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Abstract
In this work, we present a stability result for the inverse problem of recovering
a smooth scalar permeability parameter given by the Brinkman’s law applied to
the steady Navier–Stokes equations from local observations of the fluid veloc-
ity on a fixed domain. In comparison with (Choulli et al 2013 Appl. Anal. 92
2127–43), we prove a logarithmic estimate under weaker assumptions, since
our proof is based in a strategy that does not require pressure observations.
This kind or result are useful for inverse problems in soft tissue elastography
(see Honarvar et al 2012 Phys. Med. Biol. 57 5909–27). Finally, we present
some numerical tests that validate our theoretical results.

Keywords: Navier–Stokes equations, Carleman inequalities, stability estimate,
inverse problems

(Some figures may appear in colour only in the online journal)

1. Introduction and main model

Let us a non-empty bounded domain Ω ⊆ R
3. The Lebesgue measure of Ω is denoted by

|Ω|, which extends to lesser dimension spaces. The norm and seminorms for Sobolev spaces
Wm,p (Ω) are denoted by ‖·‖m,p,Ω and |·|m,p,Ω, respectively. For p = 2, the norm, seminorms
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and inner product of the space Wm,2 (Ω) = Hm (Ω) are denoted by ‖·‖m,Ω, |·|m,Ω and (·, ·)m,Ω,
respectively. Also, Cm (Ω) and C∞ (Ω) denote the spaces of functions with m continuous deriva-
tives and all continuous derivatives, respectively. Given Ω1 and Ω2 two open subsets of R3, we
denote by Ω1 � Ω2 if there exists a compact set K such that Ω1 ⊆ K ⊆ Ω2.

The spaces Hm (Ω), Wm,p (Ω), Cm (Ω) and C∞ (Ω) are defined by Hm (Ω) = [Hm (Ω)]3,
Wm,p (Ω) = [Wm,p (Ω)]3, Cm (Ω) = [Cm (Ω)]3 and C∞ (Ω) = [C∞ (Ω)]3. The notation for
norms, seminorms and inner products of those spaces will be extended from Hm (Ω), Wm,p (Ω),
Cm (Ω) and C∞ (Ω), respectively. Given a, b ∈ R

3, [a] j denotes the j−th component of vector
a, aT denotes the transpose vector of a and a × b denotes the cross product given by

a × b = ([a]2[b]3 − [a]3[b]2, [a]3[b]1 − [a]1[b]3, [a]1[b]2 − [a]2[b]1)T.

Also, ∇× u (or curl u) denotes the curl of u, given by

∇× u =

(
∂[u]3

∂x2
− ∂[u]2

∂x3
,
∂[u]1

∂x3
− ∂[u]3

∂x1
,
∂[u]2

∂x1
− ∂[u]1

∂x2

)T

.

All the results presented in this article are also valid when Ω ⊆ R
2, adapting the definitions

of cross product and curl to the two dimensional case. Let Ω be a C2-bounded domain with
boundary ∂Ω and outer normal vector n, ν ∈ R with ν > 0, M ∈ R with M > 0, γ j ∈ H1 (Ω)
such that 0 � γ j � M for j ∈ {1, 2} and uD ∈ H3/2 (∂Ω). The model problem

−ν � u j +
(
∇u j

)
u j +∇pj + γ ju j = 0 in Ω (1)

div u j = 0 in Ω

u j = uD on ∂Ω

admits an unique solution
(
u j, pj

)
∈ H2 (Ω) × H1 (Ω) with

(
pj, 1

)
Ω
= 0. For ε > 0, we define

Ωε = {x ∈ Ω|d (x, ∂Ω) � ε} .

We suppose

γ j ∈ H (Ω) =
{

f ∈ H1
0 (Ω) | f = 0 inΩ\Ωε

}
.

Then, there exists a constant c1 > 0 only dependent on Ω and M such that

‖u j‖2
2,Ω + ‖pj‖2

1,Ω � c1‖uD‖2
1/2,∂Ω.

Defining γ = γ1 − γ2, u = u1 − u2 and p = p1 − p2, (u, p) is the unique solution of the Oseen
equations given by

−ν � u + (∇u) u1 + (∇u2) u +∇p+ γ1u = −f in Ω (2)

div u = 0 in Ω

u = 0 on ∂Ω,

where f = γu2. In this case, we have a constant cNS > 0 such that

‖u‖2
2,Ω + ‖p‖2

1,Ω � cNS ‖γ‖2
0,Ω.

We pose the following assumptions:
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(a) There exists a constant K > 0 such that ‖γ ‖1,Ω � K.
(b) There exist constants M2 > 0 and cNS > 0 such that ‖u‖2

2,Ω + ‖p‖2
1,Ω � M2

2 � cNSK2.
(c) There exists a constant M3 > 0 such that ‖u‖3,Ω � M3

(d) The velocity u2 verifies curl u2 ∈ L∞(Ω).

Remark. Assumption (a) is usual in problems where the permeability coefficient is studied.
Assumptions (b) and (c) are similar to the one used in [6]. Finally, assumption (d) is similar to
smoothness assumptions in [6, 7].

In order to avoid an analysis of the gradient of the pressure p we eliminate this variable
using the curl operator. If we define z = curl u, where u is the solution of equation (2), then u
verifies the following second-order elliptical equation:

−� u = curl (curl u) −∇ (div u) = curl z inΩ (3)

u = 0 on ∂Ω.

Thanks to curl(∇p) = 0, the vector field z verifies the following equations

−ν � z + (∇z) u1 + γ1z = −(curl f + h) in Ω (4)

div z = 0 in Ω

z = curl u on ∂Ω,

where h ∈ L2 (Ω) is defined by

h = ∇γ1 × u + (∇ curl (u2)) u +

3∑
j=1

∇[u1] j ×
∂u
∂x j

+∇[u] j ×
∂u2

∂x j
.

From an open connected non-empty subset ω ⊆ Ω, the inverse problem we studied here is to
determinate γ = γ1 − γ2 in Ω from the observation data u|ω = (u1 − u2)|ω, where u1 and u2

verify the Navier–Stokes equations given in 1 for γ1 and γ2, respectively.
The main objective of this work is to obtain a stability result for this parameter identifica-

tion problem, where we search a permeability parameter γ from a reference velocity u. This
problem was already studied in [3] by minimizing a quadratic functional for a model based
in Oseen equations, so this article validates the strategy by ensuring the uniqueness of the
quadratic functional minimizer in those cases where the hypotheses of this article are verified.
A first approach to this problem is given in [6, 7]. In [6], the authors describe Carleman inequal-
ities for steady Oseen equations applied to find stability results for Navier and Robin boundary
coefficients in a compact subset K ⊆ ∂Ω such that |u2| � m in K, where m > 0 is a constant.
That estimates need an analysis of pressure to be computed. In [7], the authors obtain a Lips-
chitz stability result for the right-hand side of a unsteady linearized Navier–Stokes equation,
recovering a source scalar term f using a global observation of u and curl u in a fixed time
and local observations of u in a time interval. The source term represent the density of external
force with a form f R, where R is a vector field that verifies a non-degeneracy condition. Both
ideas can be adapted to this new problem, obtaining a Carleman inequality and a stability result
with no observation data of p.

This article is structured as follows. In section 2, we have adapted the technique used to
prove theorem 2.3 in [6] to obtain an improved version of a Carleman inequality for weak
solutions of equation (2). In section 3, we present a modified version of the non-degeneracy
condition introduced in [7] that allow us to prove a logarithmic stability result using a Carleman

3
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estimate obtained in section 2 and a similar Carleman estimate obtained for strong solutions
of equation (3). Finally, in section 4 we present two numerical test that validates the main
result recovering a smooth and a discontinuous parameter solving a minimization problem.
The second test, inspired in [3], is not covered by our main result. However, we add an adaptive
refinement algorithm that improves the numerical results.

2. A Carleman estimate

This first result allows us to define the Carleman weights for our estimates.

Lemma 1. Let c0 � 0. There exists a function ϕ ∈ C∞ (
Ω
)

such that ϕ = c0 on ∂Ω, ϕ > c0

in Ω and ∇ϕ 	= 0 in Ω\ω.

Proof. See lemma 1.1 in [12]. �
The following lemma is the Carleman inequality for weak solutions of linear second-order

elliptic PDE with homogenous Dirichlet boundary conditions.

Lemma 2. Let f ∈ L2 (Ω), F ∈ H1 (Ω), ν ∈ R with ν > 0, a, b ∈ L∞ (Ω), c ∈ L∞ (Ω) and
u ∈ H2 (Ω) solution of

−ν�u + a · ∇u + div (ub) + cu = f + div F in Ω

u = 0 on ∂Ω.

Then, there exist C > 0, λ̃ > 1 and s̃ > 1, independent on u, such that for all k ∈ {0, 1}, λ � λ̃
and s � s̃,∫
Ω

(
e(k−1)λϕ|∇u|2 + s2λ2 e(k+1)λϕ|u|2

)
e2seλϕ dx

� C

(∫
Ω

1
sλ2

e(k−2)λϕ| f |2 e2seλϕ dx +

∫
Ω

sekλϕ|F|2 e2seλϕ dx+
∫
ω

s2λ2e(k+1)λϕ|u|2e2seλϕ dx

)
.

Proof. For k = 1, the result is given by theorem A.1 in [13]. When k = 0, define z = e−λϕ/2u
and use the result for k = 1. �

To determine a Carleman estimate for our problem, a first step is to analyze the equation (3).
Each component of curl z can be written as a divergence of a vector field resulting from a linear
transformation of u. Applying lemma 2 with k = 1 in each component, we can obtain that there
exist C > 0, λ̃ > 1 and s̃ > 1, such that for all λ � λ̃ and s � s̃,∫
Ω

(
|∇u|2 + s2λ2 e2λϕ|u|2

)
e2seλϕ dx � C

(∫
Ω

seλϕ|z|2 e2seλϕ dx+
∫
ω

s2λ2 e2λϕ|u|2 e2seλϕ dx

)
.

(5)

Later, it is clear that we need an upper bound for the first term on the right-hand side of
equation (3) in terms of u. A second step is to establish a similar result from equation (4),

4
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rewriting each component of the right-hand side of that equation to the form f + div F. Because
of the counts are analogous, we only show the analysis of the first component of curl f + h

h1 =
∂γ1

∂x2
[u]3 −

∂γ1

∂x3
[u]2 +

3∑
j=1

∂[u1] j

∂x2

∂[u]3

∂x j
− ∂[u1] j

∂x3

∂[u]2

∂x j
+

3∑
j=1

∂[u] j

∂x2

∂[u2]3

∂x j

− ∂[u] j

∂x3

∂[u2]2

∂x j
+

∂[ f ]3

∂x2
− ∂[ f ]2

∂x3
+

3∑
j=1

∂

∂x j

(
∂[u2]3

∂x2
− ∂[u2]2

∂x3

)
[u] j

=
∂γ1

∂x2
[u]3 −

∂γ1

∂x3
[u]2 +

∂[ f ]3

∂x2
− ∂[ f ]2

∂x3

+
3∑

j=1

∂

∂x j

(
[u]3

∂[u1] j

∂x2
− [u]2

∂[u1] j

∂x3

)
+

∂

∂x2

(
[u] j

∂[u2]3

∂x j

)
− ∂

∂x3

(
[u] j

∂[u2]2

∂x j

)

−
3∑

j=1

(
[u]3

∂2[u1] j

∂x j∂x2
− [u]2

∂2[u1] j

∂x j∂x3
+ [u] j

∂2[u2]3

∂x j∂x2
− [u] j

∂2[u2]2

∂x j∂x3

)

=
∂γ1

∂x2
[u]3 −

∂γ1

∂x3
[u]2 −

3∑
j=1

(
[u]3

∂2[u1] j

∂x j∂x2
− [u]2

∂2[u1] j

∂x j∂x3
+ [u] j

∂2[u2]3

∂x j∂x2
− [u] j

∂2[u2]2

∂x j∂x3

)

+
∂

∂x1

(
[u]3

∂[u1]1

∂x2
− [u]2

∂[u1]1

∂x3

)

+
∂

∂x2

⎛
⎝[u]3

∂[u1]2

∂x2
− [u]2

∂[u1]2

∂x3
+ [ f ]3 +

3∑
j=1

[u] j
∂[u2]3

∂x j

⎞
⎠

+
∂

∂x3

⎛
⎝[u]3

∂[u1]3

∂x2
− [u]2

∂[u1]3

∂x3
− [ f ]2 −

3∑
j=1

[u] j
∂[u2]2

∂x j

⎞
⎠ .

However, equation (4) does not have homogenous Dirichlet boundary conditions. A Carleman
inequality in the case of non-homogeneous boundary data can be obtained following the same
arguments that in section 2.2 in [6]. In the following, we consider a function ϕ ∈ C∞ (

Ω
)

that
verifies lemma 1 for a constant c0 > 0.

Definition 3. We define the space H2
0 (Ω) =

{
u ∈ H2 (Ω) |u = 0 and∇u = 0 on ∂Ω

}
.

In order to simplify the proof of our Carleman inequality, we present the following tech-
nical result. We present a similar proof to the one for theorem 2.2 in [6] for the sake of
self-containedness.

Lemma 4. Let (u, p) ∈ H2
0 (Ω0) × H1

0 (Ω0) solutions of (2). There exist C > 0, s̃ > 1 and
λ̃ > 1 such that for every s � s̃ and λ � λ̃∫

Ω

(
seλϕ|curl u|2 + |∇u|2 + s2λ2 e2λϕ|u|2

)
e2seλϕ dx

� C

(∫
Ω

1
λ2

|−ν�u +∇p|2 e2seλϕ dx +

∫
ω

s3λ2 e3λϕ|u|2 e2seλϕ dx

)
.

5
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Proof. First, we define g= −ν�u +∇p. Then, we have

−ν� (curl u) + curl(∇p) = curl g.

Let ω0 � ω a non-empty open subset. Applying lemma 2 with k = 0, there exist C1 > 0, s̃ > 1
and λ̃ > 1 such that for every, s � s̃ and λ � λ̃, we obtain∫

Ω

(
e−λϕ|∇ curl u|2 + s2λ2 eλϕ|curl u|2

)
e2seλϕ dx

� C1

(∫
Ω

s|g|2 e2seλϕ dx +

∫
ω0

s2λ2 eλϕ e2seλϕ |curl u|2 dx

)
∫
Ω

(
e−λϕ

sλ2
|∇ curl u|2 + seλϕ|curl u|2

)
e2seλϕ dx

� C1

(∫
Ω

1
λ2

|g|2 e2seλϕ dx +

∫
ω0

seλϕ e2seλϕ |curl u|2 dx

)
.

Let ρ ∈ C∞
0 (ω) such that 0 � ρ � 1 and ρ = 1 in ω0. Then, for all s > 0, we obtain∫

ω0

seλϕ e2seλϕ |curl u|2 dx =

∫
ω0

seλϕρ|curl u|2 e2seλϕ dx �
∫
ω

seλϕρ|curl u|2 e2seλϕ dx.

Applying integration by parts and the triangular inequality, there exists a constant C2 > 0 only
dependent on ρ such that∫
ω

seλϕρ|curl u|2 e2seλϕ dx =

∫
ω

(
seλϕρ e2seλϕ curl u

)
· curl u dx

=

∫
ω

u · curl
(

seλϕρ e2seλϕ curl u
)

dx −
∫
∂ω

seλϕρ e2seλϕ curl u × u dx

=

∫
ω

u · curl
(

seλϕρ e2seλϕ curl u
)

dx

� C2

(∫
ω

s2λe2λϕ e2seλϕ |curl u| |u| dx +
∫
ω

seλϕ e2seλϕ |∇ curl u| |u| dx

)
.

(6)

Using Hölder inequality, there exists a constant C3 > 0 independent on u such that for all
ε > 0,∫
ω0

seλϕ|curl u|2 e2seλϕ dx � C2

(∫
ω

s2λ e2λϕ e2seλϕ |curl u| |u| dx+
∫
ω

s eλϕ e2s eλϕ |∇ curl u| |u| dx

)

� ε

(
s
∫
Ω0

eλϕ e2seλϕ |curl u|2 dx+
1

sλ2

∫
Ω0

e−λϕ e2s eλϕ |∇ curl u|2 dx

)

+
C3

ε

∫
ω

s3λ2 e3λϕ e2s eλϕ |u|2 dx.

6
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Then, ∫
Ω

(
e−λϕ

sλ2
|∇ curl u|2 + s eλϕ|curl u|2

)
e2s eλϕ dx

� C3

(∫
Ω

1
λ2

|g|2 e2seλϕ dx +
1
ε

∫
ω

s3λ2e3λϕ e2seλϕ |u|2 dx

+
ε

C3

(
s
∫
Ω0

eλϕ e2s eλϕ |curl u|2 dx +
1

sλ2

∫
Ω0

e−λϕ e2s eλϕ |∇ curl u|2 dx

))
.

Choosing ε > 0 small enough, we can absorb the first term of the right-hand side with the
terms of the left-hand side. Thus, there exists C4 > 0 such that∫

Ω

(
1

sλ2
e−λϕ|∇ curl u|2 + seλϕ|curl u|2

)
e2s eλϕ dx

� C4

(∫
Ω

1
λ2

|g|2 e2seλϕ dx +

∫
ω

s3λ2e3λϕ e2s eλϕ |u|2 dx

)
∫
Ω

seλϕ|curl u|2 e2s eλϕ dx � C4

(∫
Ω

1
λ2

|g|2 e2s eλϕ dx +

∫
ω

s3λ2 e3λϕ e2seλϕ |u|2 dx

)
.

Applying this result to (5), we finally obtain∫
Ω

(
seλϕ|curl u|2 + |∇u|2 + s2λ2 e2λϕ|u|2

)
e2s eλϕ dx

� C

(∫
Ω

1
λ2

| g|2e2s eλϕ dx +

∫
ω

s3λ2 e3λϕ|u|2 e2s eλϕ dx

)
,

proving this lemma. �
Now we can formulate our new Carleman estimate.

Theorem 5. There exist C > 0, s̃ > 1 and λ̃ > 1 such that for every s � s̃ and λ � λ̃∫
Ω

(
seλϕ|z|2 + |∇u|2 + s2λ2 e2λϕ|u|2

)
e2s eλϕ dx

� C

(
e2s eλc0

λ2

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
+

∫
Ω

1
λ2

| f |2 e2s eλϕ dx+
∫
ω

s3 e3λϕ e2s eλϕ |u|2 dx

)
,

where (u, p) are the solutions of equation (2) and z = curl u.

Proof. The proof is similar to the proof of theorem 2.3 from [6] with some modifications
due to the permeability term. Let Ω0 ⊆ R

3 be a bounded domain with a C2 boundary ∂Ω0 such
that Ω � Ω0. We can extend ϕ to Ω0 (keeping the same name) such that ϕ ∈ C2

(
Ω0

)
,

ϕ > 0 inΩ0 ϕ = 0 on ∂Ω0 ϕ = c0 on ∂Ω

0 < ϕ < c0 inΩ0\Ω ϕ > c0 inΩ ∇ϕ 	= 0 inΩ0\ω.

It is easy to see that this extension exists thanks to the regularity of the domain and lemma 1.
Taking the extension operator A : H2 (Ω) × H1 (Ω) → H2

0 (Ω0) × H1
0 (Ω0) given by the Stein’s

theorem (see [2]) such that A (u, p) = (u, p) inΩ, we define (ũ, p̃) = A (u, p). We also denote by

7
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ũ1, ũ2, γ̃1 and f̃ the continuous extensions of u1, u2, γ and f in the H2 (Ω0), L∞ (Ω0) ∩ H1
0 (Ω0)

and L2 (Ω0) spaces, respectively, where γ is extended by 0 in Ω0\Ω. Then, (ũ, p̃) is solution to
the system

−ν � ũ + (∇ũ) ũ1 + (∇ũ2) ũ +∇p̃+ γ̃1ũ = f̃ in Ω0 (7)

div ũ = 0 in Ω0

ũ = 0 on ∂Ω0

∂ũ
∂n

= 0 on ∂Ω0

p̃ = 0 on ∂Ω0,

where f̃ ∈ L2 (Ω0) is given by

f̃ =

{
−f in Ω

−ν � ũ + (∇ũ) ũ1 + (∇ũ2) ũ +∇p̃+ γ̃1ũ in Ω0\Ω

Using the continuity of A, there exists a constant C1 > 0 depending only on ũ1, ũ2, γ̃1, ν
and the continuity constant of A such that∥∥∥ f̃

∥∥∥2

0,Ω0

� C1

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
.

Now, taking z̃ = curl ũ and applying lemma 4, we obtain∫
Ω0

(
s eλϕ |̃z|2 + |∇ũ|2 + s2λ2 e2λϕ|ũ|2

)
e2s eλϕ dx

� C2

(∫
Ω0

1
λ2

|−ν � ũ +∇ p̃|2 e2s eλϕ dx +

∫
ω

(
s3λ2 e3λϕ|u|2

)
e2s eλϕ dx

)

� C2

(∫
Ω0

1
λ2

∣∣∣ f̃ − ((∇ũ) ũ1 + (∇ũ2) ũ + γ̃1ũ)
∣∣∣2 e2s eλϕ dx+

∫
ω

(
s3λ2 e3λϕ|u|2

)
e2s eλϕ dx

)

(8)

for all λ � λ̃ and s � s̃, where C2 > 0, λ̃ > 1 and s̃ > 1 are independent on u. Applying the
Sobolev embedding theorem, we can see that ũ1 ∈ L∞ (Ω0). Since γ̃ ∈ L∞ (Ω0), we have∫

Ω0

|(∇ũ) ũ1|2 e2s eλϕ dx � ‖ũ1‖2
0,∞,Ω0

∫
Ω0

|(∇ũ)|2 e2s eλϕ dx.

Now, applying again Sobolev embedding theorem and Hölder inequality, there exist a constant
C3 > 0 independent on u such that∫

Ω0

|(∇ũ2) ũ|2 e2seλϕ dx �
∫
Ω0

|(∇ũ2)|2
∣∣∣eseλϕ ũ

∣∣∣2 dx

� ‖ũ2‖2
1,3,Ω0

∥∥∥eseλϕ ũ
∥∥∥2

0,6,Ω0

� ‖ũ2‖2
1,3,Ω0

∥∥∥∇(
eseλϕ ũ

)∥∥∥2

0,2,Ω0

� C3‖ũ2‖2
1,3,Ω0

∫ (
|∇ũ|2 + s2λ2 e2λϕ|u|2

)
e2seλϕ dx.

8
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Analogously, we have∫
Ω0

|γ̃1ũ|2 e2seλϕ dx � C4‖γ̃1‖2
0,3,Ω0

∫ (
|∇ũ|2 + s2λ2 e2λϕ|u|2

)
e2seλϕdx

for a constant C4 > 0 independent on u. Hence, there is a constant C5 > 0 independent on u
such that the integral term with f̃ verifies∫

Ω0

1
λ2

∣∣∣ f̃ − ((∇ũ) ũ1 + (∇ũ2) ũ + γ̃1ũ)
∣∣∣2 e2seλϕ dx

�
∫
Ω0

1
λ2

(∣∣∣ f̃
∣∣∣2 + C5

(
|∇ũ|2 + s2λ2 e2λϕ|u|2

))
e2seλϕ dx,

where the last terms can be absorbed by the left-hand side of inequality 8 for λ � λ2, with λ2

large enough and independent on u. Then, there exists a constant C6 > 0 such that∫
Ω0

(
seλϕ |̃z|2 + |∇ũ|2 + s2λ2 e2λϕ|ũ|2

)
e2seλϕ dx

� C6

(∫
Ω0

1
λ2

∣∣∣ f̃
∣∣∣2 e2seλϕ dx +

∫
ω

(
s3λ2e3λϕ|u|2

)
e2seλϕ dx

)
.

Finally, we have∫
Ω0

1
λ2

∣∣∣ f̃
∣∣∣2 e2seλϕ dx =

∫
Ω

1
λ2

| f |2 e2seλϕ dx +

∫
Ω0\Ω

1
λ2

∣∣∣ f̃
∣∣∣2 e2seλϕ dx

�
∫
Ω

1
λ2

| f |2 e2seλϕ dx + C1
e2seλc0

λ2

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
,

proving that there exist C > 0, s̃ > 1 and λ̃ > 1 such that for every s � s̃ and λ � λ̃∫
Ω

(
seλϕ|z|2 + |∇u|2 + s2λ2 e2λϕ|u|2

)
e2seλϕ dx �

∫
Ω0

(
seλϕ |̃z|2 + |∇ũ|2 + s2λ2 e2λϕ|ũ|2

)
e2seλϕ dx

� C6

(∫
Ω

1
λ2

| f |2 e2seλϕ dx +
e2seλc0

λ2

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
+

∫
ω

(
s3λ2 e3λϕ|u|2

)
e2seλϕ dx

)
,

concluding the proof of the theorem. �

3. Main result

In this section, we present a logarithmic local stability result for our inverse problem. Unlike
[6], the right-hand side is more complex and requires a special treatment. We need to prove the
following result as a preliminary step.

Theorem 6. Let β ∈ C2
(
Ω
)
, a ∈ C1

(
Ω
)
. There exist s0 > 1 and C > 0 such that for all

g ∈ H (Ω), λ > λ0 and s > s0

s2
∫
Ω

(
|a · ∇β|2 − C

s

)
|g|2 e2sβ dx � C

∫
Ω

|a · ∇g|2 e2sβ dx.

9
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Proof. Let us consider s > 0 and define w = esβg. Then,

esβa · ∇g = esβa · ∇
(
e−sβw

)
= a · ∇w − sw (a · ∇β) .

Later,∫
Ω

e2sβ |a · ∇g| dx =

∫
Ω
|a · ∇w|2 dx + s2

∫
Ω

e2sβ |g|2|a · ∇β|2 dx − 2s
∫
Ω
w (a · ∇β) (a · ∇w) dx

� s2
∫
Ω

e2sβ |g|2|a · ∇β|2 dx − 2s
∫
Ω
w (a · ∇β) (a · ∇w) dx.

Integrating by parts,

2s
∫
Ω

w (a · ∇β) (a · ∇w) dx = s
∫
Ω

(a · ∇β)
(
a · ∇

(
w2

))
dx

= s
∫
∂Ω

e2sβg (a · ∇β) (a · n) dx − s
∫
Ω

w2 div ((a · ∇β) a) dx

= −s
∫
Ω

w2 div ((a · ∇β) a) dx

= −s
∫
Ω

e2sβ |g|2 div ((a · ∇β) a) dx,

because g = 0 on ∂Ω. Also, div ((a · ∇β) a) is bounded in Ω. Then, there exists a constant
C1 > 0 only dependent on a, β and Ω such that

2s
∫
Ω

w (a · ∇β) (a · ∇w) dx � −C1s
∫
Ω

e2sβ |g|2 dx.

Thus, there exist s0 > 1 and C > 0 such that for all s > s0

C
∫
Ω

e2sβ |a · ∇g| dx � s2
∫
Ω

e2sβ

(
|a · ∇β|2 − C

s

)
|g|2 e2sβ dx,

proving the theorem. �
The previous theorem reduces the study of curlf recovering a non-degeneracy condition

very similar to Theorem 1 in [7] given by |∇ϕ× u2| 	= 0 in Ω̄.

Remark. Despite the fact that ∇ϕ vanishes at some points of ω, we can always consider
two regions of the observation zone, a small open subset included in Ω \ Ω̄ε containing the
critical points of ϕ and another open subset of Ωε with absence of them. Velocity and vorticity
measurements are required in both sets.

Now, we have

curl ( f ) = γ curl u2 +∇γ × u2.

Taking a1 = (0, [u2]3,−[u2]2)T, g = γ and β = eλϕ in theorem 6, we obtain

s2
∫
Ω

(
λ2 e2λϕ|a1 · ∇ϕ|2 − C1

s

)
|γ|2 e2seλϕ dx � C

∫
Ω

|a1 · ∇γ|2 e2seλϕ dx.

10
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We can repeat this with a2 = (−[u2]3, 0, [u2]1)T and a3 = ([u2]2,−[u2]2, 0)T obtaining

s2
∫
Ω

(
λ2 e2λϕ|a2 · ∇ϕ|2 − C1

s

)
|γ|2 e2seλϕ dx � C1

∫
Ω

|a2 · ∇γ|2 e2seλϕ dx

s2
∫
Ω

(
λ2 e2λϕ|a3 · ∇ϕ|2 − C1

s

)
|γ|2 e2seλϕ dx � C1

∫
Ω

|a3 · ∇γ|2 e2seλϕ dx,

where

(a1 · ∇ϕ, a2 · ∇ϕ, a3 · ∇ϕ)T = ∇ϕ× u2

(a1 · ∇γ, a2 · ∇γ, a3 · ∇γ)T = ∇γ × u2.

In conclusion, adding the three inequalities, we can obtain that

s2
∫
Ω

(
λ2 e2λϕ|∇ϕ× u2|2 −

3C1

s

)
|γ|2 e2seλϕ dx � C1

∫
Ω
|∇γ × u2|2 e2seλϕ dx

� C1

∫
Ω

(
|curl ( f )|2 + |γ curl u2|2

)
e2seλϕ dx,

(9)

recovering the term |∇ϕ× u2| on the left-hand side of this inequality. Furthermore, the left-
hand side of this inequality can be simplified thanks to the following lemma.

Lemma 7. Let f ∈ C
(
Ω
)

such that f (x) 	= 0 for all x ∈ Ω. There exist constants R > 0,
λ1 > 0 and s1 > 0 such that for all g ∈ L2 (Ω), s > s1 and λ > λ1,∫

Ω

(λ2| f (x)|2 − 1
s

)|g(x)|2 dx � Rλ2
∫
Ω

|g(x)|2 dx.

Proof. The property is fulfilled when ‖g‖0,Ω = 0. Then, we suppose that ‖g‖0,Ω 	= 0. Since
f ∈ C

(
Ω
)

and f 	= 0, there exists R1 > 0 such that | f (x)| � R1 for all x ∈ Ω. Then,∫
Ω

(
λ2| f (x)|2 − 1

s

)
|g (x)|2 dx �

(
λ2R1 −

1
s

)∫
Ω

|g (x)|2 dx.

Now, choosing λ1 = 1, s1 = 2
R1

and R = R1
2 , we obtain that for all s > s1 and λ > λ1,∫

Ω

(
λ2| f (x)|2 − 1

s

)
|g (x)|2 dx �

(
R1λ

2 − 1
s

)∫
Ω

|g (x)|2 dx

�
(

R1λ
2 − R1

2

)∫
Ω

|g (x)|2 dx

� R1

2
λ2
∫
Ω

|g (x)|2 dx = Rλ2
∫
Ω

|g (x)|2 dx,

proving the lemma. �
Remark. Note that there exist R > 0, s1 > 1 and λ1 > 1 such that, for all s > s1 and λ > λ1,∫

Ωε

(
λ2 e2λϕ|∇ϕ× u2|2 −

3C1

s

)
|γ|2 e2seλϕ dx � R

∫
Ωε

λ2|γ|2 e2seλϕ dx. (10)

11
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Since u2 ∈ H2 (Ω), theorem 5.8.4 in [11] states that u2 ∈ C (Ω). Then, |∇ϕ× u2| ∈ C (Ω) and
|∇ϕ× u2| 	= 0 in Ωε � ω almost everywhere. Then, choosing f (x) = eλϕ |∇ϕ (x) × u2 (x)|
and g (x) = eseλϕ |γ (x)| on lemma 7, we can deduce the inequality 10.

It is possible to prove, similar to lemma 2 and theorem 5 in section 2, the following Carle-
man estimates for strong solutions of linear second-order elliptic PDE with homogenous and
nonhomogeneous Dirichlet boundary conditions.

Lemma 8. Let f ∈ L2 (Ω), ν ∈ R with ν > 0, a, b ∈ L∞ (Ω), c ∈ L∞ (Ω) and u ∈ H2 (Ω)
solution of

−ν � u + a · ∇u + div (ub) + cu = f in Ω

u = 0 on ∂Ω.

Then, there exist C > 0, λ̃ > 1 and s̃ > 1, independent on u, such that for all k ∈ N ∪ {0},
λ � λ̃ and s � s̃,∫

Ω

((
sλ eλϕ

)k−2|�u|2 +
(
sλ eλϕ

)k|∇u|2 +
(
sλ eλϕ

)k+2|u|2
)

e2seλϕ dx

� C

(∫
Ω

1
λ

(
sλeλϕ

)k−1| f |2 e2seλϕ dx +

∫
ω

(
sλ eλϕ

)k+2|u|2 e2seλϕ dx

)
. (11)

Proof. See theorem A.1 in [13]. �
Lemma 9. Let f ∈ L2 (Ω), F ∈ L2 (Ω), ν ∈ R with ν > 0, a, b ∈ L∞ (Ω), c ∈ L∞ (Ω), g ∈
H3/2 (∂Ω) and u ∈ H2 (Ω) solution of

−ν�u + a · ∇u + div (ub) + cu = f + div F in Ω

u = 0 on ∂Ω.

Then, there exist C > 0, λ̃ > 1 and s̃ > 1, independent on u, such that for all k ∈ N ∪ {0},
λ � λ̃ and s � s̃,∫

Ω

((
sλeλϕ

)k−2|�u|2 +
(
sλ eλϕ

)k|∇u|2 +
(
sλ eλϕ

)k+2|u|2
)

e2seλϕ dx

� C

(
e2seλc0

λ

(
sλ eλc0

)k−1‖u‖2
2,Ω +

∫
Ω

1
λ

(
sλ eλϕ

)k−1| f |2 e2seλϕ dx (12)

+

∫
Ω

1
λ

(
sλ eλϕ

)k+1|F|2 e2seλϕ dx +

∫
ω

(
sλ eλϕ

)k+2|u|2 e2seλϕ dx

)
.

Proof. See theorem 2.2 in [13]. �
Then, we can present our local stability result.

Theorem 10. Consider an non-empty open subset ω ⊆ Ω, u2 ∈ C1 (Ω) and
|∇ϕ (x) × u2 (x)| 	= 0 for all x ∈ Ωε. Then, defining a constant M′

3 = (M2
3 + K2)1/2 > 0,

there exists a constant C > 0 independent on u1 and u2 such that

‖ γ ‖0,Ωε �
CM′

3[
ln
(

1 +
M′

3
‖u‖0,ω+‖curl u‖0,ω

)]1/2 .

12
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Proof. Let us consider c = ‖ϕ‖0,∞,Ω and z = curl u. From the equation

−ν� z + (∇z) u1 + γ1z = − (curl f + h) ,

there exists a constant C2 > 0 that only depends of u1, u2 and M such that

|curl f |2 e2seλϕ � C2

(
|�z|2 + |∇z|2 + |z|2 + |∇u|2 + |u|2

)
e2seλϕ.

Applying theorem 9 with k = 2, then there exists constants C3 > 0, λ̃ � 1 and s̃ � 1 such that
for all λ � λ̃ and s � s̃
∫
Ω

(
|� z|2 + |∇z|2

)
e2seλϕ dx

� C3

(
s eλc0 e2seλc0 ‖ z ‖2

2,Ω +

∫
Ω

seλϕ|(curl f + h)|2 e2seλϕ dx +

∫
ω

(sλ eλϕ)4|z|2 e2seλϕ dx

)

� C3

(
s eλc0 e2seλc0 ‖ u ‖2

3,Ω +

∫
Ω

s eλϕ
(
|curl f |2 + |u|2 + |∇u|2

)
e2seλϕ dx +

∫
ω

(sλ eλϕ)4|z|2 e2seλϕ dx

)

� C3

(
s eλc0 e2seλc0 M2

3 +

∫
Ω

s eλϕ
(
|γ|2 + |∇γ|2 + |u|2 + |∇u|2

)
e2seλϕ dx +

∫
ω

(sλ eλϕ)4|z|2 e2seλϕ dx

)

� C3

(
s eλc0 e2seλc0 M2

3 + s eλc e2seλc
K2 +

∫
Ω

s eλϕ
(
|γ|2 + |u|2 + |∇u|2

)
e2seλϕ dx +

∫
ω

(sλ eλϕ)4|z|2 e2seλϕ dx

)
,

where we use that u1, u2, curl u2 ∈ L∞ (Ω) and the assumption (a). Now, applying theorem 5,
there exists a constant C4 > 0 such that for all λ � λ̃ and s � s̃∫

Ω

(
|z|2 + |∇u|2 + |u|2

)
e2seλϕ dx �

∫
Ω

(
seλϕ|z|2 + |∇u|2 +

(
sλ eλϕ

)2|u|2
)

e2seλϕ dx

� C4

(
e2seλc0

λ2
M2

2 +

∫
Ω

1
λ2

|γ|2 e2seλϕ dx +
∫
ω

s3 e3λϕ e2seλϕ |u|2 dx

)
.

Then, there exists a constant C5 > 0 such that for all λ � λ̃ and s � s̃
∫
Ω

|curl f |2 e2seλϕ dx � C2

∫
Ω

(
|� z|2 + |∇z|2 + |z|2 + |∇u|2 + |u|2

)
e2seλϕ dx

� C5

(
s eλc0 e2seλc0 M2

3 +

∫
Ω

s eλϕ|γ|2 e2seλϕ dx +
∫
ω

(
sλ eλϕ

)4
e2seλϕ

(
|u|2 + |z|2

)
dx

)
.

Replacing this in inequality (9) and using that curl u2 ∈ L∞ (Ω), we deduce that there exists a
constant C6 > 0 such that

Rs2
∫
Ωε

|γ|2 e2seλϕ dx � s2
∫
Ωε

(λ2 e2λϕ|∇ϕ× u2|2 −
3C1

s
)|γ|2 e2seλϕ dx

� C1

∫
Ω

(|curl f |2 + |γcurl u2|2)e2seλϕ dx

� C6(seλc e2seλc
(M2

3 + K2) +
∫
Ω

seλϕ|γ|2 e2seλϕ dx +

∫
ω

(sλ eλϕ)4 e2seλϕ(|u|2 + |z|2)dx),

where |∇ϕ× u2| ∈ C (Ω) and |∇ϕ× u2| 	= 0. Then, taking s > 0 sufficiently large and fixing
λ = λ̃, we can absorb the second term of the right-hand side by the left-hand side. Thus, there

13
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exist constants C7 > 0, ŝ > 0, L = (M2
3 + K2)1/2 > 0 and c∗ > 1 such that for all s � ŝ

s2
∫
Ωε

|γ|2 e2seλϕ dx � C7(s eλ̃c e2seλ̃c
(M′

3)2 +

∫
ω

(sλ̃ eλ̃ϕ)4 e2seλ̃ϕ (|u|2 + |z|2)dx)

‖ γ ‖2
0,Ωε

� (M′
3)2

s
+ e2sc∗(‖ u ‖0,ω + ‖ z ‖0,ω)2. (13)

If ‖u‖0,ω + ‖z‖0,ω = 0, then for all s � ŝ we have ‖ γ ‖0,Ωε �
M′

3
s1/2 for all s � ŝ. Later,

‖γ‖0,Ωε
= 0.

Now, we assume that ‖u‖0,ω + ‖z‖0,ω 	= 0. We have two cases. In the first case, if we suppose
that

1
2c∗

ln

(
1 +

(M′
3

‖ u ‖0,ω + ‖ z ‖0,ω

)
� ŝ.

Later,

M′
3 � e2

̂

sc∗ (‖ u ‖0,ω + ‖ z ‖0,ω
)
.

Then, taking s = ŝ in inequality (13), and using ‖ u ‖0,ω + ‖ z ‖0,ω � M′
3 and 1

x � 1
ln(x+1) for

all x > 0, we obtain

‖ γ ‖2
0,Ωε

� (M′
3)2

ŝ
+ e2̂sc∗(‖ u ‖0,ω + ‖ z ‖0,ω

)2

� e4̂sc∗

ŝ

(
‖ u ‖0,ω + ‖ z ‖0,ω

)2
+ e4̂sc∗(‖ u ‖0,ω + ‖ z ‖0,ω

)2

� 2 e4̂sc∗(‖ u ‖0,ω + ‖ z ‖0,ω

)2

� 2 e4̂sc∗M′
3

(
‖ u ‖0,ω + ‖ z ‖0,ω

)
� 2 e4̂sc∗(M′

3)2

(
‖ u ‖0,ω + ‖ z ‖0,ω

)
M′

3

� 2 e4̂sc∗ (M′
3)2[

ln
(

1 +
M′

3
‖u‖0,ω+‖z‖0,ω

)] .
(14)

In the second case, if we suppose that

1
2c∗

ln

(
1 +

M′
3

‖ u ‖0,ω + ‖ z ‖0,ω

)
� ŝ.

Taking s = 1
2c∗ ln

(
1 +

M′
3

‖u‖0,ω+‖z‖0,ω

)
in inequality (13), using ‖ u ‖0,ω + ‖ z ‖0,ω � M3 � M′

3

and

(x + 1) ln (1 + x)
x2

� 2

for all x > 1, we obtain

e2sc∗ = 1 +
M′

3

‖ u ‖0,ω + ‖ z ‖0,ω

and
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‖ γ ‖2
0,Ωε

� (M′
3)2

s
+ e2sc∗(‖ u ‖0,ω + ‖ z ‖0,ω

)2

� (M′
3)2

s

(
1 +

[
1

2c∗
ln

(
1 +

M′
3

‖ u ‖0,ω + ‖ z ‖0,ω

)](
1 +

M′
3

‖ u ‖0,ω + ‖ z ‖0,ω

)
(‖ u ‖0,ω + ‖ z ‖0,ω)2

(M′
3)2

)

� (M′
3)2

s

(
1 +

1
c∗

)
=

(2c∗ + 1)(M′
3)2

ln
(

1 +
M′

3
‖u‖0,ω+‖z‖0,ω

) . (15)

From (14) and (15), we can deduce that there exists a constant C > 0 such that

‖ γ ‖0,Ωε �
CM′

3[
ln
(

1 + L
‖u‖0,ω+‖curl u‖0,ω

)]1/2 ,

proving the main result. �

4. Numerical results

In this section, we present two numerical tests that support the stability result proved in theorem
10. We perform numerical experiments in 2D, but the theory of the previous sections is valid
both in two and three dimensions. In both examples will use the sames 2D domain Ω =
[−1, 1]2, subset Ωε = [−0.9, 0.9]2 (with a ε = 0.1), and observation region ω = [−0.5, 0.5]2,
similar Dirichlet boundary conditions, and a different function γR (R for reference) such that
γR = 0 in Ω\Ωε. We obtain numerical approximations for the solutions (uR, pR) of equation (1)
with γ = γR using the finite element method with Taylor–Hood elements (P2 for the velocity
uR and P1 for the pressure pR) on an unstructured hyperfine triangular mesh (with mesh size
h = 0.01). We recover the coefficient γR as the solution of the following minimization problem

minimize J (γ, u) =
1
2
‖u − uR‖2

0,ω +
1
2
‖curl u − curl uR‖2

0,ω (16)

subject to − ν�u + (∇u) u +∇p+ γu = 0 in Ω (17)

div u = 0 in Ω

u = uD on ∂Ω

u ∈ H1 (Ω) γ ∈ H1 (Ω)

0 � γ � M a.e. inΩ,

where M = max
x∈Ω

γR(x). The functional J was chosen because it is differentiable with respect

to γ and is equivalent to ‖u − uR‖0,ω + ‖curl u − curl uR‖0,ω . This problem is numerically
solved approximating the Navier–Stokes equations with finite element method using stable
pairs of spaces (in terms of the inf-sup condition, see section 3.6 in [14]) in a coarse structured
mesh, where γ is approximated by P1 elements. It should be noted that the second example
is based on recovering a discontinuous coefficient γR, which is not covered by theorem 10,
but it complements the work of Aguayo et al [3]. The FEM solver is implemented using the
finite element library FEniCS 2019.1.0 [5] with the default configuration. The nonlinear prob-
lems were solved using the Newton method with a relaxation parameter α ∈ [0.9999, 1]. The
dolfin-adjoint library [15] were used to numerically solve the optimization problems with the
L-BFGS-B algorithm (see section 4.3 in [10]). Furthermore, we explain more details of the
parameters, domains, meshes, numerical methods and tolerances used on each example.
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Figure 1. Domain Ω for the numerical tests and boundary conditions.

4.1. Recovering a smooth function

In this first test, we consider ν = 1, f = 0, Dirichlet boundary conditions given by a function
uD such that

uD (x) = uD (x, y) =

{(
5
(
1 − y2

)
, 0
)T

if x ∈ {−1, 1}
0 if y ∈ {−1, 1}

and a function γR ∈ H(Ω) such that

γR(x) = γR(x, y) =

{ 100
16

(
1 + cos

( πx
0.9

))2(
1 + cos

( πy
0.9

))2
if x = (x, y) ∈ Ωε

0 if x = (x, y) ∈ Ω\Ωε

.

The reference solutions are the numerical solutions (uR, pR) of equation (1), obtained by
finite element method with Taylor–Hood elements (P2 for the velocity u andP1 for the pressure
p) in a hyperfine unstructured triangular mesh (mesh size h = 0.01, 53 649 nodes and 107 296
elements), using the function γR defined previously (figure 1).

The optimization problem was discretized with the same FEM scheme for a coarse struc-
tured triangular mesh. The function γ was discretized using P1 elements. The discretized
Navier–Stokes equations were solved using Newton method with a tolerance of 10−7 for the
discrete �2 residual norm. The tolerance criterion for the L-BFGS-B algorithm was 5 × 10−9 for
consecutive evaluations of functional J or approximations of the Riesz representant of ∇J, the
Fréchet derivative of J, in norms L2(Ω) or �2. We used γ0 = 0 as a initial guess for the L-BFGS-
B algorithm. If we denote γk and uk as the optimal control and their respective state on the k iter-
ation of the L-BFGS-B algorithm, we can define the errors γE,k = γk − γR and uE,k = uk − uR.

16
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Table 1. Evolution of L-BFGS-B algorithm.

k J (γk) ‖∇J (γk)‖0,Ω ‖uE,k‖0,ω + ‖curl uE,k‖0,ω ‖γE,k‖0,Ωε

0 4.8156 × 101 1.7378 × 10−2 1.1536 × 101 4.9219 × 101

3 8.9908 × 100 4.6005 × 10−3 5.0507 × 100 3.6516 × 101

5 1.3860 × 100 1.1846 × 10−3 2.0324 × 100 2.5782 × 101

8 1.5234 × 10−1 1.8093 × 10−4 6.9552 × 10−1 1.6227 × 101

14 1.0747 × 10−2 1.1264 × 10−5 2.0450 × 10−1 1.1485 × 101

41 1.0969 × 10−3 2.0214 × 10−6 6.1340 × 10−2 6.1686 × 100

68 1.0095 × 10−4 4.0138 × 10−7 1.9318 × 10−2 5.0834 × 100

196 5.0897 × 10−5 3.3451 × 10−8 1.0601 × 10−2 4.6065 × 100

Figure 2. Plots of the Brinkman’s law reference permeability parameter γR and the
correspondent reference isovalues and flow uR.

Also we define γ∗ as the optimal function obtained by the L-BFGS-B algorithm and (u∗, p∗)
as the optimal states. Table 1 and figures 3 and 4 summarize the numerical results obtained.

Comparing figures 2 and 3, we can see that there is a fast convergence of the velocity at the
optimal uR, both in the measurement region ω and in the rest of Ω. However, the convergence
rate of γ is low, according to the theory. In the measurement region ω, γ∗ has a similar shape
to γR, with differences of less than 4% in L∞ norm. Outside the measurement region ω, γ∗

presents some noise, as can be seen in figures 3 and 4, which is mainly associated with the
measurement region, the chosen objective function J and the finite element approximation.

4.2. Recovering a non-smooth function

Unlike the previous test, in this one we are looking for recovering a function γR ∈ L2(Ω) with
γR = 0 in Ω\Ωε such that γR /∈ H1(Ω). Then, in this test we do not expect to recover the theo-
retical results, since the hypothesis of the main theorem is not fulfilled, but rather to present a
strategy that allows recovering a discontinuous coefficient γ. This example is motivated by [3],
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Figure 3. Plots of reference parameters (top) and recovered permeability parameter γk
and velocity uk on iteration 198 (bottom).

where the authors solved numerically an inverse problem to recover a discontinuous coefficient
that represent an obstacle.

We consider the sames domains Ω and Ωε as in the first test and the same the parameters
ν = 1 and f = 0. The Dirichlet boundary condition is given by a function uD such that

uD (x) = uD (x, y) =

{(
30

(
1 − y2

)
, 0
)T

if x ∈ {−1, 1}
0 if y ∈ {−1, 1}

and a function γR ∈ H(Ω) such that

γR (x) = γR (x, y) =

{
10 000 if (x, y) ∈ B

0 if (x, y) ∈ Ω\B

where B =
{

(x, y) ∈ R
2|x2 + y2 � 0.22

}
.
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Figure 4. Cut lines of the recovered γk on iteration 198 and γR on y = 0 (left) and y = x
(right).

Figure 5. Plots of γR and uR.

The reference solutions are the numerical solutions (uR, pR) of equation (1), obtained by
finite element method with the Taylor–Hood elements (P2 for the velocity uR and P1 for the
pressure pR) in a hyperfine unstructured triangular mesh (mesh size h = 0.01, 53 649 nodes
and 106 496 elements), using the function γR defined previously (figure 5).

The optimization problem were discretized with the MINI element (P1 ⊕ Vbub for the veloc-
ity u and P1 for the pressure p, where Vbub is the space of the bubble functions, see section 3.6.1
in [14]) for a coarse structured triangular mesh. The discretized Navier–Stokes equations were
solved using Newton method with a tolerance of 10−7 for the discrete �2 residual norm. Thanks
to we can recover a discontinuous L2 function, we decided to use P1 elements for γ dis-
cretization combined with a new algorithm for this optimization problem based in adaptive
refinement. If Th is a triangulation for Ω, we denote by T the elements of Th and by Eh the set
of all edges Th. Also Eh = EΩ ∪ E∂ , where EΩ and E∂ are the sets of edges lying in the interior
and the boundary of Ω, respectively. We use hT as the diameter of T and hF = |F| for each
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Algorithm 1. Algorithm of each adaptive refinement stage.

Require: A coarse mesh Th, N,Δ ∈ N, γ = 0
1: Run N iterations of the L-BFGS-B algorithm for the problem 16 on the current mesh
2: For each T ∈ Th, compute the estimators ηγ,T and ηT using the optimal function and the

optimal states
3: Given T ∈ Th such that ηγ,T � 0.8 max

K∈Th
ηγ,K or ηT � 0.5 max

K∈Th
ηK , mark T

and generate a new mesh Th refining the marked elements
4: If the stop criterion is not satisfied, choose γ as the Lagrange interpolation of

the optimal control in the new finite element space obtained in the step 1,
increase N to N +Δ and go to the step 1

Figure 6. Plots of γk (first row) and uk (second row) after stages 1, 3, 7 and 13 (from
left to right).

F ∈ EΩ. Then, we define

ηγ,T =

⎛
⎝ ∑

F∈∂T∩EΩ

hF‖[[∇γF]]F‖2
0,F

⎞
⎠

1/2

ηT =

⎛
⎝h2

T‖ − ν�u + (∇u) u + γu +∇p‖2
0,T + ‖ div u‖2

0,T +
∑

F∈∂T∩EΩ

hF

∥∥∥∥
[[
ν
∂u
∂n

− pn
]]∥∥∥∥ 2

0,F

⎞
⎠

1/2

,

where [[·]]F denotes the vectorial jump operator on the edge F ∈ EΩ. The term ηγ,T corresponds
to a quantification of the jumps of γ for the element T , which we want to reduce in order to
obtain a better resolution. The expression ηT is the a-posteriori error estimator presented by
Verfürth calculated in the element T (see section 8 in [16]).

At each stage of the algorithm, we partially solve the optimization problem until reaching a
maximum number of iterations or a convergence criterion of the L-BFGS-B algorithm. Next,
we quantify the error estimators, mark some elements and refine the marked elements following
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Figure 7. Plots of refined meshes on stages 1 (top left), 3 (top right), 7 (bottom left) and
13 (bottom right).

the algorithm. The next stage uses the Lagrange interpolation of the optimal control obtained in
the last stage. Also we increment the maximum number of iterations for L-BFGS-B algorithm
for the next stage because the descent directions of that algorithm are not compatible with the
discrete spaces obtained after the adaptive refinement (algorithm 1).

The tolerance criterion for the L-BFGS-B algorithm were 2 × 10−5 for consecutive evalua-
tions of functional J or approximations of the Riesz representant of ∇J, the Fréchet derivative
of J, in norms L2(Ω) or �2. We used γ0 = 0 as a initial prediction for the L-BFGS-B algorithm.
We choose N = 60 as the maximum number of iterations for the first stage, with increments of
30 iterations for the following stages. If we denote γk and uk as the optimal control and their
respective state on the k stage of the refinement algorithm, we define the errors γE,k = γk − γR

and uE,k = uk − uR, and γ∗ as the optimal function obtained by the L-BFGS-B algorithm withe
the optimal state (u∗, p∗) as in the previous test. Figures 6 and 7, and table 2 summarize the
numerical results obtained.

We appreciate that the convergence of the numerical solution to the real solution is slow,
similar to the previous test, which is benefited by the adaptive refinement strategy. The adaptive
refinement strategy allows to recover smoothly the boundary of the set B, where γR = 10 000.
However, we can obtain numerical noise in the boundary of ω, drawn with magenta lines in
figure 6. Indeed, we can see that the prediction of γ is not accurate outside ω due to the same
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Table 2. Evolution of the adaptive refinement algorithm.

k It J (γk) ‖∇J (γk)‖0,Ω ‖uE,k‖0,ω + ‖curl uE,k‖0,ω ‖γE,k‖0,Ωε

0 0 7.3218 × 103 6.8677 × 10−1 1.3714 × 102 3.4662 × 103

1 60 2.4691 × 102 1.0367 × 10−3 2.5022 × 101 2.1659 × 103

3 270 8.4010 × 101 2.6439 × 10−4 1.4178 × 101 1.8784 × 103

5 600 5.0553 × 101 8.4971 × 10−5 1.0996 × 101 1.7416 × 103

7 1050 2.9497 × 101 4.3242 × 10−5 8.4704 × 100 1.6257 × 103

9 1620 2.5874 × 101 3.6794 × 10−5 7.9048 × 100 1.5348 × 103

11 2310 2.0731 × 101 2.4171 × 10−5 7.0901 × 100 1.5229 × 103

13 2848 1.9714 × 101 1.9335 × 10−5 6.9145 × 100 1.5304 × 103

explanations of the previous test: the measurement region, the chosen objective function J and
the finite element approximation. Furthermore, the values of the numerical noise are sufficient
to significantly modify the magnitude of u outside ω with respect to the reference uR, but that
noise is slightly attenuated by the effect of the optimization solver and the adaptive refinement
algorithm.

5. Conclusions

We have presented a new stability result for the inverse problem of recovering a smooth scalar
permeability parameter for a steady Navier–Stokes equations with permeability modeled by
Brinkman’s law from local observations of the fluid velocity and vorticity in a fixed subdomain.
Our main result is a logarithmic estimate obtained from H1 and H2 global Carleman inequalities
for second-order elliptical equations. We followed similar extension technique used as the one
used in [6] under an analogous non-degeneracy condition as the one introduced in [7]. The
approach of eliminating the pressure and measuring only velocity u is useful not only for
fluids, but also in some problems appearing in elastography (see [8]).

Our numerical test for recovering a smooth parameter shows a slow convergence of the
optimization solver, which is directly related to our stability result. Likewise, the numerical
test that recovers a discontinuous coefficient with an adaptive refinement strategy follows a
similar behavior to the first test, which allows us to observe that we could relax the regularity
hypotheses of our main theorem. Also, one of the problems was the numerical noise generated
by the discrete scheme. An alternative is to consider the vorticity curl u as a new unknown in
the finite element system.

In [4], authors describe that an obstacle immersed in a fluid can be represented asymptoti-
cally by a discontinuous permeability coefficient. The adaptive refinement strategy is effective
to recover discontinuous coefficients with greater precision, facilitating the detection of obsta-
cles with better resolution. However, the use of error estimators may not be appropriate. Then,
one of the future improvements for this work is to apply new techniques, for example the one
explained in [9], as a new strategy of mesh adaptivity.
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