Where needed, summary 
statistics were lifted to build 37 and the rsIds matched on position and allele to 1000 
Genomes phase 3 EUR for all variants with a minor allele frequency (MAF) > 0.05 71. 

Pathway databases

We used the following pathway and gene-set databases: Reactome 72, KEGG 73 and GO 
74 (downloaded July 18, 2020), HPO 75 (filtered version as in 76) and MGI (downloaded 
October 20, 2020) 77. 

For the pathway enrichments below in step 2.2, we first expanded the known pathway 
annotations using the pathway predictions algorithm described in 76. We expanded 
the pathway annotations with all genes with a Bonferroni-significant prediction of a 
pathway. Using the DEPICT algorithm, we have already shown that using predicted 
pathway annotations improves pathway enrichments 8. Therefore, we used these 
expanded pathways when associating pathways to traits using Downstreamer. 

Overview of Downstreamer methodology

In short, Downstreamer associates a gene-level prioritization score (GWAS gene 
z-scores) to a gene–gene co-regulation matrix to find genes that have many connec-
tions (at the expression level) to genes inside GWAS loci (core genes). In addition, 
Downstreamer can identify pathway enrichments by switching the co-regulation matrix 
for pathway annotations. Downstreamer implements a strategy that can perform 
these associations while accounting for LD structure and chromosomal organization. 
Downstreamer operates in two steps. In the first step, the GWAS gene z-scores are 
calculated for the GWAS trait and a null distribution. In the second step, the GWAS 
gene z-scores are associated with either the co-regulation matrix or the pathway 
annotations. Details of these steps are outlined in the sections below. 

Downstreamer step 1.1. Calculation of GWAS gene z-scores

The first step in Downstreamer is to convert GWAS summary statistics from p-values 
per variant to an aggregate p-value per gene while accounting for local LD structure 
(1000 Genomes phase 3 EUR). This p-value is then converted to a gene z-score. This 
aggregate gene-level z-score represents the GWAS signal potentially attributable to 
that gene. 

This was done as follows. First, we applied genomic control to correct for inflation in 
the GWAS signal. We then integrated the procedure from the PASCAL method into 
Downstreamer so that we can aggregate variant p-values into a gene p-value while 
accounting for the LD structure 9. We aggregated all variants within a 25kb window 
around the start and end of a gene using the non-Finnish European samples of the 
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1000 Genomes (1000G) project, Phase 3 to calculate LD 71. We calculated GWAS gene 
p-values for all 20,327 protein-coding genes (Ensembl release v75). 

Downstreamer step 1.2. Null GWAS to account for chromosomal organization of genes 
and empirical p-value calculations.

To account for the longer-range effects of haplotype structure, which result in genes 
having a similar GWAS gene z-score, we use a GLS regression model for all regres-
sions done in Downstreamer. The GLS model takes a correlation matrix that models this 
gene–gene correlation. 

To calculate this correlation matrix, we first simulated 10,000 random phenotypes 
by drawing phenotypes from a normal distribution and then associating them to the 
genotypes of the 1000G Phase 3 non-Finnish European samples. Here, we only used the 
overlapping variants between the real traits and the permuted GWASs to avoid biases 
introduced by genotyping platforms or imputation. We then calculated the GWAS gene 
z-scores for each of the 10,000 simulated GWAS signals, as described above. Next, we 
calculated the Pearson correlations between the GWAS gene z-scores. As simulated 
GWAS signals are random and independent of each other, any remaining correlation 
between GWAS gene z-scores reflects the underlying LD patterns and chromosomal 
organization of genes. 

We simulated an additional 10,000 GWASs as described above to empirically determine 
enrichment p-values. Finally, we used an additional 100 simulations to estimate the false 
discovery rate (FDR) of Downstreamer associations.

Downstreamer step 1.3. Correction for additional variables and mean gene p-value 
calculation

To facilitate the correction of additional parameters, variables can be provided which 
are used to correct the GWAS gene p-values before fitting the GLS (step 2.2). These are 
fit using a (multivariate) OLS model of which the residuals are taken and used as input 
for the subsequent steps. We used this option to additionally correct for gene length as 
well as the mean gene p-value over the 44 traits. The mean gene p-value was calculated 
by first calculating the mean of the traits in each of the 10 classes of GWAS traits for 
each gene. Then, for each gene, the mean over these 10 means was calculated in order 
to avoid having the overrepresented classes (blood cell composition) overshadow the 
calculation of the means. 

Downstreamer step 2.1. Pre-processing GWAS gene z-scores and pruning highly correlat-
ed genes

For each GWAS, both real and simulated, we force-normalized the GWAS z-scores into 
a normal distribution to ensure that outliers will not have disproportionate weights. 
Due to limitations in the PASCAL methodology that result in ties at a minimum signifi-
cance level of 1x10-12 for highly significant genes, we use the minimum SNP p-value from 
the GWAS to identify the most significant gene and resolve the tie. We then use the 
linear model (step 1.3) to correct for gene length, as longer genes will typically harbour 
more SNPs.
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Sometimes, two (or more) genes will be so close to one another that their GWAS gene 
z-scores are highly correlated, violating the assumptions of the linear model. Thus, genes 
with a Pearson correlation r ≥ 0.8 in the 10,000 GWAS permutations were collapsed 
into ‘meta-genes’ and treated as one gene. Meta-gene z-scores were averaged across 
the input z-scores. Lastly, the GWAS z-scores of the meta genes were scaled (mean = 
0, standard deviation = 1).

Downstreamer step 2.2. GLS to calculate key gene scores and pathway enrichments

We used a GLS regression to associate the GWAS gene z-scores with the gene co-reg-
ulation z-scores or with the expanded pathway annotations. These two analyses result 
in the key gene prioritizations and pathway enrichments, respectively. We used the 
gene–gene correlation matrix derived from the 10,000 permutations as a measure of 
the conditional covariance of the error term (Ω) in the GLS to account for the relation-
ships between genes due to LD and proximity. The pseudo-inverse of Ω is used as a 
substitute for Ω-1

The formula of the GLS is as follows:

β=(XTΩ-1X)-1XTΩ-1y

Where β is the estimated effect size of the pathway, term or gene from the co-reg-
ulation matrix; Ω is the gene-gene correlation matrix; X is the design matrix of real 
GWAS z-scores and y is the vector of gene z-scores per pathway, term or gene from 
the co-regulation matrix. As we standardized the predictors, we did not include an 
intercept in the design matrix and X only contains one column with the real GWAS gene 
z-scores. We estimated the betas for the 10,000 random GWASs in the same way and 
subsequently used them to estimate the empirical p-value for β.

Downstreamer step 2.3. Pathway and gene set gene enrichments

To identify pathway and disease enrichments, we used the following databases: HPO, 
KEGG, Reactome, MGI and GO Biological Process, Cellular Component and Molecular 
Function. We have previously predicted how much each gene contributes to these 
gene sets, resulting in a z-score per pathway or term per gene 24. We then used Bonfer-
roni correction to determine if the gene should be added to the extended pathway 
membership.

Next, we collapsed genes into meta-genes, in parallel with the GWAS step, to ensure 
compatibility with the GWAS gene z-scores, following the same procedure as in the 
GWAS pre-processing. The pathway memberships for a meta-gene were calculated as 
the sum of the membership divided by the square root of the number of genes. So, a 
meta-gene containing five genes, of which two are in a pathway, would get a value of 2 / 
√5 = 0.89 for that pathway. Finally, the pathway memberships of the meta-genes were 
scaled and centred (mean = 0, standard deviation = 1). 

Downstreamer step 2.4: Co-regulation matrix

To calculate key gene scores, we used a previously generated co-regulation matrix 
based on a large multi-tissue gene network 24. In short, publicly available RNA-seq 



72

samples were downloaded from the European Nucleotide Archive (https://www.ebi.
ac.uk/ena). After quality control, 56,435 genes and 31,499 samples covering a wide 
range of human cell-types and tissues remained. We performed a principal component 
analysis on this dataset and selected the 165 principal components representing 50% 
of the variation that offered the best prediction of gene function 76. We then selected the 
protein-coding genes and centred and scaled the eigenvectors for these 165 compo-
nents (mean = 0, standard deviation = 1) such that each component was given equal 
weight. The first components mostly describe tissue differences 24, so this normaliza-
tion ensures that tissue-specific patterns do not disproportionately drive the co-reg-
ulation matrix. The co-regulation matrix is defined as the Pearson correlation between 
the genes from the scaled eigenvector matrix. The diagonal of the co-regulation matrix 
was set to zero to avoid correlation with itself having a disproportionate effect on the 
association to the GWAS gene z-scores. Finally, we converted the Pearson r to z-scores. 
To associate the co-regulation to the gene z-scores, the same meta-gene procedure 
was applied as outlined for the pathway enrichments.

Enrichment of key genes

Enrichments of key genes among HPO/MGI/GO terms and KEGG gene sets was done by 
Fisher’s exact test, taking all key genes at Bonferroni or FDR significance and comparing 
their overlap to all other genes. AUCs were calculated by dividing the Mann-Whitney U 
statistic of the key gene z-scores and gene set membership by the product of sample 
sizes. The gene-pathway/term definitions we used were those provided by the respec-
tive databases, thus they were not the extended versions used for the GWAS gene set 
enrichments. This is implemented in Downstreamer using –T PRIO_GENE_ENRICH.

Enrichment of average gene z-scores and association with LD and gene density

Enrichments of the top 500 average gene z-scores were done by first correcting the 
mean gene z-score vector (see step 1.3 for details on calculating this) for the extent 
of the LD around a gene as well as the gene density. To quantify the extent of the LD 
block, we took the mean of the LD scores of all SNPs in a 25kb window around the gene. 
Pre-computed European LD scores were downloaded from https://github.com/bulik/
ldsc. Gene density was calculated by counting the number of genes in a 500kb window 
around the start end of the gene. Both these factors were then fit in a linear model with 
the mean gene z-score as the outcome. The residuals were taken and ranked to arrive 
at the top 500 genes. We then carried out overrepresentation analysis using https://
toppgene.cchmc.org/enrichment.jsp with the default background set. 

Association with LoF and MiS intolerance

MiS and LoF intolerance z-scores were downloaded from the gnomAD consortium 
(https://gnomad.broadinstitute.org/downloads > pLoF Metrics by Gene TSV v2.1.1). As 
an overall measure of the “keyness” of a gene, we calculated the maximum key gene 
z-score observed over the 44 traits for each gene. We then associated this to the MiS 
and LoF z-scores from the gnomAD consortium by Pearson correlation. 

Enrichment of cis-eQTL and key genes

Enrichments of cis-eQTL and key genes were calculated by fisher exact test, taking all 
the genes tested in eQTLgen or MetaBrian respectively as the background set. A gene 
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was considered to be a cis-eQTL gene if it had a significant association in eQTLgen or 
MetaBrain analyses respectively.

Overlap with trans-eQTLs and eQTS genes

To investigate their overlap with the key genes identified by Downstreamer, we 
downloaded the trans-eQTL and eQTS results from the eQTLGen Consortium (www.
eqtlgen.org). For each GWAS, we selected all trans-eQTLs that emanate from indepen-
dent top SNPs (1000 Genomes phase 3 EUR, R2 0.2, 500kb window) and calculated the 
sum of trans-eQTL squared z-scores for each gene. We then log-transformed this and 
associated it to the key gene z-score for the GWAS using Pearson correlation. 

For the overlap with eQTS genes, we selected eQTSs for which we had overlapping 
GWAS traits. We then evaluated if the eQTS genes had a higher key gene z-score 
compared to all other genes using a Student’s t-test. 

Code and data availability

Software and scripts are available for download at: https://github.com/molgenis/
systemsgenetics/tree/master/Downstreamer

A manual for Downstreamer is available at: https://github.com/molgenis/systems-
genetics/wiki/Downstreamer

All RNA-seq data used in the main analysis are publicly available in the European Nucle-
otide Archive, for details please see 24. 
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Abstract

Background: Expression quantitative trait loci (eQTL) studies are used to interpret the 
function of disease-associated genetic risk factors. To date, most eQTL analyses have 
been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely 
to mask the cell type-context of the eQTL regulatory effects. Although this context can 
be investigated by generating transcriptional profiles from purified cell subpopula-
tions, current methods to do this are labor-intensive and expensive. We introduce a 
new method, Decon2, as a framework for estimating cell proportions using expression 
profiles from bulk blood samples (Decon-cell) followed by deconvolution of cell type 
eQTLs (Decon-eQTL).

Results: The estimated cell proportions from Decon-cell agree with experimen-
tal measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the 
proportions of 34 circulating cell types for 3194 samples from a population-based 
cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type inter-
action (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi eQTLs 
show excellent allelic directional concordance with eQTL (≥ 96–100%) and chromatin 
mark QTL (≥87–92%) studies that used either purified cell subpopulations or single-
cell RNA-seq, outperforming the conventional interaction effect.

Conclusions: Decon2 provides a method to detect cell type interaction effects from 
bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a given 
complex disease. Decon2 is available as an R package and Java application (https://
github.com/molgenis/systemsgenetics/tree/master/Decon2) and as a web tool (www.
molgenis.org/deconvolution).

Keywords

 eQTL, Deconvolution, Cell types, Immune cells 
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Background

For many of the genetic risk factors that have been associated to immune diseases 
by genome-wide association studies (GWAS), the molecular mechanism leading 
to disease remains unknown 1. Most of these genetic risk variants are located in the 
non-coding regions of the genome, implying that they play a role in gene regulation 
2, 3. Expression quantitative trait locus (eQTL) analysis provides a way to characterize 
the regulatory effect of these risk factors in humans, and many eQTL studies have now 
been carried out using bulk tissues, for example, whole blood 4, 5. However, bulk tissues 
comprise many different cell types, and gene regulation is known to vary across cell 
types 6–8. In recent years, efforts to describe eQTL effects in purified cell subpopula-
tions have been carried out in specific cell types 9. Unfortunately, the length and cost of 
the study protocols have limited these studies to small sample sizes and only a few cell 
types. Current developments on single cell (sc) RNASeq technologies have given rise 
to sc-eQTLs, an approach that, although promising, is still bound to a limited number 
of individuals, which thereby limits the number of detectable cell type interaction (CTi) 
eQTLs. Nevertheless, the ability to pinpoint the CT in which a risk factor exerts an eQTL 
effect could help us to understand its role in disease.

Statistical approaches to detect CT effects using tissue expression profiles have mainly 
been developed to evaluate gene by environment interaction (GxE) terms, for example 
to detect CT eQTLs for myeloid and lymphoid lineages using only whole blood gene 
expression and by evaluating the interaction between genotype and cell proportions 
for neutrophils and lymphocytes in whole blood 10. A second study linked eQTL genes to 
proxy genes through correlation; these proxy genes were then associated with intrinsic 
or extrinsic factors such as cell proportions or inflammation markers 11. However, these 
efforts focused on exploiting only one GxE term, or on indirectly linking the CT propor-
tions to given eQTL, rather than directly ascertaining the interaction between all the 
main cell proportions comprising the bulk tissue and genotype. Unfortunately, quanti-
fying cell proportions, in particular rare subpopulations (total abundance ≤3% in circu-
lating white blood cells), is expensive and time-consuming. Hence, quantifying immune 
cell proportions in large functional genomics cohorts is not common practice.

Here we present and validate Decon2, a computational and statistical framework 
that can (1) predict the proportions of known circulating immune cell subpopula-
tions (Decon-cell), and (2) combine these predicted proportions with whole blood 
gene expression and genotype information to assign bulk eQTL effects into CTi eQTLs 
(Decon-eQTL). Our two-step framework provides an improvement over previously 
published methods. Unlike earlier methods 12, Decon-cell does not rely on any prior 
information about transcriptome profiles from purified cell subpopulations. It only 
requires quantification of the cell proportions comprising the bulk tissue, in this case 
whole blood. Decon-cell identifies signature genes that correlate with cell propor-
tions in a bulk tissue. Secondly, Decon-eQTL is the first approach in which all major 
cell proportions (the major cell types for which the sum of proportions per sample is 
approximately 100%) of bulk blood tissue are incorporated into an eQTL model simul-
taneously. Decon-eQTL can then be used to systematically test for any significant inter-
action between each CT and genotype, while also controlling for the effect on expres-
sion of the other cell types. 
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We generated the Decon-cell predictive models using data from the 500FG cohort 13, 
where quantification of immune cell types was carried out using FACS 14 and RNA-Seq-
based bulk whole blood transcriptome profiles were available for 89 samples 15. By 
using a cross-validation approach, we were able to accurately predict 34 out of 73 cell 
subtypes using only whole blood gene expression. For validation, we applied Decon-
cell to three independent cohorts (Lifelines Deep 16, n = 627; Leiden Longevity cohort 
17, n = 660 and the Rotterdam Study 18, n = 773) for which both blood RNA-seq and 
measured cell proportion data are available (neutrophils, lymphocytes and CD14+ 
monocytes and granulocytes). Additionally, we benchmarked Decon-cell prediction 
performance against two other existing methods that quantify immune cell compo-
sition using gene expression profiles from whole blood on these three independent 
cohorts. After showing that we can accurately predict circulating immune cell propor-
tions, we applied Decon-cell to estimate cell proportions in 3194 individuals from the 
BIOS cohort 16, 19–21 for whom both whole blood RNA-seq and genotypes were available. 
The BIOS cohort is a valuable resource for functional genomics studies where extensive 
characterization of the genetic component on gene expression 11 and epigenetics 22 
have been performed. We integrated whole blood expression and genotype informa-
tion and predicted cell proportion with Decon-eQTL to deconvolute 16, 362 significant 
whole blood cis-eQTLs top effects into CT interacting eQTLs (CTi eQTLs). These decon-
voluted CTi eQTL results were comprehensively validated using transcriptome profiles 
from purified cell subpopulations 23, eQTLs and chromatin mark QTLs from purified cell 
types 9 and eQTLs from single-cell experiments 24. We also systematically compared 
the performance of Decon-eQTL against the most used method 10 that detect cell type 
eQTL effects using whole blood expression profiles. 
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Results

Decon-cell accurately predicts the proportions of known immune cell types

In order to assign the cell types from which an overall eQTL effect from a bulk tissue 
sample (e.g. whole blood) arise, we need three types of information: genotype data, 
tissue expression data and cell type proportions (Fig. 1). Here we propose a computa-
tional method that predicts the cell proportions of known immune cell types using gene 
signatures in whole blood expression data using a machine-learning approach. Decon-
cell employs the regularized regression method elastic net 26 to define sets of signature 
genes for each cell type. In other words, these signatures were selected as having the 
best prediction power for individual cell proportions.

There are 89 samples in the 500FG cohort with both whole blood RNA-seq and quanti-
fication of 73 immune cell subpopulations by FACS. This data was used to build the 
prediction models for estimating cell subpopulations by Decon-cell. First, we deter-
mined which of the 73 cell subpopulations could be reliably predicted by Decon-cell. A 
within-cohort cross-validation strategy was employed by randomly dividing 89 samples 
(Fig. 1) into training and test sets (70 and 30% of the samples, respectively). After 
generating a model using each training set, we applied the prediction models of each 
cell type to the samples in the test sets. We compared the predicted and measured 
cell proportion for each cell type using Spearman correlation coefficients to evaluate 
prediction performance. We repeated this process 100 times and then used the mean 
of the correlation coefficient in all 100 iterations to evaluate the prediction perfor-
mance. 

We were able to predict 34 out of 73 cell subpopulations using whole blood gene expres-
sion data at a threshold of mean R ≥ 0.5 across all 100 iterations (Fig. 2A, Suppl. Fig. 
1, Suppl. Tab. 1). The number of signature genes selected in our models for predicting 
cell proportions varied across the cell types, ranging from 2 to 217 signature genes 
(Suppl. Fig. 2A, Suppl. Tab. 1), and they were independent of the average abundance 
of these cell types in whole blood (R = 0.02, Spearman correlation coefficient, Suppl. 
Fig. 2A). In particular, cell types that are abundant in whole blood (granulocytes-neu-
trophils, CD4+ T cells and CD14+ monocytes) were predicted with high confidence 
(correlation between predicted and measured values, R ≥ 0.73). 

Remarkably, we were also able to predict a number of less abundant cell subpopulations, 
including NK cells, CD8+ T cells, non-NK T cells (CD3CD56-), CD4+ central memory, 
CD4+ effector memory T cells and regulatory T cells (Suppl. Fig. 2A), as determined 
by FACS. Cell types with a low prediction performance (R < 0.5) are those that have few 
signature genes with expression levels that correlate sufficiently (i.e. absolute R < 0.3) 
with the measured cell proportions in whole blood (Suppl. Fig. 2B-C). For each of the 
34 predictable cell types, we used Decon-cell to build models for predicting their cell 
counts using all 89 samples from the 500FG cohort. These models were applied to 3194 
samples in an independent cohort (BIOS cohort) to predict cell proportions of circulat-
ing immune cell types for the subsequent deconvolution of eQTL effects.
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Fig. 1 Workflow of application of Decon2 to predict cell counts followed by deconvolution of whole blood 
eQTLs. Using whole blood expression and FACS data of 500FG samples, Decon-cell predicts cell proportions with 
selected marker genes of circulating immune cell subpopulations. Validations of Decon-cell were carried out on 
three independent cohorts for which measurements of neutrophils/granulocytes, lymphocytes and monocytes 
CD14+ were available along with expression profiles of whole blood. Benchmarking of Decon-cell was performed 
against CIBERSORT 25 and xCell 12. Decon-cell was applied to an independent cohort (BIOS) to predict cell counts 
using whole blood RNA-seq. Decon-eQTL subsequently integrates genotype and tissue expression data together 
with predicted cell proportions for samples in BIOS to detect cell type eQTLs. We validated Decon-eQTL using 
multiple independent sources, including expression profiles of purified cell subpopulations, eQTLs and chromatin 
mark QTLs (cmQTLs) from purified neutrophils, monocytes CD14+ and CD4+ T cells 9, and single-cell eQTL results 
24. Benchmarking of Decon-eQTL was carried out for comparison with a previously reported methods that detected 
cell type–eQTL effects using whole blood expression data, i.e. the Westra et al. 10
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In addition to within-cohort validation, we tested our cell proportion models using 
three independent cohorts (LLDeep, n = 627; LLS, n = 660; RS, n = 773) in which cell 
type abundances were quantified using a Coulter counter for neutrophils (granulocytes 
for RS), lymphocytes and CD14+ monocytes (Fig. 2B, Suppl. Fig. 3A-B). In LLDeep, 
we were able to accurately predict these three cell types with Spearman correlation 
coefficients of R = 0.73, R = 0.89 and R = 0.73, respectively. For LLS and RS, the predic-
tion performance was similarly accurate for neutrophils and lymphocytes (R = 0.76 for 
neutrophils, R = 0.84 for lymphocytes), but less so for monocytes (R = 0.50 for CD14+ 
monocytes and proportions in LLS and R = 0.74 for granulocytes, R = 0.83 for lympho-
cytes and R = 0.28 for CD14+ monocytes in RS).

Next, in order to benchmark Decon-cell, we compared its prediction performance 
against two other existing tools that quantify the abundance of known immune cell types 
using bulk whole blood expression profiles: CIBERSORT 25 and xCell 12. We obtained the 
predicted proportions by CIBERSORT and enrichment scores of circulating immune 
cells by xCell for the samples in three different cohorts: LLDeep, LLS and RS (Suppl. 
Fig. 4A-B). For each cell type, Decon-cell outperforms CIBERSORT and xCell (Suppl. 
Fig. 3B). The scatterplots of predicted vs measured values (Suppl. Fig. 3A, Suppl. Fig. 
4A-B) further demonstrate that the better performance of Decon-cell is not due to cell 
proportion outliers.

Finally, we evaluated whether the signature genes showed CT expression in their 
relevant purified cell types using BLUEPRINT 23 RNA-seq data from the purified cell 
subpopulations. Here we focused on cell types with more than three samples measured, 
which included neutrophils, CD14+ monocytes, CD4+ T cells and B cells. The signature 
genes showed overall higher expression in their relevant cell subpopulations compared 
to other cell subpopulations. Interestingly, the signature genes were also able to cluster 
the samples of the relevant CT using unsupervised hierarchical clustering (Suppl. 
Fig. 5A-D). Together, our results demonstrate that the gene signatures identified by 
Decon-cell using only whole blood gene expression data are predictive for the propor-
tions of circulating immune cell subpopulations.

To facilitate the cell proportion prediction of new samples using whole blood RNAseq, 
we have made the Decon-cell prediction models and gene signatures available in an 
R package (Decon-cell) and as a web tool (www.molgenis.org/deconvolution). These 
two implementations allow users to pre-process their RNA-seq expression counts and 
estimate cell proportions using the pre-established models for 34 cell types in whole 
blood. In addition, the Decon-cell R package allows users to generate Decon-cell-like 
gene signatures to predict their own cell proportions, which requires the input of bulk 
expression profiles and cell proportions to generate new Decon-cell predictive models.

Decon-eQTL identifies which cell types contribute to the whole blood eQTL effect

As we know, eQTL analysis using whole blood bulk expression data fails to distinguish 
between a general eQTL present in all cell types and an effect mainly found in a subset of 
the cell types. We therefore propose a new approach, called Decon-eQTL, that assigns 
the overall bulk eQTL into CT effects. Using the cell proportions in whole blood, it is 
possible to formally test if the genetic effect is interacting with the cell proportions. 
More explicitly, we include both the genotype and all major CT proportions of interest in 
a linear model, and systematically test if there is a significant interaction effect between 
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Fig. 2 Prediction of cell proportions 
using whole blood transcriptome by 
Decon-cell. A) Distribution of predic-
tion performance (Spearman correla-
tion coefficient) of the 34 predictable 
cell types in 100 iterations of prediction 
within the 500FG cohort. B) Cross- 
cohort validation in an independent 
Lifelines-Deep cohort (n = 627): the 
measured and predicted cell propor-
tions for neutrophils (given by granu-
locytes in 500FG), lymphocytes and 
monocytes are compared
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genotype and each of the cell proportions in the variation of gene expression in whole 
blood. At the same time, the model used by Decon-eQTL controls for the effects of 
the remaining cell types on gene expression. In this way, whole blood expression data, 
genotypes and (predicted) cell proportions can be integrated to assign a CTi effect 
from a bulk eQTL (Fig. 1).

We applied Decon-eQTL to 3198 samples (BIOS cohort) with transcriptome levels 
(RNA-seq), genotype information and cell proportions predicted by Decon-cell. Whole 
blood cis-eQTL mapping yielded 16,362 whole blood eQTLs (false discovery rate (FDR) 
≤ 0.05). For each of these whole blood cis-eQTLs, we applied Decon-eQTL with a focus 
on 6 major cell subpopulations: granulocytes, CD14+ monocytes, CD4+ T cells, CD8+ 
T cells, B cells and NK cells. These cell types were selected because the sum of their 
relative percentages was close to 100% and none of these cell type pairs had an absolute 
correlation coefficient R ≥ 0.75. Decon-eQTL computationally assigned 4139 CTi eQTLs 
from these subpopulations, reflecting 3812 genes and 3650 SNPs. 25% of the whole 
blood eQTLs have a significant (FDR ≤ 0.05) CTi eQTL effect given DeconeQTL. The 
majority (31%) of the total CTi eQTL effects detected were found to be associated to 
granulocyte proportions, possibly because granulocytes comprise ~ 70% of circulating 
white blood cells (Fig. 3A). The majority (74%) of CTi eQTLs detected by our method 
were assigned to a single cell type (Suppl. Fig. 6A). Similarly, we find almost no sharing 
between cell types in single-cell eQTLs from 112 individuals. However, it should be 
noted that these eQTLs are likely not exclusively present for this particular cell type in 
biology, but that the statistical power given our sample size was sufficient to detect the 
interaction effects that we describe as CTi eQTL in this particular cell type. Decon-eQTL 
was only able to find a few cases of sharing of CTi eQTLs between cell types, likely due 
to a lack of power of the interaction model. An example of such a shared CTi eQTLs can 
be seen for the NOD2 gene, where Decon-eQTL detected a strong granulocyte-eQTL 
effect alongside a smaller opposite effect in CD14+ monocytes. This opposite effect 
has also been previously described in eQTL studies on purified CD14+ monocytes and 
neutrophils 8. These results demonstrate that the effects of cell proportions on gene 
expression should be taken into account when interpreting eQTLs derived from bulk 
tissues.

Decon-eQTL prioritizes genes to relevant cell types

CTi eQTL genes are expected to have higher expression levels in their relevant cell types, 
and their expression in whole blood should therefore be correlated with the propor-
tions of these relevant cell types. To test this, we evaluated if the expression levels of 
the CTi eQTL genes detected in the BIOS cohort were correlated with their relevant 
cell proportions, and compared this to the correlation with nonrelevant cell types. We 
calculated the Spearman correlation coefficients between the expression of the identi-
fied CTi eQTL genes and the measured cell proportions in the 500FG cohort (n = 89). 
We then compared the correlation coefficients we obtained here with those between 
expression and the remaining cell proportions. For each of the six cell subpopulations 
we evaluated in Decon-eQTL, their CTi eQTL genes had a significantly higher correla-
tion with their relevant cell subpopulation than with other cell types (t-test, p-value < 
0.05) (Fig. 3B). As such, this result shows a significant association between CTi eQTL 
genes and the proportion of their relevant CT in an independent cohort.
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Next, we evaluated whether the significant CTi eQTL genes were over-expressed 
in their relevant cell subpopulation compared to eQTL genes that were found to be 
nonsignificant CTi eQTLs for the same cell type. For this purpose, we made use of the 
purified neutrophil, CD14+ monocyte, CD4+ T cell and B cell RNA-seq data from the 
BLUEPRINT dataset. We include these cell types because they were the only ones with 
more than three samples measured. For each of the four cell types, we observed that the 
expression of CT eQTL genes detected by Decon-eQTL was significantly higher (t-test, 
p-value ≤0.05) than the expression of non-significant Decon-eQTL genes (Fig. 4A). We 
also observed that the deconvoluted eQTL genes from granulocytes showed a relatively 
wider range of variation than the CT eQTL genes from the other three subpopulations. 
We hypothesized that this could be explained by the fact that granulocytes comprise 
~ 70% of the cell composition in whole blood, thus giving us the power to detect eQTL 
for lowly expressed genes in granulocytes. This is partly supported by the observa-
tion that the variation of expression in whole blood of granulocyte CTi eQTL genes was 

Fig. 3 Deconvolution of whole blood eQTLs into CTi eQTLs. Decon-eQTL detects CTi eQTLs by integrat-
ing proportions of cell subpopulations (predicted by Decon-cell), gene expression and genotype infor-
mation. A) Number of deconvoluted CTi eQTLs in each cell type using whole blood RNA-seq data of 3189 
samples in BIOS cohort. B) Distribution of Spearman correlation coefficients between expression levels of 
CTi eQTL genes and cell counts for each cell subpopulation. The CTi eQTL genes show positive and statisti-
cally higher correlation (Spearman) with the relevant cell type proportions as compared to the rest (t-test 
pvalue < 0.05) in an independent cohort (500FG)
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Fig. 4 Validation of CTi eQTLs. A) The expression of CTi eQTL genes in purified cell subpopulations 
from BLUEPRINT 23 are significantly higher in the relevant cell subpopulation when compared to other 
available cell subtypes (green for granulocyte eQTL genes showing expression for purified neutrophils; 
orange for monocytes; purple for CD4+ T cells; pink for B cells). B) Genes differentially expressed 
(Adjusted p-value ≤0.5) between CD4+ T cells and NK cells are significantly enriched for CT eQTLs 
effects on CD4+ T cells (dots in purple, Fisher exact p=1.8x10-17) and NK Cells (dots in yellow, Fisher 
exact p=2.3x10-18), respectively. C) CTi-eQTLs (FDR ≤ 0.05) show significantly larger effect sizes in the 
purified cell eQTL data 9 compared to the rest of the whole blood eQTLs for which we do not detect a 
cell type effect, as shown for deconvoluted granulocyte eQTLs in neutrophil-derived eQTLs (green),-
monocytes (orange) and CD4+ T cells (purple). D) As C, but showing only the CTi-eQTLs on the X-axis. 
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significantly greater than for those CTi eQTL genes deconvoluted to the other five cell 
subpopulations (F-test, p-value ≤0.05, Suppl. Fig. 7).

Furthermore, by using publicly available transcriptome profiles (GSE78840 27) of 
purified NK cells and CD4+ T cells, we assessed if the differentially expressed genes 
across the two cell types were enriched for eGenes of deconvoluted CT eQTLs. Here we 
observed that the CD4+ differentially expressed genes (Adjusted p-value ≤0.05) were 
significantly enriched for CD4+ T cell eQTLs (Fisher exact p=1.8x10− 17), whereas NK 
cell differential genes (Adjusted p-value ≤0.05) were significantly enriched for NK cell 
eQTLs (Fisher exact p=2.3x10− 18) as shown in Fig. 4B.

In summary, we were able to show that the eQTL genes detected by Decon-eQTL are 
transcriptionally active in their relevant cell type because that is where they are more 
highly expressed.

CT eQTLs identified by Decon-eQTL in whole blood are replicated in purified cell eQTL 
datasets

To validate the CT eQTLs defined by Decon-eQTL, we utilized eQTLs identified from 
purified neutrophils, CD4+ T cells and CD14+ monocytes 9. We first compared the 
absolute effect sizes of eQTLs from purified cells that are also significantly deconvo-
luted CTi eQTLs to the effect sizes of eQTLs from purified cells that are also nonsig-
nificant deconvoluted CTi eQTLs for this cell type. For all three cell populations, effect 
sizes in our deconvoluted CTi eQTLs were significantly higher than the effect sizes of 
eQTLs without a significant CTi eQTL (Wilcoxon test, p-value ≤0.05, Fig. 4C). Next, we 
assessed the specificity of our deconvoluted CTi eQTLs by evaluating CTi eQTL effect 
sizes in non-relevant cell subpopulations. For example, we compared the effect sizes of 
deconvoluted granulocyte CTi eQTLs against those with non-significant deconvoluted 
granulocyte CTi eQTLs using the effect sizes of purified CD4+ T cell eQTLs. Notably, we 
observed no statistically significant differences using effect sizes from nonrelevant cell 
subpopulations (see off-diagonal comparisons in Suppl. Fig. 8), which further supports 
the biological relevance of our deconvoluted CTi eQTLs. However, when comparing 
the effect sizes in the purified eQTLs of only the CTi eQTLs that were significant across 
all three available cell subpopulations, we were not able to find significant differenc-
es (Fig. 4D). For example, the effect size of neutrophil CTi eQTLs is the same across 
neutrophils, monocytes CD14+ and CD4+ T cells.

To further demonstrate that the CTi eQTLs assigned by Decon-eQTL are biologically 
meaningful, we made use of the K27AC and K4ME1 epigenetic QTLs characterized in 
purified neutrophils, CD4+ T cells and monocytes CD14+ 9. In a similar fashion to the 
above comparison of effect sizes with purified eQTLs, we compared the absolute effect 
sizes from both K27AC and K4ME1 QTLs from eQTLs for which Decon-eQTL detects 
a significant CTi effect to the effect sizes of the other whole blood eQTLs. Here we 
observed that for corresponding cell types, e.g. evaluating granulocyte CT eQTLs in 
K27AC QTLs from purified neutrophils, the distribution of the absolute effect sizes is 
significantly higher for the chromatin mark QTLs (cmQTLs) than for non-significant 
CT eQTLs, which provides epigenetic evidence that our method is able to correctly 
assign cell type eQTL effects, as shown in the diagonal comparisons for both K27AC 
QTLS (Suppl. Fig. 9) and K4ME1 QTLs (Suppl. Fig. 10). Notably, for the non-relevant 
cell subpopulations, we observed that only one comparison (granulocytes vs. CD14+ 
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monocytes) shows statistically significant higher effect sizes for K27AC QTLs and 
K4ME1 QTLs. For the rest of the non-relevant comparisons (shown in the off-diagonal 
of both Suppl. Fig. 9 and Suppl. Fig. 10), there are no statistically significant differ-
ences. Comparing the eQTL effect sizes in purified KC27AC and K4ME1 QTLs of only the 
significant CTi eQTLs across all three available cell subpopulations shows that the effect 
sizes from the relevant cell type are significantly stronger for all pairings except those 
between granulocytes and CD14+ monocytes (Suppl. Fig. 11).

In addition to the comparison of effect sizes, we compared the allelic concordance 
between deconvoluted eQTLs and eQTLs from purified cell subtypes 9. For each 
available cell type (neutrophils, CD14+ monocytes, and CD4+ T cells), we evaluated 
whether the direction of the eQTL effect on deconvoluted CT eQTLs was the same as the 
one observed from purified cell subpopulations. The allelic concordance between the 
deconvoluted eQTLs and purified eQTLs was high across cell types: 99% for granulocyte 
eQTLs (compared to neutrophil eQTLs), 96% for CD14+ monocytes eQTLs and 99% for 
CD4+ T cells (Fig. 5A). These rates of allelic concordance are significantly higher for 
granulocyte and CD4+ T cell CTi eQTLs compared to those between whole blood eQTLs 
and eQTLs from purified cell subpopulations (Fig. 5B; Neutrophils, Fisher exact p-val-
ue=3.91x10-6; CD4+ T cells Fisher exact p-value=0.005), whereas the allelic concor-
dance for deconvoluted CD14+ monocyte eQTLs is the same as for whole blood eQTLs 
and purified CD14+ monocyte eQTLs (Fig. 5B). We also compared the allelic concor-
dance of deconvoluted CTi eQTLs of specific cell types against the eQTLs of non-rele-
vant purified subpopulations. Interestingly, the allelic concordance across non-relevant 
cell subtypes is consistently lower (off-diagonal Suppl. Fig. 12, Bonferroni-corrected 
Fisher exact p-value < 0.0001 for all comparisons). Higher allelic concordance across 
cell types was seen between deconvoluted granulocyte eQTLs and CD14+ monocyte 
eQTLs with a 95% allelic concordance, which shows that the direction of effect is often 
shared between related cell types.

Finally, we evaluated the allelic concordance rates for CTi eQTLs assigned by Decon-
eQTL and K27AC QTLs from purified cell subpopulations. Here we observed a 
consistently high allelic concordance rate: 92% for granulocyte eQTLs (in purified 
Neutrophils), 87% for CD14+ monocytes and 92% for CD4+ T cells (boxed diagonal 
comparisons in Suppl. Fig. 13). These concordance rates are significantly higher than 
the ones between the whole blood eQTLs and K27AC QTLs from purified cell subpopu-
lations (Suppl. Fig. 14) for neutrophils (Fisher exact test p-value=9.06x10− 14), CD14+ 
monocytes (Fisher exact test p-value=3.33x10− 4), CD4+ T cells (Fisher exact test 
p-value=8.64x10− 9). Moreover, we noticed a consistent decrease in allelic concordance 
rates when assessing the concordance of CT eQTLs in K27AC QTLs of non-relevant cell 
subpopulations (off-diagonal comparisons, Suppl. Fig. 13). Taken together, the results 
from allelic concordance rates between deconvoluted CTi eQTLs and eQTLs/K27AC 
QTLs from purified cell subpopulations add a further layer of evidence to support the 
biological relevance of deconvoluted CT eQTLs.
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CTi eQTLs identified by Decon-eQTL in whole blood show high allelic concordance with 
single-cell RNA-seq eQTLs

To replicate the deconvoluted CT eQTLs in the cell subtypes that were not available 
in Chen et al. 9 purified cell eQTLs, we utilized the recent single-cell RNA-seq eQTLs 
(sc-eQTLs) identified in CD14+ monocytes, NK cells, CD4+ T cells, CD8+ T cells and B 
cells 24, as well as new single cell eQTL data that was processed in the same way. In total, 
we used sc-eQTLs from 112 individuals. We selected all significant eQTLs for each of the 
cell types (non-classical and classical monocytes were combined) and compared them 
to the direction of the eQTL effect given by Decon-eQTL, hereby observing an allelic 
concordance of 96.42% (Fig. 6A).

Decon-QTL outperforms conventional interaction method

To our knowledge, our approach is the first to model the effect of multiple components 
of bulk blood RNA-seq simultaneously in an attempt to fully deconvolute gene expres-
sion levels into more precise cell type x genotype effects. Previous studies have used 
an interaction effect between genotype and cell proportions of one specific cell type 
to detect cell type eQTL effects using whole blood gene expression 10, 11, or used the 
correlation of the eQTL effect with cell type proxy genes 10, 11.

The Westra et al. method has often been used to detect cell type eQTL effects using 
bulk expression data and cell proportions 28–31. In brief, it focuses on the effect of the 
GxE interaction (where E represents cell proportions) to explain the variation in gene 
expression and only incorporates one cell type at a time. To properly compare Decon-
eQTL with the ‘Westra method’, we applied both methods to the BIOS cohort and 
detected CT eQTLs for the six cell subpopulations. Replication of CT eQTLs identified by 
the Westra method was done as described above for Decon-eQTL. Here we observed 
that the eGenes (i.e. genes with eQTLs) detected by the Westra method show signifi-
cantly higher expression for granulocytes (p=3.0x10−12, observed in purified neutro-
phils) and CD4+ T cells (p=5.0x10−13) and B cells (p=5.1x10−11), but not for CD14+ 
monocytes (p=1, see Suppl. Fig. 15A). Next, we found that the distribution of effect 
sizes in eQTLs from purified cells is significantly higher for the CT eQTLs detected using 
the Westra method when compared to the rest of the whole blood eQTLs (p=2.2x10−47, 
p=9.6x10−8 and p =1× 10−47 for neutrophils, CD14+ monocytes and CD4+ T cells, respec-
tively; boxed-diagonal comparisons in Suppl. Fig. 15B), showing similar results to the 
ones from Decon-eQTL (Suppl. Fig. 8).

When we compared the allelic concordance rates between the direction of effects given 
by the interaction term from the Westra method to those found in eQTLs from purified 
cell subpopulations, we observed that the allelic concordances for granulocytes eQTLs 
(99%, evaluated in neutrophils, p > 0.05) and CD4+ T cells 93% (p > 0.05) (Suppl. Fig. 
16) are comparable to those observed for Decon-eQTL (Fig. 4A). Conversely, the allelic 

Left: Fig. 5 Allelic concordance of CTi eQTLs with eQTLs from purified cells. CTi eQTLs show high allelic 
concordance compared to eQTLs from purified cell subpopulations 9. A) for granulocyte eQTLs (green), 
CTi eQTLs achieved an allelic concordance of 99% compared to eQTLs from purified neutrophils. Similarly, 
the allelic concordances were 96 and 99% for CD14+ monocytes and CD4+ T cells, respectively. Except for 
monocytes, these values are higher than those observed for whole blood eQTLs when comparing to eQTLs 
from purified subpopulations, as shown in panel B
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Fig. 6 Allelic concordance of CTi eQTLs with eQTLs from single cell RNAseq. A) Comparison in 
allelic direction between CTi eQTLs and eQTLs from single cell RNAseq experiments in 6 cell types. 
B) Comparison in allelic direction between Westra model eQTLs and single cell eQTLs. In both panels 
coloured diamonds are FDR < 0.05, grey circles are FDR > = 0.0 in the single cell data, and the size is 
the -log10(p-value) of the predicted cell type interacting eQTLs
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concordance rate for CD14+ monocytes is only 62%, significantly lower than the results 
from Decon-eQTL (96%, p=0.001). Finally, for granulocytes, CD4+ T cell eQTLs and 
monocytes, we overlapped the results from Westra method and Decon-eQTL with the 
eQTLs from purified cell types (Chen et al. 9) (Suppl. Fig. 17). For all three cell types, 
we found that Decon-eQTL is able to detect a larger number of eQTLs. For neutrophils, 
the Westra method has a higher replication rate (Fisher p-value=0.002). For CD14+ 
monocytes, both methods had the same replication rate (Fisher p-value=0.737). For 
CD4+ T cells, Decon-eQTL had a better replication rate (p-value=7.47x10−12).

Finally, we compared the difference in allelic concordance with sc-eQTLs. The overall 
allelic concordance of Decon-eQTL CTi QTLs with sc-eQTLs (96.42%, Fig. 6A) is higher 
than that achieved by the Westra model (p=1.24x10−8), where we observed an overall 
allelic concordance of 84.67% (Fig. 6B). For both non-classical monocytes (Fisher 
p-value=0.045) and CD4+ T cells (Fisher p-value=7.89x10−7), Decon-eQTL has a signifi-
cantly better allelic concordance. For CD8+ T cells (Fisher p-value=0.230), classical 
monocytes (Fisher p-value=0.0513), B cells (Fisher p-value=0.055) and NK cells (Fisher 
p-value=0.242), there is no significant difference. Nevertheless, Decon-eQTL shows a 
higher allelic concordance for NK cells, classical monocytes, and CD8+ T cells (93.8% 
vs 83.9, 96.2% vs 89.2, and 100% vs 93.5% respectively), while for B cells it has lower 
concordance (33% vs 100%).

Overall, these results demonstrate that Decon-eQTL is able to detect more CTi eQTLs 
that can be replicated in purified eQTL dataset than previously reported methods, 
especially in less abundant cell types such as CD14+ monocytes. However, the detection 
of interaction effects between genotype and cell proportions in order to dissect bulk (in 
this case whole blood) expression data and CTi eQTLs remains an area of great oppor-
tunity that could still be explored, particularly given the constantly increasing number 
of samples present in functional genomic cohorts and the growing numbers of purified 
and sc-eQTL datasets that can be used for validation.
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Discussion

We have developed a novel statistical framework, Decon2, that predicts the proportions 
of known immune cell subtypes using gene expression levels from whole blood (Decon-
cell). These predicted cell proportions can then be used together with genotype 
information and expression data to deconvolute a whole-blood eQTL effect into cell 
type interacting effects (Decon-eQTL). Using a set of samples with both whole blood 
RNA-seq data and cell frequencies of 73 cell subpopulations, we demonstrated that 
Decon-cell was able to predict 34 independent cell subpopulations. The performance 
of Decon-cell has been validated in multiple independent cohorts and benchmarked 
with existing methods. The Decon-cell models were then applied to a cohort of 3189 
samples for which whole blood RNA-seq data was available, resulting in predicted cell 
counts for these samples. By integrating bulk expression data, genotype and predicted 
cell counts of the BIOS cohort, Decon-eQTL was able to dissect whole blood eQTL effect 
into CTi eQTLs without purifying immune cell subpopulations. The results of Decon-
eQTL were then validated again using several independent data types: 1) eQTLs from 
purified cell subpopulations, 2) chromatin QTLs of purified cells, 3) gene expression 
from purified cell types and 4) eQTLs derived from single-cell protocols. Compared 
with existing methods, Decon-eQTL consistently shows superior performance. To sum 
up, the proposed framework is useful for (re)-analyzing both existing and new bulk 
blood tissue datasets in order to detect CTi eQTL effects and can be applied and tested 
on other tissues once cell count proportions become available. Cataloging and further 
interpreting the role of CTi eQTLs will improve our understanding of the functional role 
of the SNPs associated with complex diseases at the level of specific cell subtypes.

The main advantage of our Decon-cell method for predicting cell proportions is that it 
does not rely on the gene expression measured in purified cell subtypes when defining 
signature gene sets. Moreover, our method does not require the definition of marker 
genes based on their differential expression compared to other cell subpopulations, 
unlike previously reported methods 12. The signature genes defined by Decon-cell are 
determined using a completely unsupervised approach that applies regularized regres-
sion to select the optimal combination of genes to accurately predict a certain circu-
lating cell proportion. The majority of these marker genes are differentially expressed 
across purified cell subpopulations, but not all. Nevertheless, these signature gene 
sets are still correlated to the cell proportions in whole blood. In summary, we have 
shown that Decon-cell can accurately predict the proportions of circulating immune 
cell subpopulations in three independent cohorts and that it out-performs previously 
reported methods within these cohorts.

Our Decon-eQTL method for detecting a CTi eQTL effect with bulk blood tissue expres-
sion data is, to our knowledge, the first attempt to simultaneously model whole blood 
gene expression profiles into its major components. In contrast to a previous method 
where single cell type (G x E) effects were evaluated one at a time 10, 31, Decon-eQTL 
incorporates all the major cell proportions simultaneously to better dissect the overall 
genetic effect of gene expression signal into cell subpopulation effects. We have shown 
that CTi eQTL genes found with Decon-eQTL have higher expression and higher effect 
sizes in purified neutrophils, CD14+ monocytes and CD4+ T cells than do non-CTi 
genes, and we find significantly higher allelic concordance for two out of four tested cell 
types with sc-eQTLs than with a conventional interaction model (Fig. 6A, B). Moreover, 
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we have also shown the biological relevance of the deconvoluted CTi eQTLs by validat-
ing our results on cmQTLs where CTi eQTLs have significantly higher effect sizes and 
allelic concordance rates are significantly higher than those of whole blood eQTLs. 
Finally, we have also demonstrated that Decon-eQTL can replicate sc-eQTLs derived 
from scRNA-seq data, showing a higher allelic concordance with sc-eQTLs than when 
using only whole-blood eQTL effects.

There are also limitations to our method. The CTi eQTLs detected by Decon-eQTL tend 
to be eQTL exclusive for the specific CT, suggesting that the CT with the strongest 
eQTL effect was selected by Decon-eQTL. This is likely due to the partial collinearity 
present between the CT proportions included in the model (as shown by their correla-
tion structure in Suppl. Fig. 18A-B). Thus, the genetic effect of one cell type might 
be masked by another CT with a correlated cell proportion. The highest correlation 
coefficient among cell types included in the model was 0.75 (between granulocytes and 
B cells). Therefore, deconvoluting CTi eQTLs for partially correlated cell proportions 
could lead to false negative results for cell types with relatively weaker eQTL effects.

In our model, we included the six major blood cell types, but there are many more cell 
types available for which our method is not able to detect a CTi eQTL estimate. Further-
more, we only tested Decon-eQTL using genome-wide whole blood cis-eQTLs main 
effects. Such eQTL effects are very likely shared across multiple cell types, however we 
are only able to detect its interaction with only one cell type due to statistical power 
and co-linearity (Suppl. Fig. 6A), which is also seen in the sc-eQTLs with limited (112) 
samples (Suppl. Fig. 6B). Nevertheless, this does not imply that the CTi eQTL are 
exclusive for, or only present in, that specific cell type, as we observe in Fig. 4D, where 
the effect sizes of the significant CTi eQTLs in purified subpopulations are not signifi-
cantly different across all three purified cell subpopulations. Yet this difference in the 
effect-size of CTi eQTLs between relevant and non-relevant cell types can be seen in 
histone modification QTLs (as shown in Suppl. Fig. 11), likely due to the cell type-spec-
ificity of epigenetic marks. Lastly, Decon2 has only been tested in whole blood, where 
large numbers of samples are available, and therefore it is not known how it will perform 
in other tissues.

The proposed framework of Decon2 is generic for predicting cell subpopulations in 
bulk tissues (Decon-cell) and re-distributing the overall eQTL effect into cell types 
(Decon-eQTL). Both methods have been implemented in freely available software. In 
both the R package and the user interface-based webtool, we provide the models for 
predicting cell subpopulation in whole blood that were constructed and validated in 
this work so that interested users can estimate immune cell subpopulations in whole 
blood in healthy people of western European ethnicity, as our models were built using 
a Dutch cohort (500FG).
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Conclusion

In summary, Decon2 is a computational method that can accurately assign CT effects 
in whole blood functional genomic cohorts. It can be applied to any dataset for which 
genotypes and expression data is available and could potentially aid in understanding 
the molecular effects of genetic risk factors associated with complex diseases at the 
cell-subpopulation level. Our method makes it possible to create CT gene regulatory 
networks that could explain the different effects that each CT has on a complex disease 
in a cost-efficient way. Since Decon2 only requires gene expression and genotype 
information to deconvolute bulk blood eQTLs into CTi eQTLs, it is possible to re-analyze 
existing bulk blood RNA-seq data for which genotypes are also available. In this scenario, 
we would use Decon-cell to predict cell proportions in whole blood and obtain CT infor-
mation on many more eQTLs through an increase in sample size. In addition to whole 
blood, the methods behind Decon2 can potentially be generalized to use transcription-
al profiles derived from any other type of bulk tissue, such as biopsies from tumors or 
other solid tissues implicated in complex disease etiology. However, the method has 
not yet been tested in other tissues. Our methods can hence aid in the detection of 
genetic effects on gene expression in rare cell subpopulations in bulk tissues.
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Methods

RNA-seq data collection in 500FG cohort

We selected a representative subset of 89 samples from the 500 participants of the 
500FG cohort, which is part of the Human Functional Genomics Project (HFGP). Our 
subset was balanced for age and sex based on the original distribution in the cohort. 
RNA was isolated from whole blood and globin transcripts were subsequently filtered 
by applying the Ambion GLOBINclear kit. The samples were then processed for 
sequencing using the Illumina TruSeq 2.0 library preparation kit. Paired-end sequenc-
ing of 2x50-bp reads was performed on the Illumina HiSeq 2000 platform. The quality 
of the raw reads was checked using FastQC (http://www.bioinformatics.babraham.
ac.uk/ projects/fastqc/). Read alignment was performed with STAR 2.3.0 32, 33 using 
the human Ensembl GRCh37.75 as reference, and the aligned reads were sorted using 
SAMTools 34. Lastly, gene-level quantification of the reads was done using HTSeq 35.

RNA-seq preparation and data processing in the BIOS cohort

RNA was isolated from whole blood and globin transcripts were subsequently filtered 
by applying the Ambion GLOBINclear kit. Library preparation was performed using 
the Illumina TruSeq v2 library preparation kit. Next, Illumina HiSeq 2000 was used 
for paired-end sequencing of 2x50 bp reads while pooling 10 samples per lane and 
expecting > 15 million read pairs per sample. Read sets were generated using CASAVA, 
retaining only those reads that passed Illumina Chastity Filter.

Quality control of the reads was evaluated using FastQC (http://www.bioinformat-
ics. babraham.ac.uk/projects/fastqc/). Adaptor sequences were trimmed out using 
cutadapt (v1.1) with default settings. Low quality ends of reads were removed using 
Sickle (v1.200) (https://github.com/najoshi/sickle).

Reads were then aligned using STAR 2.3.0E 33. All SNPs present in the Genome of the 
Netherlands (GoNL) with MAF ≥ 0.01 were masked from the reads to avoid reference 
mapping bias. Read pairs with at most eight mismatches and mapping to at most five 
positions were used. Quantification of counts per genes was done using Ensembl v.71 
annotation (which corresponds to GENCODE v.16).

Genotype data of the BIOS cohort

Genotype information was independently generated for each of the cohorts, further 
details on data collection and methods used for genotyping can be found in their papers 
(CODAM 36, LLDeep 16, LLS 17, RS 18 and NTR 21).

Genotypes were harmonized to GoNL with Genotype Harmonizer 37 and imputed with 
IMPUTE2 38 using GoNL as reference panel. SNPs with an imputation score below 0.5, 
a Hardy-Weinberg equilibrium p-value smaller than 1x10− 4, a call rate below 95%, or a 
MAF smaller than 0.05 were filtered out. For further analysis, only eSNPs from whole 
blood cis-eQTL top effects were subsequently used in Decon-eQTL.

Quantification of cell proportions in 500FG cohort

Inclusion criteria and further description of the participants of the 500FG cohort can be 
found at http://www.humanfunctionalgenomics.org. A total of 73 manually annotated 
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immune cell subpopulations were quantified using 10-color flow cytometry. To 
minimize biological variability, cells were processed immediately after blood sampling 
and typically analyzed within 2–3 h. Cell populations were gated manually as previously 
described 14.

Cis-eQTLs in the BIOS cohort

For cis-QTL mapping, we tested for association between genes and SNPs located 
within 250 kb of a gene center. SNPs with MAF ≥ 0.01, call rate = 1 and Hardy-Wein-
berg equilibrium p-value ≥0.0001 were included. eQTLs were declared to be significant 
at FDR < 0.05. Pre-processing of RNA-seq and QTL mapping was performed using a 
custom eQTL pipeline that has been described previously 11.

Normalization and correction of gene expression data for deconvolution of eQTL effects 
Total read counts from HTSeq were first normalized using the trimmed means of M 
(TMM) values. TMM expression values were then log2 transformed. For predicting cell 
proportions, we used scaled expression data in both the 500FG and BIOS cohorts.

For the deconvolution of eQTLs, the expression was log2 transformed and corrected 
for the effects of cohort, age, sex, GC content, RNA degradation rates, library size and 
number of detected genes per sample using a linear model. The corrected expression 
data was then exponentiated to maintain the original linear relationship across read 
counts (gene expression) and cell proportions.

General description of Decon2

Decon2 is a statistical framework for estimating cell counts using molecular profiling 
such as expression data from heterogeneous samples (Decon-cell) and consecu-
tive deconvolution of expression quantitative trait loci (Decon-eQTL) into each cell 
subpopulation. To predict cell proportion levels using Decon-cell built in models, it’s 
only input is a matrix As input Decon-cell takes a table of normalized gene expression 
counts, with samples as columns and genes as rows, and outputs a table of predicted 
cell count proportions for cell types that were included in the training model. Decon-
cell also enables the user to generate its own custom models, for which it requires a 
matrix of gene expression to train the model and a matrix of measured cell propor-
tions; this will output a list with one specific model for each of the cell types included. 
A matrixtable of normalized gene expression levelscounts, a matrixtable of predicted 
or measured cell count proportions, and a matrixtable of genotype dosages (0 for 
homozygous reference, 1 for heterozygous, and 2 of homozygous alternative), lastlyand 
a table with the SNP + gene combinations to test, are used as input for Decon-eQTL, 
and this outputs for each SNP + gene combination the beta and p-value of the cell-type 
dependent eQTL effect. See Suppl. Fig. 20 for a graphical overview.
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Prediction of cell proportions using gene expression levels from bulk tissue (Decon-cell)

For cell count prediction, expression data is TMM normalized, log2(expression+ 
1) transformed and z-transformed (scaled). We proposed that the abundance of 
molecular markers such as gene expression could be used as proxies to predict cell 
proportions. This can be represented as:

(1)

where expression data is Yij for genes i = 1, 2, …, G and samples j = 1, 2, …, N and cell 
count data is Ckj for sample j in cell type k (k = 1, 2, …, K). βki represents the coefficients of 
gene i in determining cell counts of cell type k of a complex tissue. ekj is the error term.

In order to select only the most informative genes for predicting cell counts, we imple-
mented a feature selection scheme by applying an elastic net (EN) regularized regres-
sion 26. In the EN algorithm, the βk Y are estimated by minimizing:

(2)

s is a tuning parameter that limits the number of features that will be included in the final 
predictor model. We estimate the best s per cell type by applying a 10-fold crossvalida-
tion approach, where the most optimal penalty parameter (α) was obtained.

Deconvolution of eQTL effects (Decon-eQTL)

Decon-eQTL models the expression level in the bulk tissue by considering the genetic 
contribution of multiple cell types present in the system. For identifying the CT eQTL 
effect, the interaction term between a particular cell type and genotype was tested for 
statistically significant contribution to the explained variance on the expression levels 
of particular genes, while accounting for the remaining cell proportions. If we consider 
a generic eQTL linear model for whole blood it can be described as:

(3)

where y is the measured gene expression, a the modeled non-genetic dependent 
expression, g the genotype coded as 0, 1 or 2, β. g the genotype-dependent expression 
and e the error, e.g. unknown environmental effects. Here, all three terms are modeling 
the effect of the mixture of different cell types present in blood. In an RNA-seq-based 
gene expression quantification of a bulk tissue, one could express gene expression 
levels (y) as the sum of counts (ψ) per K cell types:

(4)

For every cell type, the expression level can be written as a generic eQTL model (eq. 
3) weighted by the cell proportions. ψk is a combination of the genetic and non-ge-
netic contribution of the cell type to y. The non-genetic contribution per cell type is β. 
c, wherec is the cell count proportions. The genetic contribution is βk. g : ck. For k cell 
types the expression is then:

(5)

where y is the measured expression levels, k is the total number of cell types, ck is the 
cell count proportions of cell type k, g is the genotype and e is the error term. Since 
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we are assuming a linear relationship between total gene expression and the levels of 
expression generated by each of the cell types composing a bulk tissue, the cell propor-
tions are scaled to sum to 100% such that the sum of the effect of the cell types equals 
the effect in whole blood. Here we assume that the true sum of the cell counts should 
be very close to 100% of the total PBMC count, which is why we include the 6 cell types 
that together form the top hierarchy given the gating strategy used to quantify the cell 
subpopulations 14. The genotype main effect is not included in the model because the 
sum of the genotype effect per cell type should approximate the main effect.

Because the contribution of each of the cell types to expression level y cannot be 
negative, we constrain the terms of the model to be positive using Non-Negative Least 
Squares 39, 40 to fit the parameters to the measured expression levels. However, if the 
allele that has a negative effect on gene expression is coded as 2, the best fit would have 
a negative interaction term, which would be set to 0. To address this, we want the allele 
that causes a positive effect on gene expression to always be coded as 2. However, the 
effect of an allele can be different per cell type, therefore the coding of the SNP should 
also be different per cell type. We therefore run the model multiple times, swapping 
the genotype encoding for one of the interaction terms each time. The encoding that 
gives the lowest R-squared is then chosen as the optimal genotype encoding. For the 
encoding, we limit the number of genotypes that have an opposite genotypic encoding 
to a maximum of one interaction term, as we have observed that this leads to no signif-
icant difference when compared to using all possible configurations and limits the 
number of models that have to be run from k2 to (2*k) + 2.

To test if there is a CT interaction effect, we run the linear model of eq. 5 and, for each 
CT, run the same model with the cell proportion:genotype interaction term removed. 
For example, when testing two cell types the full model is:

(6)

and the two models with the interaction terms removed are:

(7)

For both the full model and the CT models, we calculated the sum of squares using the 
different genotype configurations detailed above. For both the full and the CT models, 
we then selected the genotype configuration with lowest sum of squares. Then, for 
each CT, we tested if the full model could significantly explain more variance than the 
CT model using an ANOVA.

We then applied our strategy to 16,362 significant whole blood cis-eQTL top effects 
detected using the BIOS cohort. We then correct the p-values for multiple testing using 
FDR for each of the cell types, i.e. granulocyte eQTL p-values were corrected for 16, 362 
tests in the same way as CD4+ T cells eQTL p-values were corrected for the exact same 
number of tests.
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Westra et al. interaction model

In the Westra et al. model, expression data is normalized in the same way as in Decon 
eQTL. The effect of the cell type is predicted using a genotype * cell count interaction 
term:

(8)

where y is expression, I the intercept, G the genotype, c the cell count and c x G the cell 
count x genotype interaction term. Additional restrictions are set on the p-values. For 
neutrophils, if (the β of the neutrophil x G interaction term) * (the β of the G interaction 
term) < 0, the p-value is set to 1. For CD4+ and monocytes, if (the β of the neutrophil x 
G interaction term) * (the β of the G interaction term) > 0, the p-value is set to 1.

Comparison between allelic concordance

For the comparison between allelic concordances, we counted the concordant and 
discordant eQTLs for each of the cell type comparisons and did a Fisher exact test 
between each of the groups. The p-values are Bonferroni-corrected.

Single-cell eQTLs

The sc-eQTLs were obtained for 112 individuals in the same way as described in Van der 
Wijst et al. 24 For the allelic direction comparison, we used all significant eQTLs. Classical 
monocyte and non-classical monocyte eQTLs were combined and jointly compared to 
Decon-eQTL Monocytes.

Supplementary information

Supplemenatary material are provided at: 

https://doi.org/10.1186/s12859-020-03576-5

Additional file 1 : 

Suppl. Fig. 1. Prediction performance of Decon-cell within 500FG: The Y-axis 
represents the 73 immune cell types quantified by FACS in the 500FG cohort. The bar 
plot on the left panel shows the mean Prediction Performance (Spearman correlation 
coefficient between predicted and measured cells across 100-fold cross validations). 
On the right panel, box plots represent the distribution of the Prediction Performance 
within 100 iterations of the cross validations. A cutoff of mean Prediction Performance 
≥0.5 was applied to define predictable cell types (green). 

Suppl. Fig. 2. Signature genes selected for prediction of cell proportions by Decon-
cell: (A) Total number of marker genes (genes selected in ≥80% of all models in the 100 
iterations) per predictable cell type. Different colors indicate different subpopulations. 
(B) The number of genes significantly correlated with cell counts (Spearman correla-
tion, adjusted p ≤ 0.05) (y-axis) shows the total number of significantly correlated 
genes, while the x-axis shows the prediction performance (x-axis). (C) Distributions of 
the total number of “strongly” correlated genes (absolute Spearman correlation ≥0.3) 
between predictable and unpredictable cell subpopulations. 



109

C
ha

pt
er

4

Suppl. Fig. 3. Comparison of prediction performance between Decon-cell and other 
existing methods. (A) Performance of Decon-cell: the measured (x axis) and predicted 
cell proportions (y-axis) were compared for neutrophils (given by granulocytes in 
500FG), lymphocytes and monocytes CD14+ and granulocytes in three independent 
cohorts (shown by row, from top to bottom: LLDeep (n = 627); LLS (n = 660); RS (n = 
773)). (B) Comparison of prediction performance for Decon-cell, CIBERSORT and xCell 
in three independent cohorts for a total of 4 major immune subpopulations. 

Suppl. Fig. 4. Prediction performance of xCell and CIBERSORT in three independent 
Dutch populations (LLDeep, n = 627; LLS, n = 660; RS, n = 773). (A) Scatter plots 
showing the measured cell proportions of circulating immune cells on the x-axis and 
the xCell enrichment score on the y-axis. (B) Scatter plots showing the measured cell 
proportions of circulating immune cells on the x-axis and the predicted cell proportions 
given by CIBERSORT) on the y-axis. Suppl. Fig. 5. Expression of marker genes selected 
by Decon-cell. Expression levels (scaled, log2(TPM + 1)) of signature genes in the data 
in three purified cell subpopulations: CD4+ T cells (A), neutrophils/granulocytes (B) 
and monocytes (C) in the data from BLUEPRINT. Cell subpopulations are indicated in 
different colors by columns. Correlation of each of the signature genes and the cell 
subpopulation percentage in the 500FG cohort is shown on by the green bar at the 
left-hand side of heatmap figure, i.e. darker green corresponds to higher correlations. 

Suppl. Fig. 6. Many of the CTi eQTL are cell type exclusive. Colored bar plot on the left 
shows the total number of significant CTi eQTLs in whole blood eQTLs (as also shown 
in Fig. 2A). Gray bar plot shows the total number of eQTLs shared across the possible 
combinations of the six cell subpopulations under study. Suppl. Fig. 7. Variation of gene 
expression across samples for deconvoluted cell-type eQTLs genes in whole blood. 
Granulocyte eQTL genes show significantly higher variance across the BIOS samples (F 
test p-value ≤0.05) compared to those from monocytes, CD4+ T cells, CD8+ T cells, B 
cells and NK cells. 

Suppl. Fig. 8. Validation of CTi eQTLs using effect sizes of eQTLs from purified cells. 
CTi eQTLs (FDR ≤ 0.05) from the BIOS cohort show a significantly bigger effect size in 
purified cell eQTLs 9 from their relevant cell subtype as compared to other whole blood 
eQTLs (diagonal boxed comparisons). The off-diagonal comparisons show that these 
eQTL genes are specific to a cell subpopulation because the differences in effect sizes 
are non-significant in all but one case (CD4+ T cell eQTL genes in monocyte-derived 
eQTLs). Suppl. Fig. 9. Validation of CTi eQTLs using effect sizes of K27AC QTLs from 
purified cells. CTi eQTLs (FDR ≤ 0.05) show a significantly bigger effect size for K27AC 
QTLs that have peaks located in the promoter region of the eGenes from their relevant 
cell subtype compared to the rest of the significant whole blood eQTLs (diagonal boxed 
comparisons). The off-diagonal comparisons show that these eQTL genes are specific 
to a cell subtype because the differences in effect sizes are non-significant in all but the 
comparisons across Neutrophils and Monocytes (CD14+). 

Suppl. Fig. 10. Validation of CTi eQTLs using effect sizes of K4ME1 QTLs from purified 
cells. CTi eQTLs (FDR ≤ 0.05) show a significantly bigger effect size for K4ME1 QTLs 
(where the eGenes is the closest gene tagging the K4ME1 QTLs peak) from their relevant 
cell subtype compared to the rest of the significant whole blood eQTLs (diagonal boxed 
comparisons). The off-diagonal comparisons show that these eQTL genes are specific 
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to a cell subtype because the differences in effect sizes are non-significant in all but the 
comparisons between neutrophils and monocytes (CD14+).

Suppl. Fig. 11. Validation of CTi eQTLs using allelic concordance with eQTLs results 
from purified cells. CTi eQTLs (FDR ≤ 0.05) show high allelic concordance with their 
respective purified cell eQTLs. Top row shows allelic concordance of deconvoluted 
granulocyte eQTLs (all in green) against neutrophils, monocytes and CD4+ T cells. 
Second row shows deconvoluted monocyte eQTLs against purified cell eQTLs in the 
same order as the top row. Bottom row shows the same comparisons as for deconvo-
luted CD4+ eQTLs. Allelic concordance of the off-diagonal (comparing CTi eQLTs with 
non-relevant cell types) show a consistent decrease in allelic concordance. p-values are 
Bonferroni-corrected Fisher exact tests between groups.

Suppl. Fig. 12. Validation of CTi eQTLs using allelic concordance with K27AC results 
from purified cells. CTi eQTLs (FDR ≤ 0.05) show a high allelic concordance in their 
respective purified cell K27AC QTLs. Top row shows allelic concordance of deconvolut-
ed granulocyte eQTLs (all in green) against neutrophils, monocytes and CD4+ T cells 
derived from K27AC QTLs. Second row shows deconvoluted monocyte eQTLs (all in 
orange) against purified cell K27AC QTLs in the same order as top row. Bottom row 
shows the same comparisons as for deconvoluted CD4+ eQTLs (all in purple). Allelic 
concordance of the off-diagonal (comparing deconvoluted eQTLs with non-relevant 
cell types) show a consistent decrease in allelic concordance when compared to the 
relevant cell type comparisons. p-values are Bonferroni-corrected Fisher exact tests 
between groups. Suppl. Fig. 13. Allelic concordance between whole blood eQTLs and 
K27AC QTLs for purified neutrophils, CD14+ monocytes and CD4+ T cells.

Suppl. Fig. 14. Comparison of whole blood eQTLs with eQTLs from single cell RNA-seq 
Whole blood eQTLs show 89% allelic concordance for significant eQTLs derived from 
scRNA-seq data, comprising monocytes CD14+, B cells, CD4+ T cells, CD8+ T cells 
and NK cells. Suppl. Fig. 15 Validation of cell type eQTLs detected in the BIOS cohort 
using the Westra et al. method: (A) Expression of eGenes in purified cell subpopulations 
from BLUEPRINT (green for granulocyte eQTL genes showing expression for purified 
neutrophils; orange for monocytes; purple for CD4+ T cells; pink for B cells). (B) CT 
eQTLs detected by the Westra method show a significantly larger effect size in purified 
cell eQTLs 11 as compared to the rest of the whole blood eQTLs. Boxed-diagonal shows 
the comparisons with relevant cell types where the effect differences are stronger.

Suppl. Fig. 16. Allelic concordance rates of cell type eQTLs detected using the Westra 
et al. method and eQTLs from purified cells. Top row shows allelic concordance of 
granulocyte CT eQTLs against neutrophils, monocytes and CD4+ T cells. Second row 
shows CT monocyte eQTLs against purified cell eQTLs in the same order as top row. 
Bottom row shows the same comparisons for CT CD4+ eQTLs. Suppl. Fig. 17 Compar-
ison of Decon-eQTL with Westra et al. method. Overlap of CT eQTLs detected with 
Decon-eQTL and the Westra et al. method and those found to be significant in purified 
cell subpopulations for granulocyte QTLs (A), CD4+ T cells (B), and monocytes (C). 

Suppl. Fig. 18. Distribution and correlation among circulating cell proportions. Scatter 
plots show the correlations between different cell subpopulations in 89 samples from 
500FG. Blue line indicates a fitted linear model. Diagonal plots depict the overall density 
distribution per cell type. Upper right triangle shows the Pearson correlation coefficient 
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for each pairwise comparison. (B) Correlations between different cell subpopulations 
in the BIOS cohort obtained by prediction using Decon-cell. Suppl. Fig. 19.General 
overview of the Decon2 method. (A) Gene expression can be used to predict cell count 
percentages of cell counts that are already trained in the Decon-Cell model. Addition-
ally, the model can be trained on different cell types if expression data and cell count 
proportions are available. (B) Decon-eQTL models the cell type dependent eQTL effect 
using expression, genotype, and measured cell count proportions or, if unavailable, 
predicted cell count proportions.

Additional file 2 : 

Suppl. Tab. 1: Ensembl IDs and symbol names of the marker genes selected by Decon-
cell for the 34 predictable circulating immune cell proportions.

Additional file 3 : 

Suppl. Tab. 2: Summary statistics from Decon-eQTLs for the 16,362 whole blood 
eQTLs.
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Abstract 

The human cytokine response shows a remarkable inter-individual heterogeneity in the 
general population. Previous studies have identified that genetic and non-genetic host 
factors play an important role in driving this variation. However, these studies focused 
mostly on single genotype-phenotype pairs and did not take the correlation structure 
and potential co-regulation between cytokine response phenotypes into consideration. 
In this study, we aimed to identify the genetic effects that are shared between cytokine 
response profiles across a wide range of stimuli. Using a multivariate QTL mapping 
approach, we were able to identify four previously unidentified loci regulating the ex 
vivo cytokine response to pathogens in a population of 500 healthy individuals. Among 
the identified cytokine QTLs where TLR1 and FCGR loci which have been shown to be 
strong trans regulators of expression levels upon stimulation. We further show that 
the cytokine QTL signal in the FCGR locus co-localizes with inflammatory bowel disease 
(IBD) GWAS suggesting a shared mechanism between regulation of cytokine response 
and IBD. Altogether, we highlight the complex nature of the genetic regulation under-
lying cytokine responses by identifying shared genetic effects between cytokine 
response phenotypes. Future studies into immune signaling, in particular the cytokine 
response, should account for the complexity of immune responses in their study design 
and asses immune responses as a complex interacting network rather than a set of 
pairwise correlations.
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Introduction

Over the last years, studies in systems and population immunology have made it 
increasingly clear that there is substantial inter-individual heterogeneity in the ways the 
immune system functions, at both baseline and stimulation conditions 1–5. Such hetero-
geneity is apparent at both protein 1,2,6 and gene expression levels 3,5 and is likely to 
result from a complex interplay between genetics, intrinsic and environmental factors. 
One area where such heterogeneity is particularly apparent is the cytokine response to 
stimulation. 

We previously evaluated whether cytokine response profiles showed significant 
inter-correlation, and thus have the potential to share (genetic) regulatory mecha-
nisms 6. We observed strong correlation patterns between cytokine response profiles 
that clustered based on the type of cellular assay that was used (PBMC, whole-blood, 
mo-derived macrophage), the broad response phenotype (innate after 24H; IL-6, 
TNF-α, IL-1β vs. Adaptive after seven days; IL-17, IL-22 and IFN-γ) and the broad stimu-
lation class (fungal, bacterial, ligand-based). Such correlation clusters suggest that 
there is a potential sharing of regulatory mechanisms during these correlated cytokine 
responses. Recent efforts to map the extent of genetic control of immune response 
variation at the expression level have revealed several strong context-dependent 
genetic regulators of immune responses 5. In addition, a plethora of genetic variants 
that regulate cytokine protein concentrations at baseline and after stimulation 1,3,6–8 
have been identified. While a few studies have started to search for shared (pleiotropic) 
genetic effects on immune function 8, one aspect that has not been yet been assessed 
is the extent with which genetic regulators are simultaneously influencing multiple 
cytokine response phenotypes. 

In this study, we hypothesize that the observed correlation between cytokine response 
profiles is partially due to shared genetic effects. To this end, we firstly defined groups of 
cytokine response phenotypes based on the type of cellular assay, the cytokine and the 
stimulation class following the patterns observed in previous clustering analysis 6. We 
then identified shared associations between cytokine responses and genetic factors by 
using a multivariate approach. This allowed us to determine whether a set of cytokine 
responses are jointly regulated by a single genetic factor (mv-cQTL) and in doing so 
increase the power to detect such associations 9–13. 
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Results

Multivariate genetic analysis reveals seven loci with distinct effects on cytokine produc-
tion

The main objective of this study was to detect and characterize the shared genetic 
factors influencing cytokine production upon infectious or immune stimulation. To do 
so we made use of the database of cytokine responses to multiple stimulations from 
the 500FG cohort 1,6,14–16 together with the genetic profiles of the same individuals. We 
firstly defined combinations of relevant traits based on the type of cellular assay (PBMC, 
whole-blood and mo-derived macrophage), cytokines (monocyte; IL-6, TNF-α, IL-1β 
or lymphocyte; IL-17, IL-22 and IFN-γ produced) and class of stimulation (bacterial, 
fungal, ligand based) (Fig. 1A). Within these groups combinations of cytokine response 
phenotypes were then made in both a stimulation and a cytokine based grouping. The 
stimulation based grouping evaluated if one stimulation has shared genetic factors with 
downstream effects on multiple cytokines. The cytokine based grouping evaluated if 
multiple stimulations have shared genetic factors in influencing one cytokine. In total, 
we defined 26 distinct combinations of cytokine response phenotypes (Suppl. Tab. 1).

We then jointly associated each of the cytokine groups with each of the ~ four million 
available genetic variants genome-wide by using a multivariate mixed linear model 
(MVLMM) 9,10. This analysis yielded a total of seven genome-wide significant (at 
p<5x10-8) multivariate cytokine QTL (mv-cQTL), with 13 distinct top variant context 
pairs (Fig. 1B, Table 1). We then evaluated if the observed loci were unique to the multi-
variate condition, or if they were also present in single trait analysis 6. We found that six 
(rs2099684, rs61803011, rs5743614, rs12573067, rs7204265 and rs2258983) out of 
the 13 genome wide significant mv-cQTL were unique to the multivariate analysis, and 
had not been identified in previous single trait analysis (Fig 1C-H, Table 1). We then 
evaluated if there was sharing between association signals for mv-cQTLs or if these 
associations were unique to their respective conditions. We found substantial overlap 
between association signals, at a suggestive threshold (p<5x10-5), between mv-cQTL 
phenotype pairs (Fig. 1B) suggesting that mv-cQTL might have pleiotropic effects. 

Next, we evaluated if the observed associations were likely to be either regulated 
distinctly (pleiotropy or undecided) or mediated through each other (Fig. 1C-D) using 
partial correlation 17 and mediation analysis 18. In total, we found that eight of the 13 
genome-wide associations showed distinct regulation (no mediation at FDR < 0.05) 
while five showed at least one mediation relationship (at FDR < 0.05) (Suppl. Tab. 2). 
For all six mv-cQTL that did not show genome-wide significance in single trait analysis 
(Table 1), the partial correlation analysis revealed distinct regulation (Fig. 1C-D, Suppl. 
Tab. 2-3). Additionally, we observed that for these six associations the genetic variant 
had an opposite direction of effect on the cytokine level, suggestive of it facilitating an 

Right: Fig. 1. Multivariate QTL mapping strategy reveals 13 shared associations regulating cytokine 
response. A) Schematic overview of the defined cytokine groups. B) Heatmap of -log10 association 
p-values of the multivariate cytokine QTLs. -log10 p-values have been capped at 15 to ensure readability 
of the color scale. Colored boxes indicate the cellular assay the models was derived from. C-H) Partial 
Pearson correlation networks between the cytokines and genetic variants for the hits that were not identi-
fied in previous univariate analysis. Partial correlations indicate the correlation between two traits (genetic 
variant and cytokine) after correcting for the other traits (cytokines) in the network.
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interaction between cytokine response phenotypes (Fig. 1C-D, Suppl. Tab. 3). This 
suggests that the genetic control of cytokine production upon stimulation is partially 
controlled by shared genetic factors having distinct effects on cytokine phenotypes. 

The TLR1/10/6 gene cluster is a strong (trans) regulator of cytokine responses and co-ex-
pression after stimulation

One of the strongest mv-cQTL effects we observed was a shared genetic regulation 
on IL-1β, TNF-α and IL-6 concentrations, which was detected upon stimulation with 
B. burgdorferi, E. coli, MTB, S. aureus and C. burnetii nine mile. These concentrations 

Table 1. Summary statistics for the 13 genome wide significant distinct variant context pairs. Models 
were generated using GEMMA version 0.98. Exact sample sizes after removing NA values are reported for 
each model in the N column. Genomic coordinates have been standardized to b37. 

locus single_trait rsId chr pos eff alt effAF MAF p_wald beta se ntrait N model
1 no rs2099684 1 161500130 A G 0.63 0.37 4.48E-10 2 390 combined

1.06E-03 -0.42 0.13 390 IFNy_C.albicanshyphae_PBMC_7days
3.47E-01 0.12 0.12 390 IL22_C.albicanshyphae_PBMC_7days

no rs61803011 1 161594526 G T 0.75 0.25 2.68E-08 2 402 combined
1.00E-05 -0.21 0.10 402 IL6_LPS_macroPG_24h
3.18E-07 -0.70 0.14 402 TNFA_LPS_macroPG_24h

2 yes rs12233670 4 38787216 C T 0.74 0.26 9.25E-26 5 380 combined
8.77E-01 -0.01 0.10 380 IL1b_B.burgdorferi_PBMC_24h
7.33E-06 -0.41 0.09 380 IL1b_Borreliamix_PBMC_24h
8.88E-19 -0.87 0.09 380 IL1b_C.burnetiininemileSerum_PBMC_24h
2.24E-05 -0.42 0.10 380 IL1b_E.Coli_PBMC_24h
6.02E-01 0.03 0.06 380 IL1b_S.aureus_PBMC_24h

yes rs12233670 4 38787216 C T 0.75 0.25 9.83E-11 2 336 combined
7.33E-06 -0.41 0.09 380 IL1b_Borreliamix_PBMC_24h
6.70E-11 -0.68 0.10 336 IL6_Borreliamix_PBMC_24h

yes rs12233670 4 38787216 C T 0.74 0.26 4.62E-20 2 380 combined
8.88E-19 -0.87 0.09 380 IL1b_C.burnetiininemileSerum_PBMC_24h
1.52E-11 -0.47 0.07 388 TNFA_C.burnetiininemileSerum_PBMC_24h

yes rs12233670 4 38787216 C T 0.75 0.25 3.31E-10 5 335 combined
1.10E-06 -0.57 0.11 336 IL6_B.burgdorferi_PBMC_24h
6.70E-11 -0.68 0.10 336 IL6_Borreliamix_PBMC_24h
5.07E-06 -0.44 0.10 336 IL6_E.Coli_PBMC_24h
1.44E-01 -0.12 0.08 336 IL6_S.aureus_PBMC_24h
1.92E-04 -0.44 0.12 335 IL6_MTB_PBMC_24h

no rs5743614 4 38798935 C T 0.75 0.25 5.27E-12 2 336 combined
9.60E-01 0.00 0.10 380 IL1b_B.burgdorferi_PBMC_24h
1.11E-06 -0.57 0.11 336 IL6_B.burgdorferi_PBMC_24h

yes rs5743551 4 38807654 T C 0.74 0.26 5.62E-13 2 388 combined
9.61E-12 -0.48 0.07 388 TNFA_C.burnetiininemileSerum_PBMC_24h
2.02E-01 0.12 0.09 388 TNFA_S.aureus_PBMC_24h

3 no rs12573067 10 101360754 G A 0.77 0.23 2.18E-08 2 380 combined
1.91E-03 0.33 0.11 380 IL1b_C.burnetiininemileSerum_PBMC_24h
9.58E-02 -0.12 0.07 388 TNFA_C.burnetiininemileSerum_PBMC_24h

4 yes rs7962602 12 10267996 T A 0.84 0.16 3.12E-08 2 380 combined
9.50E-09 0.29 0.05 380 IL1b_C.albicansconidia_PBMC_24h
8.02E-02 0.21 0.12 380 IL1b_C.albicanshyphae_PBMC_24h

5 yes rs147613379 12 133270573 T G 0.68 0.32 2.92E-08 3 336 combined
1.08E-02 0.12 0.05 380 IL1b_C.albicansconidia_PBMC_24h
1.14E-01 0.14 0.09 388 TNFA_C.albicansconidia_PBMC_24h
1.73E-08 0.47 0.08 336 IL6_C.albicansconidia_PBMC_24h

6 no rs7204265 16 29270304 T C 0.83 0.17 1.19E-09 2 336 combined
6.78E-01 -0.05 0.12 380 IL1b_E.Coli_PBMC_24h
9.62E-06 0.50 0.11 336 IL6_E.Coli_PBMC_24h

7 no rs2258983 19 51630482 C A 0.43 0.57 4.17E-08 2 402 combined
1.20E-02 -0.19 0.08 402 IL6_LPS_macroPG_24h
1.03E-07 -0.54 0.10 402 TNFA_LPS_macroPG_24h
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were strongly associated to rs12233670 (chr4:38787216, cohort MAF=0.26) and its 
proxies. This variant is located in the TLR1/TLR10/TLR6 region (Fig. 2A), which was also 
identified in previous single trait analysis at protein 6,7 and expression levels 5,19. Toll like 
receptors (TLR) are one of the main family of pattern-recognition innate receptors that 
activate the innate responses to pathogen associated molecular patterns (PAMPs) 20,21. 
This locus has been shown to have effects on individual cytokine response phenotypes, 
however, our analysis revealed that this locus jointly regulates predominantly bacteria 
induced (S. aureus, MTB, E. coli, B. burgdorferi, C. burnetii) cytokine responses (Fig. 
1B), consistent with the role of TLRs in the innate immune response. To evaluate if 
these signals are likely to be distinct, we performed a mediation and partial correlation 
analysis and found that two out of six TLR-associated traits showed evidence of distinct 
regulation (no mediation at FDR < 0.05) (Fig. 2A-B, Suppl. Tab. 2). The remaining four 
TLR traits did show evidence of mediation (at FDR < 0.05) suggesting that the correla-
tion between these traits is a result of a shared pathway rather than distinct effects of 
the genetic marker (Fig. 2C-F). 

To validate these findings, we utilized summary statistics on stimulation-specific 
expression QTL (eQTL) from healthy individuals from the Milieu Intérieur consortium 
3,5. We observed that the strongest master regulator of gene expression, in trans, in 
response to E. coli (97 genes), BCG (80 genes), S. aureus (7 genes) and SEB (13 genes) 
stimulation, was the TLR1/TLR10/TLR6 locus, the same we observed to be a strong 
regulator of cytokine response phenotypes. In the cis-eQTL analysis, the only gene that 
was associated with rs12233670 was TLR1 (β=0.095 p=1.20x10-9, beta standardized to 
C allele) at the baseline level and upon E. coli stimulation (β=0.35 p=2.23x10-48, beta 
standardized to C allele). This suggests that the downstream immune response to E. 
coli is regulated by rs12233670 through TLR1.

To obtain more insights into the mechanism through which this locus influences cytokine 
production after stimulation, we reconstructed co-expression networks using the gene 
expression data on 560 immune genes from Milieu Intérieur Consortium’s dataset 5. 
We selected all cis and trans eQTL genes for rs12233670 after E. coli stimulation and 
used them to construct a co-expression network at baseline and after E. coli (Fig. 3A). 
We observed widespread positive correlation relationships at baseline (Fig. 3A). After 
stimulation with E. coli we observed a striking increase in negative gene-gene correla-
tions (Fig. 3A). 

Enrichment analysis on the cis- and trans-eQTLs revealed no significant enrichment 
after correction for multiple testing, as expected, given that the gene panel analyzed 
is already enriched for immune responses (560 immune related genes). However, out 
of the 98 cis and trans eQTL genes regulated by rs12233670 the most significant-
ly enriched pathways included “Interleukin-10 signalling” (15 / 37 genes, p=7.52x10-

4) “diseases associated with the TLR signaling cascade” (9 / 21 genes, p=6.38x10-3) 
“signalling by interleukins” (38 / 153 genes, p=7.56x10-3) and “MyD88 deficiency 
(TLR2/4)” (5 / 9 genes, p=1.21x10-2), consistent with the hypothesis that rs12233670 is 
disrupting the TLR mediated immune response network.

Among the negative associations identified in the co-expression analysis (Fig. 3A) 
were TLR1 ~ IL6 (r=-0.54, p=4.20x10-62) and TLR1 ~ IL1B (r=-0.31, p=3.08x10-19), an 
effect consistent with the reduction in IL-6 and IL-1β released for carriers of the C/T 
or C/C genotype for rs12233670 in our data and the reported cis eQTL effect in the 
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Fig. 2. Associations in TLR1 locus show both distinct and mediation effects. A) Locuszoom plot showing the 
most significant mv-cQTL effect in the TLR1/TLR6/TLR10 locus identified as a joint regaulation on bacterial induced 
IL-1β levels. Y-axis indicates the -log10 p-value of the association. X-axis indicates the genomic position on chromo-
some 4. B-G) Partial Pearson correlations and mediation relationships between the identified top mv-cQTL effects 
and the cytokine response phenotypes for the corresponding model. Partial correlations indicate the Pearson 
correlation between two traits after adjusting for all the other traits in the network. Mediation relationships have 
been identified based on the Causal Inference Test as described by Schadt et al. 18. Exact statistics for the mediation 
analysis and partial correlations are reported in Suppl. Tab. 2 and 3.  
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Fig. 3. Associations in TLR1 locus are mirrored at the expression level. A) Pearson correlations between all cis 
and trans eQTL genes of rs12233670 in the Milieu Intérieur dataset (804 individuals) at baseline (lower triangle) and 
upon E. coli stimulation (upper triangle). B) Pearson correlation network of the mv-cQTL SNP rs12233670 and TLR1, 
IL6 and IL1B gene expression upon E. coli stimulation. Strong associations are shown between the SNP and TLR1, IL6 
and IL1B expression levels. C) Partial Pearson correlation network showing the associations between the SNP and 
TLR1, IL6 and IL1B expression upon E. coli stimulation after correcting for the other traits in the network. Grey arrows 
indicate a mediation relationship at FDR < 0.05 based on the Causal Inference Test as described by Schadt et al. 18.  
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Milieu Intérieur data (Fig. 3B). Next we evaluated if there was any evidence that the 
association between rs12233670 and IL-6 and IL-1β was mediated through TLR1 (Fig. 
3C, Suppl. Tab. 4). We observed significant (FDR=3.50x10-4) mediation relationships 
between TLR1, IL6 and IL1B suggesting that there is a mediation relationship between 
these traits. Given the role of TLRs in the innate immune response, and the fact that 
TLR1 was the only observed cis-eQTL gene upon stimulation it might be inferred that 
IL6 and IL1B expression are regulated by rs12233670 through TLR1 expression levels. 

Together, these results suggest the SNP rs12233670 as a strong regulator of TLR1 
expression upon bacterial stimulation, which has downstream effects on both TLR1-me-
diated signaling and cytokine responses at a protein level.

The FCGR locus is a strong trans-regulator of IFN-γ and IL-22 responses

The next most significant multi-trait unique effect we observed was located in the 
FCGR locus. This locus is characterized for encoding Fc gamma receptors that bind 
the fragment crystallizable (Fc) region of IgG. We observed a genome wide significant 
association between the variant rs2099684 (chr1:161500130, cohort MAF=0.37) and 
IFN-γ and IL-22 concentrations after stimulation with C. albicans hyphae (p=4.48x10-

10) (Fig 4A). The partial correlation analysis revealed strong associations for both IFN-γ 
(r=-0.32, p=2.07x10-10) and IL-22 (r=0.23, p=2.80x10-8) with rs2099684 (effects 
standardized to A allele) and no significant mediation, suggesting that rs2099684 
might be a pleiotropic regulator (Fig. 1C, Suppl. Tab. 2).

We looked into the eQTL effects for this locus and found that the SNP rs2099684 was a 
trans regulator for 5 genes (GBP1, GBP5, IRF1, STAT1, FCGR1A_B) at both baseline and 
stimulated conditions. IRF1 and STAT1 are both TFs that play key roles in type-2 inter-
feron signaling 22,23 and GBP1 has been shown to be induced by IFN-γ 24. While there 
was a reported increase in effect size after stimulation, the trans eQTLs of rs2099684 
were not unique to the stimulation condition 5. We then applied an overrepresenta-
tion analysis on these 5 genes. The only significant enrichment was found to be the 
Reactome pathways Interferon Signaling (OR: 3.7, FDR=0.0058) and Interferon Gamma 
Signaling (OR: 4.3, FDR=0.0022), which fits with the observed effect of rs2099684 on 
IFN-γ concentrations and known roles of these genes in type-2 interferon signaling. 
This suggests that rs2099684 is disrupting the IFN-γ signaling leading to a differential 
in cytokine response for both IFN-γ and IL-22.

Given the key role played by the immune system in a wide range of diseases, we inves-
tigated cQTLs as a mechanism underlying genetic associations to complex diseases 
identified by genome-wide association studies (GWAS). To this end, we identified 
individual GWAS loci that are likely to share a causal variant with a cQTL in the same 
locus using the COLOC method 25. In total we searched for colocalization with the cQTL 
and 11 immune diseases (Suppl. Tab. 5). We observed one significant colocalization in 
the FCGR locus between our cytokine signal for C. albicans hyphae induced IFN-γ and 
IL-22 and inflammatory bowel disease (IBD) (Fig. 4B) with the probability of the traits 
sharing a causal variant exceeding 0.95. Although inferring causal direction between 
these traits remains challenging, one could interpret that rs2099684 is involved in 
mediating IFN-γ and IL-22 concentrations after stimulation. Therefore, the de-regu-
lation created by rs2099684 in the production of these pro-inflammatory cytokines 
could potentially impact the risk of developing IBD. 
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Fig. 4. Associations in FCGR locus. A) Locuszoom plot showing the second most significant mv-cQTL 
effect. This effect is located in the FCGR locus and identifies a joint regulation on IL-22 and IFN-γ levels in 
response to C.albicans hyphae stimulation. Y-axis indicates the -log10 p-value of the association. X-axis 
indicates the genomic position on chromosome 1. B) Locuszoom plot showing co-localization in the FCGR 
locus between the mv-CQTL effect (top plot) and Inflammatory Bowel Disease GWAS (lower plots). Y-axis 
indicates the -log10 p-value of the association for the respective GWAS. X-axis indicates the position of 
chromosome 1.  
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Discussion

Immune response networks are highly complex and interwoven, here we show that the 
genetic regulation underlying cytokine responses shows a similar pattern. Using multi-
variate analysis, we show that accounting for the effect of another response phenotype 
can help to reveal shared genetic regulation between immune responses. These associ-
ations can be missed in single trait pairwise analysis if they are hidden due to there being 
a (pleiotropic) regulator with opposite directions of effect or due to power 9,11–13. We 
observed this pattern for the six hits that could not be observed in single trait analysis. 

Here we show that the genetic regulation underlying the ex vivo cytokine response 
to pathogens shows signs of pleiotropy. Others have recently shown a similar pattern 
for baseline cytokine concentrations circulating in blood 8. In this study it is suggested 
that pleiotropic cytokine loci are important for the regulation of hematopoietic and 
metabolic functions and that they have a particular relevance to cardiovascular disease. 
Although our overarching conclusion is shared, we do not directly observe an impact 
on cardiovascular disease. This might be explained by the fact that we study a different 
array of cytokines. In addition, we are studying the ex vivo response to pathogens, rather 
than the baseline circulating concentrations in serum, a radically different phenotype 
with likely different regulation. A large difference in sample size (N=~400, vs N=9263) 
might also limit our power to detect the effects important for metabolism and hemato-
poietic function. Increasing the power to detect genetic variation underlying cytokine 
responses might yield many more genetic associations of smaller effect size. Addition-
ally, performing ex vivo stimulation experiments in disease specific cohorts might give 
insights into the nature of response networks in these diseases, rather than evaluating 
such effects in the general population. 

One striking observation is the lack of cis-regulation on cytokine responses at a protein 
level. It has been shown that at the expression level such effects do exist both at baseline 

26,27 and after stimulation 5. The absence of cis effects might be due to the fact that the 
cis-mediated response of the six cytokines assessed (IL-6, IL-1β, TNF-α, IL-17, IL-22, 
IFN-γ) is very early in the stimulation. Taking this into account, it still seems that the 
cis regulation is not important for the total release of cytokines at a protein level and 
that it might be more important to control the speed of the response. Again our power 
is relatively limited (~400 individuals) and increased power might help to reveal such 
effects. Alternatively, the impact of genetic variants on these cytokine genes might be 
buffered by evolution. Indeed, dosage sensitive genes are known to be depleted for 
cis-eQTL signals 28. Since we were able to identify strong trans regulators of cytokine 
responses it seems trans effects are more important in regulating the total release 
of cytokines by impacting the pathways controlling the release, rather than cis-eQTL 
effects controlling the expression of the cytokine genes directly. 

It should be noted that the associations we identify do not prove a causal mechanism. 
To truly identify which genes and variants are really (pleiotropically) regulating the 
cytokine response causally a carefully considered experimental setup would be 
required. We did evaluate if there were mediation relationships between the different 
cytokines, however, absence of mediation does not guarantee that the resulting associ-
ations are then due to pleiotropy. The presented work does present a credible set of 
regulatory pathways, such as TLR1 or FCGR mediated signaling, with effects which 
were independently validated at an expression level. To prove the causality of these 
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types of effects we need to move towards reconstruction directional cytokine signaling 
networks by performing knockdowns of target genes on a genetic level. However, 
performing genetic manipulation studies in mixtures of primary cells that are relevant 
for in vivo situations remains a major hurdle. 

In conclusion, the work presented represents a small step towards accounting for the 
complexity in the regulation of immune responses and shows that by jointly modeling 
related ex vivo cytokine responses shared genetic relationships can be identified that 
are missed with single trait approaches. Future studies into immune signaling, in partic-
ular the cytokine response, should account for the complexity of immune responses 
in their study design and asses immune responses as a complex interacting network 
rather than a set of pairwise correlations. 
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Methods

Study cohort

The main analyses were performed in the 500FG cohort, which is part of the Human 
Functional Genomics Project and has been previously described 6. This cohort consists 
of 534 healthy individuals (237 males and 296 females) of Caucasian origin. Volun-
teers ranged from 18 to 75 years of age, and most (421 individuals) were 30 years or 
younger. The volunteers had BMI was within normal limits (15 to 35), and most (380 
individuals) had a BMI between 20 and 25. Of these 534 original volunteers, 45 were 
excluded because of genetic background and questionnaire results (medication usage 
and chronic disease), thus leaving 489 individuals.

Cytokine stimulation experiments

Cytokine stimulation experiments have been previously described 6. In short, PBMCs 
were extracted from blood in ~500 volunteers and subsequently stimulated using 7 
pathogens (Candida albicans conidia, Candida albicans hyphae, Staphylococcus Aureus, 
Mycobacterium Tuberculosis, Estridia Coli, Borrelia Burgdorferi, Coxiella Burnetii) and 3 
ligand based simulations (lipopolysaccharide (LPS), Pam3Cys and Phytohemagglutinin 
(PHA)) after which the response of three monocyte produced cytokines (IL-6, IL-1β 
and TNF-α) was measured by enzyme linked immunosorbent assays (ELISA) 24H after 
stimulation. The response of the three lymphocyte produced cytokines (IFN-γ, IL-17 
and IL-22) was quantified using ELISA after 7 days.

Genotyping and quality control

Exact genotyping procedures have been described previously 6. In short, Genotyping of 
individuals was performed using a SNP chip (Illumina Human Omniexpress Exome-8). 
Opticall 0.70 29 was used to perform genotype calling with samples with a call rate smaller 
than 0.99 being removed. This call set was subsequently imputed using IMPUTE2 30 
using GoNL 31 as a reference panel. After imputation, variants with Hardy-Weinberg 
equilibrium (HWE) < 5x10-7, call rate < 0.99, MACH R2 < 0.3 and a minor allele frequency 
(MAF) < 0.1 as well as multi-allelic sites were excluded yielding a dataset containing 
4,358,038 SNPs and 489 individuals. This resulting set was then pruned using a 1Mb 
window and 0.2 LD threshold using the PLINK 1.9 option --indep-pairwise after having 
the HLA region (chr6:25- 36Mb) removed. Related individuals where then identified 
using the option --genome and any relationships with a pi hat score of >0.1 removed. 
Genetic outliers were also filtered on the same set. This yielded a dataset of 441 individ-
uals used for downstream analysis. 

Statistical Methods

Data pre-treatment

Raw cytokine data (ELISA) was log2 normalized prior to performing the QTL mapping. 
NA values were removed on a case by case basis to maximize the available samples for 
each trait. Exact sample sizes are reported in Suppl. Tab. 1. Only traits with a limited 
number ties were included in the final analysis. See Supplemental Fig. 2 for histograms. 
Cytokine data was then adjusted for several main cell types (lymphocytes, monocytes, 
Tc, Bc, NK in PBMC and additionally granulocytes cells for WB) as well as age and gender 
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using a linear model. The residuals plus the mean of the original data where taken and 
used for mapping and partial correlation analysis. 

Cytokine correlations and co-expression networks

Correlations between cytokines were generated in R version 3.4.4 using ‘cor’ and ‘cor.
test’ from the stats package. Correlations were calculated on the log2 normalized 
cytokine counts using Pearson’s correlation. The cytokine correlation heatmap was 
visualized using the R package ‘corrplot’ version 0.84.

Co-expression in the Milieu Interieur dataset was calculated on the normalized expres-
sion data as reported in the paper 5 using the Pearson’s correlation implemented in ‘cor.
test’. Networks were visualized using the function ‘network_plot’ from the R package 
‘corr’ version 0.3.0.9000 and ‘corrplot’

Univariate mixed linear model

To provide an appropriate comparison with the multi trait modeling, we first mapping 
single trait cytokine QTLs using genome wide efficient mixed model analysis (GEMMA) 
version 0.98 9,10 under the univariate model using Wald test (-lm 1) and a kinship matrix 
generated on the pruned non-HLA 500FG data using GEMMA’s option -gk 1. 

Multivariate mixed linear model

QTL mapping was facilitated by GEMMA version 0.98 9,10 under the multivariate linear 
mixed model using Wald test (-lmm 1) and a kinship matrix generated on the pruned 
non-HLA 500FG data using GEMMA’s option -gk 1. Combinations of traits to jointly 
model were defined based on the tissue, the broad function of the cytokine, the stimu-
lation type or the cytokine. Exact combinations used are reported in Suppl. Tab. 1.

Partial correlations

Partial correlation were calculated on the same dataset as used for mapping using the 
R version 3.4.4 and the package ‘ppcor’ version 1.1 17 And the function ‘pcor’. Input 
was a matrix containing the cytokines for the relevant model and the genetic marker 
of interest. Correlations and the corresponding t-statistics were calculated using 
Pearson’s correlation. Exact correlations and statistics are reported in Suppl. Tab. 3. 
Partial correlation networks were visualized using the function ‘network_plot’ from the 
R package ‘corrr’. 

Mediation analysis

Mediation FDR and p-values values were calculated using Causal Inference Test ‘CIT’ as 
described by Schadt et al. 18 and implemented in the R package ‘cit’ version 2.2 . FDR 
was calculated based on 1000 random permutations of the data using the function ‘fdr.
cit’. Exact FDR values and their confidence intervals for the CIT test are reported in 
Suppl. Tab. 2 and 4. 

Overrepresentation analysis

Gene set enrichments were performed using http://webgestalt.org/ on Reactome 
pathways using an overrepresentation analysis 32.The full set of 562 genes assessed in 
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the Milieu Interieur study was used as a reference set for enrichments to avoid bias 
introduced by the platform used for quantifying expression.

Colocalization analysis

Colocalization analysis was facilitated by the R package ‘coloc’ version 2.3-1 using the 
function ‘coloc.abf’ 25. Full association summary statistics used for co-localization were 
downloaded from several publicly available resources indicated in Suppl. Tab. 5 33–43. 
The wrapper used is available at https://bitbucket.org/immunogengroup/gwas-coloco-
lization. Colocalization was considered if the PPH4 was > 0.95. 

Data availability

The data that support the findings of this study are available at https://hfgp.bbmri.nl/; 
the data have been meticulously catalogued and archived at BBMRI-NL, aiming for 
maximum reuse, by following the findability, accessibility, interoperability and reusabil-
ity (FAIR) principles. Individual-level genetic data as well as other privacy sensitive 
datasets are available upon request at http://www.humanfunctionalgenomics.org/
site/?page_id=16/. These datasets are not publicly available because they contain infor-
mation that could compromise the research participants’ privacy. The central data 
stewardship and access have been implemented with the MOLGENIS open-source 
platform for scientific data, which enables flexible data upload, management and 
querying, including sufficiently rich metadata and interfaces for machine processing 
and custom (R statistics) visualization for human processing (http://molgenis.org/).
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Suppl. Fig. 1. Cytokine-cytokine correlations show distinct clusters

Pearson correlations (upper triangle) between cytokine stimulation pairs show cluster-
ing based on the type of cellular assay, the stimulation class and broad cytokine response 
type. Lower triangle indicates the -log10 p-value of the association. p-values have been 
limited to 15 to keep the color scale visible. Any associations not passing bonferroni 
significance have been removed in the lower triangle. 

Suppl. Fig. 2. Histograms of cytokine stimulation pairs included in the study

Y-axis indicates the counts in each bin. Y-axis indicates the log2 normalized cytokine 
expression after stimulation. Log2 transformed cytokine expression has not been 
adjusted for age, gender and cell type composition.

Suppl. Tab. 1. Overview of all models evaluated in this study. The model column 
indicates the combination of cytokine stimulation pairs assessed. Exact sample sizes 
for each model are reported in the SampleSize column.

Suppl. Tab. 2. Test statistics of the casual mediation test in the cytokine data. Causal 
mediation test was performed using the R package ‘cit’. A pairing in a model was consid-
ered subject to a mediation effect if the FDR was < 0.05. Exact sample sizes for each 
test are reported in the n column. The column ‘q.cit’ indicates the permutation based 
FDR estimate. 1000 permutations were performed.

Suppl. Tab. 3. Test statistics of the partial correlation analysis. Partial correlation was 
calculated using the R package ‘ppcor’. Exact sample sizes for each test are reported 
in the n column.

Suppl. Tab. 4. Test statistics of the casual mediation test in the stimulated gene expres-
sion data in the TLR locus. Causal mediation test was performed using the R package 
‘cit’. A pairing in a model was considered subject to a mediation effect if the FDR was < 
0.05. Exact sample sizes for each test are reported in the n column. The column ‘q.cit’ 
indicates the permutation based FDR estimate. 1000 permutations were performed.

Suppl. Tab. 5. Overview of the summary statistics used for the colocalization test.
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Abstract

The immune response to pathogens varies substantially among people. While both 
genetic and non-genetic factors contribute to inter-person variation, their relative 
contributions and potential predictive power have remained largely unknown. By 
systematically correlating host factors in 534 healthy volunteers, including baseline 
immunological parameters and molecular profiles (genome, metabolome and gut 
microbiome), with cytokine-production capacity after stimulation with 20 pathogens, 
we identified distinct patterns of co-regulation. Among the 91 different cytokine–
stimulus pairs, 11 categories of host factors together explained up to 67% of inter-in-
dividual variation in cytokine production induced by stimulation. A computational 
model based on genetic data predicted the genetic component of stimulus-induced 
cytokine-production (correlation 0.28-0.89), while non-genetic factors influenced 
cytokine production as well.  
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Background

Variability in baseline immune response influences an individual’s susceptibility to 
immune-mediated diseases such as infection, autoimmune and inflammatory diseases, 
as well as their severity 1–5. Both environmental and host factors are responsible for this 
variation in immune response 6–9, which makes deciphering their interaction crucial for 
understanding their influence on susceptibility and instrumental for building quanti-
tative predictors of disease. The Human Functional Genomics Project (HFGP) aims to 
identify the factors responsible for variability in immune response in the general popula-
tion and upon perturbations, such as disease state. Within the HFGP, the 500 Human 
Functional Genomics (500FG) consortium has collected extensive molecular and 
phenotypic measurements from approximately 500 healthy volunteers of Western-Eu-
ropean descent. Earlier 500FG studies assessed the separate impacts of host-related 
factors, genetic variation or microbiome on cytokine-production capacity 7–9. However, 
an integrated understanding of the effect of these factors and of additional host-re-
lated factors, such as endocrine hormones, circulating metabolites, platelet-mediated 
effects or transcriptional profiles of immune cells on stimulus induced cytokine levels 
has been lacking. 

Here, we used a comprehensive systems biology approach to integrate the large-
scale genomic, metagenomic and metabolomic data available within the 500FG 
consortium with the immune cell composition, hormone levels and platelet activation 
profiles of each person analyzed. This allowed us to describe the baseline heteroge-
neity of immunological parameters, identify inter-correlated immune components, 
infer functional connections within the immune system and build predictive models 
of cytokine-production capacity upon stimulation. Using transcriptome data from a 
subset of samples, we showed that expression of genes after stimulation explained 
the variation in cytokine-production better than baseline expression. By integrating 
multi-omics layers, we showed that cytokine production was regulated by multiple 
genetic and non-genetic host factors, that production of cytokines after stimulation 
could be moderately predicted using multiple baseline profiles and that inter-individual 
variation in immune responses correlated with an individual’s genetic risk for (auto)
immune disease.  
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Results 

Baseline immune parameters are inter-correlated

To understand inter-individual variation in human immune response, we previously 
generated a database of immunological measurements, multi-omics data (cytokine 
response profiles, genetics, gene expression, immune cell frequencies, immune 
modulators, immunoglobulins, hormone levels, blood platelets, circulating metabolites, 
gut microbiome composition) and classical phenotypes (age, gender and BMI) from 
volunteers in the 500FG cohort (Suppl. Fig. 1A,B and Suppl. Tab. 1). Cytokine produc-
tion capacity of individuals was assessed using previously generated ELISA profiles on 
the production of 6 cytokines (IL-1β, IL-17, IL-22, IL-6, TNF-α and IFN-γ), by periph-
eral blood mono-nuclear cells (PBMC), whole blood and PBMC derived macrophages 
derived from blood after stimulation with 20 pathogens (Suppl. Tab. 2) 7–9. IL-1β, IL-6 
and TNF-α levels were measured 24 hours after stimulation and IL-22, IL-17 and IFN-γ 
seven days after stimulation in PBMC and PBMC derived macrophages. In whole blood 
IL-1β, IL-6 and TNF-α levels were measured 48 hours after stimulation. 

To map the relationships between these different molecular and immune parameters, 
we first performed clustering analysis of all immunological measurements besides 
cytokine production. To reduce the dimensionality of the dataset, the first ten principal 
components (PCs), covering >75% of variance in each dataset, were individually 
extracted from the cell count, metabolite and microbiome datasets. These PCs were 
then combined with the measurements of immune modulators (IL-18, IL-18BP, resistin, 
leptin, adiponectin, α-1 antitripsyn), immunoglobulins (IgG1-4, IgA, IgM), platelet 
activation profiles (p-selectin expression, fibrinogen binding, coagulation markers, 
β-Thromboglobulin) and hormone levels (androsteendion, cortisol, 11 deoxy cortisol, 
17 hydroxy progesterone, progesterone, testosterone, 25 hydroxy vitamin D3, TSH, 
T4 ) (Suppl. Tab. 1). Subsequent unsupervised clustering analysis revealed several 
clusters (Fig. 1) that were consistent with previous observations, validating the current 
correlations. As such, we observed a negative correlation between the amount of the 
hormone leptin and the levels of progesterone and testosterone in peripheral blood 
(Fig. 1), consistent with an inhibitory effect of leptin on progesterone and on testoster-
one in humans10–13. We also observed a negative correlation of expression of p-selec-
tin (whole blood flow cytometry) and fibrinogen activation profiles in peripheral blood 
(Fig. 1), consistent with evidence that they are under shared control 14,15. Similarly, the 
hormone levels of 17 hydroxy-progesterone and testosterone were positively correlat-
ed with progesterone, androsteendion and 11 deoxy cortisol levels in peripheral blood 
(Fig. 1), consistent with these molecules having a common synthesis pathways. Finally, 
we observed the cluster of α1-antitrypsin with adiponectin and the association of 2 
immune cell frequency PC’s with total platelet count, as well as a negative association 
between IL-18 and IgM abundance (Fig. 1). These results show that baseline immune 
parameters in healthy individuals are correlated and likely to be influenced by co-reg-
ulatory pathways.

Baseline molecular profiles show substantial variation 

Next, we examined the baseline (unstimulated) inter-individual variation in the 
immunological and molecular profiles described above and found a wide range of 
variation for the majority of immunological parameters analyzed (Suppl. Fig. 1C-E). 
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Because some variation is known to result from differences in age, gender and season 
9,16–19, we corrected for these effects, when applicable. Among the immune-cell popula-
tions with high variability, effector T cell subpopulations showed the largest inter-indi-
vidual variation compared to the other immune cell subpopulations (Suppl. Fig. 1C), in 
agreement with previous observations 6. Baseline transcript abundance in whole blood 
also showed substantial inter-individual variation (Suppl. Fig. 1D). The top 75 most-vari-
able transcripts were significantly enriched in 23 innate immune gene ontology (GO) 
terms (p<0.05 using an online tool 20) (Suppl. Tab. 3), suggesting that the innate 
immune response was a major contributor to variations in transcript abundance. This 
analysis demonstrates that the baseline molecular profiles vary substantially between 
healthy individuals.

Fig. 1. Analysis of baseline immune parameters and molecular profiling shows baseline param-
eters are inter-correlated. Spearman’s Rank correlations between both immune traits and baseline 
molecular profiles show that they are inter-correlated (n = 282). For the cell count and omics datasets, 
the first 10 principal components were extracted and used for calculating the correlation. Colors beside 
the cluster dendrogram indicate the type of measurements. Every sample represents an individual.
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Genetics contributes the most to immune variation

To address to what extent responses to a perturbation were affected by the pre-exist-
ing immune status, we first assessed the effect of host factors at baseline on cytokine 
production. Using a multivariate linear model (MVLM) to examine the percent of 
variance explained by these factors 21, we found that genetic variation, as measured 
by single nucleotide polymorphisms (SNP), collectively explained most of the variation 
in stimulated cytokine production (avg. adj. R2 = 0.18) (Fig. 2A). In contrast, the gut 
microbiome, immune-cell counts, circulating metabolites and seasons displayed only 
moderate effects (avg. adj. R2 = 0.061, 0.057, 0.047 and 0.041, respectively) on most 
cytokine-stimulation pairs (Fig. 2A), while the concentration of circulating immuno-
globulins, inflammatory mediators or hormones, and platelet activation (whole blood 
flow cytometry) generally had negligible effects (Fig. 2A,B). To evaluate the signifi-
cance of the estimates of variation explained by genetics (VG), we performed 1000 
permutations of sample labels in the cytokine data and applied the analysis pipeline 
on the permuted data to obtain the empirical distribution of the estimates of VG (null 
distribution). We subsequently compared the estimate of VG from the 500FG data with 
the estimate of VG from the permuted data. In total the estimates of VG in the 500FG 
were significant in 59 of 91 cases (p<0.05, Suppl. Tab. 4). For example, we found that 
the cytokine stimulation pairs explained the best by genetics (Poly I:C and C. Burnetti 
induced IL-6 levels in PBMC) showed significance. 

Furthermore, we assessed several specific baseline categories that show cytokine- or 
pathogen-specificity in explaining the inter-individual variation (Fig. 2B). We observed 
that the abundance of circulating metabolites, including acetate and HDL cholester-
ol, showed a moderate negative effect on influenza-stimulated cytokine production 
by PBMC (avg. adjusted R2 = 0.19) (Fig. 2B), suggesting that these factors modulate 
susceptibility to viral infections. The production of the lymphocyte-derived cytokines 
IL-17, IL-22 and IFN-γ by PBMC in response to Aspergillus fumigatus (A. fumigatus) 
conidia was driven more by non-genetic host factors (cell counts, platelet amounts, 
circulating metabolites, gut microbiome composition and season) than by genetic 
factors (Fig. 2B), which was in contrast to the genetic-component-driven cytokine 
production in response to all other stimulations used (Fig. 2B). More specifically, 
individuals with high concentration of HDL cholesterol or α1- antitrypsin in the circula-
tion showed lower cytokine production in response to A. fumigatus. To validate the link 
between HDL cholesterol and cytokine production, we cultured PBMCs collected from 
6 healthy volunteers in medium containing lipoprotein-deficient plasma (LPDP) and 
LPDP+HDL cholesterol and measured cytokine production for TNF-α, IL-1B and IL-6 
in response to A. fumigatus conidia after 24 hours. We observed lower production of 
all the cytokines assessed in PBMCs cultured with HDL compared to the LPDP control 
(Suppl. Fig. 2A), indicating that HDL cholesterol modulates immune responses to A. 
fumigatus conidia.

Next, we compared the stimulus-dependent cytokine production data from the three 
different types of stimulation assays (PBMC, whole blood and PBMC derived macro-
phages) from the same individuals. We found that season, platelet-activation profiles, 
concentration of immune modulators, and age had a higher impact on stimulus-de-
pendent cytokine production in PBMCs than in macrophages (Fig. 2A,B). In contrast, 
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stimulus-dependent cytokine production correlated less with baseline metabolite 
levels in PBMC and whole blood then it did in macrophages (Fig. 2A,B). 

This analysis shows that genetics contribute substantially to the observed inter-individ-
ual variation in cytokine level upon stimulation, and the non-genetic molecular profiles 
and immune parameters contribute as well.

Baseline molecules associate differentially to cytokine response

We next assessed which baseline immune and molecular components contribute 
most to variation in stimulus-induced cytokine production. We extracted the top five 
immune modulators (i.e. α1-antitrypsin, IL-18BP, adiponecting, resistin and leptin) and 
metabolites (i.e. the total cholesterol level in HDL3, glutamine, free cholesterol and α-1 
acid glycoprotein) in the analysis of explained variance. They are the molecules that 
show strong association with most of the cytokine measurements in the analysis of 
explained variance (Fig. 3, Suppl. Fig. 3). For example, circulating IL-18BP concen-
trations negatively correlate with lymphocyte-derived cytokine production (IL-17, 
IL-22, and IFN-γ) by PBMC after stimulation, but this pattern is not observed for the 
monocyte-derived cytokine production (IL-1β, IL-6, and TNF-α) by PBMC after stimula-
tion (Fig. 3). IL-18BP is an inhibitor of IL-18 22 and IL-18 induces cytokine production in 
natural killer (NK) cells and T helper cells 23. The known function of IL-18BP in vitro and the 
observed correlations suggested IL-18BP could potentially be a biomarker for reduced 
T cell activity in vivo. To validate the divergent effect between IL-18BP concentrations 
and cytokine production by lymphocytes, we tested for this association in an indepen-
dent cohort of 300 volunteers of Western-European descent with BMI >25 (300OB), 
for which we have obtained cytokine production profiles (ELISA) after stimulation of 
PBMC using the same pathogens and protocols as used in 500FG. In addition, circu-
lating baseline (unstimulated) measurements for IL-18BP were determined. Because 
this cohort is comprised of mainly obese (BMI >25) and older (age >55) individuals, we 
limited the analysis to a subset of (n=51) 300-OB volunteers with BMI <28, to bring this 
distribution more in line with the 500FG cohort. We tested for association (Spearman 
correlation) between the cytokine production profiles after stimulation and circulating 
IL-18BP levels (Suppl. Fig. 2B). We could replicate the negative effect of IL-18BP on 
lymphocyte cytokines.

The short chain fatty acid (SCFA) acetate showed the strongest correlation (negative 
correlation between -0.25 and -0.20) with influenza-induced monocyte–derived IL-1β, 
IL-6 and TNF-α cytokine production capacity (Fig. 3). Cytokine response to bacterial 
and fungal stimulations showed either positive or negative effects for monocyte-de-
rived cytokine production capacity. In contrast, lymphocyte-derived IL-17, IL-22 and 
IFN-γ cytokine production showed consistently positive effects in response to most of 
the bacterial and fungal stimulations. This agrees with previous findings that SCFAs, 
including acetate, influence cytokine production capacity 24–26. The negative correlation 
between acetate and stimulus-induced production of IL-1β, IL-6 and TNF-α was also 
observed when assessed in PBMC derived macrophages, but not in whole blood (Fig. 3). 
To further investigate the association between acetate and stimulus-induced cytokine 
production, we cultured PBMC derived macrophages obtained from whole blood of 6 
healthy Dutch volunteers in vitro in the presence of acetate in the medium, stimulated 
them with MTB, C. albicans, S. aureus and E. coli, and assessed the cytokine production 
of TNF-α and IL-6 after 24 hours. We observed an association between acetate and 
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Fig. 2. Contribution of 
baseline immune parameters 
and multi-omics to cytokine 
variation. A) Percentage of 
variation in stimulated cytokine 
production explained by each 
category of measurements. 
The distribution indicates the 
adjusted R2 of a set multivariate 
linear models (MVLM) repre-
senting cytokine stimulation 
pairs from PBMC (n=67 models), 
whole blood (n=16 models) 
and PBMC derived macro-
phages (n=8 models). Each dot 
represents the adjusted R2 of 
a MVLM for a specific cytokine 
stimulation pair. B) Contribution 
of each category to inter-indi-
vidual cytokine variation. X-axis 
denotes the adjusted R2 values 
for the MVLMs. Bars indicate 
the adjusted R2 estimated on 
the full dataset. Error bars 
indicate the standard deviation 
in adjusted R2 of 10 MVLMs 
trained on a random subset of 
samples from the full data (90% 
of all samples). Y-axis denotes 
the cytokine-stimulation pairs. 
Colors indicate different stimu-
lations applied in the exper-
iments. Sample sizes differ 
between the different catego-
ries with the platelet, immune 
modulator, immunoglobulin and 
classical phenotypes having n = 
489, the immune cell counts n 
= 472, the metabolites n = 377, 
microbial pathways n = 384, 
microbial taxonomy n = 411, 
hormones n = 486 and SNPs n 
= 392 samples. Every sample 
represents an individual. 
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Fig. 3. Examples of baseline molecules which associate differentially to cytokine responses. IL-18BP, 
a circulating inhibitor of IL-18, displays negative Spearman correlations with general cytokine production 
capacity of lymphocytes after correcting for age and gender effects (n=489). The metabolite acetate 
positively correlates with stimulated cytokine production in response to influenza and displays a mostly 
positive effect on lymphocyte-derived cytokines after correcting for age and gender effects (n=377). Each 
sample represents an individual.
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cytokine production in macrophages where the production of TNF-α and IL-6 in PBMC 
derived macrophages upon two of the stimuli (E. coli and S. aureus) were lower in the 
presence of acetate, but this effect was not observed for C. albicans (Suppl. Fig. 2C). 

Glutamine is known to negatively regulate IL-6 production in human intestinal mucosa 
27 and decreases IL-6, TNF-α and IL-1β production in biopsies from Crohn’s disease 
patients 28. We observed that glutamine, consistently correlated negatively with all 
monocyte- and lymphocyte-derived cytokines assessed after stimulation (Suppl. Fig. 
3), suggesting it could be used as an anti-inflammatory biomarker. These results show 
that baseline molecules are differentially associated with cytokine production between 
stimuli, as well as between cell types. 

Host factors explain up to 67% variation in cytokine level

To determine the collective contribution of genetic variation and immune components 
at baseline to cytokine production in response to pathogens, a multivariate linear model 
was used. We constructed a MVLM for each cytokine stimulation pair where we added 
relevant features from each category of dataset sequentially and subsequently evaluated 
the increase in variance explained by each added dataset. This integrated approach 
indicated that a combination of genetic, baseline molecular profiles and immune 
parameters can explain up to 67% of the inter-individual variation in cytokine produc-
tion capacity (Fig. 4). Because cytokine production is a highly complex phenotype, and 
many factors that influence it are associated to each other, we tested if changing the 
order in which specific datasets were added into the models generated different results. 
When we compared MVLM containing all datasets, to the partial MVLMs, in which each 
of the 10 datasets were omitted once, we found similar estimates of explained variation 
as in the sequential analysis (Suppl. Fig. 4). For example, regardless of the order the 
factors were added, genetics remained the largest individual contributor to explaining 
inter-individual variation (Suppl. Fig. 4). This indicated that the order in which various 
factors were added into the model did not influence the results to a large extent.

Gene expression correlates with cytokine response

Next we integrated baseline transcript abundance with stimulus-induced cytokine 
expression. We made use of whole genome gene expression profiles obtained using 
RNA-Seq both before and after stimulation of peripheral blood with C. albicans conidia 
from a subset of volunteers (n = 64) from an independent Dutch cohort (Genome of 
The Netherlands cohort 29). We used measurements of the production of TNF-α, IL-6 
and IL-1β by PBMC upon stimulation with C. albicans conidia after 24 hours in the same 
individuals. We then applied the same MVLM based analysis approach used earlier to 
obtain estimates of how much inter-individual variation in cytokine production capacity 
could be explained by gene expression. We observed that baseline gene expression 
could explain a substantial portion of the inter-individual variation in production of 
TNF-α, IL-6 and IL-1β (Fig. 5). Production of TNF-α, IL-6 and IL-1β by PBMC stimulated 
with C. albicans conidia showed significantly higher correlations with gene expression 
induced by stimulation (adj. R2 reaching up to 0.75) than with baseline gene expression 
(Wilcox test, p=1.08x10-5, p=8.93x10-3, p=1.08x10-5, for TNF-α, IL-6 and IL-1β respec-
tively). Using GO enrichment (online tool20), we found that the genes selected during 
modelling (Suppl. Tab. 5) showed enrichment for several GO terms related to immune 
responses. For example the genes associated to C.albicans induced TNF-α levels were 
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Fig. 4. Cumulative contri-
bution of multiple baseline 
traits to the variation in 
stimulated cytokine produc-
tion. Adjusted R2 values (x-axis) 
obtained from multivariate linear 
models (MVLM) increase when 
measurements from 10 catego-
ries are added sequentially. Each 
colored bar represents how 
much additional variation (on 
top of the preceding colors) the 
MVLM for that category explains. 
The order in which features from 
a dataset were added is from left 
to right. The combined dataset 
consisted of 266 samples. Each 
sample represents an individ-
ual. Gene expression was not 
included in this analysis because 
of the relatively small sample 
size of the RNA-seq experiment 
after overlapping with the other 
datasets (n = 69). X-axis denotes 
adjusted R2 values. Y-axis 
denotes different cytokine-stim-
ulation pairs. 0.0 0.2 0.4 0.6
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nominally enriched for negative regulation of mast cell cytokine production (p=1. 
28x10-3), negative regulation of isotype switching to IgE isotypes (p=1.71x10-3) and 
negative regulation of T helper 2 cell differentiation (p=2.15x10-3). These results imply 
a strong correlation between gene expression and functional responses upon stimula-
tion by pathogens, and thus they present gene expression as a target for future studies 
into the prediction of immune responses.

Immune disease risk is associated with stimulated cytokine level

Many complex diseases appear to result from multiple genetic variants exerting small 
effects on disease risk 30, which implies that complex diseases conform closely to a 
classical polygenic model. Using publicly available summary statistics from GWAS 
we calculated polygenic risk scores (PRS) for 15 immune mediated diseases (Suppl. 
Tab. 6) for all the volunteers in the 500FG cohort as a measure of relative disease 
risk between individuals. We then tested whether volunteers with a higher risk for an 
immune mediated disease displayed higher or lower stimulus-induced cytokine produc-
tion compared to the lower risk individuals. For this analysis, we focused those immune 
mediated diseases that showed both a significant change (two tailed, two sample 
t-test, Bonferroni p<0.05, Suppl. Tab. 7) compared to a permutation-based null distri-
bution, and a consistent pattern at different thresholds used for PRS calculation (Fig. 
6A-C, Suppl. Fig. 5A,B). We found that volunteers with higher risk for inflammatory 
bowel disease, multiple sclerosis, psoriasis and ulcerative colitis had significantly higher 
(p<0.05) stimulus-induced production of lymphocyte-derived (IL-17, IL-22 and IFN-γ) 

Fig. 5. Integrating gene expression profiles and cytokine production in response to C. albicans. 
Percentage of inter-individual variation (y-axis, adjusted R2) in stimulated cytokine level of TNF-α, IL-6 and 
IL-1β explained by gene expression measured at baseline and upon C. albicans stimulation (denoted by CA) 
is significantly (Wilcox rank sum test, * p<0.05, ** p<0.01, *** p<0.001) higher in the multivariate linear 
models (MVLM) fitted on stimulated gene expression data. Exact p-values of the Wilcox rank sum test 
are as follows: IL-1β (p=1.08x10-5), TNF-α (p=8.93x10-4) and IL-6 (p=1.08x10-5). The distribution shows 
adjusted R2 (y-axis) of 10 MVLMs fitted after re-sampling using a random subset of samples (90% of all 
samples each time). Each dot represents the adjusted R2 of a MVLM. The dataset consisted of 64 samples 
from the GoNL cohort. Each sample represents an individual.
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compared to monocyte-derived (TNF-α, IL-6 and IL-1β cytokines) (Fig. 6). In contrast, 
higher risk for type 1 diabetes (T1D) and rheumatoid arthritis was associated with 
increased stimulus-induced production of monocyte-derived (TNF-α, IL-6 and IL-1β)
compared to lymphocyte-derived cytokines (Fig. 6C). Higher risk for Crohn’s disease, 
eczema and type 2 diabetes was associated with a significant increase (compared to 
their respective null distributions, p<0.05) in both monocyte- and lymphocyte-derived 
cytokines compared to the permutation-based null distribution, with no significant 
differences between the monocyte and lymphocyte derived groups (Fig. 6B). These 
observations suggest that the genetic basis for immune-mediated diseases could 
influence the functionality of the immune system even in otherwise healthy individuals. 
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Fig. 6. Stimulated cytokine production correlates with genetic risk score for autoimmune diseases. 
A) Example individuals with high genetic risk for (auto)immune disease tend to be high producers of 
cytokines in response to pathogens. * indicates the significance of the Wilcox rank sum test between low- 
and high-risk groups for T1D (p=0.011). Low- and high-risk groups (x-axis) were selected by taking the 
top and bottom quantile of the PRS for T1D. Y-axis indicates the IL-6 level after stimulation of PBMCs with 
influenza. B) Distribution mean correlations between T1D risk in monocyte-derived cytokines (left panel) 
and lymphocyte cytokines (right panel) for 1000 permutations. The measured estimate is indicated by the 
red arrow. T1D shows significance for monocyte derived cytokines (left) but not for the lymphocyte derived 
cytokines (right). C) Distribution of Spearman correlation coefficients between stimulated cytokine 
production and genetic risk score for immune disease in 430 individuals, shown for PBMC. Genetic risk 
scores calculated based on genome-wide association studies for different diseases. Significant differences 
in mean correlation between the lymphocyte- and monocyte-derived cytokines are shown by Wilcox rank 
sum test (* p<0.05, ** p<0.01, *** p<0.001). Exact p-values are as follows Crohn’s disease p=7.28x10-1, 
eczema p=2.55x10-1, inflammatory bowel disease p=9.34x10-6, multiple sclerosis p=4.85x10-11, psoriasis 
p=1.40x10-4, rheumatoid arthritis p=1.41x10-2, type 1 diabetes p=1.00x10-5, type 2 diabetes p=1.65x10-1, 
ulcerative colitis p=1.34x10-5. 
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Stimulated cytokine level predicted by genetics

Finally, we integrated both genetics and other molecular features to construct MVLMs 
to predict each cytokine stimulation pair in PBMC, whole blood and macrophages. To 
achieve the best prediction of ex vivo stimulus-induced cytokine production, we tested 
several linear prediction methods (Elastic Net, RR-BLUP and PLS) and compared them 
using both genetic and non-genetic factors to train the MVLMs for each cytokine stimu-
lation pair. Predictive performance was quantified by Spearman’s correlation between 
the measured and the predicted stimulus-induced cytokine production in multiple 
randomly selected subsets of the volunteers from 500FG. While the prediction perfor-
mances of the different methods are similar (Suppl. Fig. 6A-C), Elastic Net marginally 
outperformed the others, so we used it for subsequent analyses. 

We first tested if SNP data could predict cytokine production. Among the 91 stimula-
tion-cytokine pairs, the correlations between predicted and measured stimulus-induced 
cytokine production were, on average, 0.69 (range 0.28-0.89) (Fig. 7A). Inclusion of the 
baseline immune parameters and multi-omics data significantly increased the predic-
tive power and stability of the model (two tailed student t-test, p=1.36x10-9, t-statis-
tic=6.09, degrees of freedom = 1792) and most predictions for cytokine production 
increased to, on average, 0.72 (range 0.35-0.90) (Fig. 7B). Additional inclusion of the 
gene expression data from the RNA-seq analysis decreased the predictive power (avg. 
0.60, range 0-1) (Suppl. Fig. 6D), most likely due to the reduced number of samples 
for which both RNA-seq and the other factors were available (n = 69). 

We then tested the predictive capabilities of the Elastic net trained MVLMs using 
only SNPs as input and applying it to independent subset of 500FG individuals were 
new cytokine stimulation experiments were performed (50FG). We found prediction 
accuracies up to 0.56 for some cytokine stimulation pairs (Fig. 8), although the MVLMs 
performed poorly for most stimulations. Among the best-performing stimulus-cyto-
kine pairs, C .burnetti stimulated IL-1β and Poly I:C-stimulated IL-6 gave prediction 
accuracies of on average 0.56 and 0.46 respectively (Fig. 8). Because both pathways 
are known to have a large genetic component 31 this indicated that the MVLMs could 
predict cytokine production for stimulus-induced cytokines whose mechanism of 
induction are primarily driven by genetics. By applying MVLMs to genetics data, we 
were able to predict the cytokine production upon stimulation, with varying degrees 
of accuracy.  
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Left: Fig. 7. Cytokine production in response 
to pathogens can be predicted using genetics 
and baseline immune profiles. Spearman 
correlation between predicted and measured 
cytokine levels (y-axis) are shown for each of the 
10 multivariate linear models from cross valida-
tion for all available cytokine stimulation pairs. 
Cytokine production in response to pathogens 
can be predicted using SNPs (n = 392 individ-
uals). Prediction accuracy increases when 
baseline immune parameters and molecular 
profiles (immune cell frequencies, immune 
modulators, immunoglobulins, hormone levels, 
blood platelets, circulating metabolites, gut 
microbiome composition) are added to the 
model (n = 353 individuals). 
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Right: Fig. 8. Prediction using the genetic 
model in an independent dataset shows some 
cytokine stimulation pairs can be predicted 
successfully. Spearman correlations between 
predicted cytokine level by the multivariate 
linear models (MVLM) built using genetics (n = 
336) and the measured values in an indepen-
dent set of stimulation experiments (n = 56). 
The boxplots show the variation in Spearman 
correlations from each of the 10 MVLMs predic-
tions from the cross validation strategy.
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Discussion

In this study we assessed the combined contribution of genetic and non-genet-
ic factors to the inter-individual variation in cytokine production in response to 
pathogens by examining the cytokine production of immune cells following stimulation 
with 20 different pathogens or TLR ligands ex vivo in PBMC, whole blood and PBMC 
derived macrophages. This analysis identified new modulators of cytokine production, 
including circulating inflammatory mediators and metabolites. We found that volun-
teers with increased genetic risk for immune mediated diseases were more likely to be 
high responders in terms of stimulus-induced cytokine production. Finally, we trained 
MVLMs that could predict human stimulus-induced cytokine production for Poly I:C 
induced IL-6 and C. burnetti IL-1β levels in PBMC using only the genetic profiles or a 
combination of genetic and other molecular profiles. 

A recent study on the heritability of immune phenotypes in 210 twins suggested that 
variations in circulating cytokine concentrations are mostly driven by non-heritable 
influences 32. Although we observed here that genetics was the largest single contrib-
utor to inter-individual variation (avg. adj. R2 = 0.18), this still leaves room for the 
majority of the variation to be explained by non-genetic influences. Any differences we 
observed in estimates of heritability are likely due to differences in the experimental 
design between the two studies. As such, we assessed cytokine profiles upon stimula-
tion ex vivo, whereas the above study 32 measured baseline circulating concentrations 
in vivo. This strongly suggests that it is the response to pathogens during infection that 
is under stronger genetic pressure rather than the background level of mediators in the 
circulation. Our study thus agrees with the idea that infections have a strong selective 
impact on the genetic control of immune responses 33–40. 

The present study has potentially important implications for our understanding of the 
human immune response. We found out that acetate, a circulating metabolite, was 
associated with changes in stimulus-induced cytokine production and especially in the 
modulation of Th1 and Th17 responses. SCFA such as acetate, propionate and succinate 
are released by the gut microbiome and current literature suggests that SCFA have 
important immunomodulatory properties 24–27. We show here that acetate has similar 
effects in humans in vivo. It appears important to further investigate the broader 
impact of SCFA and identify which microbiome profiles modify their concentration in 
the circulation. We found a strong inhibitory effect of acetate on influenza-stimulated 
cytokine production, a phenomenon that deserves further scrutiny. Another important 
metabolic pathway that strongly influenced cytokine responses was the cholester-
ol and lipoprotein synthesis pathway. Cholesterol pathways have been described to 
have important immune-modulating effects, with the levels of cholesterol sulfate, a 
derivative of membrane cholesterol, shown to influence immune processes such as 
TCR signalling and thymic selection 41. Here we showed that HDL cholesterol negative-
ly impacted influenza and Aspergillus-stimulated cytokine production, possibly with 
important effects on the pathophysiology of these infections. 

The ability to calculate prediction scores for specific immune mediated diseases and 
to link them to cytokine production shows that certain stimulus-induced cytokine 
profiles may contribute to particular diseases, e.g. the capacity to release high amounts 
of monocyte-derived cytokines in T1D. Although we acknowledge that our power to 
detect these smaller associations is relatively limited, our approach can be used to 
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link any given phenotype to disease scores when individual-level data is available. This 
offers the opportunity to identify immune pathways important in disease, which may 
represent new therapeutic targets.

A second limitation of the 500FG cohort is that it contains a higher proportion of young 
people than the general population 9, which could introduce age bias into the MVLM’s 
predictions. While we acknowledge that the performance of the MVLMs prediction may 
vary in a population with a different range in age, BMI or ancestry, our study represents 
a proof-of-concept that stimulus-induced cytokine production can be moderately 
predicted. Future studies in larger general population cohorts with greater ranges of 
age and ethnicity will contribute to the generation of models with improved predictive 
potential for a general population. Future studies should also aim to extend the current 
analysis, which was limited to common SNP polymorphisms (MAF >0.1), to include rare 
variants and mutations, a broadening of scope likely to further increase the observed 
impact of genetics on cytokine production upon stimulation. 

In conclusion, we present the most comprehensive assessment to date of the host 
factors that influence cytokine production. We show that genetics was a major contrib-
utor to the inter-individual variation in cytokine production upon pathogen stimulation. 
However, other non-genetic factors also influenced cytokine production in response to 
most stimuli, including gut microbiome composition, immune cell numbers in circula-
tion and circulating metabolite concentrations. Individuals with increased genetic risk 
for a given immune disease tended to have increased cytokine production, and stimu-
lus-induced cytokine production could be predicted for Poly I:C induced IL-6 and C. 
burnetti IL-1β levels. This study provides the fundamentals for predicting components 
of cytokine production based on genetics and baseline host factor profiles, paving the 
way towards personalized immune-based therapies. 



154

Methods

Study cohort. 

The main analyses were performed in the 500FG cohort, which is part of the Human 
Functional Genomics Project. This cohort consists of 534 healthy individuals (237 males 
and 296 females) of Caucasian origin. Volunteers range from 18 to 75 years of age, with 
the majority (421 individuals) being 30 years or younger (Suppl. Fig. 1A). BMI is within 
normal limits (15 to 35) with the majority (380 individuals) having a BMI between 20 
and 25 (Suppl. Fig. 1B). Of these 534 original volunteers, 45 were excluded based 
on genetic background and questionnaire results (medication usage, chronic disease) 
leaving 489 individuals.

Replication cohort. 

Validation experiments were performed in the 300-OB cohort. This cohort consists of 
~300 Dutch individuals. All individuals had a BMI >25, with an average BMI of 31, and 
range in age from 55 to 80 years, with an average age of 67 years. Validations were 
performed in a subset of the 300-OB cohort with an BMI <28 (N=55). Circulating 
metabolites and mediators as well as stimulated cytokine levels were measured in the 
same way as in 500FG.

Experimental procedures. 

The experimental procedures used to measure levels of cytokines, modulators, 
immunoglobulins and hormones have been described previously 9. Genotyping, metag-
enomic sequencing of the gut microbiome, FACS sorting of PBMCs and determination 
of platelet activation profiles have also been described previously 7,8,42. We selected a 
representative subset of 89 samples from the 500FG cohort for RNASeq (balanced 
for age and sex to match the original distribution in the cohort). These samples were 
processed for sequencing using the Illumina TruSeq version 2 library preparation kit. 
Paired-end sequencing of 2×50-bp reads was performed using the Illumina HiSeq 
2000 platform. The quality of the raw reads was checked using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Read alignment was performed 
using STAR 2.3.0 43, and aligned reads sorted using SAMTools. Gene level quantification 
of reads was done using HTSeq44. Circulating metabolites were measured and analysed 
using the BrainShake Biomarker Analysis Platform that is based on nuclear magnetic 
resonance (NMR) spectroscopy (BrainShake, Finland).
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Statistical methods

Data pre-filtering. 

After pre-processing, the gene expression, SNP, metabolite and microbiome datasets 
were filtered to remove any non-significantly-associated features. This was done 
to increase the efficiency of downstream analysis. The gene expression metabolite 
and microbiome datasets were correlated to all of the cytokine measurements, and 
all features showing a Spearman correlation with a Benjamini-Hochberg adjusted p 
<0.05 to at least one cytokine were kept. This resulted in a dataset of 4,499 genes, 
205 metabolites, 509 microbial pathways and 162 microbial taxonomies. The genetic 
variants were filtered using previously generated cytokine QTL profiles 7 by setting 
the p-value cut-off at various thresholds depending on the application. To calculate 
the variance explained by genetics, a p-value threshold of p <5×10-6 was chosen. For 
prediction using the Elastic Net model, various thresholds were evaluated after which 
all SNPs with a p <5×10-5 were included in the analysis. 

Estimation of explained variance.

The estimation of variance explained by each of the data levels on the different stimu-
lated cytokine production profiles was performed by applying a correlation-based 
feature selection approach. In this approach, we built a model for each stimulated 
cytokine measurement in which only features associated to this measurement are 
included in the model. We select these features by first regressing out the effects of age 
and gender, then associating the features in a data level to the current cytokine stimu-
lation pair. If a feature showed a significant association (Spearman p-value <0.05), the 
feature was included in the set of potential predictors. Once all the associations had been 
computed, the set of potential predictors was correlated to itself to identify collinearity 
among this predictor set. If features within this predictor set showed an association 
(Spearman correlation >0.4), the feature which showed the least association (based 
on the correlation p-values) to the cytokine stimulation pair is removed. This yielded a 
unique set of predictors for every cytokine stimulation pair, which was then used to fit 
a multivariate linear model to estimate the variance explained by these features for that 
cytokine stimulation pair. To account for the inflation that adding predictors has on the 
explained variation, the adjusted R2 was taken as the measure of explained variance.

Permutation of cytokine GWAS. 

The baseline cytokine GWAS was performed as described previously 7. We randomly 
permuted the cytokine and covariate datasets 1000 times then ran the GWAS using 
these datasets to obtain 1000 random profiles for each cytokine stimulation pair. For 
each run we obtained the QTL profile and estimated the explained variance using 
the permuted cytokine and covariate dataset and the pipeline described above. This 
yielded a distribution of 1000 estimates of explained variance for each cytokine stimu-
lation pair. A measured estimate was considered significant if it was in the top 5% of the 
permuted distribution of estimates for that cytokine stimulation pair. 

Estimation of age and gender effects.

Age and gender effects on cytokine production were assessed by fitting univariate 
linear models for each cytokine stimulation pair with age and gender as the indepen-
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dent variables, respectively. The R2 was taken as the measure of explained variation of 
these models. 

Estimation of seasonal effect.

The effect of season on stimulated cytokine production was assessed using a linear 
combination of sine and cosine terms with the same period (equation 1) as described 
by ter Horst et al.9: 

Where y represents the response (cytokine level), β the estimated intercept, α the 
estimated predictor effect, x the day of the year the sample was taken in, and e the 
residual effect. 

Estimation of cumulative explained variance.

To assess the proportion of variance that can be explained by all levels cumulatively, 
individual levels were added to a multivariate linear model one by one, and the total 
model adjusted R2 calculated for each step. If adding a level showed an increase in the 
total adjusted R2 of the model, this value was extracted. To assess the contribution of 
each level conditional upon the others, the full model was fit first. Subsequently several 
reduced models were fit where one data level was missing. The adjusted R2 for this 
full model was then compared against the model with the missing level. The difference 
between the reduced model and the full model was taken as a measure of the variance 
explained by that level when accounting for the effects of the other levels.

Cytokine level prediction.

Our objectives were to investigate whether genetic variants can reveal predictive 
insights into the cytokine production upon stimulation and whether baseline immune 
parameters, which are treated as quantitative phenotypes that are continuously 
distributed over a population, can improve predictive power for cytokine production 
upon stimulation. Using our population-based study, we searched for those subsets 
of genetic variants and immune components that are most predictive of the various 
stimulated cytokine production profiles, rather than using exclusively those variants 
meeting a stringent level of statistical significance.

We assessed the validity of this approach by applying multiple methods, each of which 
is discussed in detail below. In total three datasets were evaluated: one for predict-
ing stimulated cytokine production using only SNPs, one containing all levels except 
gene expression, and one with all levels including gene expression. Firstly, features with 
little association with cytokine production levels (Spearman p >0.05) were removed 
for building the prediction models. For the SNP dataset, all SNPs with an association to 
a cytokine stimulation pair with p<5x10-5 were used as input for feature selection. No 
filtering for collinearity was applied because Elastic Net accounts for potential collin-
earity among predictors 45. 

Elastic Net. 

Prediction of the cytokine levels was facilitated by training an Elastic Net model. A 
2×10-fold cross-validation approach was used, where the data was first split up into 10 
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random training and test sets to validate the prediction, and the training set was then 
split up once more for feature selection. Prediction accuracy was evaluated by calculat-
ing Spearman correlations between the measured cytokine levels and the predictions 
of the Elastic Net model on the test sets.

RR BLUP. 

To show that the prediction results are not influenced to a large extent by the method-
ology, a mixed linear model (equation 2) , as implemented in the package rrBLUP 46, 
was applied:

Where y represents the response (cytokine level), 1 a vector of 1S, u the overall mean of 
the training set, Z the matrix of predictors (traits), u the random effect of the predic-
tors, and e a vector of residual effects. Predictions were made using 10-fold cross-val-
idation. Spearman correlation was then calculated between predicted and measured 
values. We applied this model as was described previously 47.

Partial least squares regression.

In addition to the Elastic Net and rrBLUP a partial least squares model was applied. 
Models were validated using 10-fold cross-validation. Prediction of cytokine levels on 
the test set was done using a linear model (equation 3): 

Where y represents the response (cytokine level), β the intercept, α a vector containing 
the coefficients from the model, X the matrix of predictors (immune traits), and e the 
residual error. 

Polygenic risk scores.

We carried out polygenic scoring of disease risk using publically available GWAS results. 
Quantitative scores were computed for each trait in this study based on the set of SNPs 
with p-values lower than predefined p-value thresholds (pT) in the GWAS. Multiple 
pT were evaluated (pT < 5x10-8, 1x10-5, 1x10-4, 1x10-3, and pT < 1x10-2 ). Throughout 
this work, we refer to the scores defined at pT < 1x10-5 as Polygenic Risk Scores (PRS). 
Full association summary statistics were downloaded from several publicly available 
resources indicated in Suppl. Tab. 6 48–60, . Studies done exclusively in non-Europe-
an cohorts were omitted. Filters applied to the separate data sources are indicated 
below. All the dbSNP rs numbers were standardized to match GIANT 1KG p 1V3 and 
the directions of the effects were standardized to correspond to the GIANT 1KG p 1V3 
minor allele. SNPs with different opposite-strand alleles compared to GIANT alleles 
were flipped. SNPs with A/T and C/G SNPs and SNPs with different alleles GIANT 1KG p 
1V3 (tri-allelic SNPs, indels, unknown alleles) were removed from the analysis. Genomic 
control was applied to all p-values for the datasets not genotyped by Immunochip 
or Metabochip. We calculated PRS by first clumping variants based on the threshold 
pT, linkage-disequilibrium (R2 < 0.2) and a 250kb window using the PLINK 1.9 option 
“clump” and exclusively European samples from 1000 genomes data as a reference for 
linkage disequilibrium calculation. PRS were subsequently obtained for each threshold 
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pT by calculating them using the linkage-disequilibrium-clumped subset of SNPs using 
the PLINK 1.9 option “score”.

Association between polygenic risk scores and cytokine production.

The association between the PRS and cytokine production capacity upon stimulation 
was determined by calculating the Spearman correlation between each of the PRS 
profiles and each of the stimulated cytokine profiles. To evaluate the statistical signifi-
cance of association, a permutation method was used. The cytokine data was permuted 
1000 times and the correlation was calculated for each of these permuted datasets. 
Both the measured and permuted distributions were separated into the lymphocyte 
and monocyte groups, and a student t-test was applied between the measured distri-
bution and the permuted distribution. When either the monocyte or lymphocyte group 
showed a significant deviation from the permuted distribution (Bonferroni adjusted 
two sample t-test p <0.05) the disease was selected for interpretation.

Data availability 

The data that support the findings of this study are available at https://hfgp.bbmri.nl/ 
were it has been meticulously catalogued and archived at BBMRI-NL aiming for maximum 
reuse following the FAIR principles, i.e., Findability, Accessibility, Interoperability, and 
Reusability. Individual level genetic data as well as other privacy sensitive datasets 
are available upon request at http://www.humanfunctionalgenomics.org/site/?page_
id=16. These datasets are not publicly available because they contain information that 
could compromise the research participants privacy. The central data stewardship and 
access has been implemented using MOLGENIS open source platform for scientific data 
that enables flexible data upload, management and querying, including sufficiently rich 
metadata and interfaces for machine processing and custom (R statistics) visualiza-
tion for human processing (see http://molgenis.org). Also summaries of the study have 
been submitted to BBMRI central catalogues https://catalogue.bbmri.nl (Netherlands) 
and http://www. bbmri-eric.eu/news-events/bbmri-eric-directory-2-0/ (EU). 
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Abstract 

As our ancestors migrated throughout different continents, natural selection increased 
the presence of alleles advantageous in the new environments. Heritable variations that 
alter the susceptibility to diseases vary with the historical period, the virulence of the 
infections, and their geographical spread. In this study we built polygenic scores for 
heritable traits that influence the genetic adaptation in the production of cytokines 
and immune-mediated disorders, including infectious, inflammatory, and autoimmune 
diseases, and applied them to the genomes of several ancient European populations. 
We observed that the advent of the Neolithic was a turning point for immune-mediated 
traits in Europeans, favouring those alleles linked with the development of tolerance 
against intracellular pathogens and promoting inflammatory responses against extra-
cellular microbes. These evolutionary patterns are also associated with an increased 
presence of traits related to inflammatory and auto-immune diseases.
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Introduction

Human history has been shaped by infectious diseases. Human genes, especially host 
defence genes, have been constantly influenced by the pathogens encountered 1–3. 
Pathogens drive the selection of genetic variants affecting resistance or tolerance 
to the infection, and heritable variations that increase survival to diseases with high 
morbidity and mortality will be naturally selected in people before reproductive age 2. 
These selection signatures vary with historical period, virulence of the pathogen, and 
the geographical spread.

Here we investigated the historical evolutionary patterns leading to genetic adaptation 
in cytokine production and immune-mediated diseases, including infectious, inflam-
matory, and autoimmune diseases. Cytokine production capacity is a key component 
of the host defence mechanisms: it induces inflammation, activates phagocytes to 
eliminate the pathogens and present antigens, and controls induction of T helper (Th) 
adaptive immune responses. We have therefore chosen to investigate the evolution-
ary trajectories of cytokine production capacity in modern human populations during 
history. To determine the difference in polygenic regulation of diseases and cytokine 
production capacity, we used data derived from the 500 Functional Genomics (500FG) 
cohort of the Human Functional Genomics Project (HFGP; http://www.humanfunction-
algenomics.org). The HFGP is an international collaboration aiming to identify the host 
and environmental factors responsible for the variability of human immune responses 
in health and disease 4. Within the HFGP project, the 500FG study generated a large 
database of immunological, phenotypic, and multi-omics data from a cohort of 534 
individuals of Western-European ancestry, which has been used to integrate the impact 
of genetic and environmental factors on cytokine production and immune parameters. 
We subsequently deciphered the factors that influence inter-individual variations in the 
immune responses against different stimuli 5–8. 
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Results and discussion

Peripheral blood mononuclear cells from these individuals were challenged with 
bacterial, fungal, viral, and non-microbial stimuli, and six cytokines (tumor necrosis factor 
(TNF)-α, interleukin (IL)- 1β, IL-6, IL-17, IL-22, and interferon (IFN)-γ were measured at 
24 hr or 7 days after stimulation, generating 105 cytokine-stimulation pairs (Fig. 1— 
Suppl. Fig. 1 and Suppl. file 1A). The stimulation time intervals were chosen based on 
extensive studies that showed that the time points used were best suited for assessing 
monocyte-derived and lymphocyte-derived cytokines per stimulus. Not all the stimuli 
induce the production of all cytokines; so the selection of the cytokine-stimulus pairs 
was performed for those pairs for which cytokine production was measurable 6–9. We 
correlated cytokine production with genetic variant data to obtain cytokine quantita-
tive trait loci (QTLs), which were employed to compute and compare the polygenic 
risk score (PRS) of the genomes of 827 individuals from different human historical 
eras (early upper Palaeolithic, late upper Palaeolithic, Mesolithic, Neolithic, post-Neo-
lithic), which were downloaded from version 37.2 of the compiled dataset containing 
unimputed published ancient genotypes (https://reich.hms.harvard.edu/download-
able-genotypes-present-day-and-ancient-dna-data-compiled-published-papers) 
and 250 modern Europeans randomly selected from the European 1000G cohort. The 
individuals in this cohort present a similar genetic background (Western-European 
ancestry) and balanced characteristics in terms of age, sex, body mass index (BMI), 
and habits 8, allowing us to represent the natural variability in the immune responses 
and minimizing the impact of the interindividual variability in our results. In line with 
this, cytokines were measured in batches in which a certain cytokine was measured the 
same day for all the samples, in order to decrease the potential influence of technical 
variations. Intra-individual variation of cytokine production capacity was found to be 
limited 10 while inter-individual variability was largely dependent on genetic variants 5,6.

We investigated the PRS changes over time through constructing linear models and 
correlation analysis. In order to account for the ancient DNA (aDNA) samples being 
pseudo-haploid, ambiguous single-nucleotide polymorphisms (SNPs) (A/T and C/G) 
were excluded when computing PRS to prevent errors due to strand flips. PRS was 
computed using the most significant QTLs that had a p-value lower than our predeter-
mined threshold for each given trait and removing all variants within a 250kb window 
around these variants. Additional PRS models were calculated at varying window sizes 
(250, 500, 1000 kb) in order to show consistency in the direction of the trends (Fig. 
1—Suppl. Fig. 2). The dosage of these variants was multiplied by their effect size 
while the dosage of missing variants in a sample was supplemented with the average 
dosage. Although replacing missing values with the population average does not skew 
the observed trends over time, it does affect the scale of the data. We opted for this 
approach, however, due to the scarcity of variants shared by all samples; we focused 
instead on consistent observations after excluding samples with higher missing 
genotype rates. Finally, we scaled the PRS to a range of -1 and 1 and correlated the 
scores of the samples with their respective carbon-dated ages. In order to verify the 
robustness of our results, we repeated the analysis at multiple threshold combinations 
for variant missingness and QTL thresholds.

We plotted locally estimated scatterplot smoothing (LOESS) regression models to show 
the variations in PRS across time for each trait and highlight the time periods around 
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which they drastically change. After plotting the changes before and after the Neolithic 
revolution at various thresholds for both the missing genotype rate in samples as well 
as QTL inclusion threshold, only traits that showed consistently significant trends in the 
same direction were chosen. Additional boxplots and t-tests show the variations in PRS 
between different pairings besides pre and post-Neolithic samples. A schematic repre-
sentation of the steps performed is shown in Fig. 1—Suppl. Fig. 3. Lastly, we used a 
separate test to determine whether traits were under selective pressure between any 
two broad time periods using the trait-associated Wright’s fixation index (Fst). This 
test shows an increase in the number of traits under selective pressure after the start of 
the Neolithic and highlights the traits and points in time for which the observed trends 
in PRS can be partially attributed to selective pressure as opposed to drift (Suppl. file 
1B).

Applying the methodology described above, several patterns were apparent (Fig. 1). 
The first overall observation is that the estimation of cytokine production capacity based 
on PRS shows significant differences between populations in various historical periods, 
and the strength of evolutionary pressure on cytokine responses was different before 
and after the Neolithic revolution. We did not observe significant changes in cytokine 
production capacity between individuals who lived in different historical periods 
before the Neolithic, whereas strong pressure is apparent after adoption of agricul-
ture and animal domestication in Europe. This different pattern may have resulted from 
the more limited number of samples available for the older time periods, resulting in 
lower statistical power, but the presence of some evolutionary pressure also before 
the Neolithic argues that this is most likely not the full explanation. The development 
of agriculture and domestication of animals in the Neolithic increased population 
densities on the one hand and the contact between humans and domesticated animals 
as a source of pathogens on the other hand. The number of zoonoses increased dramat-
ically (examples being tuberculosis, brucellosis, Q-fever, and influenza), which strongly 
increased the selective pressure and caused significant adaptations of immunity at the 
genetic level 11. Most of the genetic adaptations to pathogens took place in the period 
since modern humans abandoned their hunting-gathering lifestyle and developed 
agriculture 12. In this respect, the strongest changes leading to tolerance (decreased 
cytokine production) were exerted in the cytokine responses to intracellular zoonotic 
infections (tuberculosis and Coxiella). In contrast, responses to the extracellular 
pathogens Staphylococcus aureus and Candida albicans indicate increased resistance, 
with high production of IL-22 and TNF-α, respectively. The increased response to the 
important fungal pathogen C. albicans after the Neolithic period is validated also at 
the transcriptional level. Overall, these patterns are reminiscent of the studies showing 
that human immune responses need to adapt to a new landscape of infectious agents 
depending on the geographical location and types of microbe encountered 13. Such 
different patterns were most likely encountered also through history.

Importantly, our results also show significant patterns in changes in the production 
of specific cytokines during history. The resistance against intracellular pathogens 
increased after Neolithic with higher IFN-γ responses (see Fig. 1—Suppl. Fig. 1): 
indeed, it is known that Th1-IFN-γ responses are crucial for the host defence against 
intracellular pathogens such as mycobacteria or Coxiella 14. In addition, the resistance 
to the extracellular pathogens C. albicans and S. aureus is also increased after this 
Neolithic era, with TNF-α and IFN-γ production increasing steadily after. These two 
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Fig. 1. Distribution of PRS of cytokine response QTLs across time. A–C) Polygenic risk score (PRS) models 
based on quantitative trait loci (QTLs) at a p-value threshold of 1x10-5. Gray area around regression lines represents 
the 95% confidence interval. A) LOESS regression models showing the changing differences in PRS across time. B) 
Dual linear models showing the difference in trends before and after the Neolithic revolution. C) Boxplots showing 
the difference in mean PRS between adjacent broad time periods using a t-test and the overall difference in means 
using analysis of variance (ANOVA). D) Heatmap showing the consistency in regression trends before and after 
the Neolithic revolution using different QTL inclusion thresholds ( 1x10-3 to 1x10-6). Intracellular organisms that can 
cause zoonotic disease: Mycobacterium tuberculosis, Coxiella burnetti. Extracellular organisms: Staphylococcus 
aureus, Candida albicans. MSUC: monosodium urate crystals. PolyIC: polyinosinic:polycytidylic acid.
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cytokines are very well known to be important for anti-Candida and anti- Staphylo-
coccus host defence 15,16. On the other hand, a different pattern emerges in relation 
with the IL-1β/IL-6/IL-17 axis: the production of these cytokines is seen decreasing 
after Neolithic (see Fig. 1A and B). In this context, the decrease through time of poly 
I:C induction of cytokines, as a model of viral stimulation, is intriguing but potentially 
very important: many important viruses such as influenza and coronaviruses (severe 
acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and 
SARS coronavirus 2 (SARS-CoV-2)) exert life-threatening effects through induction of 
cytokine mediated hyperinflammation (also termed ‘cytokine storm’) 17; evolutionary 
processes to curtail these exaggerated responses are thus likely to be protective, and 
tolerance against viruses becomes a host defence mechanism 18.

These evolutionary genetic adaptations to pathogens throughout human history 
greatly influence the way we respond to multiple diseases in modern times as well. To 
assess these effects, we calculated the PRS associated with the risk of several highly 
prevalent immune-mediated diseases. The first focus was on common infectious 
diseases such as malaria, human immunodeficiency virus-acquired immunodeficien-
cy syndrome (HIV-AIDS), tuberculosis, and chronic viral hepatitis; we calculated the 
changes in susceptibility to these diseases in the last 50,000 years of human history, 
based on summary statistics from genome-wide association studies (GWAS) databases 
available from the literature (Fig. 2—Suppl. Fig. 1). Our results show that humans are 
becoming more resistant to these diseases, with the notable exception of tuberculo-
sis, whose risk score remained stable along the period studied (Fig. 2). Of note, the 
QTLs that passed our thresholds were scarce, resulting in a PRS model using a limited 
number of SNPs, making them sensitive to changes in the p-value cut-off, especially in 
traits related with infectious diseases. Our results suggest that humans have built up a 
genetic makeup that made them more resistant to a variety of microbes. The pattern 
of this adaptation is very interesting as well, with a suggested decrease of susceptibility 
to malaria especially in the last 10,000 years. The reason for this accelerated resistance 
after Neolithic might be linked to a higher disease prevalence due to increased popula-
tion density, as otherwise Plasmodium parasites are known to have circulated in Africa 
since at least the Paleogene 30 million years ago 19, and we have likely inherited it from 
gorillas 20. Intriguingly, we also observed a strong decrease in susceptibility to HIV: this 
is a contemporary pathogen, therefore this signal could be due to common genetic 
and immune pathways with other infections that were present in human populations. 
The increased resistance to HIV in Europeans may be derived from selective pressures 
induced by other pathogens such as Yersinia pestis 21. Our data suggest, on the other 
hand, that the source of this increased resistance is even older.

In contrast, the lack of genetic adaptation in susceptibility to tuberculosis is intriguing. 
This surprising finding may be explained by a concept in which Mycobacterium tubercu-
losis is at the same time a pathogen and a symbiont, in which latent infection enhances 
the resistance against other pathogens, and this is why our immune system tolerates 
mycobacterial presence 22. In this regard, individuals with latent tuberculosis exhibit 
enhanced macrophage functions that may protect against other pathogens through 
the induction of trained immunity 23. In this context, humanity may not be adapting 
to tuberculosis because increased resistance against mycobacteria is not evolution-
arily advantageous. All in all, these results suggest that the risk of suffering infectious 
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diseases has steadily decreased at least for the last 50,000 years as a result of the 
selection of genetic variants that confer resistance to infections.

It has been proposed that the increased prevalence of inflammatory and autoimmune 
diseases is associated with the immune-related alleles that have been positively selected 
through evolutionary processes to protect against infection; hence, the contrasting 
differences in the prevalence of autoimmune diseases between populations result from 
diverse selective pressures 24. In line with this, it has been hypothesized that genetic 
variants associated with protection against infectious agents are behind the increased 
prevalence of autoimmune diseases in populations with low pathogen exposure, such 
as Europeans 25,26. To study the changing patterns of susceptibility to autoimmune 
and inflammatory diseases during history, we used publicly available summary statis-
tics from GWAS of digestive tract-related autoimmune and inflammatory diseases 
and arthritis-related diseases (see Fig. 2—Suppl. Fig. 1) and calculated the PRS for 
each of the samples under study. Interestingly, we observed a robust increase of the 
genetic variants related with the development of inflammatory diseases in the digestive 
tract after the Neolithic revolution (Fig. 3). PRS scores associated with coeliac disease, 
Crohn’s disease, ulcerative colitis, and inflammatory bowel disease were strongly 
associated with the age of the samples, regardless of the p-value thresholds or the 
missing genotype rates used for PRS calculation, showing the robustness of these 
results (see Fig. 1—Suppl. Fig. 2). The fact that especially intestinal inflammatory 
pathology is increased after a historical event that fundamentally modified human diet 
is unlikely to be an accident. Our results are in line with earlier research demonstrating 
that variants in genes important for immune responses and involved in coeliac disease 
pathophysiology (such as IL12, IL18RAP, SH2B3) are under strong positive selection 27. 
The reasons for the selection pressure on these genes are not completely understood, 
but an advantage for host defence has been suggested 27.

In contrast to intestinal inflammation, the PRS of traits linked with juvenile-idiopath-
ic arthritis, rheumatoid arthritis, and multiple sclerosis shows a decrease in genetic 
susceptibility with the age of the sample after the Neolithic revolution. For pre-Neo-
lithic periods, these patterns had little impact with decreasing PRS for digestive tract 
diseases and increasing PRS for ankylosing spondylitis and juvenile idiopathic arthritis. 
A strong decrease in susceptibility to juvenile idiopathic arthritis, rheumatoid arthritis, 
and multiple sclerosis is seen after the Neolithic period (see Fig. 3). This is likely linked 
to the decreased production of the IL-1/IL-6/IL-17 axis described in Fig. 2, which is 
particularly important in the pathophysiology of these disorders 28,29.

The significant changes in cytokine production and disease susceptibility in European 
populations after the Neolithic can be due to selective processes on the one hand (as 
described above), but also due to important demographic changes due to migrations 
of human communities such as the Anatolians (in Neolithic) or the Yamnaya populations 
from the Pontic steppe (during the Bronze Age) 30. In this regard, several loci associat-
ed with inflammatory diseases displayed a group of alleles linked with Crohn’s disease, 
coeliac disease, and ulcerative colitis in Neolithic Aegeans, the community that spread 
farming across Europe 31, with several of these alleles showing signs of positive selection 
in modern Europeans 26. In addition, the gene expression PRS of several cytokines 
based on the cis and trans [gene] expression quantitative trait locus (eQTLs) from the 
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Fig. 2. Distribution of PRS of infectious diseases across time. A–C) Polygenic risk score (PRS) 
models based on a p-value threshold of 1x10-5. Gray area around regression lines represents the 95% 
confidence interval. A) LOESS regression models showing the changing differences in PRS across 
time. B) Dual linear models showing the difference in trends before and after the Neolithic revolu-
tion. C) Boxplots showing the difference in mean PRS between adjacent broad time periods using a 
t-test and the overall difference in means using analysis of variance (ANOVA). D) Heatmap showing 
the consistency in regression trends before and after the Neolithic revolution using different quanti-
tative trait locus (QTL) inclusion thresholds ( 1x10-5 to 1x10-8). 
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Fig. 3. Distribution of PRS of inflammatory diseases across time. A–C) Polygenic risk score (PRS) models 
based on a p-value threshold of 1x10-5. Gray area around regression lines represents the 95% confidence interval. 
A) LOESS regression models showing the changing differences in PRS across time. B) Dual linear models showing 
the difference in trends before and after the Neolithic revolution. C) Boxplots showing the difference in mean PRS 
between adjacent broad time periods using a t-test and the overall difference in means using analysis of variance 
(ANOVA). D) Heatmap showing the consistency in regression trends before and after the Neolithic revolution using 
different quantitative trait locus (QTL) inclusion thresholds ( 1x10-5 to 1x10-8).
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eQTLGen Consortium (https://www.eqtlgen.org/) displayed a very strong association 
with time for TNF-α after the Neolithic revolution (Fig. 4).

Of note, the availability of samples in the pre-Neolithic dataset is limited compared 
to the post-Neolithic era. To test the robustness of the trends observed, we recalcu-
lated the correlation coefficients and p-values to show the consistency of the results 
from the down-sampled data of the post-Neolithic samples to match the sample size 
of the pre-Neolithic samples. This analysis showed that the trajectories observed in our 
results are consistent regardless of the sample size (Fig. 4— Suppl. Fig. 1).

In this study we focus on the effects of different pathogens on cytokine production 
and, through that, on the response to different infections. Human evolution has been 
influenced by multiple factors such as migration, urbanization, climate, and diet, which 
also influence the responses to pathogens. The advent of the Neolithic lifestyle was a 
milestone for human societies: after the Neolithic, the density of human populations and 
the rate of contact with domesticated animals increased significantly, which increased 
the emergence of pathogens and the ease with which those could spread. Our data 
show that while various events and conditions throughout human history have influ-
enced our immune responses to pathogens, the advent of the Neolithic lifestyle was an 
important turning point for our capacity to respond to pathogens.

Collectively, our results show that the advent of the Neolithic era was a turning point 
for the evolution of immune-mediated traits in European populations, driving the 
expansion of alleles that favour the development of tolerance against intracellular 
pathogens and promote inflammatory responses against extracellular microbes. This 
is associated with a higher presence of genetic traits related with inflammatory and 
auto-immune diseases of the digestive tract and a lower number of alleles linked with 
the development of arthritis. It is important to underline that our results are obtained 
using European aDNA samples and GWAS summary statistics computed using European 
cohorts. Therefore, our results would be specific to European populations and should 
be interpreted with caution for populations from other geographical locations. Further 
research should compare the trends in different populations that have been exposed 
to different environments across the planet and clarify the influence of ancestry, time, 
and rural vs urban lifestyle to shed light on the influence of the infectious environment 
on genetics and human evolution.
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Fig. 4. Changes in cytokine gene expression PRS across time before and after the Neolithic revolu-
tion using different QTL thresholds ( 1x10-5 to 1x10-8). Missing genotype rates ranged through 0.96, 0.9, 
0.8, and 0.7. Quantitative trait locus (QTL) p-values for variants included in our polygenic risk score (PRS) 
models ranged through 10-3, 10-4, 10-5, 10-6, 10-7, and 10-8. The color key indicates the range of -log10 p-values 
of the Pearson correlation between PRS and time. Red and blue indicate positive and negative association, 
respectively.
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Materials and methods

Cohort selection

Ancient DNA genotype data were downloaded from version 37.2 of the published 
aDNA genotype database, compiled by and available on the David Reich Lab website 
(https://reich.hms.harvard.edu/ downloadable-genotypes-present-day-and-ancient-
dna-data-compiled-published-papers). The aDNA samples consisted of pseudo-hap-
loid genotype data. This was due to the low genotyping coverage. Samples with variant 
missingness above 96% were filtered out using Plink 32. This was done in order to 
remove outliers with extremely low coverage. Only samples within Europe were used 
for this study, and these samples were selected based on their geographic location, 
that is latitude (within 35 and 70 degrees north) and longitude (within 10 degrees west 
and 40 degrees east). Samples without a carbon-dated age were also filtered out. We 
also selected 250 European samples from the 1000 genomes project phase 3. Only 
variants present in both the ancient samples and the modern samples were retained. 
This resulted in a dataset of 827 ancient samples and 250 modern samples containing 
1,233,013 variants.

Carbon-dated sample origin and geographical location

Both carbon-dated age of origin and latitudinal and longitudinal data were available 
for these 827 ancient European samples. Broad time periods were assigned to these 
samples with the early upper Paleolithic era for all samples originating from before 
25,000 years before the common era standardized to 1950 (BCE). The late upper 
Paleolithic era follows until 11,000 BCE. The Mesolithic era ranges from 11,000 to 5500 
BCE. The Neolithic era ranges from 8500 to 3900 BCE, and the postNeolithic era ranges 
from 5000 BCE and more recent ages. Using the geographical data in combination 
with archeological clues and the genetic data, the broad time period of origin was also 
available for samples that were dated to a point in time with overlapping broad time 
periods. This allowed the samples to be classified as either early upper Paleolithic, late 
upper Paleolithic, Mesolithic, Neolithic, or post-Neolithic. The sample age of the 250 
modern European samples was set to 0.

Summary statistics of GWAS and cytokine QTLs

Summary statistics for complex traits were obtained from the UK Biobank 33 and the 
GWAS catalog 34 last accessed on March 29, 2020. The stimulated cytokine response 
summary statistics from the 500FG cohort of the HFGP were used 6. Some complex 
traits had multiple different sets of summary statistics available. In these cases, the 
data, which were more recent and used bigger cohorts that were either of European 
or mixed (European and Asian) ancestry, were selected. The variants of these summary 
statistics were then filtered by only keeping bi-allelic variants. Most aDNA genotypes 
available are pseudo-haploid as a consequence of their lower sample quality. We 
excluded ambiguous SNPs (A/T and C/G) in order to prevent errors due to strand flips 
present in these pseudo-haploid samples.

Polygenic risk score calculation

Polygenic risk scores were then calculated by first intersecting the filtered variants from 
the summary statistics with the variants present in the DNA samples. Starting at the 
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most significant variant, all variants within a 250kb window around that variant were 
excluded until no variants remained. We then multiplied the dosage of these variants 
with the effect size and these values were summed. If a variant is missing in a sample, 
the dosage is substituted with the average genotyped dosage for that variant within the 
entire dataset. This way the PRS is not skewed in any specific direction. The formula for 
this is described below with the score S being the weighted sum of a variant’s dosage Xn 
multiplied by its associated weight or βn calculated using m variants.

Relation between PRS and carbon-dated sample age

We constructed piecewise linear models for each trait by separating the samples into 
two groups. These two groups consisted of all samples preceding the Neolithic era and 
those of the Neolithic era and later, respectively. We correlated PRS with the carbon-dat-
ed age of our samples. We then multiplied the -log10 of the Pearson correlation p-values 
with the sign of the correlation coefficients. In addition, we plotted LOESS regres-
sion models to highlight the change in PRS at each point in time independent of any 
predefined breakpoint between historical periods. We also performed a group-based 
comparison using Student’s t-test. We compared pre-Neolithic, Neolithic, post-Neo-
lithic, and Mesolithic samples with their respective adjacent historical periods to show 
the difference between other historical transitions besides the pre- and post-Neolithic.

Selection test

We tested whether traits were under selection or if observed changes were due to the 
genetic drift between adjacent time periods. We performed a two-tailed test using 
the mean Fst calculated with trait-specific SNPs between two adjacent periods and a 
reference distribution of 10,000 random linkage disequilibrium (LD) and minor allele 
frequency (MAF)-matched mean Fst scores calculated using an equal amount of SNPs . 
Bonferroni correction was performed to account for multiple testing.

Robustness of results

In order to test the robustness of our results we calculated PRS using multiple different 
p-value thresholds for QTL inclusion. We used p-value thresholds from 10-3 to 10-8 for 
the complex traits obtained through GWAS catalog and the UK Biobank. The thresholds 
used for the stimulated cytokine responses ranged from 10-3 to 10-6. We also calculated 
PRS using different variant missingness thresholds. This means we removed samples 
with a variant missingness rate higher than 96, 90, 80, or 70%. All of the results from 
the piecewise linear models were then used to create a heatmap depicting the consis-
tency and robustness of our observed correlations.

Additionally, various window sizes were used for clumping the QTLs, and LD-based 
clumping was also performed excluding variants with an LD greater than 0.2 compared 
to our lead SNP within a window. In order to see whether our observations were due 
to sample imbalances between the pre Neolithic period and the later periods, samples 
originating from the Neolithic period and later were randomly down-sampled to the 
same number of samples as the pre-Neolithic samples. Correlation coefficients between 
PRS and sample age were then recalculated for the Neolithic and younger samples and 
compared to the coefficients obtained using all Neolithic and younger samples.
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Abstract

Coeliac disease is an auto-immune disease in which an immune response to dietary 
gluten leads to inflammation and subsequent atrophy of small intestinal villi, causing 
severe bowel discomfort and malabsorption of nutrients. The major instigating factor 
for the immune response in coeliac disease is the activation of gluten-specific CD4+ 
T cells expressing T cell receptors that recognize gluten peptides presented in the 
context of HLA-DQ2 and DQ8. Here we provide an in-depth characterization of 28 
gluten-specific T cell clones. We assess their transcriptional and epigenetic response 
to T cell receptor stimulation and link this to genetic factors associated with coeliac 
disease. Gluten-specific T cells have a distinct transcriptional profile that mostly 
resembles that of Th1 cells but also express cytokines characteristic of other types of 
T helper cells. This transcriptional response appears not to be regulated by changes in 
chromatin state, but rather by early upregulation of transcription factors and non-cod-
ing RNAs that likely orchestrate the subsequent activation of genes that play a role in 
immune pathways. Finally, the lack of changes in chromatin profile and the dynamic 
transcription factor expression profiles suggest that genes activated by T cell receptor 
stimulation of gluten-specific T cells may be impacted by genetic variation at several 
genetic loci associated with coeliac disease.



187

C
ha

pt
er

8

Introduction

In coeliac disease (CeD), cereal-derived gluten peptides penetrate the small intestinal 
barrier, are subsequently modified by tissue trans-glutaminase 2 (TG2), then presented 
by HLA-DQ2- or HLA-DQ8-positive antigen-presenting cells to gluten-specific CD4+ 
T helper cells (gsTcells) 1. This leads to robust activation of gsTcells that subsequent-
ly stimulate B cells to start producing auto-antibodies to TG2 and deamidated gluten 
peptides 1,2 and activate CD8+ intraepithelial lymphocytes (IELs) to attack intestinal 
epithelial cells, leading to the villous atrophy that is characteristic of CeD. GsTcells are 
only found persistently in CeD patients 3,4 and can induce villous atrophy in patients 
upon gluten ingestion even after these individuals have been on a gluten-free diet for 
years 5. Activation of gsTcells is thus central to CeD onset and pathology.

GsTcells have been shown to secrete many signaling molecules upon stimulation, 
including interleukin (IL)-2, IL-4, IL-6, IL-8, IL-10, IL-21, CD40LG, IFN-γ and TNF, and 
are often classified to be of type 1 helper class 6–12. GsTcells uniquely express IL-21 and 
CXCL13, as well as several other markers characteristic of follicular and regulatory T 
cells 13. IL-21 and CXCL13, together with CD40LG and IL-4, play an important role in the 
interaction, differentiation and activation of T cells and plasma B cells 13–16. Cytokines 
secreted by gsTcells are also important for activation and proliferation of IELs, in combi-
nation with IL-15, a cytokine important in CeD etiology that is produced by IELs17–20. 
GsTcells are thus central in the response to gluten peptides that leads to inflammation, 
anti-TG2 antibody production and villous atrophy in CeD.

To date, 43 genetic risk factors have been associated with CeD 21–23, the most important 
being the HLA haplotypes HLA-DQ2 and -DQ8. While the role of HLA-DQ2 and -DQ8 in 
CeD is well defined 24–26, the contribution of the non-HLA CeD risk-loci is mostly unclear. 
More than 95% of the single nucleotide polymorphisms (SNPs) associated with CeD 
are located in the non-coding genome and presumably deregulate genes important for 
CeD etiology 27. Enrichment analysis of the CeD SNPs in regulatory regions suggests 
that CD4+ T cells are the major cell type affected by genetic risk factors 28–30. Moreover, 
pathway and cis-eQTL analyses of genes in CeD loci suggest that they affect T cell 
receptor (TCR) signaling via alteration of expression of genes such as UBASH3A, CD28 
and CSK 30–32. Overall, these observations confirm the importance of CD4+ T cell activa-
tion in CeD but do not delineate how CeD-associated SNPs affect gsTcells upon activa-
tion.

This knowledge gap is partially due to an incomplete understanding of the regulation of 
the response to stimulation in gsTcells. Recently, it was shown that the genetic risk loci 
associated with CeD are enriched with binding sites of specific transcription factors 
(TFs), including STAT4, STAT5A, STAT5B, T-BET, AP-1 subunit FOS and TFs from the 
NFκB signaling pathway 29. Indeed, many of these TFs have been implicated in regula-
tion of CD4+ T cell activation or in CeD 12,33–36. However, the role of these TFs, as well 
as the dynamic transcriptional and epigenetic response in the activation of gsTcells, 
has not been described. Nor has the role of CeD-associated genetic variants in these 
dynamic transcriptional processes been explored in gsTcells.
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Here, we set out to profile the transcriptomic and epigenetic response of gsTcells 
derived from CeD patients upon TCR-stimulation with anti-CD3 and anti-CD28 
(aCD3/aCD28). This allowed us to identify the regulatory steps essential for the rapid 
and robust activation of cytokines important for CeD etiology and to prioritize which 
CeD-associated risk loci are related to the activation of gsTcells. Overall, we elucidate 
the dynamic events in gsTcells that can be induced by gluten peptides in CeD patients.
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Fig. 1: Stimulation of gluten-specific CD4+ T cells with aCD3/aCD28. A) Experimental scheme of the 
discovery and replication cohort. The ‘+’ symbol indicates that a measurement is available at that timepoint. 
28 gsTcell clones were isolated from CeD biopsies, 23 clones were used in discovery analysis and 5 were 
used for replication and DHS-sequencing. A final 3 clones from the discovery set were used for proteomic 
analysis. B) PCA of the complete expression data of the discovery (circles) and replication (diamonds) 
cohorts. Each time point is indicated in a different color. C) Differentially expressed genes identified by 
differential expression (DE) analysis between consecutive timepoints, plotted per comparison. Biotypes 
and direction of each DE gene are indicated.
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Results

Dynamic transcriptome changes in stimulated gsTcells

To study the TCR-induced response of gsTcells, we opted for aCD3/aCD28 stimula-
tion as a proxy for the interaction of gsTcell-TCR with gluten peptides presented by 
antigen-presenting cells in the context of HLA-DQ2 or -DQ8. Twenty-three CD4+ 
gsTcell clones isolated from biopsies from patients with active CeD were cultured and 
stimulated in vitro and used to perform transcriptomic (RNA-Seq; n=23) and targeted 
proteomics analysis (n=3) (discovery cohort, Suppl. Tab. 1). An additional five gsTcell 
clones were used for replication of the transcriptomic data and detection of open 
chromatin through DNase-Hyper-Sensitivity sequencing (DHS-seq) (Fig. 1A, Suppl. 
Tab. 1). The transcriptomic response of gsTcells to stimulation showed strong and 
consistent effects after 180 minutes relative to the earlier timepoints. Although there 
was considerable inter-clonal variation, the replication and discovery cohorts behaved 
very similarly (Fig. 1B). We used the discovery cohort to determine the dynamic 
transcriptional response of genes during the course of the stimulation, which showed 
clear distinctions between each time point (Suppl. Fig. 1). We performed differential 
expression (DE) analysis between consecutive timepoints to reveal the changes in gene 
expression over time. Between 0-10 min, 10-30 min and 30-180 min, 115, 182 and 3339 
DE genes were identified, respectively (Fig. 1C, Suppl. Tab. 2). Finally, non-coding 
genes were found to be differentially expressed at all timepoints, but at 180 mins the 
downregulated set was roughly twice as large as the upregulated set, which was not 
the case for the coding genes (Fig. 1C). GsTcell clones thus rapidly displayed strong 
and dynamic transcriptional changes after stimulation.

DE genes cluster into response patterns with distinct functions

To understand and categorize the activation of gsTcells, we clustered the DE genes 
using k-means clustering to identify temporal response patterns. This identified six 
distinct clusters that each represent a specific response (Fig. 2A, Suppl. Fig. 2, Suppl. 
Tab. 2). Genes in Clusters 1 (n=366) and 2 (n=162) were upregulated early (at 10 min). 
In contrast, cluster 3 genes (n=1002) were upregulated after 30 and 180 min. Cluster 
4 (n=609) genes displayed an early decrease but recovered after 180 min. Cluster 5 
(n=588) genes responded similarly to cluster 1 genes, but their gene expression levels 
after 180 min were decreased compared to unstimulated expression levels. Finally, 
cluster 6 genes (n=782) show a consistent late decrease in expression.

Gene set enrichment analysis using the Reactome database pinpointed enriched gene 
sets (false discovery rate (FDR) < 0.05) for clusters 2, 3, 4 and 6 (Fig. 2B) but found no 
enrichment in clusters 1 and 5. Cluster 2 is enriched for Nuclear Receptor transcription 
pathway genes (NR4A1, NR4A2 and NR4A3) and IL-10 signaling genes (TNF and ICAM1). 
Cluster 3 is predominantly associated with immune function, showing an enrichment 
of cytokine signaling pathway genes. Moreover, genes associated with transcriptional 
and translational processes are also enriched in cluster 3, consistent with an immune 
response that requires the production and secretion of cytokines and other signaling 
proteins. Cluster 4 is enriched in translational and mitochondrial response genes that 
are associated with a shift towards protein production. Finally, the downregulated 
genes in cluster 6 are enriched in genes involved p53-mediated regulation of caspases. 
Downregulation of cluster 6 genes may thus decrease apoptosis and cell death and 



190

●TP53 Regulates Transcription of Caspase Activators and Caspases
●Mitochondrial protein import
●Translation
●Mitochondrial translation termination
●Mitochondrial translation initiation
●Mitochondrial translation
●Mitochondrial translation elongation

●TNFR2 non−canonical NF−kB pathway
●TNFs bind their physiological receptors
●Interleukin−4 and Interleukin−13 signaling
●tRNA modification in the nucleus and cytosol
●TNFSF members mediating non−canonical NF−kB pathway
● ●Major pathway of rRNA processing in the nucleolus and cytosol
● ●rRNA processing
● ●rRNA processing in the nucleus and cytosol
●Signaling by Interleukins
● ●rRNA modification in the nucleus and cytosol

●Nuclear Receptor transcription pathway
● ●Interleukin−10 signaling

Clus
ter

 2

(23
)

Clus
ter

 3

(46
4)

Clus
ter

 4

(29
9)

Clus
ter

 6

(32
2)

5

10

−log10
(p−adjust)

GeneRatio
●

●

●
●
●

0.025
0.050
0.075
0.100
0.125

●Cluster 6

●Cluster 5

●Cluster 4

●Cluster 3

●Cluster 2

●Cluster 1

−2 −1 0 1 2
log2 Odds ratio

10

15

20
−log10(pval)

−1

0

1

t0 t10 t30 t180

St
an

da
rd

iz
ed

 m
ea

n 
ex

pr
es

io
n

Cluster 1 N=366

−1

0

1

t0 t10 t30 t180

Cluster 2 N=162

−1

0

1

t0 t10 t30 t180

Cluster 3 N=1002

−1

0

1

t0 t10 t30 t180

Cluster 4 N=609

−1

0

1

t0 t10 t30 t180

Cluster 5 N=588

−1

0

1

t0 t10 t30 t180

Cluster 6 N=782

A 

B

C

*** ** * **** *
IL-2 IL-21 IL-4 TNF CD40LG

0 h
rs

4 h
rs

0 h
rs

4 h
rs

0 h
rs

4 h
rs

0 h
rs

4 h
rs

0 h
rs

4 h
rs

−1

0

1

re
la

tiv
e 

pr
ot

ei
n 

lev
el

D



191

C
ha

pt
er

8

favor proliferation, paving the way for a robust immune response by gsTcells that is 
mediated by the genes in cluster 3.

To ascertain how these pathways might be regulated, we investigated the relative 
enrichment of non-coding RNAs (ncRNAs) per cluster. The early-responding clusters 
1, 2 and 5 are enriched for ncRNAs, implying that these RNAs play a role in regulating 
expression of genes at 180 min, when protein-coding genes are enriched (clusters 3, 
4 and 6) (Fig. 2C). Several genes encoding TFs that mediate early immune and stress 
responses are also found in clusters 1 and 2. These TFs include all EGR TFs, NR4A1, 
NR4A2, NR4A3, ATF3, FOS and FOSB, of which the latter two are subunits of AP-1 
(Suppl. Fig. 3A). Additionally, cluster 3 encompasses REL (encoding NFκB subunit 
c-REL), NFKB1 (encoding NFκB subunit p50) and the NFκB inhibitory genes NFKBIA, 
NFkBID and NFKIZ, which suggests an early activation of the NFκB pathway and a subse-
quent feedback loop after 180 min (Suppl. Fig. 3B)37,38. Thus, the action of several TFs 
that are either activated or transcribed soon after stimulation, possibly in conjunction 
with ncRNAs, seems to mediate the strong response of genes after 180 min.

To confirm that transcriptional changes lead to secretion of cytokines, we measured a 
panel of 92 proteins in the gsTcell culture medium after 4 hours of stimulation. Thirty 
of these proteins are encoded by genes differentially expressed during the stimulation 
of gsTcells (Suppl. Fig. 4A, Suppl. Tab. 3). We found that levels of IL-21, CD40LG, 
IL-2, IL-4 and TNF were significantly increased (nominal p-value < 0.05) (Fig. 2D) in 
concert with increased expression of their corresponding genes (Suppl. Fig. 4B). 
These cytokines all have pro-inflammatory roles and contribute to activation and prolif-
eration of other cell types, including B cells (IL-21, IL-4 and CD40LG) and other T cells 
like IELs (IL-2 and TNF)39,40.

In summary, the distinct and dynamic transcriptional changes we observe represent a 
robust translational immune response to TCR activation that leads to the secretion of 
several cytokines within 4 hours.

Transcriptional changes identified in gsTcells upon activation are similar to those in 
other T cells

To examine the specificity of the gsTcell response, we compared the DE genes of gsTcells 
(between 0 and 180 min) to those of naïve CD4+ T cells stimulated with aCD3/aCD28 
(DICE consortium (n=90))41. A large proportion (57%) of the DE effects we observed 
in gsTcells were also found in the DICE consortium data (96% directional concordance; 
Fig. 3A, Suppl. Tab. 4-5). Directionally concordant genes (Q1 and Q3 in Fig. 3B) 
showed an enrichment for genes involved in interleukin signaling and rRNA processing 
(Suppl. Fig. 5A), as we had observed in cluster 3 (Fig. 2B), suggesting this to be a 

Left: Fig. 2: Differentially expressed genes cluster into response patterns showing distinct functions. 
A) Cluster analysis identified 6 robust clusters encompassing the response profiles of all 3509 differentially 
expressed (DE) genes. Numbers of genes per cluster are shown. Y-axis shows the mean expression of 
the genes at each respective time point, centered to mean zero and scaled to standard deviation one. B) 
Reactome gene set enrichment analysis shows enriched pathways for 4 out of the 6 clusters. C) Enrich-
ment analysis by Fisher’s exact test of non-coding RNAs per cluster. Significance is shown in shades of red. 
Log2 odds ratios are plotted on the x-axis and indicate enrichment or depletion. Error bars indicate 0.95 
confidence intervals. D) Scaled relative protein levels (Olink) in the unstimulated condition and after 4 hrs 
of stimulation for the three independent experiments (black dots). Box colors above the dotplots indicate 
the cluster in which the DE genes are found. Mean, minimum and maximum relative protein levels are 
indicated in red. Nominal significance is indicated by asterisks (*p-value<0.05, **p-value< 0.01, ***p-value 
< 0.001 and ****p-value<0.0001).
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Fig. 3: The transcriptional response of gsTcells shows differences and similarities with other T 
cells. A) Upset plot comparing significant DE genes between stimulated naïve CD4+ T cells (DICE) (t0 
vs t240, FDR < 0.05 and absolute log2FC > 1)41, gsTcells (t0 vs t180, FDR < 0.05 and absolute log2FC > 1) 
and biopsy-derived gsTcells (gsTcells vs CD4+ T cells in cases/controls, FDR < 0.05 and absolute log2FC > 
2)13. At the top, the size of the intersecting sets with gsTcells are indicated in light blue, non-overlapping 
genes with gsTcells are shown in light green and genes unique to gsTcells are shown in dark blue. The right 
barplot shows the total number of DE genes per dataset. B) Scatterplot of log2FC of DE genes between 
DICE (y-axis) and gsTcells (x-axis). Numbers in light blue indicate the number of genes in each quadrant 
that are significant in both analyses. C) Gene set enrichment analysis done using Reactome of DE genes 
unique for gsTcells as compared to DICE naïve CD4+ T cells (adjusted p-value < 0.05, absolute log2FC > 
2). At the bottom is the direction of expression of the DE genes in gsTcells. Numbers in brackets indicate 
the number of DE genes present in all enriched pathways. Dot size indicates the ratio of the number of 
genes present in the gene set and the total gene set used in each pathway. D) Comparison as in (B) for DE 
effects in CeD biopsy–derived gsTcells (y-axis). E) Gene set enrichment analysis as in (C) for genes unique 
to gsTcells compared to CeD biopsy–derived gsTcells and DICE naïve CD4+ T cells (adjusted p-value < 0.05, 
absolute log2FC > 2).  
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general response of CD4+ T cells to stimulation. Genes uniquely activated in gsTcells 
include chemokines such as CCL1, CXCL1 and CCL4L1, which encode for peptides 
that bind the receptors CCR8, CXCR2 and CCR5 and that can mediate recruitment 
of immune cells, including Type 2 innate lymphocyte cells, neutrophils and activated 
CD8+ T cells, respectively (Fig. 3C, Suppl. Fig. 6A)42. In addition, the cytokine-encod-
ing genes IL5, IL9, IL19, IL17F and IL26, as well as RORC (encoding for TF RORγt), are 
uniquely differentially expressed in gsTcells, albeit at low levels, and each points to a 
different subset classification of T helper cells for gsTcells 43.

To determine which T helper subset the gsTcells most resemble, we compared the 
expression patterns of the main cytokines associated with Th1 (IFNG, TNF), Th2 (IL4, 
IL5, IL13), Th17 (IL17A), Treg (IL10, TGFB1), T follicular helper (IL21) and Th9 (IL9) 
cells (Suppl. Fig. 6B)6–13,43,44. We observed that cytokines characteristic for several 
subsets are strongly upregulated upon stimulation, with Th1 cytokines most strongly 
expressed. GsTcells are therefore most similar to Th1 cells but also share characteris-
tics with multiple Th subsets.

Overall, the strong concordance between the TCR-induced response profile of naïve 
CD4+ T cells and gsTcells (Fig. 3A,B) suggests that the TCR response is largely shared in 
CD4+ T cells. However, we also observed 1371 unique DE genes that were not observed 
in the naïve CD4+ T cells or biopsy-derived gsTcells. This set of genes was mainly upreg-
ulated (1047/1371) and was enriched for G protein-coupled receptor ligand binding, 
IL-6–type cytokine receptor ligand interaction and peptide ligand-binding receptors 
(Fig. 3E). Nonetheless, when compared to naïve CD4+ T cells, in vitro-cultured gsTcells 
show a distinct response profile on top of the shared TCR response profile that includes 
a diverse set of cytokines and chemokines that are comparable to that of Th1, Tfh and 
Th2 cells, which is consistent with previous evidence 6–13,43,44.

The expression profile of in vitro-cultured gsTcells is similar but not identical to the 
expression profile of gsTcells isolated directly from biopsies

Next, we compared the transcriptomic response of our cultured gsTcells with gsTcells 
taken directly from CeD biopsies six days after an in vivo gluten challenge13. These 
biopsy-derived gsTcells were obtained from Christophersen et al. 13 and contained 
tetramer+ CD4+ T cells and tetramer- CD4+ T cells from CeD patients (n=5) and 
gut CD4+ T cells from healthy controls (n=4). We found that 123 out of 3395 DE 
genes in gsTcells are shared with the 865 DE genes from biopsy-derived gsTcells 
(p-value=0.0056; two-sided Fisher’s exact test) (Fig. 3D, Suppl. Tab. 4,6). These 
overlapping genes were enriched for the ‘TNFR2 non-canonical NFκB pathway’ in 
Reactome and included immune genes such as CD200, MAP4K3 & PDCD1, IL21 (a key 
regulator in CeD) and IL22 (a regulator of intestinal epithelial homeostasis 45) (Suppl. 
Fig. 5B, Suppl. Tab. 7). The differences between the in vitro-cultured gsTcells and 
biopsy-derived gsTcells could partly be attributable to differences in sample size. 
Moreover, the in vitro-cultured gsTcells were stimulated for 3 hrs, and the DE genes 
therefore reflect early transcriptional changes upon stimulation, which may not 
reflect the activation state of in vivo biopsy-derived gsTcells. Finally, continuous in vitro 
culturing of the gsTcell clones in the presence of IL-2 and IL-15 is likely to introduce 
changes in the expression profile of the gsTcell clones compared to the biopsy-derived 
gsTcells. Thus, gsTcells show disease-relevant characteristics but are not identical to 
‘fresh’ biopsy-derived gsTcells.
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Chromatin of gsTcells remains largely stable 

Next, we assessed if changes in chromatin state agreed with changes in gene expres-
sion upon stimulation of gsTcells. We observed that the chromatin state measured by 
DHS-Seq remained mostly stable at all four timepoints when assessed genome-wide, 
and most of the variation in open chromatin was explained by which gsTcell clone the 
data was derived from, and not by stimulation effects (Fig. 4A, Suppl. Tab. 8). Nonethe-
less, when investigating the open chromatin sites in a 5kb window around the 3509 DE 
genes, we observed some variation between t180 and the other timepoints (Fig. 4B). 

Fig. 4: Open chromatin changes are minimal in gsTcells upon stimulation. A) PC analysis of all peaks 
in each individual gsTcell clone in the discovery cohort. Timepoints indicated by shapes, clones by colors. 
B) As in (A), but only using peaks within a 5kb window around the transcription start sites of the 3509 DE 
genes in the PCA. C) Comparison of the relative changes in the individual gsTcells and naïve CD4+ T cells of 
two individuals between all timepoints. Overlaps between all timepoints were calculated using the multi-
inter Bedtools function, and the relative number of overlaps is plotted for each. Peaks that are present at 
all timepoints are represented in the ‘4’ category. Peaks unique to one time point are represented in the ‘1’ 
category. Clones are indicated with the same colors as in (A) and (B). Nominal significance indicated with 
asterisks (*p-value < 0.05, **p-value < 0.01 and ***p-value < 0.001).
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However, differential peak-calling analysis did not find any sites with a log2 fold change 
> 1. These results are probably due to the large variation between the clones (Fig. 
4A,B) and the modest sample size. We also investigated the overlap between peaks in 
each clone and compared that to the overlap between ATAC-seq peaks in naïve CD4+ T 
cells in a similar stimulation experiment 46. Overall, the naïve CD4+ T cells showed more 
stimulation-specific effects, with 25% of peaks being shared at all four timepoints, 
as opposed to gsTcells, where 45% of the peaks are shared (Fig. 4C). Moreover, TF 
binding site enrichment analysis on peaks uniquely present in unstimulated gsTcells, 
but not seen in naïve CD4+ T cells under unstimulated conditions, showed that AP-1 
binding sites are enriched in gsTcells even prior to stimulation (HOMER, p-value= 
1x10-16). Altogether, this suggests that the early upregulation of gene expression upon 
activation in gsTcells is mostly independent of chromatin state and instead driven by 
the interplay of TFs and ncRNAs.

DE genes show enrichment for CeD loci and CeD-associated genes

To ascertain if the DE genes we found are affected by the genetic background associat-
ed with CeD, we integrated our transcriptional data with 118 cis-genes for CeD identi-
fied by a previous gene prioritization effort 30 (Fig. 5A). We observed that 26 of the 
prioritized genes are DE in the gsTcells. Of these 26 genes, 18 belong to cluster 3, in 
which immune response pathways are overrepresented, consistent with the mostly T 
cell–based GWAS signal of CeD 23. Of particular interest are IL21 and other cytokine-en-
coding genes (IL2, TNFSF11 and FASLG), several cytokine receptor genes (IL21R, IL1RL1, 
TNFRSF9 and IL2RA) and genes for TFs that can play a role in immune response (REL, 
BACH2 and IRF4). Interestingly, UBE2E3, CSK and SLC22A4 are DE in gsTcells but not 
in naïve CD4+ T cells (Fig. 3B), which implies that these genes may have a relatively 
specialized function in gsTcells.

We subsequently checked if the DE genes were overrepresented in CeD loci 23 using 
genomic region enrichment analysis (GREA)19 (Fig. 5 B,C; Suppl. Fig. 8). GREA 
operates by comparing the overlap of DE genes in a window of ± 125kb around a CeD 
locus to the overlap found randomly in a permutation-based null distribution. We found 
no significant enrichment for genes located in CeD loci when assessing all 3509 DE 
genes (Fig. 5B). However, when we assessed the enrichment per cluster (Suppl. Fig. 
8), cluster 3 showed a nominally significant enrichment for genes located in CeD loci 
(p-value=0.042; Fig. 5C), with around 18% of cluster 3 genes being located near a CeD 
locus. Thus, the genes in cluster 3 may be affected by the genetic predisposition for 
CeD.

Next, we assessed whether any of the TFs that were DE in gsTcells were enriched to 
bind in CeD loci using REgulatory trait Locus Intersection (RELI) in conjunction with 
the provided database of ChIP-seq data for 389 TF-cell type pairs 29. In total, 98 TF–cell 
type pairs showed significant enrichment for binding in CeD loci (FDR <0.05) (Suppl. 
Tab. 9). Of these TFs, FOS, STAT5A and TBX21 (also called T-BET) were of particular 
interest as their genes showed a DE effect in gsTcells and the ChIP-seq data used in RELI 
was derived from CD4+ T cells. FOS falls in cluster 1 and showed an early but transient 
response to stimulation (Suppl. Fig. 9A), whereas STAT5A and TBX21 showed a later 
response corresponding to the cluster 3 profile (Suppl. Fig. 9B and C, respectively). 
FOS is a well-known early response immune and stress response TF that can heterod-
imerize with the JUN or ATF TF families. Indeed, ATF3 is also DE and has a very similar 
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transcriptional profile to FOS (Suppl. Fig. 3A). STAT5A is required for IL2 signaling in 
CD4+ T cells 47, and TBX21, which encodes T-BET, is the major TF for Th1 differentia-
tion, expression of IFN-γ and other Th1-specific cytokines 48. Thus, these TFs all have 
prominent roles in CD4+ T cell differentiation and activation.

To explore if any of the SNPs in the 43 CeD loci from the latest CeD meta-analysis 23 
could directly affect gene regulation in gsTcells, we overlapped the TF binding sites 
of FOS, STAT5A and TBX21 with the open chromatin regions, CeD GWAS summary 
statistics 23, DE information, ATAC-seq of naïve CD4+ T cells 46 and capture Hi-C data 
of activated CD4+ T cells (Fig. 6). We found one locus of interest near the IL18RAP/
IL1RL1 genes. In this locus, one SNP (rs1420106, GWAS p-value= 8.7x10-14) located in 
the promoter of IL18RAP overlapped with all three of the enriched TF binding sites, a 
DHS peak from gsTcells and an ATAC-seq peak from naïve CD4+T cells (Fig. 6A). We 
assessed if this locus could act as an enhancer using publicly available capture Hi-C data 
from activated CD4+ T cells 49 and found interactions with the promoters of IL1RL1 and 
IL18R1 (Fig. 6A). Moreover, rs1420106 strongly affected the expression of IL18RAP, 
IL1RL1 and IL18R1 (eQTL p-values 3.27x10-310, 1.95x10-144 and 1.63x10-185, respectively) in 

Fig. 5: DE genes show enrichment for CeD loci. A) Genes prioritized from CeD loci 30 were overlapped 
with DE genes and plotted per CeD locus. Log2 fold change between timepoints is indicated, and clusters 
are depicted with colored boxes (right). B) Enrichment of DE genes over the null distribution (histogram) 
in CeD loci (±125kb window around start and end of gene) using GREA19 for all DE genes (n=3509). X-axis 
indicates the number of genes that overlap with CeD loci as a percentage. The histogram shows the null 
distribution based on 10,000 permuted gene-sets. The black line indicates the value of the true gene-set. 
Nominal p-values are indicated. C) As in (B), but only for genes in cluster 3 (n=1002). 
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whole blood (eQTLgen database 50). Finally, both IL1RL1 and IL18RAP were significantly 
upregulated in gsTcells at t180 compared to t0 (Fig. 6B). Together, this suggests that 
rs1420106 might have a role in the activation response of gsTcells by modifying the 
expression of IL18RAP, IL1RL1 and IL18R1. Similarly, we identified three more CeD loci 
(containing genes BACH2, IL21-IL2 and TAGAP) that showed overlap of SNPs associated 
with CeD with DHS sites found in gsTcells that also bind the TFs FOS, STAT5A and/or 
TBX21 (Suppl. Fig. 10-12). 

Thus, CeD-associated genetics may play a complex role in gsTcells during activation of 
these important cells in CeD pathology.

Fig. 6: Rs1420106 in the IL1RL1/IL18R1/IL18RAP locus overlaps with open chromatin and TF binding 
sites in gsTcells. A) Overview of the IL1RL1/IL18R1/IL18RAP locus. From top to bottom: summary statis-
tics of the CeD GWAS meta-analysis 23 (green); TF binding sites based on Chip-seq of FOS (red), STAT5A 
(orange) and T-BET/TBX21 29 (brown); DHS profile of unstimulated gsTcells with peak calls depicted below 
(light blue); peaks from naïve CD4+ T cell ATAC-seq 46 (dark blue); capture Hi-C data of activated CD4+ 
T cells depicting the 3D interactions between the highlighted region and other locations in the locus 82 
(grey) and the gene annotations. The prioritized SNP rs1420106 is indicated in dark blue. B) Gene expres-
sion pattern of genes in the locus. Y-axis represents the VST-normalized expression data. Black line and 
number indicate the adjusted p-value (DeSeq2) of the DE effect between the t0 and t180 timepoints. 
Blood eQTL p-values of SNP rs1420106 for the indicated genes are: IL18RAP, 3.27x10-310; IL1RL1, 1.95x10-144 

and IL18R1, 1.63x10-185 (eQTLgen.org50).
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Discussion

In this study, we characterized gsTcells, one of the key players in CeD pathogenesis, by 
profiling transcriptomic and epigenetic changes during the early response to aCD3/
aCD28 activation. We pinpointed pathways and TFs that may regulate these cells and 
confirmed that gsTcells are not restricted to any specific class of Th cells, but rather 
express cytokines, chemokines and TFs that are characteristic of Th1 but also of Tfh 
and Th2 subsets. We also identified CCL1, CXCL1 and CCL4L1 as unique DE genes that 
had not previously been shown to be expressed by CD4+ T cells in the context of CeD. 
Finally, we showed that the early response of gsTcells to stimulation is regulated by 
rapid upregulation of many TFs and ncRNAs in combination with the activation of JNK/
AP-1 and NFκB TFs, whereas changes in chromatin were minor. Overall, our results 
provide an in-depth analysis of the molecular pathways that are activated in gsTcells 
upon TCR activation.

Our study illustrates that gsTcells express and secrete cytokines that can be associ-
ated to various subsets of Th cells, most prominently with the Th1 (IFN-γ and TNF), 
Th2 (IL4, IL5, IL13) and Tfh (IL21) subsets, which is in agreement with previous studies 
6–13,43,44. Based on their unique cytokine profile, gsTcells may exert multiple functions in 
CeD pathogenesis. Firstly, IFN-γ is important for eliciting a strong response to foreign 
antigens such as the gluten peptides in CeD 51. Moreover, IFN-γ can also directly affect 
the integrity of the intestinal barrier 52. Secondly, Th2-associated cytokines and IL-21 
produced by Tfh cells are important for plasma cell differentiation, B cell activation and 
autoantibody production 43. Finally, IL-21, IL-2 and TNF have been shown to activate 
CD8+ T cells and IELs in the gut, which thereby become “licensed to kill” epithelial cells, 
leading to the villus atrophy in CeD 12,19,20,53. Thus, cytokines derived from gsTcells may 
play a role in several distinct disease mechanisms.

Our comprehensive analysis of the regulatory mechanisms that drive gene expression 
in activation of gsTcells agrees in part with the results of a study where the authors 
analyzed biopsy-derived gsTcells (Christophersen et al. 13) but also uncovered differ-
ences. These differences might be due to differences in sample size and experimental 
design between the two studies but may also reflect the fact that the gsTcells used in 
our study have been expanded in vitro in the presence of IL-2 and IL-15. Nonetheless, 
the unique expression of genes that are not DE in activated naïve CD4+ T cells and 
the enrichment of genes that overlap with genes specific to biopsy-derived gsTcells 
suggest that in vitro-cultured gsTcells are a unique and appropriate model to delineate 
the dynamic transcription and regulation of gsTcells. 

Similarly, comparison with other datasets such as the DICE data (Fig. 3A,B) and 
CeD-patient derived CD4+ T cells from PBMCs described by Quinn et al. (data not 
shown), validate our findings that the gsTcells have a similar but distinct expression 
profile and that important cytokines and other genes are associated to CeD etiology, 
such as IFNG, IL21, IL17A and IL4 54, are differentially expressed. Still, the unique expres-
sion profile of gsTcells relative to naïve or blood-derived CD4+ T cells may be lost if the 
comparison with other antigen-specific T cells or memory CD4+ T cells activated with 
similar stimuli and timepoints. 

Based on the expression pattern of the DE genes, we identified six major gene clusters 
with distinct dynamic responses and functions. Early responding genes were repre-



199

C
ha

pt
er

8

sented by clusters 1, 2 and 5 and contained multiple TFs, some cytokines and a dispro-
portionate number of ncRNAs, implying that these genes regulate the response at later 
time points. An earlier study also observed a ncRNA response during the activation of 
lymphocytes, which supports the idea that ncRNAs are key in the development and 
activation of CD4+ T cell 55. Some ncRNAs that are DE in gsTcells have also been impli-
cated in immune activation, inflammation and proliferation in other studies, including 
LINC00174, AF131217.1, TINCR and LINC00342, which were all found in cluster 1 56–60. 
Thus, ncRNAs seem to play a pivotal role in the immune response by changing the 
expression of specific genes in gsTcells.

The gsTcells we studied showed a stable open chromatin profile genome-wide, with 
only minor changes upon stimulation near the transcription start sites of DE genes. 
However, we cannot exclude the possibility that the stability we observe is a conse-
quence of culturing gsTcells in the presence of cytokines to induce expansion61. In 
contrast to the stable open chromatin profiles in gsTcells, the transient expression of 
specific TFs and ncRNAs, in concert with the activation of common signaling pathways 
like JNK/AP-1 and NFκB, may be the source of the unique expression profile observed in 
the gsTcells.

Several DE genes are located in CeD-associated loci, and we found a subtle enrichment 
for genes of immune cluster 3 in CeD loci. However, the largest CeD association study 
to date was performed using the Immunochip platform, which is enriched for known 
immune regions, and thus we may have missed enrichment in other functional clusters. 
Nonetheless, 18% of the genes in cluster 3 are located in CeD loci, highlighting that 
TCR-mediated T cell activation, particularly in gsTcells, may be affected by CeD-asso-
ciated SNPs.

To ascertain the role of CeD-associated SNPs in regulating gene expression in gsTcells, 
we integrated multiple publicly available functional data layers with the gene expres-
sion and DHS regions of the gsTcells and CeD-associated SNPs. While this integra-
tion provides suggestive evidence that the prioritized SNPs have regulatory potential 
in gsTcells, we cannot directly confirm that the genetic effect has a regulatory role. 
This would require an eQTL analysis with primary gsTcells derived from biopsies or 
functional validation by targeting these candidate regulatory elements, both of which 
are beyond the scope of this study. Despite these challenges, we provide evidence for 
potential genetic interference of CeD-associated SNPs in gsTcells in several loci and 
pinpoint several SNPs and regulatory regions within the genome that are the most likely 
candidates to cause this interference.

In summary, we present an in-depth characterization of early transcriptional dynamics 
of gsTcells in response to TCR activation. We highlight that this transcriptional response 
is most likely regulated by TFs and ncRNAs rather than large changes in chromatin state. 
Finally, we prioritize several CeD-associated genetic loci that may impact the TCR-ac-
tivation in gsTcells directly.
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Methods

Obtaining T cell clones from biopsies of CeD patients

Gluten-specific CD4+ T cells were isolated from CeD patient small intestinal biopsies, as 
described previously 25,62–65. Patients were diagnosed with CeD with small bowel biopsy 
confirmation and included at Leiden University Medical Center (LUMC), the Nether-
lands (n=18), and the Riks Hospital in Oslo (RHO), Norway (n=4), from which 23 and 5 
gluten-specific T cell lines were isolated, respectively (Suppl. Tab. 1). Briefly, written 
informed consent was given by all patients and the small intestine biopsies from CeD 
patients were cultured with a mixture of gluten and TG2-treated gluten (deamidation) 
for 5 days. To expand the T cells, IL-2 (20 Cetus units/ml; Novartis, Arnhem, the Nether-
lands) and IL-15 (10 ng/ml; R&D systems, Abingdon, UK) were added. Subsequently, 
irradiated allogeneic peripheral blood mononuclear cells in the presence of phytohem-
agglutinin (1 μg/ml; Remel Inc. Lenexa, USA), IL-2 (20 Cetus units/ml) and IL-15 (10 ng/
ml) were mixed with T cells for re-stimulation25. The resulting T cell clones were tested 
for reactivity against gluten digested by pepsin and trypsin and TG2-treated in prolif-
eration assay. The pepsin/trypsin digest of gluten was prepared as described by Van 
de Wal et al.63. For deamidation, the pepsin/trypsin-digested gluten (500 mg/ml) was 
incubated with 100 mg/ml of guinea pig tTG (T-5398; Sigma, St. Louis, MO) at 37°C for 
2 h in PBS with 1 mM CaCl2 and subsequently used in T cell proliferation assays. Prolif-
eration assays were conducted as described by Van de Wal et al.63, for samples from 
LUMC, and Molberg et al.65, for samples from RHO. Gluten-specific lines were cloned 
by limiting dilution and expanded again by re-stimulation at 1- to 3-week intervals 25. 
Clones were stored in liquid nitrogen. All methods were performed in accordance with 
relevant guidelines and regulations.

Stimulation of T cell clones

In all, 28 gluten-specific T cell clones were stimulated in 6-well plates coated overnight 
with anti-CD3 (2.5 μg/ml; Biolegend, San Diego, CA, USA) and anti-CD28 (2.5 μg/ml; 
Biolegend) or PBS (negative control) for 0, 10, 30 and 180 minutes. At each timepoint, 
cells were harvested for RNA isolation. Cell culture medium was harvested after 240 
minutes for proteomic analysis.

RNA isolation and library preparation of stimulated gsTcells

GsTcells were harvested at each time point, washed with PBS and resuspended in a 
lysis buffer (Ambion, Life Technologies, Carlsbad, CA, USA). RNA was extracted with 
the mirVana RNA isolation kit (Ambion) according to the manufacturer’s instructions. 
The quantity and quality of RNA was determined by Bioanalyzer (Agilent technologies, 
Santa Clara, CA, USA). The sequencing libraries were prepared from 1 μg of total RNA 
using the TruSeq Stranded Total RNA with Ribo-Zero Globin kit (Illumina, San Diego, 
CA, USA) according to the manufacturer’s instructions. Sequencing was done with the 
Illumina HiSeq 2500 (Illumina).

DNase I hypersensitivity sequencing and analysis

Standard protocols for nuclei isolation, DNase I (Roche #04716728001) treatment 
and library preparation for DNase I hypersensitivity sequencing generated within the 
Blueprint consortium were followed. Protocol details 66 can be found at: 
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http://www.blueprint-epigenome.eu/UserFiles/file/Protocols/Blueprint_DNase1_
Protocol.pdf. All samples were sequenced to a sequencing depth of approximately 
50-60 million 50 bp single-end reads.

Protein analysis

Supernatants from unstimulated and 4 hour-stimulated gsTcell cell cultures were 
taken and analyzed with the Immuno-Oncology panel of Olink (http://www.olink.com/
products/immuno-oncology). Data was analyzed by subtracting relative log2 protein 
levels in a blank medium control from the relative log2 protein levels in the superna-
tants, followed by a two-sided t-test to measure significant change between superna-
tants of unstimulated and 4 hour-stimulated gsTcells. 

Statistical methods

Statistical analyses were performed in R (version 3.6.3) 67 unless otherwise specified. 
Visualization of results was done using the R package ggplot2 (version 3.3.0)68.

RNA-seq quantification

Before alignment, the reverse complement of the fastQ sequences were taken using 
the FASTX-Toolkit 69. Alignment was done using Hisat2 (version 2.0.4) 70 against the 
forward strand, with default alignment parameters. The reference genome index was 
made using the Hisat2-build indexer and 1000 genomes reference genome version 
GRCh37 v75 with default parameters. For the samples that had paired-end data, only 
the first mate file was used for alignment. Reads mapping to multiple positions were 
removed. The genes were quantified using HTSeq (version 0.6.1.p1)71 with options -m 
union, -t exon, --stranded yes and other options on default.

DE analysis

The raw count matrix, containing 63,682 genes and 112 samples (92 samples from the 
Leiden cohort and 20 from the Oslo cohort), was first filtered to remove any non-ex-
pressed genes by selecting only genes that had at least 1 read in 20 samples. This 
resulted in 29,772 genes to be tested for DE effects. Samples from the Leiden and Oslo 
cohorts were then split, and the DE effects assessed separately. 

DE effects were quantified using the R package DEseq2 (version 1.26.0) 72, including 
RNAseq batch and sex as covariates for the Leiden samples. No covariates were included 
for the Oslo samples because no sex information was available and all samples had been 
sequenced in the same batch. DE effects were then mapped between the t0 and t10, 
t10 and t30, and t30 and t180 timepoints. DE effects in the Leiden cohort were filtered 
on having an absolute log2 fold change (log2FC) of at least 1 and an FDR < 0.05. Oslo 
samples were used as the replication cohort, and comparisons between the two were 
made using unfiltered Oslo data. In total, we identified 3509 unique DE genes in the 
Leiden cohort. These genes were used for interpretation and downstream analysis. PC 
analyses were performed on the variance-stabilized count data.

Clustering of DE genes into distinct response patterns

DE genes were clustered into time patterns as follows. The gene expression matrix 
was VST-normalized using DESeq2 (version 1.26.0) 72, after which the mean expression 
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level for each gene was determined at each of the four time points. Each row was then 
centered to mean 0 and scaled to standard deviation of 1. The data was clustered using 
k-means clustering (k=6) on a Euclidean distance matrix using the R package TCseq 
(version 1.10.0) 73. Cluster number was determined by assessing the stability of the 
clustering in terms of within-cluster sums of squares over 100 iterations of the cluster-
ing. We then determined that the optimal tradeoff between stability and informative-
ness of each cluster occurred with a cluster number of k=6. To verify the stability, we ran 
another 100 random k-means clustering runs using different parameters (nstart=100, 
k=6 and iter.max=1000). This yielded 100 fully stable clusters that matched very well 
with the clustering definition maintained in the manuscript (98.3% of genes matched 
their cluster). 

Comparisons with DICE and biopsy-derived gsTcells data

DE genes from primary naïve CD4+ T cells were retrieved from DICE (https://dice-data-
base.org/)41. Briefly, naïve CD4+ T cells from healthy donors (n=91) were obtained from 
blood by FACS and stimulated using aCD3/aCD28 for 4 hours. Biopsy-derived gsTcells 
were obtained from Christophersen et al. 13 and contained tetramer+ CD4+ T cells and 
tetramer- CD4+ T cells from CeD patients (n=5) and gut CD4+ T cells from healthy 
controls (n=4). First, we obtained all DE genes that were significant (adjusted p-value 
< 0.05) and showed an absolute log2FC > 1. Next, we intersected all DE genes from 
each dataset to obtain those that were unique per dataset and those that were shared 
with gsTcells. We then obtained the overlapped DE genes of gsTcells between DICE 
(n=1926) and CeD biopsies (n=144) to evaluate the concordance of those genes using 
the log2FC. The overlapped genes were divided in four quadrants (Q1-Q4). Q1 and Q3 
included concordant DE genes that were upregulated and downregulated, respective-
ly. Q2 and Q4 consisted of non-concordant DE genes, with Q2 being upregulated in 
gsTcells but not in reference dataset and Q4 being vice-versa.

Gene set enrichment analysis

Reactome pathways 74 were used to identify the pathways or biological processes that 
were enriched for each set of genes. This analysis was performed using the R package 
clusterProfiler (version 3.14.3) 75. p-values were adjusted using the Benjamini-Hoch-
berg procedure to account for multiple testing.

Quantification and peak calling of DHS sequencing

DHS reads were aligned to hg19 reference genome using bwa (version 0.6.1-r104)76 
with default settings, after which duplicates were marked using bamUtil (version: 1.0.2) 
77. Alignments were then filtered to have a mapping quality of at least 30 and a primary 
alignment and to not be duplicated using Samtools (version 1.9) 78. Peaks were then 
called using macs2 (version 2.2.6) 79 enabling --broad --nomodel –shift -125 --extsize 
250. Peaks were considered at an FDR threshold < 0.05.

Differential peak calling of DHS sequencing

To identify differentially accessible sites between timepoints, consensus peaks were 
first defined using the R package DiffBind (version 2.14.0) 80, after which raw read 
counts were determined for each consensus peak. Differentially accessible peaks 
were then quantified between t0 and t10, t10 and t30, and t30 and t180 using DEseq2 



203

C
ha

pt
er

8

(version 1.26.0) 72. PC analyses of DHS data were performed on the RPKM-normalized 
log10-transformed read counts for the consensus peaks. Overlap of peaks between 
the gsTcells or public datasets was determined with Bedtools multiinter –cluster. TF 
binding site enrichment was performed with Homer findMotifsGenome.pl with the 
merged regions of untreated gsTcells as background 81.

Enrichment of differentially expressed genes in coeliac disease loci

To test for enrichment of DE genes in CeD loci, we used the R package GREA (https://
github.com/raguirreg/GREA, version 0.1.0) 19. We defined CeD genes as genes within a 
125kb window of a CeD GWAS top SNP. We then generated 10,000 random gene-sets 
that matched the CeD gene-sets in size. The 10,000 random gene-sets were used to 
generate an empirical null distribution of the overlap between our DE gene-set per 
cluster and the random gene-sets. We then estimated the one-sided empirical p-value 
of the enrichment for each cluster of DE genes. 
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Suppl. Fig. 1: PCA based on all DE genes in the discovery cohort. Timepoints indicated 
with colors. 

Suppl. Fig. 2: Evaluation of temporal clustering of gene expression. A) Log2 fold 
changes between consecutive timepoints of all DE genes plotted in a heatmap. On the 
left, a dendrogram based on hierarchical clustering of the gene’s log2 fold changes, 
followed by a bar indicating the biotype of the gene, with protein-coding genes in 
red and non-coding genes in green. On the right, a bar indicating which cluster the 
gene belongs to, as depicted in Fig. 2A. Overall concordance with the k-means-based 
clustering of the expression data is good. B) Heatmap of another 100 random k-means 
clustering runs using different parameters (nstart=100, k=6 and iter.max=1000). Rows 
indicate genes. Columns indicate the random cluster runs. Red-blue colors indicate the 
size of the cluster. This yielded 100 fully stable clusters that matched very well with the 
clustering definition used in the manuscript (98.3% of genes matched their cluster). 
C) Elbow plot showing the within-cluster sums of squares (y-axis) for different cluster 
numbers (x-axis). Boxplots show the overall stability of the clustering over 100 repeats 
of the same clustering. Cluster numbers 2, 3, 4 and 6 showed most stability over the 
100 runs.

Suppl. Fig. 3: Expression profiles of specific transcription factors. A) TFs that respond 
early to stimulation. All these TFs are in cluster 1 or 2. Mean profile of VST-normalized 
expression is shown with 0.95 confidence interval in the shaded area. B) As in (A), but 
for NFκB-associated factors. NFκB inhibitory proteins encoded by NFKBIA, NFKBID and 
NFKBIZ are in cluster 1 and 2, whereas REL and NFKB1 are in cluster 3.

Suppl. Fig. 4: Proteins secreted by gsTcells. A) Scaled relative protein levels as 
detected in the medium of unstimulated gsTcells and after 4 hrs of stimulation from 
three independent experiments (black dots). Only protein levels of genes that are DE 
are shown (30 out of 92 proteins measured). Box colors above the dotplots indicate 
the cluster in which the corresponding DE genes are found. Cluster 2 is in grey, cluster 
3 in red and cluster 6 in blue. Mean, minimum and maximum relative protein levels 
are indicated in red. Nominal significance is indicated with asterisks (*p-value < 0.05, 
**p-value < 0.01, ***p-value < 0.001 and ****p-value < 0.0001). B) Expression level of 
the genes corresponding to the proteins significantly changed after 4 hrs in (A). Mean 
expression profile is shown with 0.95 confidence interval in shaded area.

Suppl. Fig. 5: Reactome gene set enrichment analysis of shared DE genes with gsTcells. 
Significant enrichments in Reactome pathways found in: A) overlapped DE genes of 
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gsTcells and DICE consortium, only concordant quadrants (Q1 and Q3) and B) shared 
DE genes of gsTcells with biopsy-derived gsTcells. Only for overlapping upregulated 
gsTcell DE genes an enrichment was found.

Suppl. Fig. 6: Expression level of cytokines and chemokines in gsTcells. A) Expression 
profile of chemokine genes uniquely expressed in gsTcells. Mean profile of VST-normal-
ized expression is shown with 0.95 confidence interval in the shaded area. B) As in (A), 
but for cytokines expressed by specific T helper cell subsets.

Suppl. Fig. 7: Reactome gene enrichment analysis of DE genes specific for external 
datasets. Pathway enrichments of specific DE genes in external references compared 
to gsTcells in this study. Results of comparison with DICE consortium (adjusted p-value 
< 0.05, absolute log2FC > 2). No enrichment was found in DE genes specific for 
biopsy-derived gsTcells.

Suppl. Fig. 8: Enrichment of DE genes in CeD loci per cluster. Enrichment of DE genes 
over the null distribution in CeD loci (±125kb window around start and end of gene) for 
each individual cluster using GREA19. Nominal p-values and number of genes per cluster 
are indicated. X-axis indicates number of genes that overlap with CeD loci, expressed 
as a percentage. 

Suppl. Fig. 9: Gene expression profile of prioritized TFs in gsTcells. Mean profile of 
VST-normalized expression is shown with 0.95 confidence interval in shaded area. Fig. 
shows A) FOS, a subunit of AP-1, located in cluster 1, B) STAT5A, located in cluster 3, and 
C) TBX21, located in cluster 3.

Suppl. Fig. 10: Rs1738074 in the TAGAP locus overlaps with open chromatin and TF 
binding sites in gsTcells. A) Overview of the TAGAP locus. From top to bottom: summary 
statistics of the CeD GWAS meta-analysis 22 (green); TF binding sites based on 
Chip-seq of FOS (red), STAT5A (red) and T-BET/TBX2129 (red); DHS profile of unstim-
ulated gsTcells with peak calls depicted below (light blue); peaks from naïve CD4+ T 
cell ATAC-seq 46 (dark blue); capture Hi-C data of activated CD4+ T cells depicting 
the 3D interactions between the highlighted region and other locations in the locus 82 
(purple) and the gene annotations. Rs1738074 is indicated with the light blue box. B) 
Gene expression pattern of genes in the locus. Y-axis represents the VST-normalized 
expression data. Black line and number indicate the adjusted p-value (DeSeq2) of the 
DE effect between the t0 and t180 timepoints. Blood eQTL p-values of SNP rs1738074 
on the indicated genes are: TAGAP, 2.05x10-19 and RSPH3, 7.37x10-13 (eQTLgen.org50). 

Because TAGAP is DE in gsTcells and because rs1738074 is directly located in the 
promoter of TAGAP, has an eQTL and contains binding sites for FOS and T-BET, the 
expression of TAGAP is likely affected by CeD-associated genetics in gsTcells. Converse-
ly, RSPH3 is not DE, nor is there a 3D interaction between the location of rs1738074 and 
the promoter of RSPH3, which suggests that the eQTL effect observed in whole blood 
in eQTLgen data is not present in gsTcells.

Suppl. Fig. 11: Rs13140464 in the IL2/IL21 locus overlaps with open chromatin and 
TF binding sites in gsTcells. A) Overview of the IL2/IL21 locus. From top to bottom: 
summary statistics of the CeD GWAS meta-analysis 22 (green); TF binding sites based on 
Chip-seq of FOS (red), STAT5A (red) and T-BET/TBX2129 (red); DHS profile of unstimu-
lated gsTcells with peak calls depicted below (light blue); peaks from naïve CD4+ T cell 
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ATAC-seq 46 (dark blue); capture Hi-C data of activated CD4+ T cells depicting the 3D 
interactions between the highlighted region and other locations in the locus 82 (purple) 
and the gene annotations. Rs13140464 is indicated with the light blue box. B) Gene 
expression pattern of the genes in the locus. Y-axis represents the VST-normalized 
expression data. Black line and number indicate the adjusted p-value (DeSeq2) of the 
DE effect between the t0 and t180 timepoints. Blood eQTL p-values of SNP rs13140464 
on the indicated genes: FGF2; 1.63x10-5 (eQTLgen.org50). 

This locus is highly complex and only has one eQTL effect, through rs13140464 on FGF2, 
based on whole blood data (eQTLgen.org50). However, the interaction of the DHS site 
that overlaps with rs13140464 does not interact directly with this gene in activated 
CD4+ T cells, indicating that this gene may not be affected by the SNP in gsTcells in 
this context. Other genes for which no eQTL effects by SNP rs13140464 have been 
identified do have direct interactions, including IL2, CETN4P, NUDT6 and SPATA5. Out 
of these, only IL2 is differentially expressed, which indicates that it may be affected by 
rs131140464 under stimulated conditions in gsTcells.

Suppl. Fig. 12: rs905671 and rs943689 in the BACH2 locus overlap with open 
chromatin and TF binding sites in gsTcells. A) Overview of the BACH2 locus. From top 
to bottom: summary statistics of the CeD GWAS meta-analysis 22 (green); transcription 
factor binding sites based on Chip-seq of FOS (red), STAT5A (red) and T-BET/TBX2129 
(red); DHS profile of unstimulated gsTcells with peak calls depicted below (light blue); 
peaks from naïve CD4+ T cell ATAC-seq 46 (dark blue); capture Hi-C data of activated 
CD4+ T cells depicting the 3D interactions between the highlighted region and other 
locations in the locus 29 (purple) and the gene annotations. rs905671 and rs943689, 
located 185bp apart, are indicated by the light blue box. B) Gene expression pattern 
of genes in the locus. Y-axis represents the VST-normalized expression data. Black line 
and number indicate the adjusted p-value (DeSeq2) of the DE effect between the t0 
and t180 timepoints. Blood eQTL p-values of SNP rs943689 on the indicated genes are: 
BACH2, 7.59x10-53 (eQTLgen.org50). 

In whole blood, BACH2 is strongly affected by rs905671 and rs943689. Moreover, this 
TF is differentially expressed in activated gsTcells, and the locus is strongly enriched for 
3D interactions between the BACH2 promoter and many other intergenic locations in 
BACH2, including with the DHS site that overlaps with rs905671 and rs943689. Thus, 
BACH2 is likely affected by CeD-associated genetics, with the most likely candidate 
SNPs being rs905671 and rs943689.

Supplemental Tables

Suppl. Tab. 1: Description of the gsTcell clones used in this study. LUMC denote clones 
in the discovery cohort, and RHO are the clones used for the replication and for DHSseq 
analysis.

Suppl. Tab. 2: DE genes for discovery and replication cohorts. Results from replication 
cohort prefixed by ‘o’.

Suppl. Tab. 3: DE results for all the proteins assayed using the O-link panel. Summary 
statistics reported for a two-tailed t-test between baseline and stimulated condition 
after 4 hours.
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Suppl. Tab. 4: Combinatory matrix of DE genes used for the upset plot in Fig. 3A. 
Columns indicate the dataset, and rows name the genes. The number 1 indicates that 
the gene is DE.

Suppl. Tab. 5: Comparison of DE genes of gsTcells with the DICE dataset.

Suppl. Tab. 6: Comparison of DE genes of gsTcells with the biopsy-derived gsTcell 
dataset.

Suppl. Tab. 7: Gene Set Enrichment Analysis results using Reactome.

Suppl. Tab. 8: DHS accessibility profiles per timepoint and normalized DHS counts for 
consensus sites.

Suppl. Tab. 9: Results from TF binding enrichment analysis for CeD.
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Abstract

Over 40 genetic loci have been associated to coeliac disease (CeD) risk in the past 
years in several genome-wide association studies. It is not well understood how these 
loci exert their effects as most of the variants therein are non-coding and there is a lack 
of information on which of these variants are causal. Furthermore, recent studies have 
shown that the effects of non-coding genetic factors are highly cell-type and context 
dependent. 

To get insight into the regulatory role of genetic variants in the pathophysiological 
context of CeD, we applied the Survey of Regulatory Elements & SNPs (SuRE-SNP), a 
linkage disequilibrium independent reporter assay that measures the intrinsic regula-
tory activity of genomic regions and the variants located therein. Using SuRE-SNP, we 
enrich CeD loci from patient DNA, allowing for a more targeted yet still high-through-
put fine-mapping approach encompassing all disease associated SNPs. We applied 
SuRE-SNP in two representative cell-lines with and without stimulation: epithelial barrier 
cells of the small intestine (Caco-2) and CD4+ T cells representing the T cell mediated 
immune response ( Jurkat). The intrinsic regulatory activity was dependent on the 
cell-type and context, which was reflected by the cell-type-specific transcription factor 
binding sites located in the active regions, and the mRNA levels of downstream genes. 
Moreover, we identified, and replicated by luciferase assay, three genetic variants that 
assert an allele-specific effect on the activity of their SuRE-SNP element. Two of these 
variants, rs2888524 and rs71327063, exhibit allele-specific effects in epithelial cells in 
the CCR3/CCR5 locus thought to be linked to immune cells. Our findings suggest a 
role for CeD genetics in mediating both immune and epithelial barrier function, which 
ultimately impacts CeD development. 

Key words

Coeliac Disease, SuRE-SNP, Fine-mapping, GWAS, ASE, Epithelial 
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Introduction

Most complex diseases have a genetic component that partly determines susceptibil-
ity and outcome. This component has been well studied for a wide range of diseases 
in genome wide association studies (GWASs), revealing hundreds-of-thousands of 
disease-associated loci 1. However, due to patterns of linkage between genetic variants 
resulting from recombination and evolution, it is still challenging to identify which 
exact variants within each GWAS locus are causal in affecting the disease suscep-
tibility and outcome 2. Most variants identified in GWASs are located in non-coding 
regions where they can affect genes in various direct and indirect ways. For example, 
non-coding variants can affect the expression of genes by altering transcription factor 
(TF) binding sites in regulatory elements (promoters and enhancers), or by affecting 
insulators which in turn change topologically associated domains. The major challeng-
es in post-GWAS interpretation are fine-mapping which variants causally affect which 
genes, the mechanism by which those variants do this, and in what disease-relevant 
cell-type and stimulation-context this occurs 2.

A common approach to post-GWAS interpretation is to use expression quantitative trait 
loci (eQTLs) to link GWAS loci to genes. Such eQTLs were expected to be the answer to 
link GWAS loci to relevant target genes, and many efforts have used them to prioritize 
genes relevant for disease 3–6. While eQTLs can help pinpoint the correct gene for a 
GWAS trait in certain contexts, they do not help to disentangle the linkage disequilibri-
um (LD) between variants, which is needed to pinpoint the causal variants. Moreover, 
recent work 7–9 has shown that eQTL prioritizations using current eQTL resources do 
not always give the correct link between variant and gene, possibly due to the lack of 
context specificity and lack of knowledge on regulatory element structure. Therefore, 
acquiring a good understanding of the causal genetic variants through fine-mapping is 
essential.

There are many approaches for fine-mapping causal genetic variants in genomic loci. 
For example, overlap of genetic variants with chromatin marks, functional elements, and 
TF binding sites 10,11 ,as well as computational models 12–14. These methods are however 
limited by the fact that they do not explicitly test for a regulatory effect, but rather 
rely on association or the assumption that overlap constitutes change in activity of a 
functional element. In vitro assays such as massively parallel reporter assays (MPRAs) 15 
are a high-throughput fine-mapping methods that assess the effects of genetic variants 
on regulatory activity. MPRAs test genetic variants in a cell-type specific and quantita-
tive manner, and they rely on artificially generated DNA fragments. This makes variant 
screening static (one fragment length and sequence) and limited by short pre-defined 
genomic target locations. The MPRA-based method ‘survey of regulatory elements’ 
(SuRE) overcomes these limitations by assessing fragmented whole-genomic DNA to 
assess genome-wide regulatory activity) 15. In the present study, we focus on coeliac 
disease (CeD) as it is an auto-immune disease of which the causative agent (gluten) and 
most relevant cell types associated with pathology are known (i.e., immune and epithe-
lial cells). Briefly, in CeD the ingestion of dietary gluten instigates the immune system to 
damage the small intestinal epithelial barrier 16. Genetic studies on CeD 17–19 have estab-
lished that many of the associated genes are implicated in T cell receptor signaling and 
other immune processes. Less is known about the role of these genes in the affected 
epithelial cells. However, several genes associated with epithelial barrier function have 
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been genetically implicated in CeD 20–22. Thus, the mechanism and context in which 
barrier genes may play a role in the susceptibility and mechanism of CeD is of interest.

To study the role of CeD genetics in epithelial cells we applied SuRE-SNP, a modified 
version of SuRE with the aim of improved fine-mapping in GWAS loci. Instead of assaying 
the whole genome, SuRE-SNP enriches for the CeD loci from patient DNA, allowing for 
a more targeted yet still high-throughput fine-mapping approach of all CeD-associat-
ed SNPs carried by the patients at a MAF of 0.05. We assessed the intrinsic transcrip-
tional activity within each entire locus, and the effect of genetic variants therein, using 
hundreds of millions of SuRE-SNP plasmid constructs. In the context of CeD we applied 
SuRE-SNP in three cell-lines with and without stimulation: Epithelial barrier cells of the 
small intestine (Caco-2) and CD4+ T cells representing the immune response ( Jurkat), 
and K562 cells (erythroblasts), as a methodological control. We identified cell-type and 
stimulation specific SuRE peaks, enrichment of cell-type-related TF binding-motifs, 
and allele-specific expression (ASE) variants that were replicated by luciferase assay. 
Our results suggest a genetic role of epithelial cells in the development of CeD.
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Results

Generation of a high-throughput CeD-specific SuRE-SNP plasmid library

To identify the candidate causal genetic variants in the CeD-associated GWAS loci, we 
applied the survey of regulatory elements and single-nucleotide polymorphisms (SuRE-
SNP) method 15, a next generation reporter assay that can assay the intrinsic regulato-
ry activity of specifically enriched DNA loci from patient material. We first selected all 
genome wide (p<5x10-8) and suggestively significant loci (p<5x10-5) from the latest 
CeD meta-analyses 17,18. We then determined the regions of interest by extending the 
window around independent GWAS top variants from the most downstream to the 
most upstream variants with LD R2 0.8, including 50kb padding on both sides of each 
locus. These thresholds were determined based on simulated GWAS data where the 
causal variants were known (Fig. 1A, Suppl. Fig. 1). We included regions within the 
HLA locus that have been associated with CeD independently from the HLA genes 23 
but excluded most of the HLA region as the total amount of associated DNA was too 
large to include due to the strong LD in that locus. In total, this yielded 14 megabases 
(Mb) of DNA that contains associations to CeD (Suppl. Tab. 1). Whole-genomic DNA 
derived from 30 CeD patients was then selected from a large DNA sample cohort of 
CeD patients 17 by optimizing for the minor alleles of GWAS top-variants. The 30 DNA 
samples were fragmented to approximately 300bp, modified to include a custom 
designed patient-indexed adapter of 37bp on both ends of each fragment and used 
to generate a library of CeD enriched DNA by means of RNA-probe hybridization (Fig. 
1A, Methods). These DNA fragments were then cloned into the custom promoterless 
SuRE plasmids, each tagged with a unique 20bp barcode (Methods) 15. Fragments are 
randomly cloned into a plasmid in either forward or reverse orientation. This allows for 
testing bidirectionally similar to how enhancers and promoters can have bidirection-
al transcription 24. Thus, we generated a CeD-specific SuRE-SNP library of which we 
sequenced around 331 million plasmids that we can use to couple the fragments to the 
unique 20bp barcodes in the plasmids (Fig. 1A). 

Subsequently, this SuRE-SNP plasmid library was transfected into K562 (control), 
Caco-2 (epithelial cells) and Jurkat (CD4+ T cells) cell lines. Caco-2 and Jurkat cells 
were also stimulated for 3 hours with IFN-γ and aCD3/aCD28 respectively, to mimic 
conditions of active CeD. For each cell line 120 million cells were transfected in biolog-
ical duplicates and split in two additional technical replicates to account for bias in 
library preparation (Fig. 1B). RNA containing the barcodes expressed from the DNA 

Left: Fig. 1. Schematic representation of SuRE-SNP study design. A) In the first step of the SuRE-SNP 
protocol, CeD GWAS loci were defined by selecting LD blocks around top variants (Methods). In conjunc-
tion, 30 CeD patients of European ancestry were selected, enriching the population for the CeD associated 
minor alleles with a MAF <= 10%. The DNA of these patients was extracted, fragmented, and enriched 
for the identified CeD associated LD blocks. This enriched library of DNA fragments was cloned into 
SuRE-plasmids which carry a unique 20bp reporter barcode. B) In the second step, the generated pool 
of plasmids is first sequenced to identify fragment - barcode pairs. The fragments are then aligned to the 
genome to identify their origin. Once fragment-barcode pairs were established, the SuRE plasmid pool 
was transfected into Jurkat (T cell line), Caco-2 (epithelial cell line) and K562 (Erythroblast cell line) cells. 
Jurkat cells were stimulated with aCD3/aCD28 to model the TCR activation that occurs in CeD. Caco-2 
were stimulated with IFN-γ to mimic the inflammatory state of CeD. RNA-seq was performed to identify 
the expression of the 20bp barcodes, which informs on the intrinsic regulatory activity of the fragment 
associated with that barcode. Using the barcode expression and the barcode-fragment links, regions 
in the genome that have intrinsic regulatory activity were identified, as well as the genetic variants that 
disrupt this activity 
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fragments in the plasmids of the SuRE-SNP library was isolated and sequenced. Overall, 
this strategy allowed us to determine intrinsic regulatory activity of all DNA in CeD loci 
with greater coverage compared to the regular SuRE protocol (Suppl. Fig. 2), resulting 
in better resolution for detecting the effects of most genetic variants associated with 
CeD on the functional elements.

Identifying intrinsic regulatory activity of CeD-associated DNA fragments

We identified genomic regions that showed intrinsic regulatory activity by calling peaks 
on the barcode expression using MACS2. In total we identified 717 peaks in K562, 302 in 
Caco-2, 327 in the stimulated Caco-2, 28 in Jurkat and 74 in stimulated Jurkat cells that 
were significant (FDR 0.05), showed at least a threefold enrichment over background 
and could be replicated in both biological replicates (Fig. 2A, Suppl. Fig. 3, Suppl. 
Tab. 2). Importantly, we observed substantial differences in the sequencing satura-
tion and signal to noise ratio between the three cell-types we assayed, with the Jurkat, 
THP-1 and GM12878 cell-lines showing the lowest signal to noise ratios and THP-1 and 
GM12878 showing low complexity (Suppl. Fig. 4). While differences in transfection 
efficiency between each cell type may explain part of this problem, the majority of the 
noise seems to be derived from a-specific background expression of the SuRE-SNP 
plasmid library in CD4+ T cells and other immune cells. We expect the cause to be 
a possible interaction between specifically expressed transcription factors and the 
backbone of the plasmid (discussion).

To investigate if our SuRE peaks locate in known functional elements, we overlapped 
them with the genomic element definitions by the Epigenome Roadmap 11 and Encode 
10 consortia. Depending on cell-type, the peaks located mostly (27-60% of peaks) in 
transcription start sites (TSS) and enhancers (Enh) as defined by Epigenome Roadmap 
(Suppl. Fig. 5). The other 40-73% overlap with quiescent regions, active transcrip-
tion (Tx) and repressed regions (Repr), likely attributable to the fact that SuRE-SNP 
measures the intrinsic activity of a fragment independently of the chromatin state 15. 
Similarly, 20-47% of our SuRE peaks locate in known candidate cis-regulatory elements 
(cCRE) from the Encode consortium (Suppl. Fig. 5). Given that there is a discrepancy 
between the number of elements annotated for each functional class (i.e., there are 
more quiescent elements in the genome than there are enhancer elements), we next 

Right Fig. 2. Characterization of regions that show intrinsic regulatory activity. A) Bar plot showing 
the number of peaks that were identified using MACS2 in each cell type. Peaks were defined by a 3-fold 
enrichment over the plasmid coverage and were shared between biological replicates. Colours indicate 
the different cell types. B) Enrichment analysis of the peaks and the regulatory elements identified by 
Epigenome Roadmap and the candidate cis regulatory elements (cCRE) from the ENCODE consortium. 
Enrichment statistics were calculated compared to 10.000 randomly sampled regions (methods). * 
Indicates a significant enrichment, adjusting for 28 tests. Epigenome roadmap’s ChromHMM elements 
were grouped as transcription start site (Tss; 1_TssA + 2_TssAFlnk + 10_TssBiv + 11_BivFlnk), enhancer 
(Enh; 6_EnhG + 7_Enh + 12_EnhBiv), transcription (Tx; 3_TxFlnk + 4_Tx + 5_TxWk), repressive (Repr; 8_
ZNF/Rpts + 9_Het + 13_ReprPC + 14_ReprPCWk), and Quiescent (Quies; 15_Quies) states. C) Transcrip-
tion factor binding enrichment analysis (HOMER) for the peaks. Enrichment was calculated for a genome 
wide background for Caco-2, Jurkat and K562. For Caco-2 Stim and Jurkat Stim we calculated enrich-
ment against a genome wide background but added a second condition comparing the enrichment with 
respect to the baseline state. We added two more conditions, comparing Caco-2 and Jurkat vs. K562. D) 
Example of an active region present in all cell-types assayed located in the promoter of TMEM39A. Each 
track represents the SuRE-activity in a different cell-line. + indicates the activity stemming from reads on 
the forward orientation, - indicates the activity in the reverse orientation. E) As D but showing three peaks 
in the promoter of IL18RAP that are only present in K562 data. 
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evaluated if the functional element overlap with SuRE peaks represented an enrichment 
(Fig. 2B). We found that the peaks were most strongly enriched in TSSs and cCREs for 
all cell-types. Regions of active transcription (Tx) and quiescent (Quies) regions were 
slightly depleted of SuRE peaks. Peaks from K562 were also significantly enriched for 
enhancer marks (Enh), while Caco-2 and Jurkat samples did not show an enrichment 
for enhancer marks. This is likely due to the relatively modest number of peaks detected 
in these cell-types (Fig. 2A). 

We next assessed if the peaks were enriched for particular transcription factor binding 
motifs. To do so we applied HOMER to screen for enrichment of 440 known vertebrate 
TF motifs 25. We tested genome-wide backgrounds for each cell-type, and addition-
ally evaluated the enrichment compared to the other cell-types and conditions, to 
assess any cell-type specific TF binding in our assay. We observed that binding sites 
of basic leucine zipper (bZIP) and especially E26 transformation-specific (ETS) family 
TFs were enriched in all cell-types (Fig. 2C). The TFs in these families cover a multitude 
of different ubiquitous processes, as such it is expected that they are enriched in all 
cell-types 26,27. When we assessed cell-type specific TF binding enrichment in Caco-2 
(by comparing to K562) we observed that SNAI1 binding sites were most significantly 
enriched. SNAI1 is a TF that is involved in the regulation of E-cadherin (an epithelial cell 
adhesion molecule) and has a role in modulating the epithelial to mesenchymal transi-
tion of epithelial cells 28. This highlights that the SuRE peaks we identify are representa-
tive of cell-type specific processes mediated through specific TF binding.

Between the cell-types strong correlation (Pearson r ~0.8) could be observed, showing 
that a large portion of peaks are shared across cell-types (Suppl. Fig. 6). For example, a 
peak, active in all assayed cell-types, locates to the promoter region of TMEM39A (Fig. 
2D). TMEM39A was in the > 65Th percentile of expression in all cell-types. In primary 
tissues, TMEM39A is most abundantly expressed in fibroblasts, but also active in most 
other cell-types 29. 

Despite substantial correlation between cell-types, the activity in some of the peaks 
showed cell-type specific patterns (Suppl. Fig. 6A-C). For example, three peaks 
around the promoter of IL18RAP which are uniquely active in K562 cells (Fig. 2E). 
IL18RAP was moderately ( 40Th percentile) expressed in K562 cells but not in Caco-2 
and Jurkats (< 10Th percentile), highlighting that the SuRE-activity (in promoters) tends 
to be indicative of gene expression levels. The correlation patterns were much stronger 
between peaks in promoter regions (< 1kb from TSS) and proximal enhancers (< 5kb 
from TSS) compared to distal enhancers (> 5kb from TSS) which showed lower correla-
tion between cell-types and lower activity overall compared to promoter and proximal 
enhancer peaks (Suppl. Fig. 6A-D). 

Regulatory activity impacts gene expression in a stimulation specific manner

To ascertain how SuRE-activity relates to gene expression we looked for genes impacted 
by the stimulation of the Caco-2 and Jurkat cells and correlated these to the activity of 
the regulatory elements identified. The pattern of cell-type specificity observed in the 
SuRE-activity was mirrored at the RNA level (Fig. 3A). We then looked for changes in 
SuRE-activity within 1kb of the TSSs of the differentially expressed (DE) genes in either 
IFN-γ stimulated Caco-2 or aCD3/aCD28 stimulated Jurkat (Suppl. Tab. 3) and found 
a significant increase in SuRE-activity near DE genes in Caco-2 but not in Jurkat (Fig. 
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3B). This suggests that these cis-acting SuRE peaks are involved in regulation of the DE 
genes, at least in Caco-2. Notable examples of this are IRF1 and STAT1 for Caco-2 (Fig. 
3C,D) and BACH2 and ICOS for Jurkats (Fig. 3E,F), as we observed both increased 
SuRE-activity in their promoter regions as well as them being DE at the mRNA level. The 
lack of correlation between SuRE activity and DE gene expression in Jurkats is likely due 
to low signal to noise ratio in the Jurkat SuRE assay. 

IRF1 was not expressed in baseline Caco-2 cells but saw a significant upregulation upon 
IFN-γ stimulation (Fig. 3C, log2 fold change: 5.72, p-value: p<2.2x10-308). STAT1 was 
already expressed in Caco-2 prior to stimulation, but its expression was significantly 
increased upon stimulation (Fig. 3D, log2 fold change: 1.79, p-value: 6.82x10-11). IRF1 
and STAT1 encoding TFs of the same name are both known to be activated upon IFN-γ 
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RNA-seq expression. 
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stimulation and to regulate the expression of hundreds of downstream targets 30,31. 
IRF1 is known to be mostly expressed by immune cells but is also present in the small 
intestinal epithelium 29 and has been shown to regulate the expression of cytokines by 
epithelial cells 32. In CeD, IFN-γ is produced when gluten-specific T cells are activated 
33,34, which likely activates IRF1 and STAT1 in the cells of the epithelial barrier. Further-
more, when assaying which TF binding sites were enriched under SuRE peaks in stimu-
lated Caco-2 compared to unstimulated, we found that STAT1 sites were significantly 
enriched (Fig. 2C). Together this indicates a robust activation of downstream IFN-γ 
signaling in epithelial cells, mediated through STAT1 and IRF1. Dysregulation of the 
promoter regions of STAT1 and IRF1 regions by genetic factors may therefore have wide 
reaching effects on the response to IFN-γ by epithelial cells. Indeed, rs2549005, a SNP 
suggestively associated with CeD (p<5x10-5), located in this SuRE peak shows a signif-
icant eQTL effect on IRF1 in blood 4. The SNP rs41430444, also located in a SuRE peak 
and suggestively associated with CeD, is an eQTL for STAT1 4. This suggest that these 
SNPs, located in SuRE peaks, have the potential to regulate the gene expression of IRF1 
and STAT1.

BACH2 and ICOS, both showing increased regulatory activity and expression in stimu-
lated Jurkats (Fig. 3E,F, expression log-2 fold changes: 3.49 and 3.66, p-values: 
2.42x10-240 and 1.78x10-9 respectively), are key factors for TCR signaling and T cell 
function. BACH2 is an essential TF with a key role in both T and B cell function and 
Mendelian variants in BACH2 lead to primary immune deficiencies 35. ICOS, expressed 
by gluten-specific T cells, acts as a co-stimulatory checkpoint and can induce the 
proliferation of several Th subsets 36. Hence, genetic factors altering the expression of 
ICOS and BACH2 may impact the severity of the inflammatory response in CeD 37. With 
regards to genetic effects that may impact the regulatory elements, for BACH2, the 
SNP rs905671, located in an intronic SuRE peak (Fig. 3E), is significantly associated 
with CeD (p<5x10-8) and has an eQTL on BACH2 in blood 4. The SNP rs11571306 located 
in the SuRE peak in the ICOS promoter (Fig. 3F) is associated with CeD (p<5x10-8) and 
has a significant eQTL effect for ICOS in blood 4. Thus, stimulation specific regulatory 
regions may be affected by genetic variants associated with CeD.

Enrichment of CeD heritability in regions with regulatory activity

Next, we looked for genetic variants overlapping the SuRE peaks to assess their effects 
on the regulatory potential of the peak, and subsequently their involvement in CeD 
(Suppl. Tab. 4). We observed that genetic variants located in SuRE peaks were signifi-
cantly enriched for being associated to CeD in a cell-type specific manner (Fig. 4A,B). 
The strongest effect was observed for Jurkat cells, followed by K562 and finally Caco-2. 

Right: Fig. 4. CeD heritability enrichment in SuRE peaks and allele-specific expression of SuRE 
plasmids. A) QQplot showing the distribution of CeD associated p-values for SNPs overlapping with 
SuRE-peaks versus the distribution of CeD p-values of non-overlapping SNPs. p-values show the signifi-
cance of the Kolmogorov–Smirnov test between the two distributions. This test was done for each cell-type 
separately. B) Enrichment of heritability under SuRE-peaks by stratified LD score regression. p-values from 
LD score regression analysis are indicated by * p<5x10-2, ** p<5x10-3, *** p<5x10-4. C) Number of genetic 
variants (1000 genomes MAF 5%) that overlap with SuRE-peaks in CeD loci. Light blue indicates the number 
of variants for which a nominal (un-adjusted p<0.05) ASE effect was found. D) QQplot of the ASE analysis 
p-values. The dotted line marks Bonferroni significance ( 1x10-4), all SNPs passing this threshold are written 
out in full. E) ASE effect of rs2888524 in the SuRE-data for K562, Caco-2 and Caco-2 stim. F) ASE effect of 
rs2888524 based on the luciferase assay. The luciferase assay tests the effects in both orientations which 
are indicated by + and – respectively.
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To see if there was also an enrichment for the heritability of CeD we applied stratified LD 
score regression 38 using the SuRE peaks and found significant enrichment of heritabili-
ty in stimulated Jurkats, K562 and Caco-2 cells (Fig. 4B). The enrichment in stimulated 
Jurkats is striking, as we only detected 74 peaks, indicating that the variants located 
in these peaks have a relatively high effect size on CeD risk. While the T cell signature 
in CeD genetics is well described 20,22, less is known about the role of CeD genetics on 
epithelial cells. This is partially due to the CeD GWAS having been performed on the 
Immunochip platform, so a bias towards immune-gene rich loci exists. Nevertheless, 
we do observe enrichment in Caco-2 cells which points to a potential role for either 
immune genes in epithelial cell function or barrier-related genes within immune-gene 
rich loci.

Allele specific regulatory activity by CeD-associated SNPs 

To quantify if specific genetic variants had an impact on the intrinsic transcriptional 
activity of the DNA fragments in the CeD-specific SuRE-SNP library, we first called 
SNPs, insertions and deletions (INDELs) in the library of genetic fragments we obtained 
from the 30 CeD patients. In total we called ~ 64K (bi-allelic) variants at a minor 
allele frequency (MAF) of 5% genome wide. We then assigned each fragment which 
overlapped with a variant in a CeD locus to an allele. This gave us two pools of fragments 
for each variant, representing the two alleles. We then compared the mean activity 
between each of these pools using a Mann-Whitney U-test to estimate the significance 
of the allele specific expression (ASE). Additionally, we further split these pools into 
either forward or reverse orientation fragments to test for orientation specific ASE. 
We considered only variants that overlapped with a SuRE peak for interpretation. This 
yielded 868 variants for K562, 455 for Caco-2, 555 for stimulated Caco-2, 46 for Jurkat 
and 51 for stimulated Jurkats. Overall, the power to detect ASE effects was limited 
with only a small proportion of the variants overlapping regulatory elements attaining 
nominal significance (Fig. 4C,D, Suppl. Tab. 4). We identified four SNPs which attained 
Bonferroni significance, rs140496 (Caco-2 & Caco-2 stim), rs785847, rs4245080 and 
rs2847260 (K562, Fig 4D).

We selected a total of seven ASE effects and controls to independently validate using 
a luciferase assay. We included the two Bonferroni significant top effects in K562 and 
Caco-2 cells, a fine-mapped systemic lupus erythematosus SNP (rs140490) 39 that was 
not located in a SuRE peak and did not show ASE, as a negative control, and added four 
additional SNPs. We selected these four SNPs based on the following criteria: the SNP 
must 1) have a nominally significant ASE effect, 2) be at least suggestively associated to 
CeD itself, or have an LD proxy (R2>0.8) that is, and 3) be located in a SuRE peak.

The Bonferroni significant K562 top ASE effect (rs785847) showed consistent direc-
tions of effect in the luciferase assay (Suppl. Fig. 7). In addition, our negative control 
SNP rs140490 also consistently does not show luciferase activity nor any allelic effect 
(Suppl. Fig. 8). The fragment with the only Bonferroni significant ASE effect we 
observed in Caco-2 cells (rs140496, not associated to CeD) was not very active in 
the luciferase assay (Suppl. Fig. 9). While there were clear differences between the 
alleles with the G-allele seemingly being repressed in the minus orientation, they were 
opposite to what we observed in the ASE analysis where the G-allele shows increased 
transcriptional activity in the plus orientation. Two of the four additionally selected 
SNPs, rs2888524 and rs71327063, that are both part of the CCR3/CCR5 locus, also 
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replicated the ASE (3-fold expression difference) in Caco-2 cells (Fig. 4E,F, Suppl. 
Fig. 10). Unfortunately, luciferase could not replicate the increased C-allele activity in 
Caco-2 cells of SNP rs11072504 (Suppl. Fig. 11). Rs55950816 in the HLA-region could 
also not be replicated and showed large standard deviations between three luciferase 
biological replicates leaving some uncertainties (Suppl. Fig. 12).

In summary, four of the (nominal) ASE effects identified by SuRE-SNP can be replicated 
in an independent luciferase assay, however, the assay method may affect the strength 
and directionality of the ASE effect in some cases.

Disruption of TF binding motifs by genetic variants located in SuRE peaks

Finally, we assessed possible TF-binding motif disruption by each of the seven selected 
SNPs to understand how the three replicated ASE are caused, why three do not 
replicate, and why the negative control does indeed not have an ASE in Caco-2 cells. We 
tested 440 known TF motifs for each SNP allele separately in a 30bp window centered 
around the SNP using HOMER 25 (Fig. 5, Suppl. Fig. 7-12). 

The ASE effect in Caco-2 from SNP rs2888524, located in the CCR3/CCR5 locus (Fig. 
5A), points to a change in the LRF TF-motif, as the T-allele of rs2888524 is located 
where only a C-nucleotide is tolerated by LRF (Fig. 5B,C). LRF, also known as ZBTB7A, is 
a zinc-finger gene that was previously shown to repress genes by itself or by maintain-
ing nucleosome occupancy by recruiting the nucleosome and remodeling deacetylase 
(NuRD) complex to repress gene expression 40,41. This is in-line with our observation 
that the C-allele has a lower expression than the T-allele (Fig. 4E). 

The other CCR-locus ASE SNP we identified is rs71327063, with its G-allele providing 
stronger transcription in Caco-2 cells (Suppl. Fig. 10). We identified a TF-motif for 
SMAD3 in the A allele, but not the G allele (Suppl. Fig. 10). In addition, a small cluster of 
AP-1 subunit TF-motifs are present up-stream of the SNP and SMAD3 TF-motif. SMAD3 
has been shown to interact with AP-1 subunits to regulate promoter activity 42–44. In 
our case the lower SuRE-activity and binding site for SMAD3 in the A-allele suggests a 
mechanism of repression by SMAD3, possibly in combination with AP-1 45,46. This effect 
could also potentially be mediated through SMAD3 and SNAI1 interactions, as this is 
a known TF interaction that suppresses promoters during epithelial-mesenchymal 
transition 47,48. A second TF overlapping the SNP, ZNF711, is a ubiquitously present yet 
uncharacterized TF 49 and, although it is not as strongly expressed in Caco-2 as SMAD3, 
its TF-motif has zero tolerance for the A-allele of SNP rs71327063 and thus may affect 
binding of ZNF711. We further assessed the potential disruption of TF binding as an 
explanation for the ASE effects in the other five SNPs selected for follow up (Suppl. Fig. 
7-12) and found potential disruption of TF binding in four cases.
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Discussion

In this work we present SuRE-SNP, a reporter assay with the goal of identifying cell-type 
specific genetic regulatory effects of SNPs on promoters and enhancers. We applied 
SuRE-SNP to study CeD and identified several hundred regulatory elements in K562, 
Jurkat and Caco-2 cells in CeD-associated genetic loci. We show that the intrinsic 
regulatory activity of CeD-associated DNA is context and cell-type dependent. We 
highlight that the SuRE-elements are indicative of downstream regulation by showing 
that they modulate genes involved in the type-2 interferon response in epithelial cells 
upon IFN-γ stimulation. Furthermore, several SuRE-elements contain genetic variants 
for which we assessed regulatory potential by ASE analysis. Based on TF-motif analysis 
we identified the TF LRF/ZBTB7A as a likely candidate to regulate a regulatory element 
at SNP rs2888524. Additionally, another regulatory element at SNP rs71327063 is 
possibly regulated by repression at the A-allele through a SMAD3 and AP-1 TF-complex.

Both ASE SNPs rs2888524 and rs71327063 locate to the CCR locus on chromosome-3 
(Suppl. Fig. 13). Within this locus these SNPs likely regulate one or perhaps multiple 
local genes such as the immune-related CCR genes or the barrier-related LZTFL1 and 
SACM1L genes, as also associated by eQTL analysis in blood 4. While the genes CCR1, 
CCR2, CCR3 and CCR5 are the closest genes to both SNPs, these CCR-genes are lowly 
expressed in our Caco-2 expression data. C-C chemokine receptor (CCR) genes are 
involved in immune cell signaling as receptors to chemokines excreted by inflammatory 
responses and are mostly expressed in T cells and monocyte-macrophages 50. As SNPs 
rs2888524 (T allele in perfect LD with proxy variant rs35053103’s G allele OR:1.18) 
and rs71327063 (A allele in LD, R2 0.84, with proxy variant rs34671664’s C allele OR: 
1.27) identified in the CCR locus associated with CeD appear to facilitate repression of 
activity, via the TFs LRF/ZBTB7A and SMAD3 respectively, they may act to repress CCR 
expression. Alternatively, the affected regulatory element may also promote expres-
sion, either directly or indirectly, over longer distances. The genes LZTFL1 and SACM1L 
are strongly expressed in our Caco-2 cells but are more remotely located from both 
SNPs (>300- 500Kb). LZTFL1 functions as a barrier protein by colocalizing with e-cad-
herin and interacting with the epithelial-mesenchymal transition (EMT) pathway 51. 
SACM1L is a membrane phosphatase involved in vesicle and membrane regulation at 
the endoplasmic reticulum (ER), Golgi, and plasma membrane 52. Thus, the identified 
SNPs in this locus could transmit downstream effects on several genes that may have 
a functional consequence in the context of CeD. However, the targets of the affected 
enhancers need to be identified through additional functional experiments.

SuRE-SNP is an unbiased method to identify and characterize functional elements 
in genomic loci associated with a specific disease without prior knowledge of the 
structure and location of enhancers and promoters. Additionally, as DNA fragments are 
sequenced directly, effects of de novo SNPs, deletions and insertions can be assayed. 
Despite these advantages, we identified challenges with translating the SuRE protocol 
to different cell-types. One striking observation was that the background expression of 
the SuRE plasmid appears to be cell-type specific. In K562 cells, the cell-type with which 
SuRE was originally developed, we observed a relatively clean signal with clear peaks and 
detectable enhancer effects (Fig. 2, Suppl. Fig. 4). In Caco-2 we also saw clear signal, 
however there was noticeably more background expression present as compared to 
the K562 signals. For Jurkat cells, we detected some signals that could be replicated, 
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but most signal was obscured by strong background expression creating a very poor 
signal-to-noise ratio in this immune cell type. Similar results were also obtained for 
GM12878 (B cells) and THP-1 (monocytes) (Suppl. Fig. 4C) however, these cells also 
showed low complexity in the barcode expression, whereas Jurkats did not (Suppl. Fig. 
4A-B). As the poor signal-to-noise ratio was observed only in immune cell-types, we 
speculate that there could be initiation of transcription at cell-type specific TF binding 
sites in the backbone of the SuRE-plasmid. While we extensively screened for this (data 
not shown) we could not conclusively pinpoint if and where initiation of transcription in 
the SuRE-plasmid backbone occurred. 

Unfortunately, the high background expression in combination with the large complexity 
of our SuRE-SNP library has a significant impact on the power for detecting ASE effects, 
especially in Jurkat T cells. While the coverage in the plasmid pool per SNP was good (on 
average 877 fragments), many plasmid barcodes were not detected after sequencing 
of cDNA, and final coverage was much lower, with on average 330 fragments per SNP 
found to be expressed at least once in the cDNA (~37% of the input). Hence, we only 
managed to detect four Bonferroni significant ASE effects. This presumably leads to 
our SuRE-SNP being underpowered for the majority of SNPs. Indeed, if we equate the 
number of fragments covering the variants to samples in an eQTL study, we can see the 
“sample size” is limited compared to for example the largest blood eQTL study to date 4 
which would cover the minor allele of a MAF 5% variant with ~1500 samples as opposed 
to the 17 independent measurements (the 330 unique fragments times the 0.05 MAF 
in our study). In this case, the coverage cannot easily be increased by sequencing more 
of the plasmid pool, as this would also increase noise, leading to a point of diminishing 
returns.

Another factor that may impact our ability to detect ASE effects is the fact that the 
strongest SuRE-activity tends to be located in promoter regions (Suppl. Fig. 6D). 
Promoter regions are generally more evolutionally constrained compared to enhancer 
domains 53. Therefore, any genetic effects exerted by common variants located in these 
promoter peaks, are likely to be very small or not even present due to selection. Hence, 
common genetic factors might have more of an impact on enhancers than promoters. 
Given that we detected the strongest in or near promoters in our assay, especially 
in Jurkats, we might be missing genetic regulation by common variants overlapping 
enhancers. 

To verify that the ASE effects we observe are not false positives, we tested seven of 
these effects (including controls) using a luciferase assay and were able to replicate 
four of them (Fig. 4, Suppl. Fig. 7-12). However, the other three showed either low 
activity in the luciferase assay or inconsistent directions of effect. SNP rs140496 shows 
very low luciferase activity while we identify it as overlapping with a moderately active 
SuRE peak (Suppl. Fig. 9). Moreover, even with its low activity there appears to be an 
allelic effect in the opposite allelic direction and on the opposite strand orientation as 
compared to our measured SuRE-ASE. Similarly, SNP rs55950816 also shows opposite 
allelic direction and strand orientation, even though activity in the luciferase assay is 
clearly detected (Suppl. Fig. 12). These discrepancies are not new, nor are they limited 
to just our SuRE and luciferase plasmids. Subtle or vast read-out differences can be 
observed between similar reporter assay tests when 1) using different reporter genes, 
in our case the unique barcode versus luciferase 54, 2) using minimal or core promoters, 
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as in the luciferase assay, or none, as in SuRE-SNP 55–57, 3) differences in the assayed 
DNA sequence length between the randomly inserted SuRE DNA fragments and the 
static DNA fragment in the luciferase assay 55, 4) scrambling the location of minimal 
promoter, reporter gene, and inserted element within the plasmid 55. Another aspect 
to consider is the role of DNA shape characteristics in regulating enhancer activity 58. 
The same assayed DNA-fragment may be differently accessible for regulatory proteins 
due to folding differences of each plasmid based on their elements and total size differ-
ences, thus influencing the shape of the assayed DNA-fragment. Indeed, the plasmids 
of the luciferase and SuRE assays are very different, which may lead to unexpected 
and difficult to control results in both assays. Overall, we believe that high-throughput 
assays as SuRE-SNP are valuable to detect initial ASE effects, but functional validation 
with other reporter assays and multi-omics approaches is necessary to confirm the 
SNP effects and especially the downstream consequences of these SNPs.

Finally, we note that the (best powered) CeD GWAS we used, has been performed on 
the Immunochip platform. Consequently, most CeD-associated loci are by definition 
immune loci, and those barrier genes that are in these loci are there by chance. Indeed, 
several studies, including ours, imply that the heritability of auto-immune diseases, 
including CeD, is best explained by SNPs located in regulatory regions in lymphoid 
cells (Fig. 4A,B) 38,59,60. Thus, the chances of finding CeD-associated SNPs that affect 
epithelial gene expression in Caco-2 cells is low. Unfortunately, as we had poor signal-
to-noise ratios in Jurkat T cells, we were also unable to find many T cell specific SNPs 
associated with CeD that caused ASE. 

In conclusion, we identified many cell-type and context specific regulatory elements 
governing CeD heritability and identified and replicated several genetic effects on 
these regulatory elements. While the power to detect regulatory elements and genetic 
effects was limited by cell-type dependent technical variation, our data suggests that 
genetic loci associated to CeD may also play a role in epithelial cells ultimately affecting 
the susceptibility and development of CeD.
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Methods

Selecting CeD associated LD blocks

CeD associated loci were defined based on three CeD meta-analyses by selecting both 
genome wide (p<5x10-8) and suggestively (p<5x10-5) associated variants 17,18,23. These 
variants were then clumped in a 1 mega base (Mb) window around the top variant to 
identify possible independent signals (LD R2 <0.1) within the locus. Then all variants with 
an R2 > 0.8 around these independent top variants were identified. The outer boundar-
ies of this set of variants were padded with 50kb to ensure the majority of the possibly 
causal variants were present. The thresholds for LD R2 of 0.8 and 50kb of padding were 
determined based on simulated GWASs where the causal variants are known, allowing 
evaluation of what cutoffs are best to recover the majority of causal variants (https://
shiny.cnsgenomics.com/gwasMP/ , Suppl. Fig. 1) 61. Due to the size of the LD blocks 
in the HLA region (chr6:25-35Mb) and the fact we could only enrich for a maximum of 
14Mb, we opted to exclude these regions, apart from 2 blocks identified through HLA 
fine-mapping by Gutierrez-Achury et al. 23. In total, we defined 72 loci comprising 136 
independent top variants to be included in the SuRE-SNP assay (Suppl. Tab. 1). These 
analyses were performed using Plink 1.9 with the 1000 genomes phase 3 non-Finnish 
European samples as the LD reference 62. 

Sample selection

To get the highest representation of minor alleles for each CeD associated variant, we 
selected the optimal combination of CeD-patient samples for which we had material 
available from the latest CeD GWAS 18. A maximum of 30 samples could be enriched 
and thus we ranked all samples by the count of minor alleles they carried for CeD-asso-
ciated independent top variants with a MAF < 0.1. Any samples with fewer than 2 minor 
alleles with MAF<0.1 were excluded. The top 30 samples with the highest minor allele 
count were selected for analysis. For this selection we used the previously generated 
genotypes, which were made using the Immunochip platform 18 and were confirmed by 
performing a new GSA SNP-array on the 30 selected DNA samples to prevent sample 
swaps.

Wetlab methods

Enrichment of CeD associated DNA from patient material

Enrichment of the CeD associated regions (see section: Selecting CeD associated LD 
blocks) for the selected 30 samples (see section: Sample selection) was done using 
Agilent’s SureSelect XT Target Enrichment (SureSelect custom 12-24Mb, catalog 
no. 5190-4896) on Agilent’s Bravo automated liquid handling platform. SureSelect 
XT makes use of pre-designed RNA-probes that bind and pull-down target DNA by 
magnetic bead binding. A total of 230.330 RNA-probes were computationally designed 
using Agilent’s online SureDesign platform. Because of the limited number of probes 
allowed, the design prioritized genome wide (p<5x10-8) loci by a two-fold coverage 
versus single-fold coverage of suggestive (p<5x10-5) loci. The SureDesign tool makes 
use of two different boosting settings (maximum, and balanced) that ensure a different 
locus coverage by tiling of probes, as well as three repeat-mask settings (most stringent, 
least stringent, no masking) to reduce inclusion of known repetitive elements. For both 
genome wide and suggestive loci we designed probes in three parts, 1) Most stringent 
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repeat masking and maximum boosting, 2) Least stringent repeat masking and balanced 
boosting, 3) no repeat masking and balanced boosting (Suppl. Tab. 5). The design 
included two-fold coverage of all genome wide loci (46,82%, 25,15%, and 7,69% of total 
probes per respective setting), one-fold coverage of all suggestive loci (9,21%, 8,70%, 
and 0,70% of total probes per respective setting), and additional coverage of the IL-21/
IL-2 locus to utilize the maximum allowed number of probes (one-fold coverage, least 
stringent repeat masking, balanced boosting, 1,73% of total probes).

Per sample we started with 400Ng DNA and processed it according to the manufac-
turer’s protocol. In short, whole genomic DNA was sonicated with the Covaris S220 
followed by end-repair, a-tailing, and adapter ligation. Originally the SureSelect XT 
protocol makes use of Illumina’s Truseq adapters, however, the SuRE-plasmids also 
contain the Truseq adapters. The consecutive use of Truseq adapters in both methods 
would result in likely amplification and sequencing errors. Thus, we created and ligated 
with custom made adaptors (Suppl. Tab. 6). Next an 11-cycle pre-PCR was required 
followed by Speedvac (Thermo Scientific, Savant DNA120) to concentrate the DNA 
before the actual hybridization and streptavidin-coated magnetic bead (Invitrogen, 
Dynabeads MyOne Streptavidin T1, catalog no. 65604D) capture of the hybridized 
DNA. A 12-cycle post-PCR finalized the hybridized libraries with an average fragment 
size of 300bp including adapters. All required purifications in between each step were 
done using Agencourt’s AMPureXP beads (catalog no. A63882). DNA shearing quality, 
pre-PCR libraries, and post-PCR libraries were assessed using Agilent’s Tapestation 
D1000 (D1000 ScreenTape, catalog no. 5067-5582). 

Generating the plasmid pool

The enriched DNA library with an average fragment size of 300bp including FlexAdapt-
ers was transformed in CloneCatcher DH5G electrocompetent Escherichia coli cells 
(Genlantis, catalog no. C810111), or in E. cloni 10G cells (Lucigen, catalog no. 60107-1), 
followed by purification using a GIGA plasmid purification kit (#10091; Qiagen). 

Barcode to fragment library preparation

Library preparation and barcode to fragment sequencing was done according to the 
previously described short DNA insert size. 

Cell culturing, plasmid pool transfections, stimulations, and flow cytometry

The finalized SuRE-SNP plasmid pool was transfected into all cell types at 120 million 
cells per biological replicate with two biological replicates being generated for each 
unstimulated and stimulated cell type. Cell culturing of Caco-2 cells (ATCC, catalog no. 
HTB-37) was done in DMEM medium with high glucose and pyruvate (Gibco, catalog no. 
41966052), 1% penicillin/streptomycin (Lonza, catalog no. DE17602E), 10% heat-inac-
tivated fetal bovine serum (Gibco, catalog no. 10270), 1% 1M 4-(2-hydroxyethyl)-1-pip-
erazineethanesulfonic acid (HEPES, Gibco, catalog no. 15630080), and 1% MEM non-es-
sential amino acids solution (Gibco, catalog no. 11140050). All other cell lines, Jurkat 
(ATCC, clone E6-1, catalog no. TIB-152), K562 (ATCC, catalog no. CCL-243), GM12878 
(NIGMS, Corriel Institute, GM12878), THP-1 (Sigma Aldrich, ECACC 88081201), were 
cultured in RPMI 1640 with L-glutamine and HEPES (Gibco, catalog no. 52400-025), 
and the same 1% penicillin/streptomycin and 10% heat-inactivated fetal bovine serum 
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as used for Caco-2 cells. All cells were cultured up to passage 5-7 after thawing before 
used for further experiments.

Caco-2 cells were transfected according to the manufacturer in batches of 40Ug 
plasmid per 20 million cells by lipofection at a 3:1 ratio of lipofectamine and DNA 
(Thermo Fisher Scientific, Lipofectamine-2000, catalog no. 11668019). All other cell 
types were transfected by 4D-nucleofection (Lonza Amaxa) in batches of 10Ug plasmid 
per 10Million cells: K562 (Lonza Amaxa, SG kit, catalog no. V4XC-3024, program 
FF-120), Jurkat (Lonza Amaxa, SE kit, catalog no. V4XC-1024, program CK-116), THP-1 
(Lonza Amaxa, SG kit, catalog no. V4XC-3024, program ED-100), GM12878 (Lonza 
Amaxa, SF kit, catalog no. V4XC-2024, program CY-100). Transfection method and 
program choices were based on extensive optimizations with optimal cell numbers and 
plasmid concentrations (data not shown). However, the bulk nature of these experi-
ments has (severely) reduced efficiencies for some cell lines.

All cell stimulations were performed for 3 hours. Caco-2 cells were stimulated with 
60Ng/ml IFN-γ (Biolegend, Recombinant Human IFN-γ (carrier free), catalog no. 
570206). Jurkat cells were stimulated with 2.5Ug/ml anti-CD3 (Biolegend, Ultra-LEAF 
Purified anti-human CD3 Antibody, catalog no. 317326) and 2.5Ug/ml anti-CD28 
(Biolegend, Ultra-LEAF™ Purified anti-human CD28 Antibody, catalog no. 302934). 
THP-1 cells were stimulated with 16.67Ng/ml LPS (Sigma-Aldrich, Lippopolysaccharides 
from Escherichia coli 026:B6, catalog no. L8274-10MG). GM12878 cells were stimu-
lated with 20Ug/ml Anti-IgM ( Jackson Immunoresearch Europe, AffiniPure F(ab’)₂ 
Fragment Goat Anti-Human IgM, Fc5μ fragment specific, catalog no. 109-006-129), 
2Ug/ml CD40 (R&D Systems, Human CD40/TNFRSF5 Antibody, catalog no. mAB6321-
500), and 50Ng/ml IL-21 (Abcam, Recombinant human IL-21 protein (Animal Free), 
catalog no. Ab179621). 

Flow cytometry was used to confirm transfection efficiency by GFP (Lonza Amaxa, 
nucleofection kits, pmaxGFP), to estimate cell death based on cell size, and to confirm 
stimulation efficiency by staining for CD69 for Jurkat cells (data not shown, Biolegend, 
CD69 PE, catalog no. 310906) (Suppl. Tab. 9).

SuRE Library preparation

RNA was taken using 1Ml per 10 million cells of Qiazol lysis reagent (Qiagen, catalog no. 
79306) 24-hours after nucleofection (K562, Jurkat, THP-1, GM12878) and 48-hours 
after lipofection (Caco-2) as these times were determined to provide the strongest GFP 
expression and thus also SuRE-barcode expression. RNA isolations were performed in 
batches of 12Ml bulk using Corning 15Ml high-speed centrifuge tubes (Sigma Aldrich, 
catalog no. CLS430791-500EA) according to the Qiagen’s Qiazol protocol with the 
inclusion of an additional acid-phenol-chloroform step (Thermo Fisher Scientific, 
Acid-Phenol:Chloroform pH 4.5 with IAA 125:24:1, catalog no. AM9720). cDNA was 
produced in batches of 10-20 reactions per biological replicate with the SuRE-plas-
mid specific primer 247JvA as previously described 63. PCR amplification was also done 
as previously described but with the MyTag HS Red Mix (Bioline Meridian Bioscience, 
catalog no. BIO-25048) and with an optimal number of PCR cycles that was determined 
by qPCR for each cell line (data not shown, cycles: Caco-2 17-cycles, Jurkat and K562 
16-cycles, THP-1 19-cycles, GM12878 21-cycles). Library clean-up was initially done 
by AMPureXP beads (Agencourt, catalog no. A63882) and followed by library assess-
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ment with Agilent’s D1000 tapestation (Agilent, catalog no. 5067-5582). An additional 
PAGE-purification was performed to remove unwanted PCR artifacts, the protocol was 
adapted from the methods publication by Lopez-Gomollon et al. 64. In short, DNA was 
loaded onto 15% polyacrylamide gels, the 200- 400bp fragment band was cut from the 
gel, purification of DNA was done overnight by PAGE-elution buffer (0.5M ammonium 
acetate and 10MM magnesium acetate), followed by ethanol precipitation of the DNA. 
The final libraries were again assessed by Agilent’s D1000 tapestations before pooling 
and sequencing. 

RNA-seq library preparation

A few micrograms of RNA from all biological replicates of Caco-2, Jurkat, and K562 were 
used to generate stranded polyA RNA-seq libraries with Illumina adapter (NovoGene).

Sequencing

Sequencing of the plasmid pool for barcode to fragment association (iPCR) was done 
by NovoGene sequencing 150bp PE on a Hiseq X ten. Sequencing was performed in two 
runs on the same library. The first run sequenced 469.895.653 reads, the second run 
sequenced 743.846.252 reads for a total of 1.213.741.905.

Sequencing of the barcode expression (cDNA) library sequencing was done by 
NovoGene at SE 75bp on Illumina NextSeq, or by the UMCG sequencing facility on 
Illumina NextSeq at SE 75bp in several runs for a total of 4.301.099.097 reads for all 
samples 32 samples (8 cell-lines / conditions, 4 replicates). 

RNA-seq libraries were also sequenced by NovoGene for Caco-2, Caco-2 Stim, 
Jurkat, Jurkat Stim, K562 each in duplicate. Sequencing was 150bp PE on the Illumina 
NovaSeq6000 for aiming for 25 million reads per sample.

Luciferase assays to validate ASE effects

Double-stranded DNA (dsDNA) of the seven SNPs selected for luciferase validation 
were manufactured as gBlocks gene fragments (IDT) of about 300bp with the SNP of 
interest centered in each fragment (Suppl. Tab. 7). Per SNP two gBlocks were ordered, 
one for each SNP-allele, any other known variants within the fragment were always 
kept at reference alleles. In some cases, but always for both alleles, the FlexAdapter 
sequence was included on one-side of the fragment to compensate for too high or low 
GC-content at the 5’ or 3’ of the gBlocks which the gBlocks manufacturing process 
could not handle. 

The Promega Dual-Luciferase Reporter Assay System (Promega, catalog no. E1910) 
was performed according to the manufacturer’s instructions. Thus, cloning of the 
fragments was done in both orientations in the pGL3-Basic vector (Promega, E1751). 
Plasmid transfections with the cloned pGL3-basic and TK-Renilla (Promega, E2241), 
were performed in 500K to 1 million Caco-2 or K562 cells as described above. K562 
luciferase cell lysates were taken 48-hours post transfection and Caco-2 lysates 
72-hours post transfection due to the nucleofection versus lipofection differences. 
All SNPs and controls were also stimulated in Caco-2, as described above, stimula-
tions were started 3-hours before the 72-hour time-point. A single biological test was 
performed in K562 and Caco-2 cells, with triplicate technical replicates. Replicated 
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ASE SNPs were tested in biological triplicates in Caco-2 with and without stimulations. 
Luminescence was measured with double cell lysate volumes ( 20Ul) and half LAR-II and 
Stop&Glo volumes (comparable results to normal volumes, data not shown) using the 
GloMax 96 Microplate Luminometer (Promega, E6521), other settings were according 
to the manufacturer’s manual.

Statistical Methods

Step 1: Barcode to fragment association

Before the associations between unique barcode activity and genomic regions can be 
established the barcodes and genomic fragments need to be linked. First, the sequenc-
ing data of the plasmid pool is demultiplexed into fastq files per donor using Cutadapt 
v2.7 65 enabling -e 0.2 --match-read-wildcards --action=none --no-indels. After which 
the adapter sequences in both forward (CCTAGCTAACTATAACGGTCCTAAGGTAGC-
GAACCAGTGAT NNNNNNNNNNNNNNNNNNNNNNNNAGCGTACCGTAGT) and reverse 
(CCAGTCGT NNNNNNNNNNNNNNNNNNNNNNNNAGCGTACCGTAG) reads are 
trimmed using Cutadapt using nonstandard options - q 25 -m 20:50 -e 0.075 --max-n 
5 --no-indels --discard-untrimmed. The 20 nucleotides preceding the adapter in the 
forward read represent the barcode. The nucleotides after the adapter represent the 
genomic sequence of the donor. 

Next, the sample DNA fragments are aligned to the human genome (b37, 1KG version) 
using BWA mem v0.7.15 (http://bio-bwa.sourceforge.net/bwa.shtml) using default 
options and sorted by readname using samtools v1.9. Reads are sorted by readname so 
the paired reads can be extracted more efficiently. Next, the aligned reads stemming 
from different sequencing runs and lanes are merged into one BAM file per donor using 
Picard v2.18.26 (https://github.com/broadinstitute/picard). Alignments were then 
filtered removing any with a mapping quality under 30, non-primary alignments and 
reads that do not map in a proper pair using samtools. 

Step 2: Quantifying barcode expression

To quantify the mRNA expression of the barcodes that is mediated by the inserted 
random DNA fragments of patient DNA, the RNAseq reads were trimmed on the 5’ 
adapter (CCTAGCTAACTATAACGGTCCTAAGGTAGCGAA) using Cutadapt. Only reads 
with an adapter that had fewer than 3 mismatches were kept (on average 98% of reads). 
Any reads with more than 3 mismatches with the adapter sequence were discarded. 
After this, any barcodes which were not 20 nucleotides were also removed. Finally 
barcodes were counted on how often they were present in the set using iPCR-tools 
MakeBarcodeCounts (https://github.com/OlivierBakker/CeD-SuRE-SNP/tree/master/
pipeline/iPCR-tools). 

Step 3: Assigning fragments to barcodes

Finally, the fragments and barcode expression were integrated into a single file using 
iPCR-tools MakeIpcrFile, removing any fragments that did not have a barcode, were 
not paired, unmapped, or primary alignments. We hereafter refer to these fragment 
pairs as iPCR-records. As it is possible for the same fragment to be sequenced multiple 
times, we collapsed iPCR-records with the same barcode by merging records where 
both ends mapped within 50bp of each other, that mapped in the same orientation 
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and to the same chromosome. We allowed for this 50bp window to account for slight 
variations in mapping, although this was a relatively rare occurrence. Out of the set 
of fragments with the same barcode, the fragment that had the best mapping quality 
and the longest stretch of aligned bases was used to determine the mapping position 
of that barcode. For each iPCR-record, we recorded how many times we observed 
the barcode. This information is later used as a proxy for transfection likelihood, as a 
plasmid that has been sequenced more is also more likely to have been transfected. 
This was done using iPCR-tools CollapseIpcr. This set of filtered iPCR-records was used 
as the basis for all downstream analysis.

Calling SuRE peaks

To call regions that showed SuRE-activity, we merged technical replicates, as these 
showed consistent activity in the active regions (Pearson r > 0.9, Suppl. Fig. 3,6). 
While rare, we then filtered any iPCR-records that had a barcode count >500 as these 
are likely to be PCR artifacts and could potentially skew the results. We then called 
peaks using macs2 v2.2.6, supplying the count of iPCR-records as the control track and 
the barcode count as the treatment. As we can be sure the iPCR-records are unique, 
we supplied –keep-dup all to keep fragments matching to the same position. As we 
restricted the analysis to CeD associated regions, we enabled –g 14E6 to represent 
the 14Mb of DNA we assessed. Further non-standard options were --format BEDPE 
-nomodel --bdg –SPMR. We filtered the resulting peaks on FDR 0.05 and an enrich-
ment over background of 3. After which we only kept peaks that were present in both 
biological replicates using iPCR-tools OverlapPeaks. This set of peaks was used for 
downstream analysis (Suppl. Tab. 2). We repeated this procedure to assess if peaks 
showed orientation specific effects by only using iPCR-records in + and – orientations 
respectively.

Genotyping of genomic fragments

To enable the analysis of ASE effects on SuRE activity, we genotyped the genomic 
fragments using GATK HaploytypeCaller v3.8 66. First, the alignments were de-dupli-
cated based on the barcode associated with the reads using iPCR-tools SubsetBam, 
keeping the best aligning reads. Base quality scores were then recalibrated, and 
variants called following the GATK best practices. 

We applied hard filters to filter the genotype calls, as we have an over-representation 
of reads in the 14Mb of CeD associated DNA, which invalidates the model in the best 
practices. We applied separate filters for SNPs and INDELs. SNPs were filtered to be 
bi-allelic, and the following filter string, “QD < 10.0 || FS > 10.0 || MQ < 50.0 || SOR > 
3.0 || MQRankSum < -5.0 || ReadPosRankSum < -4.0 || ReadPosRankSum > 4.0 || AF < 
0.05”. INDELs were filtered to be bi-allelic, no larger than 40 bases and the filter string 
“QD < 10.0 || FS > 25.0 || SOR > 10.0 || ReadPosRankSum < -4.0 || ReadPosRankSum 
> 4.0 || AF < 0.05”. Post-filtering, we identified 64.697 variants of which 59.552 were 
SNPs and 5.257 were indels genome wide. 

Quantifying ASE effects

IPCR-fragments were then assigned an allele if they overlapped a called genetic 
variant using iPCR-tools AssignVariantAlleles. Fragment were assigned an allele if the 
sequenced part of the fragment fully overlapped with the variant, the allele matched 
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either of the variant alleles and the allele matched the genotype of the donor as called 
by GATK for homozygous individuals. 

We then summed the barcode counts for the iPCR-fragments for all replicates of the 
same cell-type and condition and divided it by the number of times we observed the 
fragment in step 1. The log2 of this ratio was taken as the activity of an iPCR-record in a 
cell-type and condition. We considered variants if they overlapped a SuRE peak, and the 
minor allele had at least 12 fragments showing activity. We considered 868 variants for 
K562, 455 for Caco-2, 555 for stimulated Caco-2, 46 for Jurkat and 51 for stimulated 
Jurkats (Suppl. Tab. 4).

We then applied a Mann-Whitney U test for each variant to test if the mean activity was 
different between the two alleles for the variant. We further tested if the orientation of 
the fragment had an effect, by repeating this step for + and – orientations separately. 

Overlap of SuRE peaks with known regulatory elements

Overlap of SuRE peaks with epigenome roadmap’s ChromHMM 15-state predicted 
regulatory elements (K562 dataset E123_K562, Caco-2 dataset E109_Smallintes-
tine, Jurkat dataset E037_THelperMemory) 11, and with Encode’s cCRE (K562 dataset 
ENCFF464BRU, Caco-2 dataset ENCFF610OFX) 67 was done using Bedtools intersect 
68. UCSC’s liftover tool 69 was used to change Encode’s cCRE’s genomic coordinates 
from hg38 to hg19, and we filtered out any region marked as ‘low DNAse region’ for 
increased stringency. Entire SuRE peaks were overlapped with Encode’s cCRE and one 
overlap per SuRE peak was counted to avoid inflation by multiple cCRE overlap with 
a single SuRE peak. Epigenome roadmap’s ChromHMM elements were grouped as 
transcription start site (Tss; 1_TssA + 2_TssAFlnk + 10_TssBiv + 11_BivFlnk), enhancer 
(Enh; 6_EnhG + 7_Enh + 12_EnhBiv), transcription (Tx; 3_TxFlnk + 4_Tx + 5_TxWk), 
repressive (Repr; 8_ZNF/Rpts + 9_Het + 13_ReprPC + 14_ReprPCWk), and Quiescent 
(Quies; 15_Quies) states. Each SuRE peak was matched to a single element when 
multiple states overlapped by prioritization of states (Tss > Enh > Tx > Repr > Quies).

Enrichment of SuRE peaks among known regulatory elements

Enrichment of SuRE peaks among annotated genomic regions was calculated by 
overlapping SuRE peaks with a given reference dataset and comparing the overlap 
against an empirical null distribution generated by creating 100.000 sets of random 
peaks matching the SuRE peaks in length and size. To ensure no bias was introduced by 
the fact that we focus on known CeD associated regions, which are likely to be enriched 
for regulatory signal compared to random segments of genome, we restricted the 
random sampling of regions to the 14Mb of CeD associated genome we assessed. The 
observed percentage divided by the mean of the permuted distribution was taken as 
the ratio of enrichment, and two-sided empirical p-values were calculated to assess 
the significance. This has been implemented in iPCR-tools GenomicRegionEnrichment. 

Stratified LD score regression & enrichment of variants in CeD GWAS

We assessed the enrichment of CeD signal in SuRE peaks in two ways. First, we compared 
the distribution of CeD GWAS p-values of variants located in peaks to the distribution of 
all CeD GWAS p-values. We applied a Kolmogorov-Smirnov test to assess if the p-values 
of SNPs located in SuRE peaks deviated significantly from the background distribution. 
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Secondly, we applied stratified LD score regression (sLDSC) 38 to assess which 
cell-types were relatively more enriched for containing GWAS signal. As it is generally 
not recommended to run sLDSC on immunochip GWASs with the provided LD scores, 
we generated LD scores using only the SNPs which were tested in the CeD GWAS used. 
We then applied sLDSC using the SuRE peaks for each cell-type to quantify the relative 
enrichment of heritability in the peaks. 

TF binding enrichment and allele specific TF binding

To calculate enrichment of TF binding sites under SuRE peaks we applied HOMER’s 
25 findMotifsGenome.pl using standard options providing each of the peak files to 
calculate enrichment and using the genome as background. To calculate cell-type or 
stimulation specific enrichments we used the respective peak sets as the background 
set. For instance, to calculate Caco-2 stimulation specific motif enrichments, we used 
the Caco-2 unstimulated peaks as background. To identify Caco-2 specific motif enrich-
ments, we used the K562 peaks as the background. 

To calculate the allele specific TF binding for the seven SNPs we studied more in depth, 
we scanned for binding sites in the sequence +- 30bp around the SNP. We again used 
HOMER to scan for known motifs in the sequences of both alleles of each SNP. We 
applied the by HOMER supplied database of known vertebrate TF motifs. We coupled the 
HOMER TF-motifs to TF-genes by using the extensive human TF resource by Lambert 
et al. and manually annotating where needed 70 (Suppl. Tab. 8). To order quantify the 
expression of TFs overlapping each SNP we used the RNA-seq data generated from the 
cell-lines used for the SuRE-assay.

RNA-seq analysis and differential expression

The trimmed fastQ files where aligned to build human_g 1K_v37 ensemble Release 75 
reference genome using hisat/0.1.5-beta-foss- 2015B 71 with default settings. Before 
gene quantification SAMtools/1.2-foss- 2015B 72 was used to sort the aligned reads. The 
gene level quantification was performed by HTSeq-count HTSeq/0.6.1P1-foss- 2015B 73 
using --mode=union, Ensembl version 75 was used as gene annotation database.

Quality control (QC) metrics are calculated for the raw sequencing data. This is done 
using the tool FastQC FastQC/0.11.3-Java-1.7.0_80 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). QC metrics are calculated for the aligned reads 
using Picard-tools picard/1.130-Java-1.7.0_80 (http://broadinstitute.github.io/picard/ 
) CollectRnaSeqMetrics, MarkDuplicates, CollectInsertSize-Metrics and SAMtools/1.2-
foss- 2015B flagstat.

Raw read counts were filtered to remove zeroes and lowly expressed genes, by removing 
genes with a read count < 10 in either duplicate. Differential expression analysis was 
performed by Deseq2. SuRE elements were linked to differentially expressed genes by 
taking all differentially expressed genes at FDR < 0.05 (Suppl. Tab. 3) and looking for 
SuRE peaks 1kb upstream of the promoter of these genes. This was done using the 
function findGenes in the R package bumphunter 74.
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Data availability

Full summary statistics for the ASE analysis as well as peak calls and RNA counts have 
been provided as supplementary tables. The raw sequencing and genotype data is not 
publicly available due to privacy concerns with regards to the patient genetics but is 
available upon request. All code and scripts used to generate the results in this study 
are available at https://github.com/OlivierBakker/CeD-SuRE-SNP.

Author contributions

Conceptualization: R.V.B., O.B.B., J.V.A., B.V.S., I.H.J.
Data curation: O.B.B.
Formal Analysis: O.B.B, R.V.B., A.V.D.G.
Funding acquisition: J.V.A, B.V.S, I.H.J
Investigation: R.V.B., J.G-A., R.M.
Methodology: R.V.B., I.H.J., J.V.A., B.V.S.
Project administration: I.H.J.
Software: O.B.B., L.P.
Supervision: I.H.J., S.W., S.S.
Validation: R.V.B., J.G-A., R.M. 
Resources: C.W.
Visualization: O.B.B., R.V.B
Writing – original draft: O.B.B., R.V.B.
Writing – review & editing: I.H.J., S.W.

Roles as defined by: CRediT (Contributor Roles Taxonomy)

Conflict of interest

The authors declare no conflict of interest. 

Acknowledgements

We thank the genomics coordination center of the UMCG for their assistance with 
running the RNA-seq pipeline. We thank the genome diagnostics laboratory of the 
UMCG for their help, and financial contribution, with the SureSelect hybridization. We 
thank Kate McIntire for the editorial assistance.

Supplementary material

Supplementary material has been provided to the the University of Groningen Library 
which hosts the digital version of this thesis.

Suppl. Fig. 1. Recovery of simulated causal variants at different parameters. A) Percent-
age of recovered causal variants (y-axis) versus genomic distance (x-axis). B) As A, but 
x-axis show the LD R2 between the variants. C) As A, but x-axis shows the difference in 
minor allele frequency. Causal variant simulations determined in 61 using the webtool 
https://shiny.cnsgenomics.com/gwasMP/. 

Suppl. Fig. 2. Barplots per chromosome showing the number of SuRE-fragments. Each 
chromosome was split up into 1Mb windows, after which the number of SuRE-frag-
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ments in that 1Mb window was counted. 1Mb windows overlapping with a CeD associ-
ated region (as defined in Suppl. Tab. 1) are colored blue.

Suppl. Fig. 3: Scatterplots of SuRE-activity in active regions between technical repli-
cates. VST normalized (DEseq2) counts of SuRE-activity between different technical 
replicates of each sample. Each dot represents a peak active in at least one of the 
cell-types. 

Suppl. Fig. 4: Sequencing saturation curves and signal to noise ratios. A) Number 
of unique barcodes detected in barcode expression data (y-axis) at different levels 
of random down sampling of the total sequenced barcode pool (x-axis). B) As A, but 
y-axis indicates the proportion of unique barcodes detected. C) The mean ratio of 
barcode count (cDNA) and plasmid count (iPCR) over all detected peaks. D) Signal to 
noise ratio’s for the different cell-types assayed. Signal to noise ratio was determined 
by taking the peak ratio in the peaks as signal and dividing this by the mean peak ratio 
in randomly selected regions (methods). A ratio of 1 indicates no difference, 2 a 2 fold 
difference etc. * indicates that the signal to noise ratio is significant at a p-value of < 
0.05 adjusted for 9 tests. E) Track overview of the different cell-types in the region 
around the promoter of PARK7

Suppl. Fig. 5: Overlap between SuRE-peaks and functional elements identified by the 
Epigenome Roadmap and Encode consortia. Y-axis shows the proportion of SuRE-ele-
ments that overlaps with the respective element in Roadmap or Encode. The numbers 
above the bar indicate the number of peaks that overlap.

Suppl. Fig. 6: Association between regions of active SuRE-activity and average activity 
for different peak types. Heatmaps of Pearson correlations between VST normalized 
(DEseq2) counts of SuRE-activity between different replicates and cell-types. A) 
Correlation between promoter peaks 1kb upstream of a TSS. B) Correlation between 
proximal enhancer peaks 5kb upstream of a TSS. C) Correlation of distal enhancers 
located > 5kb from a TSS. D) Average activity of the SuRE-peaks in each of the three 
types of peaks. 

Suppl. Fig. 7: Region overview of rs785847. A) ASE effect of SNP on SuRE-activity per 
cell-type. Nominal p-values of Wilcox test between the alleles indicated. B) ASE effect of 
the SNP per orientation using luciferase assay. C) Trackplot showing the SuRE-activity 
in a 2kb region around the SNP. D) Zoomed in view showing a region of 60bp around the 
SNP. Bottom tracks show TF binding sites per SNP allele as determined by HOMER. The 
TF overlap with our K562 top-ASE rs785847 almost exclusively shows AP-1 TF subunits 
from the basic leucine-zipper (bZIP) family like FOS, JUN and ATF 75. The bZIP-family 
proteins all contain the TGAsTCA binding-motif (s is a C or G nucleotide) with only very 
subtle differences in binding preference for the middle (n) nucleotide. All bZIP-family 
TFs as shown in (panel D) have no or little tolerance for a T-nucleotide in the middle 
position of the TF-motif and are therefore likely not properly binding at the T-allele of 
SNP rs785847 resulting in its lower transcription compared to the C-allele. Interesting-
ly, in Caco-2 SuRE and luciferase data we do not see much expression of this regulatory 
region (panel C), possibly because bZIP TF-family members form dimers before binding 
to DNA 75 while only BATF of all these bZIP TF-family members is expressed in Caco-2 
cells which by itself may not be enough to recruit the required transcription machinery. 
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Gene expression changes in AP-1 subunit genes have previously been associated with 
many immune diseases 76. Similarly, abundant overlap of AP-1 subunit proteins with 
SNPs has been observed within CeD-associated loci and many other auto-immune 
diseases 77. Although we only identify this ASE SNP in K562 it may play a role in other 
CeD-associated cell types with extensive use of AP-1 gene-regulation. For example, 
enrichment of AP-1 subunit TF-motifs has been observed in the open chromatin regions 
of gluten-specific T cells 34.

Suppl. Fig. 8: Region overview of rs140490. A) ASE effect of SNP on SuRE-activity per 
cell-type. Nominal p-values of Wilcox test between the alleles indicated. B) ASE effect 
of the SNP per orientation using luciferase assay. C) Trackplot showing the SuRE-ac-
tivity in a 2kb region around the SNP. D) Zoomed in view showing a region of 60bp 
around the SNP. Bottom tracks show TF binding sites per SNP allele as determined by 
HOMER. Rs140490 was included as a negative control for Caco-2 cells since it has been 
previously fine-mapped as an SLE relevant SNP in B cells and monocytes with higher 
T-allele than G-allele expression 39. We do not measure SuRE-SNP ASE nor luciferase 
activity for rs140490 (panel A, B). Nonetheless, our TF-motif analysis does reveal many 
new TF-motif matches at the T-allele (panel D). Any of the newly formed TF-motifs at 
the T-allele are likely candidates to induce ASE in the context of B cells, monocytes and 
perhaps other cell types but not in epithelial cells. The c-Myc TF-motif solely present 
at the G-allele (and actively expressed in Caco-2 cells) may compensate the otherwise 
potentially lower transcribed G-allele and explain why this SNP does not have an ASE in 
all cell types (those with c-Myc expression). Furthermore, similar to rs55950816 this 
SNP rs140490 does not overlap properly with our identified SuRE peak (Suppl. Fig. 
12). 

Suppl. Fig. 9: Region overview of rs140496. A) ASE effect of SNP on SuRE-activity per 
cell-type. Nominal p-values of Wilcox test between the alleles indicated. B) ASE effect of 
the SNP per orientation using luciferase assay. C) Trackplot showing the SuRE-activity 
in a 2kb region around the SNP. D) Zoomed in view showing a region of 60bp around 
the SNP. Bottom tracks show TF binding sites per SNP allele as determined by HOMER. 
The strongest Caco-2 and stimulation ASE rs140496, with an expected higher G-allele 
expression, could not be replicated by luciferase assay. Surprisingly, it did not pass the 
threshold for an active enhancer when compared to a negative control synthetic DNA 
fragment (not shown). Moreover, in contrast to the ASE effect in SuRE-SNP, the G-allele 
showed suggested repression. Aside from methodological differences between the 
luciferase assay and our SuRE-SNP method that might explain this discrepancy, the 
TF-binding motif differences between both alleles could be informative in identifying 
the enhancer disrupting potential of rs140496. The major difference in TF-binding sites 
is that the A-allele has binding opportunities for AP-1 subunits that the G-allele does not 
have, while TF-motifs for E2A (TCF3) and the in Caco-2 enriched TF-motif SNAI1 (Fig. 
2C) are located just next to the SNP for both alleles (panel D). Possibly there is compe-
tition for binding between SNAI1 or E2A and AP-1 at the A-allele reducing its potential 
expression compared to the G-allele, or an opposite increase of A-allele expression 
happens due to synergistic binding between SNAI1 or E2A and AP-1. SNAI1 was shown 
to recruit lysing-specific demethylase-1 (LSD1) which is an epigenetic co-repressor 
component that can remove the active enhancer mark H3K4Me1 to silence regulatory 
elements 78,79. Similarly, the E2A (TCF3) TF can also act as a silencing factor 80.
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Suppl. Fig. 10: Region overview of rs71327063. A) ASE effect of SNP on SuRE-activ-
ity per cell-type. Nominal p-values of Wilcox test between the alleles indicated. B) 
ASE effect of the SNP per orientation using luciferase assay. C) Trackplot showing the 
SuRE-activity in a 2kb region around the SNP. D) Zoomed in view showing a region of 
60bp around the SNP. Bottom tracks show TF binding sites per SNP allele as deter-
mined by HOMER.

Suppl. Fig. 11: Region overview of rs11072504. A) ASE effect of SNP on SuRE-activity per 
cell-type. Nominal p-values of Wilcox test between the alleles indicated. B) ASE effect of 
the SNP per orientation using luciferase assay. C) Trackplot showing the SuRE-activity 
in a 2kb region around the SNP. D) Zoomed in view showing a region of 60bp around 
the SNP. Bottom tracks show TF binding sites per SNP allele as determined by HOMER 
Rs11072504 is a Caco-2 only ASE in our data with stronger C-allele than T-allele expres-
sion. However, this does not replicate in our luciferase assay (panel A, B). TF-binding 
motif analysis only reveals GATA3 binding at the T-allele as a potential TF-binding 
difference (panel D). Considering the higher C-allele expression as identified with the 
SuRE-SNP ASE, GATA3 binding at the T-allele would have to induce repression, which 
GATA3 is indeed capable of 81. The role of rs11072504 if regulated by GATA3 may be 
more relevant in T cells 82,83, especially in CD8+ T cells since GATA3 is known to repress 
functionally similar NK-cell related genes 81, especially in CD8+ T cells since GATA3 is 
known to repress functionally similar NK-cell related genes. Moreover, rs11072504 is 
located in between two SuRE peaks and may therefore not be as biologically impactful 
as the SuRE-SNP ASE analysis suggests (panel C).

Suppl. Fig. 12: Region overview of rs55950816. A) ASE effect of SNP on SuRE-ac-
tivity per cell-type. B) ASE effect of the SNP per orientation using luciferase assay. 
C) Trackplot showing the SuRE-activity in a 2kb region around the SNP. D) Zoomed 
in view showing a region of 60bp around the SNP. Bottom tracks show TF binding 
sites per SNP allele as determined by HOMER. Rs55950816 is located within the HLA 
region on chromosome-6 and has a stronger transcription with its G-allele compared 
to its C-allele in stimulated Caco-2 cells according to our SuRE-SNP ASE analysis. We 
could not replicate this in our luciferase assay (panel B). The position of this SNP is on 
the far edge of our identified SuRE peak, which is 690bp in total and not completely 
overlapping with the 300bp synthetic DNA fragment used in the luciferase assay. This 
may explain the difficulty in replicating the expected ASE (panel A). Additionally, we 
do not identify any TFs overlapping the SNP and can therefore not speculate on any 
possible transcriptional mechanism that causes the potential ASE at this SNP (panel D). 
However, our motif search does not include every known TF and may therefore exclude 
a poorly characterized Caco-2 TF candidate for which the TF binding motif is unknown.

Suppl. Fig. 13. CCR locus overview containing the two ASE SNPs rs2888524 and 
rs71327063. Genes are coloured when they are associated to these two ASE SNPs 
according to eQTL-gen, and they remained black if there is no eQTL association. 
Colouring is based on Caco-2 gene expression with green representing highly 
expressed genes, yellow representing lowly expressed genes, and red representing not 
expressed genes. 
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I. In summary

The past two decades have seen an exponential increase in the knowledge we have 
gained on complex traits and diseases. Previously textbook examples of simple traits, 
such as eye colour, are now understood to have a highly polygenic basis 1, illustrating 
that this increase in knowledge has also increased the complexity of the models we use 
to explain complex traits and diseases. We now understand that genetic variants not 
only act by eliciting protein-coding changes, but they also mould gene expression in 
subtle ways that are highly context-sensitive. Given the high polygenicity of complex 
traits, it is unlikely that we will gain much more understanding by studying single genes 
in isolation, as the disease-associated variants likely carry out their effects on disease 
risk through a complex cascade of pathways. As such, there has been a shift in focus 
away from identifying these genetic factors toward trying to interpret how they operate 
and what they represent. This post genome-wide association study (GWAS) interpre-
tation has, however, proven challenging, and no model currently exists that can reliably 
predict the causal effects of GWAS variants.

This thesis evaluated how genetics modulates the development of complex traits and 
diseases from several different perspectives. In Chapter 2, we evaluated and reflected on 
current strategies for post-GWAS interpretation. Chapter 3 described Downstreamer, 
a strategy we developed for quantifying how genetic variants impact the gene regula-
tory networks underlying disease. We hypothesised that genes central in this network 
may be important for the disease process. Chapter 4 described a new method to identify 
eQTL effects that operate in a cell-type-specific manner that does not require gener-
ation of single-cell data. In Chapters 5 and 6, we evaluated the genetic and environ-
mental factors that influence cytokine production capacity and linked it back to disease 
loci and risk scores. In Chapter 7, we looked at the genetics of immune traits in ancient 
individuals and discussed how evolution may have played a part in shaping them. Finally, 
in Chapters 8 and 9, we took a deeper look at how the genetic factors associated with 
coeliac disease may elicit a functional effect in cell types relevant for the disease course.

Overall, these chapters represent a broad evaluation of the current strategies for 
post-GWAS interpretation. Naturally, they are not without their limitations, and it would 
be an error to conclude that they provide definitive answers to these highly complex 
questions. While the specific and technical drawbacks have been extensively discussed 
in each respective chapter, this final chapter reflects on the work in this thesis and 
examines the challenges the field currently faces and will face in future. Finally, this 
chapters reflects on what actionable insight we have gained through work presented 
in this thesis. 
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II. Thoughts on interpreting the genetic basis of complex traits and diseases

Fine-mapping and effect sizes of GWAS variants

In Chapter 8, and especially in Chapter 9, we focussed on fine-mapping genetic variants 
associated with coeliac disease. However, as has become apparent, the effect sizes of 
individual GWAS variants are generally small, and a single variant is unlikely to make the 
difference between an individual developing or not developing a complex disease. In 
addition, in most cases, it is ultimately the protein encoded by the gene that is affected 
by the variant that exerts the effect. This then begs two questions: Why do you care 
about fine-mapping variants? Why not just focus on the genes and proteins? In principle, 
if you know the causal gene, then the variants are of less interest. However, in order to 
identify which gene is causally affected, I believe it is essential to have a comprehensive 
understanding of the regulatory structure in a locus. Given that GWAS loci generally 
harbour many variants and genes and linkage disequilibrium (LD) can span across 
mega-bases, without fine-mapping, you can never be sure which variants are casual. 
Consequently, you can never identify which enhancers or other regulatory elements 
are affected by the variants, and you are left with all genes in a locus as the credible set. 
While this is a workable backbone for subsequent analysis, it would improve specific-
ity to truly know in which context which GWAS variants are affecting which genes in 
cis. Furthermore, if sufficient certainty can be attained about which genes are affected 
by which variants though fine-mapping, this will increase the understanding we have 
about the disease process.

Linking GWAS loci to genes

Fine-mapping does not solve the issue of prioritising genes. While it is a first step to 
identify which regulatory elements are disrupted by the genetic variants, linking 
these elements to genes remains non-trivial, as elements may be kilo-bases or even 
mega-bases away from the target gene.

One currently popular approach to link variants to genes (that we also applied in 
Chapters 5, 8 and 9) is to use eQTLs, as they provide a direct link between genetic 
variants and genes. However, as noted in Chapters 2 and 4, eQTLs can differ greatly 
depending on the cell type and the context the cell is present in. Current resources 
generally lack this specificity, and this is likely one of the reasons eQTLs are currently 
not very informative for providing variant gene-linking (Chapter 2) 2–5. For example, 
the eQTLs from the GTEx project have been able to pinpoint candidate target genes for 
only 47% of GWAS loci 6, while on average only 11% of trait heritability can be explained 
by GTEx eQTLs 7. It should be noted that a large proportion of the candidate genes 
are likely to be non-causal to the trait. In addition, Nasser et al. evaluated the perfor-
mance of various models currently used for this task 5 and found that eQTLs, depending 
on the statistical model used, had either high recall and low precision or low precision 
and high recall for identifying links between IBD variants and known IBD genes. 
Moreover, the eQTL-based methods were outperformed by simply taking the closest 
gene to the variant. Furthermore, recent work applying a Mendelian randomisation–
based approach (see Randomised control trials and Mendelian randomisation below 
for a discussion on this technique) only found evidence for causal mediation between 
transcripts and complex traits through protein levels in ~5% of loci, on average 8. While 
these assays are also likely to contain bias and are far from representative of the entire 
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human regulatory repertoire, they do show that there is still a lot that we cannot empir-
ically describe about the cis-regulatory architecture of GWAS loci using eQTL, even for 
diseases where blood-based eQTL should be relatively informative.

While the GTEx project and the eQTL catalogue 4 have made great strides towards 
cell-type-specificity, and promising results are likely to come from the gut cell atlas 9, 
human cell atlas and similar single-cell consortia 10, these large-scale projects will still 
be limited by context-specificity. While I believe studying a gut disorder such as coeliac 
disease would be much more informative using eQTLs from gut-derived cells, doing 
this using “healthy” samples will likely not be representative of the disease context. In 
Chapter 9, for example, we identify regulatory elements in promoters of genes in the 
type-2 interferon pathway that are not active in the baseline state. In Chapters 5 and 8, 
a plethora of other examples show massive and dynamic transcriptional changes that 
only occur once cells are activated. At the risk of stating the obvious, it would be much 
better, if not essential, to map genetic effects in the truly relevant contexts if we want 
to understand the disease process and close some of the gaps in our knowledge. I have 
focussed here on the context-specificity of eQTL and genetic effects, but the same 
point holds when studying other factors related to disease.

This is, however, no trivial matter. It takes great expense and effort to build up biobanks 
that house the large number of samples of disease tissue required to do such a study. 
Additionally, the generation of protocols that can reliably and uniformly dissociate and 
process patient-derived material is a challenge that should not be dismissed. Further-
more, when studying the response of cells upon stimulation, a time-course study 
design would be ideal, as genetic variants may exert their effects depending on the 
time in the stimulation. For example, an eQTL modulating the expression of a transcrip-
tion factor that is activated very early on after stimulation might only be active at that 
early timepoint, while this effect might not be observable anymore after several hours.

In the next 10-15 years, we will likely see the generation and expansion of such large 
scale biobanks, which will grow in size and quality as the technical ascpects are 
perfected and costs reduced. The prospect of biobanks containing thousands of case 
and control single-cell RNA-seq samples, perhaps even coupled with protein and 
chromatin measurements, is tremendously exciting. This will hopefully definitively 
awnser the question if the context specificity truly is the limiting factor in linking GWAS 
loci to genes using eQTL. However, we will likely never completely cover all of the GWAS 
loci through eQTL mapping, as the variation in expression measurements will always 
outweigh the extremely subtle effect of some of the GWAS variants. Furthermore, the 
power needed to detect such small and transient eQTL effects will be unfeasable, even 
in the near future. For instance, most of the variability in  standing height can now be 
explained using common polymorphisms, but that has taken five million individuals to 
do so. 

Other fine-mapping strategies

In Chapter 9, we utilised a modified version of the Survey of Regulatory Elements (SuRE) 
to identify genetic effects on the activity of regulatory elements. As noted in Chapter 2, 
however, various other strategies exist. Given the challenges we faced in translating the 
SuRE to other cell types, I thought it prudent to reflect on how some of these strategies 
might have played out when applied to studying the genetics of coeliac disease (CeD). 
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While I still believe that, in principle, the SuRE represents a very elegant way of evaluat-
ing genetic effects on enhancer activity, even if it works perfectly, the link between the 
regulatory element affected by a disease-associated variant and the gene still needs to 
be proven.

A very common way to fine-map, which we also applied in Chapters 8 and 9, is to overlap 
GWAS variants with known regulatory elements. The major disadvantage to this is that 
you have no guarantee that the variants that overlap these elements are affecting 
gene expression. Hence, the next logical follow-up would be to overlap with eQTLs. 
However, given the issues outlined above, this still leaves major gaps. A second strategy 
would involve looking at the transcription factor (TF) binding sites to check if these 
are disrupted. As these TF binding strategies are generally computational in nature, 
they still suffer from the issue that they do not prove a functional effect on regulatory 
activity or gene expression. Additionally, there are currently major differences in the 
predicted TF binding sites depending on the data and software used to do the predic-
tions. Furthermore not all TF binding motifs are known 11.

In principle, combining these strategies using data from the correct functional context 
should provide much of the answer and yield a highly credible set of causal variants. But 
the key point here is that this should be done in the correct context. As most techniques 
for detecting open chromatin (DNA-seq/ATAC-seq) and the various CHIP-seq protocols 
for detecting promoters, enhancers and transcription (H3K27Ac, H3K27Me3, H3K 
36Me3 etc.) are fairly standardised by efforts like ENCODE 12, it should be feasible to 
generate such data, just rather costly and time-consuming. However, even if variants 
are identified that meet all the outlined criteria, this will still not have proven that the 
variant is affecting the regulatory element. To do so, some form of functional test will 
remain necessary, as not all variants overlapping a regulatory element are guaranteed 
to elicit a functional effect.

Additional approaches to fine-map causal variants involve performing a meta-analysis 
using ethnically diverse populations 13,14 or various statistical models 15. However, these 
are either currently limited by the data used or suffer from being observational/statis-
tical in nature and, as such, do not provide explicit evidence that the variant is truly 
causal. While we have learned a great deal of fundamental knowledge from such efforts, 
they lack the specificity and functional evidence to make them actionable on their own. 
Recent efforts to increase the diversity of the genetic data that is available to research-
ers will likely help to increase the scope and power of such approaches.

The recent explosion of CRISPR-based experimental setups presents a veritable 
goldmine for designing assays that could assess genetic effects on regulatory 
elements and gene expression simultaneously. One could now theoretically design a 
high-throughput assay that could target enhancers or SNPs, and then, through (single-
cell) RNA-seq, identify the effects this has on the expression of genes. Given that 
CRISPR-based techniques are being applied to primary cells, it will become possible 
to forgo model (cancer) cell lines and utilise actual patient material. However, these 
assays are not perfect, and substantial technical challenges still exist when it comes to 
clonal variability 16, guide RNA design 17, single-cell sequencing 18 and cost. In 5–10 years, 
these may have been solved, just as they have been in genome sequencing, allowing for 
the robust execution of such protocols.
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Trans-eQTL effects, core genes and the omnigenic model

As mentioned throughout this thesis and in the literature, GWAS variants generally 
have small effect sizes and current cis-eQTL resources are imperfect when it comes 
to explaining their effects. Instead, it has been suggested that the heritability of GWAS 
traits is mostly modulated through trans-eQTL effects 3,19. Indeed, Võsa & Claringbould 
showed that trans-eQTL effects stemming from systemic lupus erythematosus loci 
converge on genes related to interferon signalling, showing proof of concept for this 
idea. In Chapter 3, we evaluated whether the genes we prioritised as central in the gene 
regulatory network for a disease are enriched for trans-eQTL convergence stemming 
from the disease loci. However, while we observed significant enrichment, we could 
not explain most of the signal using trans-eQTL effects. Several reasons for this were 
discussed in Chapter 3. Additionally, many of the issues in cis-eQTL mapping discussed 
above also apply to trans-eQTLs.

The omnigenic model that was introduced in 2017 describes a similar idea 19. In this 
model, GWAS variants are assumed to mostly influence peripheral genes that have no 
direct effect on the disease process. Instead, these peripheral genes are responsible for 
regulating core genes that are central to the disease process. In the omnigenic model, 
it is possible for genes in GWAS loci to be core genes. Since the model’s introduction, 
several studies have come out that evaluate its credibility 20–22, and, in Chapter 3, we 
describe a method that operates along a highly similar vein and find that the genes we 
prioritise have properties similar to core genes.

There has been criticism on the omnigenic model. It has been described as an over-sim-
plification of highly polygenic disease processes 23. Personally, I feel one major challenge 
with this model is that it is so general that it fits almost everything, and it is a fair question 
how useful this model is in practice. Furthermore, it is hard to falsify, meaning we can 
currently only provide positive evidence for it. While the omnigenic model is a helpful 
abstraction to guide thinking about the genetic effects on gene regulatory networks, it 
remains and open quesition whether the search for core genes is truly helpful in under-
standing disease biology.

It would be an interesting challenge to re-define the omnigenic model into something 
more concrete, and perhaps apply Karl Popper’s  falsifiability principle to it. However, as 
with most concepts in complex trait genetics, we are still in an exploratory phase, and 
it would likely be hard to define a strict hypothesis that is general and still falsifiable and 
useful. While the hypothesis “All CeD heritability converges on core genes” is falsifiable 
by observing that there is a gene where this is not the case, this is not a very informative 
hypothesis to answer because it is very general and does not really help further the 
understanding of the disease process. Instead, one could ask more specific questions 
like – “Is Gene X a core gene that significantly affects coeliac disease risk?” – which is 
more informative and could be answered for all genes. However, the next question is 
then how a core gene is defined and whether this is a useful definition. Additionally, the 
word “significant” is also up to interpretation, a very small effect size of 0.0001% may 
still be a significant increase in risk, but it is not very actionable. It will take discussion by 
the scientific community to arrive at sensible and accepted definitions for such terms.

Hopefully, in time, core genes will provide better drug targets for complex disease. 
While we noted in Chapter 3 that several genes that fulfil the core gene criteria are 
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also existing drug targets, it is an open question if this is coincidence or not. Moreover, 
not all core genes, should they exist, may be viable drug targets. However, even a 
marginal enrichment in viable targets would make identification of core genes a 
worthwhile endeavour. A pre-requisite for achieving this would be the generation of 
a widely accepted gold standard for core genes and drug targets that could be used 
to benchmark prioritisation approaches. While services like Open Targets are getting 
close, to my knowledge, no such standard currently exists. Moreover, generating such 
a standard is massively challenging given all the unknowns about complex disease 
genetics. Indeed, the generation of robust gold standard sets has been recognised as 
a key goal by the International Common Disease Alliance in their 2020 white paper 24.

The use of polygenic scores for interpreting disease genetics

A currently widely used approach for the interpretation of complex traits is the use 
of polygenic scores (PGSs) (also known as polygenic risk scores when applied to 
diseases). Generally, a PGS aggregates the thousands of GWAS effects linearly into a 
single score. This score can then be associated with a variety of traits (such as gene 
expression 3) to estimate the collective contribution of the genetic signal to that trait. 
We applied these scores in Chapter 6 to estimate how the genetic factors associated 
with immune disease are associated with cytokine production. In Chapter 7, we used 
PGSs for immune traits to assess how the genetic factors collectively changed during 
the recent human past (in evolutionary terms).

While PGSs provide a useful abstraction layer, they should be interpreted with caution. 
For one, the heritability that is explained by the GWAS used to generate PGSs should 
always be considered when interpreting. For highly powered GWASs such as height, 
about ~40% of the variation can be accurately explained by SNPs in European ances-
tries 25. But for many traits, this number is lower. This impacts interpretation, as you 
can only draw conclusions on the proportion of heritability you observe. It is very easy 
to not take this into account and to generalise the conclusions to the entire spectrum 
of variation for a trait. This is, however, not just an issue for interpreting PGSs, but one 
that impacts the whole scope of research into complex traits.

Furthermore, the now well-described issues with translating PGSs to non-European 
populations should also be considered 26,27. Because of the different scope of variation 
and LD structure, European GWAS results cannot directly be translated to, for example, 
African populations. Interestingly, fine-mapping the variants used to generate the 
PGSs improves the trans-ancestry portability 27. One of the major questions in Chapter 
7 is how applicable modern GWAS is to ancient populations. While we did limit analysis 
to ancient samples discovered in Europe, and the genetic clustering showed that 
the samples do resemble modern European populations much more closely than, 
for instance, African samples, we cannot be certain that the variants (and their LD 
structure) that are associated to complex traits now, were the same 50,000 years ago. 
Furthermore, it has been suggested that the signals of polygenic adaptation detected 
using large sets of variants (such as height) are over-estimated due to un-corrected 
population stratification in the GWAS 28. The increased trans-ancestry portability of 
fine-mapped variants may in future help improve the predictions we can make on the 
evolution of complex traits.
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Interpreting the genetic basis of complex disease as a whole

As mentioned throughout this section, the genetic basis of complex disease is highly 
complex and polygenic. Furthermore, we are becoming aware that the effects of 
genetics are often transient and context-specific. Further study on the fundamen-
tal principles of how genes are regulated in cis and trans by the non-coding genome, 
genetics and contextual impact will close some of the gaps that cannot currently be 
explained by eQTL studies. This will require systematically solving the issues for all loci 
regarding enhancer–gene links, the discrepancies between chromatin-modulating 
variants and eQTLs and detection of TF binding and disruption. While this is a massive 
challenge, it also presents exciting opportunities for designing assays and models that 
take this complexity into account.

III. The limits and opportunities of statistical models and biological model systems

The widespread use of additive linear models in complex-trait genetics

As noted throughout this thesis, GWAS effect sizes are quite small. Hence, strategies 
have been and are being developed that amalgamate the collective of genetic effects 
into a more easily interpretable score (Chapter 2). The assumption in such models 
is often that stronger association equals more important function. In Chapter 3, we 
developed such a method, Downstreamer, that considers the collective impact of 
genetic effects rather than focusing on specific loci. The major limitation of most of 
such approaches is that they usually reduce the complex regulation that happens in 
disease to a few linear models. Indeed, ours is no exception in this.

This does raise a major question of whether it is a fair assumption to aggregate genetic 
effects into a single linear score, as done in a PGS (Chapter 7) or in Downstreamer 
(Chapter 3). Additionally, many approaches 29–31 such as Downstreamer, use p-values 
and not the effect size of the variant. Consequently, the directions of effect in such 
models are not interpretable. While a substantial portion of variability can certainly be 
explained by simple additive linear models, as evidenced by the fact that a good PGS 
(such as height) can be replicated in independent cohorts 32, other modes of operation 
for genetic variants exist. This might be one of the reasons why GWASs are currently only 
partially able to explain their trait’s heritability, as noted in Chapter 1 33. For example, in 
GWASs, the dominant/recessive model is rarely assessed, and the alleles are assumed 
to contribute linearly to the trait. For instance, a recent study on type-2-diabetes found 
five additional loci by assessing the recessive model, and two of these had substantial 
effects with an odds ratio > 2 34. Furthermore, epistatic interactions (Chapter 2), where 
two or more alleles need to be jointly present for there to be an effect, are seldom 
tested due to the huge multiple testing burden and general complexity 35,36.

Additionally, gene x environment interactions might also form an important area where 
improvements can be made. For instance, for certain auto-immune diseases there is 
likely a link between viral infection and the triggering of the auto-immune disease 37–40. 
Without also phenotyping the infection state of the individuals included in the GWAS, 
any genetic factors that interact with this process may be missed. However, the scope 
of possible interactions is practically infinite, so careful consideration is required when 
assessing such effects. Future methodological developments, improved phenotyping 
and increases in sample size will likely help to answer these questions.
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On the other hand, making a model too complex is also not ideal. As the complexity 
of a model increases, so does the likelihood of error, leading to issues with reproduc-
ibility, as evidenced by the lack of reproducibility by machine learning algorithms in 
the biological sciences 41–43. Additionally, more complex models, especially machine 
learning algorithms, are much harder to interpret because they can be quite opaque 
in terms of how they arrive at the model. The generation of a set of accessible gold 
standards for evaluating algorithms and the proper use of validation sets (ideally not 
just cross-validation) will be key to deliver results that hold up in the long term.

In the end, no perfect model exists, and it boils down to a famous adage attributed to 
George Box “all models are wrong, but some are useful.”

Perspectives on better model systems

This thesis extensively discusses the importance of studying the effects of genetic 
factors in their correct context, either a complex cellular context and/or the correct 
micro-environment generated by cytokines and other signalling molecules. However, 
I have not yet extensively discussed how this may be achieved. Luckily, there are many 
existing and emerging approaches that will allow for more control over context.

Co-cultures

So far in this thesis, the cell type composition of tissues has been treated primarily as 
a factor causing confounding in assays. However, cell proportions vary greatly in the 
body, and this does have a massive impact on phenotypes. A single activated T cell is 
unlikely to cause inflammation, but thousands of them will have a major impact. From 
the genetic point of view, it is very appealing to think of the eQTL or regulatory disrupt-
ing effects as we describe them theoretically, as static isolated effects that activate or 
repress the expression of the target gene. However, cells in tissues recruit, interact 
and influence each other, creating complex, interactive micro-environments that are 
dependent on disease status. Hence, this static picture of an eQTL in the context of 
tissues and disease states is not accurate. However, most current assays used to model 
complex disease genetics do so in single cell-lines or homogeneous cell pools, and thus 
fail to capture this aspect of biology.

This is where the development of co-cultures could provide an answer. In a co-cul-
ture, multiple cell types are cultured simultaneously in vitro and allowed to interact 
with each other (Fig. 1). As a simplified example, for CeD, the gluten-specific T cells 
could be co-cultured with intestinal tissue in the presence of CD8+ T cells and antigen 
presenting cells that present gluten peptides. If it is then possible to show that intes-
tinal damage occurs in the gluten condition, you have a very nice model on which to 
perform (genetic) experiments. While such models would still not fully recapitulate 
the true disease process, they could allow for more accurate recapitulation of partial 
disease phenotypes and the pathways central to them. This is not limited to intestinal 
tissue, however, and studying the response of mixed sets of immune cells to different 
antigens at single-cell resolution at different timepoints would be massively interesting 
and provide insight into the causal cascade and feedback loops that occur in an immune 
response. This would be especially true if combined with an assessment of protein levels 
in conjunction with the mRNA levels. Furthermore, specific immune checkpoints or the 
key genes identified in Chapter 3 could then be modulated using CRISPR technologies 
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Fig. 1. Schematic overview of different cell-culturing approaches. A) A cell-culture 
grown in an isolated state. B) A co-culture where two cell-types are grown together and 
allowed to interact. C) An example of an organ on a chip, in this case representing gut 
tissue. These chips are tailored to mimic the environment of a tissue as best as possible. 
Panel C is based on Moerkens and Mooiweer et al. 47. 
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to assess their impact on the cellular phenotype, or a cellular pool could be pre-select-
ed based on a known genetic background.

Biopsies

Additionally, future approaches in single-cell RNA sequencing will prove very exciting, 
once most of the technical wrinkles (such as the high variability between replicates 18) 
have been worked out and protocols to process biopsy materials optimised. The gener-
ation of large databanks containing both healthy and diseased tissue with uniformly 
processed (single-cell) data could provide much more accurate insights into genetic 
regulation, especially if this data is available for different stages of any given disease. 
Indeed, for CeD, such experiments have been performed with intestinal biopsies taken 
from inflamed intestinal tissue 44,45. While the scope of such experiments is currently 
still too limited to do major genetic studies, it is a very exciting future prospect. A major 
limiting factor lies in obtaining sufficient samples to perform these studies, especially 
from healthy subjects as it is not ethical to subject healthy individuals to the invasive 
medical procedures required. Furthermore, while intestinal biopsies are attainable with 
relatively low risk to the patient, heart or brain biopsies pose a greater challenge. Hence, 
studies using these challenging tissues, like GTEx, are generally done on post-mortem 
samples, which may have a large impact on the cellular phenotypes observed.

Organs on a Chip

To avoid the ethical issues in obtaining patient material, tissues can be grown in vitro. 
One approach that allows this are organs-on-chip (OOCs). OOCs are, as the name 
implies, small versions of organs grown on a microfluidic chip that can encompass 
a single cell type or co-cultures of various cell types (Fig. 1). The main difference 
between co-cultures and OOCs is that such chips generally contain channels through 
which a medium can flow and can be subjected to physical forces that mimic in vivo 
conditions, for instance, mimicking blood flow and peristalsis 46,47, whereas co-cultures 
are grown under static conditions. This introduces another physiologically relevant 
layer of complexity to the model. OOCs are grown based on organoids that are either 
made using patient-derived cells or grown based on (patient-derived) induced plurip-
otent stem cells (iPSC) 46 that can be obtained relatively easily. While currently there 
is a substantial cost to growing OOCs on a large scale, the fact that simplified tissues 
can be grown and kept alive for several weeks 46 presents an exciting opportunity to 
test and modulate potential drug targets on human-derived material. For example, the 
key genes identified in Chapter 3 could be targeted using a CRISPR screen on an OOC 
to assess their functional impact on this system. If a disease-state OOC is available, 
potential drugs could be added directly to the medium and the effects assessed.

OOCs also present a potential goldmine for answering more fundamental questions 
about disease processes. For instance, in CeD, it is still an open question how the gluten 
peptides end up in the intestinal tissue before inflammation occurs and which genes 
affect this process 48. Genes that are identified as important for maintaining the intesti-
nal barrier integrity and associated to CeD could be targeted using a CRISPR screen to 
assess the affects they have on permeability and the ability of gluten to enter the lumen. 
Furthermore, when the costs are reduced enough and the protocols standardised, it 
should be possible to grow hundreds of OOCs in parallel, each derived from donors 
with a different genetic background. This would enable in vitro QTL mapping and could 
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allow for the study of (genetic) interaction effects such as the interaction between 
viral infection and the triggering of auto-immune disease. The ability to get function-
al readouts of tissue-like material beyond “classical omics” is tremendously exciting 
and opens up the possibility of assessing the downstream effects of genes on more 
disease-relevant functional readouts.

While I am definitely over-simplifying with respect to the huge amount of effort and 
work that goes into optimising such model systems, I believe that in the near future 
we will be using such systems to model complex disease. These models will likely not 
be very general but should be tailored towards a specific disease to achieve the best 
interpretability possible. Still, no model is perfect, and one should carefully consider the 
pitfalls of using models to understand the complexities of the human body.

IV. Causality

Unfortunately, causal statements are often made based on associations made with 
observational data 49. A high-profile example of this would be the purported relationship 
between vitamin C levels and mortality from cardiovascular disease (CVD) 50, which was 
later disproven when the causality was assessed by a randomised control trial (RCT) 51. 
Alternatively, a recent study applying Mendelian randomisation (MR) (see Randomised 
control trials and Mendelian randomisation below for a discussion), found that differ-
ential expression analyses on disease tissue are more likely to identify disease-induced 
effects than disease-causing ones 52.

In its basic definition, causality indicates a relationship between two events where event 
A precedes event B and hence is foundational to event B occurring (Fig. 2A). This defini-
tion is irrespective of the effect size A has on B. Event A may be fully causal, explaining 
100% of the variation in B, or A may only be impacting B by 1%.

In association, A and B are linked, but A does not necessarily influence B. Instead, A 
and B could be linked by a third event C that influences A and B independently. Event C 
would be a confounder of the relationship between A and B (Fig. 2A). For instance, age 
or sex are common confounders in influencing the relationship between two events. 

Furthermore, B could be causal for A, this is known as reverse causation. For example, it 
has been suggested that the observed protective effect of alcohol consumption on CVD 
is due to ‘sick quitters’, a form of reverse causation 53,54. Associational studies performed 
on alcohol consumption do so by comparing non-drinkers to drinkers and assessing the 
effect on CVD. However, a bias arises when non-drinkers stopped drinking because of 
adverse health outcomes. Hence, the association between alcohol consumption and 
CVD is caused by the CVD, not the alcohol consumption. 

In this thesis, we have mostly applied association-based techniques. This section 
reflects on what the implications of this are on the findings as well as the next steps that 
are needed to prove that the observations are due to a causal relationship rather than 
confounding or reverse causation. While there is nothing inherently wrong with obser-
vation-based association studies – they are a necessary first step – great care should be 
taken to account for biases during interpretation (see Abstraction and bias in science 
for an expanded discussion).
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Genetic studies and causality

Most genetic studies, such as GWASs, are association-based and observational, and 
as such they do not provide causal mechanisms. However, genetics has one oddity; 
it is a highly stable trait that is unlikely to change once associated alleles have been 
established. While somatic mutations do occur, they are most likely not foundational to 
complex traits (not considering cancer), and therefore genetic risk for complex traits 
is basically pre-determined at birth. For example, your smoking status does not impact 
your genetics (apart from a potential increased risk of somatic mutation), so smoking 
status cannot confound the observed association between genetics and heart disease. 
However, genetic factors may impact your ‘risk of smoking’, which in turn impacts your 
risk of heart disease. Regardless, it is then still the genetic factor that is causal, just 
through a more complex pathway.

Because of this, some assumptions can be made about the causal role of genetic 
variants on complex traits based on GWAS data, assuming population effects and biases 
are properly accounted for. Of note is that, while the epigenetic state of the genome 
controls the activity of a genetic variant and the epigenetics may be impacted by the 
environment, in a GWAS you are measuring the presence of a variant. Therefore, any 
associations you observe cannot be due to environment because environment cannot 
change genetic background. What may happen is that the effect of the genetic variant 
is obscured or enhanced by epigenetics/environment, meaning there is an interaction 
effect, as has been discussed above (see The widespread use of additive linear models in 
complex trait genetics).

Randomised control trials and Mendelian randomisation

Perhaps the best way to prove a causal relationship between two factors is through an 
RCT. In an RCT, the study population is divided randomly into two (or more) groups, 
one of which receives a treatment and the other a placebo (Fig. 2B). Because the 
assignment to the groups is random, the possibility of confounding is reduced so that 
causal conclusions can be drawn on the results. However, an RCT needs to have a study 
population sufficiently large to measure the expected effect size and to be unbiased in 
the selection of the study population to avoid unwanted confounding factors, e.g. when 
assessing the effectiveness of a treatment for ageing, one should not study a purely 
paediatric study population.

Inspired by RCTs, MR uses the random segregation of alleles to define the “treatment” 
and “placebo” groups (Fig. 2C) 54–57. This is done by first selecting genetic variants that 
are associated with event A, and subsequently evaluating if they impact B in the same 
way (Fig. 2C). As the alleles are randomly combined, they are (in principle) not subject 
to confounding. However, in MR, causal conclusions can only be drawn when several 
assumptions about the relationship between the instruments, events A and B, are met 
54,58. There are several approaches to do MR that depend on the data that is available 
and that deal with the various assumptions in different ways. These will not be discussed 
in detail here, as these have been well described 54 and this is beyond the scope of this 
section. Instead, this section discusses the overall concept and the main assumptions 
impacting interpretability of MR results.
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Fig. 2. A) Association, confounding and causality. B) Schematic of a randomized control trail where 
the effect of an exposure A on an outcome B is measured. C) The basic principles of Mendelian 
randomization. Figure is inspired by Davey-Smith et al. 61.
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 These assumptions are:

1. The relevance assumption: the variants reliably associate with 
event A.

2. The independence assumption: there is no (unmeasured) 
confounding between the variants and events A and B.

3. The exclusion restriction: the variants affect event B only 
through event A.

The relevance assumption can be verified by taking replicated associations from good 
quality GWASs. The independence assumption can be accounted for when using 
genetics, as explained above (in GWASs and causality), however unaccounted popula-
tion stratification is a potential violation of this assumption. The exclusion restriction is 
more difficult to account for. As the same genetic variants can have effects on multiple 
biological pathways (pleiotropy), it is often impossible to say if this assumption is met. 
Hence, the current focus of the MR field is in identifying ways to address pleiotropy 59, 
especially when it comes to the regulation of gene expression by genetic variants 52,60.

When studying the causality of gene expression using MR, the relevance assumption 
is also under question. The variants that associate with gene expression are eQTL, and, 
as discussed above (Linking GWAS loci to genes), current eQTL resources are far from 
perfect for explaining how disease heritability is modulated. Furthermore, there are 
generally only one to three genetic variants that independently associate with the gene. 
This makes the estimates done by MR less reliable. Hence, great care should be taken 
when doing such studies to ensure that the eQTL matches the trait on which you want 
to study the causal effect and that the variants are reliable instruments.

While MR is a wonderful tool to disentangle association from causality, given the under-
lying assumptions, it is not advisable to apply MR to all genetic datasets without careful 
consideration. Great care should be taken to verify that the fundamental assumptions 
are met, or at least addressed with sufficient certainty. Otherwise, any conclusions 
drawn based on such analyses are just as non-causal as those obtained from observa-
tional omics and are potentially more dangerous as causality is implied.

In vitro approaches to model the causal effects of genes

Besides MR and RCTs, the causality of genetic effects and genes can also be evaluated 
in vitro through knockdown and knockout experiments. In such experiments, the 
genetics of a carefully controlled model system are modulated, and the effects on a 
phenotype assessed. As this occurs in carefully controlled environments, the possi-
bility of confounding is strongly reduced, and the phenotypic effect is therefore likely 
due to the knockdown or knockout. The disadvantage is that such systems are more 
artificial, so there is no guarantee that the knockdown or knockout will be biological-
ly meaningful. As noted in Chapter 2, there are various experimental approaches to 
perform such studies. Perhaps the most exciting approach to studying complex trait 
genetics is the CRISPR interference/activation system, as it allows for the assessment 
of a large number of genes at the same time. Furthermore, it is theoretically possible to 
control the strength of the knockdown effect. This would allow for experimental setups 
that could model the large number of small effects observed in GWASs. Secondly, such 
systems can be used to directly model gene regulatory connections, rather than relying 
on association as we did in Chapter 3. Naturally, the issues regarding context, cell types 
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and quality also apply to such assays. Moreover, a knockdown, and especially a knockout 
effect, may not be representative of the true effect of the variant. Indeed, knockout 
models may better represent Mendelian traits than complex traits. Furthermore, the 
technical challenges regarding CRISPR assays should not be dismissed (see Other 
fine-mapping strategies). It would be very interesting to see how the field develops 
assays to modulate the much smaller effects that GWAS variants have.

Time-based designs for inferring causal cascades

Finally, causal relationships between genes can be inferred through experimental 
setups based on time course. For instance, if you can show that the expression of a TF 
precedes the expression of one of its target genes, you can infer that the TF is causally 
affecting the expression of its target, and we applied just such an approach in Chapter 
8. While this does provide an indication that the relationship between the TF and gene 
is causal, the approach is still associational in nature and confounders are likely to be 
present, so you would still need to verify this through a knockout or knockdown exper-
iment.

Using single-cell RNA sequencing technology, it is now possible to capture the state 
of single cells. This has as the advantage that cells can be assessed in varying stages 
of activation within one experiment. This information can be extracted from the RNA 
data, and the cells can be ordered according to a trajectory through the stages present 
within a cell population. This is known as pseudo-time analysis. While the time range 
of such an analysis is relatively limited, it does potentially allow for the estimation of 
causal relationships between genes. This could be a way to systematically generate 
directed gene regulatory networks, which would greatly help in interpreting the causal 
cascade from GWAS variant to phenotype. Due to the limited time range of pseudo-
time analysis, it would be optimal to employ a true time-course-based study design, 
but incorporate pseudo-time analysis to get more resolution for the cellular state at 
each timepoint.
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V. Abstraction and bias in science

The impact of making reality abstract

The ability to make concepts is one of humanity’s great tools, allowing us to under-
stand the complex world around us. In science, such abstraction is key for helping us to 
understand the vast complexity underlying complex traits (for instance, the omnigenic 
model). However, balancing the reduction of complexity in theoretical models with our 
ability to understand the true complexity of nature is a massive challenge. In many ways 
the concept determines what observations can be done, and perhaps moreso, how 
these oberervations are interpreted.  As Ronald Fisher noted on the subject:

“Yet any one of the great names of the past, De Moivre or Bayes, Boole or 
Gauss himself, if by a miracle we can imagine him indoctrinated with the 
thought of our time, would, I believe, be astonished by the cogency and 
precision, the directness and accuracy with which problems formerly intol-
erably encumbered, can, in this age, be recognised, and resolved. In fact they 
lacked the concepts needed to think clearly about many of their problems.

Genetics and Statistics, then, have in common that each in its own field 
represents a distinctive point of view, which profoundly influences the intel-
lectual processes with which scientific work is approached.”

– R.A. Fisher, Bateson Lecture at the John lnnes Horticultural Institution on, 
July 6th 1951 62

Bias and abstraction in observational omics

The work presented in this thesis depends largely on observational study designs that 
first produce empirical measurements on a large scale without having a specific hypoth-
esis in mind, instead, basing the design on a concept of how the biology works. One 
can then test a myriad of hypotheses based on these empirical observations. Therfore, 
observational omics studies are neither truly inductive, nor deductive. The measure-
ments that are performed and the statistics applied in omics studies are certainly 
empirical, however the same cannot be said about the hypotheses to which these tools 
are applied. As the observations that can be made depend on the framework there is 
for observing them, there is always an inductive component to any study that is done on 
such data. While there is nothing wrong with this in principle, it is key to be aware of the 
biases that influence which hypotheses are tested. Such a bias may arise from technical 
limitations, such as when a technique is difficult to apply in primary cells, so cell-lines 
are used (Chapter 8 and 9). Or these could be cognitive biases, such as unconsciously 
wanting to prove a specific idea and being unable to see evidence suggesting different-
ly. 

A major source of such cognitive bias lies in the enviroment in which science is performed. 
Be it the beliefs of a societiy at the time, or by the specific acedemic enviroment. As an 
example of the latter, in academia there is currently a lot of pressure to perform well, 
leading to issues of reproducibility, wellbeing and the quality of the scientific output 
63–68. A side effect of this pressure is that there seems to be a tendency in fundamental 
research to frame projects as actionable while this is, and should, not be the goal of 
the project 66,68. While this may be an obvious statement, open and honest reporting is 
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essential for science to progress efficiently. Not to imply, that all of science is dishonest, 
the precentage of truly fraudulent studies has remained relatively constant, but in 
recent years there has been a trend heading towards the grey area 63-68.

The observational approaches applied in this thesis are not short of potential biases. 
These include issues with underrepresented populations, biases in phenotyping, 
population stratification, inclusion bias, cognitive biases in interpretation, differenc-
es in lab protocols and statistical methodology and many more. While bias can never 
be avoided when doing science, it should not be dismissed. Many obvious pitfalls can 
be addressed during initial study design, by carefully thinking about biases and pitfalls 
before any sample is collected and, perhaps most importantly, having a clear hypothe-
sis and plan beforehand. This final point is the major drawback of observational studies, 
as these are often perfomed on existing data. Consequently, the specific hypotheses 
are generally generated ad hoc. Hence, any biases introduced during study design 
and data generation that might impact the research question cannot be addressed. 
Instead, such biases need to be dealt with in silico, which is not ideal or not done at all as 
it is sometimes impossible to do so after the fact.

Bias resulting from the scope of obervational omics

Given the extensive nature of the measurements done in observational omics studies, 
it is challenging for the individual researcher to become an expert on every single trait, 
protein, gene or cell type. In fact, many researchers have dedicated their scientific 
career to studying single genes, indicative of the complexity behind each association. 
Therefore, in large-scale studies, abstractions are applied, which carry their own limita-
tions, as noted By Ronald Fisher:

“So long as the statistician was supposed to concern himself only with vast 
aggregates of massed data, his acquaintance with the detailed processes 
by which they came into existence was bound to be vague; each part of 
the whole contained its own complications and its own enigmas; in the 
treatment of the mass these were necessarily almost wholly unrecognisable, 
and the interpretation was harassed by innumerable unanswerable queries.

…
Direct contact with what is actually done in experimentation helps the 
statistician in another very essential way, by leading him to consider varia-
tions in procedure, and the reasons why one method is to be preferred to 
others. The whole wide subject of experimental design is opened out by this 
consideration.”

– R.A. Fisher, Bateson Lecture at the John lnnes Horticultural Institution on 
July 6th 1951 62 

As a consequence of this large scope, there always are some associations to be found. In 
light of this, critics have described such studies as “fishing expeditions” 69. An advantage 
of observational omics research, when properly applied, is that the researcher is less 
likely to be biased by an a priori model of what they are observing and hence is more 
likely to observe novel mechanisms. This paradigm has been described as “night 
science“ which contrasts with “day science“, the formal testing of structured hypoth-
eses 70. As such, observational studies lend themselves well to exploring new areas of 
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research, such as complex trait genetics, where the scope of the subject is not yet fully 
defined 71. 

It should be noted that it takes years of careful follow-up study to verify and understand 
the mechanisms causal to the associations made in observational studies. That is not to 
say that that observational studies are not useful. On the contrary, association-based 
studies are an essential first step, but they should be viewed as what they are and should 
not be interpreted as causal or actionable in a clinical sense.

Managing bias through triangulation

One of the best ways to deal with bias and confounding is to apply triangulation. The 
term triangulation is derived from surveying, where a point on the map is determined 
using measurements from two other points in space. When testing hypotheses, you use 
multiple methods, each with different biases and confounding, to test the hypothesis 
in question. If all these methods give the same answer, you can be confident that you 
have the right answer. For example, in Chapter 5, we identify genetic factors in the 
TLR1 locus that are associated to the ex vivo cytokine response of immune cells. We 
then show, in an independent dataset, that these factors also regulate gene expres-
sion levels. Furthermore, this locus harbours strong signals of natural selection 72 and 
GWASs have identified associations to several immune diseases. These are all signs 
indicating that the identified genetic factors do indeed have an important role in the 
cytokine response of immune cells.

While triangulation is great in theory, it should be noted that as an individual lab, this 
is unlikely to always be successful because being part of that lab is a bias in itself 73. As 
such triangulation is more a way to deal with bias as a scientific community, than it is for 
the individual project. Triangulation is often difficult to execute in wet lab experiments 
due to time and cost constraints, but it is often possible to use multiple methods when 
analysing the data. This does not cover the biases in data generation but does capture 
issues with various statistical tests. However, the type of statistical tests should be 
carefully chosen, as many methods rely on the same basic ideas and might be suscepti-
ble to the same biases, giving a false sense of security when using them to triangulate a 
hypothesis. Furthermore, while open data-sharing is fantastic, many studies rely on the 
same resources, e.g. 1000 genomes, GTEx or the UK biobank. Hence, any bias present 
in these datasets will impact all the conclusions made in papers using this data.
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VI. Epilogue

To summarise this discussion, I present the following statement, which is obvious but 
nonetheless true: The downstream effects of genetic variants must be studied from 
multiple perspectives by integrating different data to get validated and robust answers. 
This is, however, not possible for one individual or even one research group. Therefore, 
collaboration in the community is of paramount importance, either to generate huge 
databanks, gather different perspectives or critically reviewing each other’s work. 

In conclusion, the main take home points of this thesis are:

- Co-expression networks are a promising tool to interrogate the networks that lead 
genetic variants to impact a phenotype, however given their complexity and the 
transient nature of cellular states, careful and extensive validation of any findings is 
required.

-  The genes central in such co-expression networks have properties that match the 
core genes described by the omnigenic model, however, cell-type composition of 
the network as well as the overall expression level  of such genes in the network are 
confounding factors that should be taken into account

- Genetic effects on the regulatory capacity of enhancers or promoters are most 
informative for interpreting GWAS variants if they are studied in a cell-type and 
context that matches the phenotype under study.

- The ex vivo cytokine production capacity of immune cells has a substantial genetic 
component. However, future studies are required to determine if these effects 
also carry though in vivo. Furthermore, the work in this thesis provides a proof of 
concept, but replication in larger cohorts is required to draw definitive conclusions.

-  The genetic basis of cytokine production capacity may have been shaped by 
polygenic adaptation, but future work is needed to confirm this hypothesis. 

- Fine-mapping the exact causal variants underlying GWAS loci is a complex task that 
requires multiple lines of independent evidence from assays with different funda-
mental assumptions.

With regards to the question that was posed at the start of this discussion: Have we 
gained actionable insight from the work in this thesis? My answer would be no. In my 
view, the goal of fundamental research is not to deliver such actionable answers, but 
rather to shed light on biological mechanisms that are opaque and complex in the 
hope that future research will be able to ask such actionable questions. I would like 
to think that we have made some very small steps into that direction with the work 
presented in this thesis. In the end it is our task as scientists to try and comprehend 
the inner workings of the world to the best of our ability, whether that world is “an 
ordered universe” or “a stew of mixed ingredients”. Given the vast complexity of this 
task, it may at times feel as though we are like Sisyphus pushing the boulder up the hill. 
While indeed, like Marcus Aurelius wrote, “all things, distinct as they are, nevertheless 
permeate and respond to each other”, we should not let this discourage us, rather we 
should take pride in the effort, be inspired and wonder at the beauty that can be found 
in the madness of it all.
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Summary

Variation is omnipresent, it shapes our world, and it shapes us. A source of such 
variation that impacts us all is the DNA. The past years have seen extensive profiling of 
the DNA in relation to a whole host of traits. This has yielded extensive maps of which 
genetic variants are associated to which traits. These maps are known as genome wide 
association studies (GWASs). Some GWASs provide clear interpretation for their trait. 
However, for many traits whose causal cascade is complex (complex traits), GWASs 
have proven challenging to interpret. 

This thesis studies the genetic basis of complex traits and the regulatory mecha-
nisms that are foundational to them, with the aim of providing better interpretation 
for GWASs on complex traits. Part I presents a broad overview of the mechanisms 
with which genetic variants can impact complex traits through the regulation of gene 
expression. In part II, the relationship between genetic factors and immune function 
is discussed. Part III dives deeply into the role genetic factors have in causing coeliac 
disease by impacting specific cellular contexts. In part IV, the work is placed into context 
and future perspectives discussed. 

Part I

In Chapter 1, an introduction is given to the work that is foundational to this thesis. 
Background and context are provided for the topics addressed in this thesis and how 
they fit together.

Chapter 2 continues this trend by reviewing current approaches to interpreting GWAS 
effects. Most notably, we discuss in vitro and in silico approaches to fine-mapping causal 
variants within GWAS loci. We further discuss approaches to link the GWAS loci to genes 
to facilitate interpretation of the downstream consequences of the GWAS variants. We 
highlight the cell-type and context specific nature of genetic effects and the challeng-
es that are associated with detecting them. Finally, we discuss the relevance of these 
processes considering the small effects of individual GWAS variants. 

Considering the small effects GWAS variants have, we asses how the collective of 
subtle effects observed in GWAS impact the regulatory relationships between genes in 
Chapter 3. To do so we built a co-expression map of publicly available RNA-seq data and 
linked this to GWAS summary statistics. We observe that the gene networks associat-
ed with disease are interconnected, and the genes that are central in their respective 
network more likely to lead to rare diseases when variants occur in these genes.  

Part II

As highlighted in Chapter 1, 2 and 3, the effects of GWAS variants can be cell-type 
specific. In Chapter 4, we attempt to enhance the detection of such cell-type specific 
genetic effects in immune cells. To do so, we develop a method that can identify cell-type 
specific expression quantitative trait loci (eQTL) using RNA sequencing data obtained 
from mixed blood samples. We show that by simultaneously modelling the cell-propor-
tions in blood with the genetic effect on expression, cell-type specific eQTL effects can 
be identified. We validate these effects by using eQTL data from isolated cell-types and 
single-cell eQTL.
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Chapters 5, 6 and 7 study variation in the immune cells, not solely in terms of gene 
expression, but also in terms of proteins expressed by the immune cells. In these 
chapters we study cytokines, a class of immune proteins acting as messengers between 
immune cells.

In Chapter 5, we study the genetic factors that impact the normal variation in ex vivo 
immune response by measuring cytokine responses at the protein level. To do so, we 
model genetic effects on correlated cytokines jointly to increase detection power. We 
assess how the cytokines interact, and if their association with genetic factors is due to 
pleiotropy or mediation. We link the observations on the protein level to independent 
data on ex vivo stimulated gene expression. 

In Chapter 6, we perform a broad screen to identify the relative contribution of different 
genetic and environmental factors to variation in ex vivo cytokine responses. We 
observe that several host factors, including genetics, metabolite levels, cell-propor-
tions and immune markers are associated with the capacity of immune cells to produce 
cytokines when stimulated. The magnitude of the associations depended greatly on the 
cytokine measured and which stimulation was used. 

In Chapter 7, we assess if the genetic basis for ex vivo cytokine response, as well as 
immune diseases has been shaped by selective pressures that act polygenically. We 
applied polygenic risk scores to genetic data obtained from ancient humans to trace 
how the relative genetic risk for these traits changed over time. 

Part III

Every complex trait has its own context and complications. In chapters 8 and 9 we study 
the role of specific genetic factors by fine-mapping genetic loci associated with coeliac 
disease, an auto-immune disorder where ingestion of gluten lead to a disproportionate 
immune response. 

In Chapter 8, we study how one of the essential cell-types in coeliac disease, gluten 
specific CD4+ T cells, get activated by studying gene expression, chromatin state and 
protein levels. We link this information to the known genetic factors for coeliac disease. 

In Chapter 9, we apply an in vitro fine-mapping strategy to identify genetic factors 
that may disrupt enhancer activity in several cell-types relevant for coeliac disease. We 
identify several enhancer and promoter elements that show suggestive evidence of 
being impacted by the variants located in them.

Part IV

Finally, in the last chapter of this thesis, several aspects of interpreting the genetic basis 
for complex traits are discussed in detail. The approaches applied in this thesis are criti-
cally reflected on, and their interpretability discussed. The inherent difficulties with 
observational data and causality are discussed, as are some of the biases present in this 
work. Furthermore, perspectives are provided as to where the field might be heading 
next and what exciting prospects are on the horizon.
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Samenvatting

We worden omringd door variatie, variatie vormt onze wereld, en variatie vormt ons. 
Een bron van variatie die een invloed heeft op ons allen is  ons DNA. In de afgelopen jaren 
heeft de wetenschap uitvoerige profielen opgesteld waaraan te zien is hoe de variatie 
in ons DNA relateert aan onze eigenschappen. Zulke profielen worden genoom wijde 
associatie studies (GWASs) genoemd. 

Voor sommige van deze GWASs is het relatief eenvoudig om te interpreteren hoe de 
variatie in het DNA de eigenschap beïnvloedt. Echter, voor veel van deze GWASs is het 
niet duidelijk hoe deze variatie uiteindelijk de eigenschap beïnvloedt. Dit komt deels 
omdat het verband tussen het DNA en de eigenschap vaak erg complex is en veroor-
zaakt wordt door meerdere bronnen van variatie naast het DNA.

In dit proefschrift wordt bestudeerd hoe de genetische basis voor zulke complexe eigen-
schappen haar effect uitvoert, met het doel om een beter begrip te krijgen van het tot 
stand komen van deze complexe eigenschappen. In deel I van dit proefschrift wordt een 
overzicht gegeven van de mechanismen waarmee variatie in het DNA de regulatie van 
genexpressie kan beïnvloeden. In deel II wordt de relatie tussen genetische factoren en 
immuun functie besproken. In deel III wordt de rol van genetische factoren bestudeerd 
in het veroorzaken van coeliakie in een aantal specifieke cellulaire contexten. Tot slot 
wordt in deel IV het werk in context geplaatst en worden toekomstperspectieven 
besproken.

Deel I

In hoofdstuk 1 wordt een introductie gegeven van het werk dat ten grondslag ligt aan 
de hoofdstukken in dit proefschrift

Hoofdstuk 2 zet deze trend voort door huidige technieken voor het interpreteren van 
GWAS-effecten in detail te bespreken. Specifiek gaan wij hier in op in vitro en in sillico 
methoden om de causale genetische effecten te bepalen binnen GWAS loci. Verder 
bespreken we methoden om de genen te vinden die beïnvloed worden door GWAS-vari-
anten. We sluiten af met een discussie over de waarde van de individuele variant in het 
licht van de vaak kleine effecten die ze hebben.

Gezien deze kleine effecten die GWAS-varianten hebben, bestuderen we in hoofdstuk 3 
hoe het geheel van deze effecten samen zou kunnen werken om de regulatoire relaties 
tussen genen te beïnvloeden. Dit doen we door een co-expressie netwerk op te stellen 
aan de hand van publiek beschikbare RNA-seq data. We combineren dit netwerk aan 
GWAS-informatie om zo te kunnen achterhalen of er genen zijn waar de GWAS-infor-
matie samenkomt. We zien dat bepaalde genen in deze netwerken verrijkt zijn om te 
leiden tot zeldzame ziekten als varianten plaatsvinden. 

Deel II

In hoofdstuk 1, 2 en 3 wordt besproken dat de effecten van GWAS-varianten 
cel-type-specifiek kunnen zijn. In hoofdstuk 4 proberen we de detectie van zulke 
cel-type-specifieke effecten te verbeteren in immuuncellen. Dit doen we door een 
methode te verbeteren die aan de hand van bulk RNA-seq en geschatte cel proporties 
een indicatie kan geven van de celtype specifieke genetische effecten (eQTL). We 
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valideren deze methode met eQTL data uit geïsoleerde celtypen en ‘single-cell’ eQTL 
data. 

Hoofdstukken 5, 6 en 7 bestuderen ook de regulatie van immuuncellen, maar nu niet 
enkel op het niveau van genexpressie, maar op het niveau van de eiwitten die van belang 
zijn in de signaalfuncties van het immuunsysteem (cytokines).

In hoofdstuk 5 bestuderen we hoe genetische factoren de variatie in ex vivo immuun-
reacties beïnvloeden door cytokineproductie te meten. We koppelen de gemeten 
cytokineproductie profielen aan genetische varianten door cytokines die vergelijkbaar 
reageren samen te modeleren. Dit geeft meer statistische kracht om associaties te 
vinden tussen het DNA en de cytokine expressie. We kijken verder naar hoe het netwerk 
eruitziet rond de geïdentificeerde genetische factoren op een eiwit- en genexpressie 
niveau. 

In hoofdstuk 6 voeren wij een brede zoektocht uit naar wat de relatieve bijdrage van 
verschillende genetische- en omgevingsfactoren is in het bepalen van de ex vivo cytoki-
neproductie. We observeren dat meerdere factoren een significante invloed hebben 
op de cytokineproductie, waaronder genetica, metabolieten, de hoeveelheid immuun 
cellen en verscheidene immuun eiwitten. Het blijkt dat de bijdrage van deze factoren 
erg varieert erg afhankelijk van de gemeten cytokine en de stimulatie die gebruikt is.

In hoofdstuk 7 bespreken we hoe de genetische basis van ex vivo cytokineproductie 
gevormd is door selectieve druk. We passen polygene risico scores voor cytokinepro-
ductie en immuunziekten toe op genetische data van archeologische opgravingen om 
zo te bestuderen hoe deze genetische profielen door de tijd heen veranderd zijn. 

Deel III

Elke complexe eigenschap heeft zijn eigen context en complicaties. In hoofdstukken 8 
en 9 bestuderen we de rol die specifieke genetische factoren hebben bij het veroor-
zaken van coeliakie, een auto-immuun ziekte waarbij de inname van gluten leidt tot een 
immuunreactie die uiteindelijk tot darm schade leidt. 

In hoofdstuk 8 bestuderen we hoe één van de essentiële celtypen in coeliakie, de gluten- 
specifieke T cellen, geactiveerd worden. Dit doen we door te kijken naar genexpressie, 
de openheid van het chromatine en de eiwit niveaus. We koppelen deze informatie aan 
de bekende genetische factoren die geassocieerd zijn met coeliakie. 

In hoofdstuk 9 passen we een in vitro methode toe om te bepalen welke specifieke 
genetische factoren causaal zouden kunnen zijn voor het veroorzaken van coeliakie. We 
identificeren meerdere ‘enhancer’ en ‘promoter’ elementen in het DNA die beïnvloed 
worden door genetische varianten in die elementen.

Deel IV

In het laatste hoofdstuk van dit proefschrift worden meerdere aspecten bediscussieerd 
die invloed hebben op het interpreteren van de genetische basis van complexe eigen-
schappen. De invloed die de gebruikte methoden hebben op de interpreteerbaar-
heid van de resultaten wordt besproken evenals de inherente moeilijkheden van het 
gebruik van observationele data. Ook worden de spannende vooruitzichten voor het 
veld geschetst. 
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