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Abstract: Environmental factors, including greenhouse gas (GHG) emissions and soil organic carbon 
(SOC), should be considered when building a sustainable biofuel supply chain. This work developed a 
three-step optimization approach integrating a geographical information system-based mixed-integer 
linear programming model to economically optimize the biofuel supply chain on the premise of meeting 
certain GHG emission criteria. The biomass supply grid cell was considered first, based on a maximum 
level of GHG emissions, prior to economic optimization. The optimization simultaneously considered 
dual-feedstock sourcing, selection between distributed and centralized configurations, and the impact 
of maintaining SOC balance in agricultural soil on biomass availability. The applicability of the modeling 
approach was demonstrated through a case study that optimized a dual-feedstock renewable jet fuel 
supply chain via a gasification-Fischer–Tropsch (gasification-FT) conversion pathway in 2050 under three 
biomass availability scenarios. The case study results show that the differences in procurement costs and 
GHG emissions between energy crops and agricultural residues have a large impact on the layout of the 
supply chain. The supply-chain configuration tends to be more centralized with large-scale biorefineries 
when a supply region has an intensive and centralized distribution of biomass resources. The cost-supply 
curves demonstrated the technical potential of biofuels that could be obtained at a certain level of cost. 
Additionally, sensitivity analysis shows that the GHG emission credit from producing extra electricity 
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during the gasification-FT process will be significantly reduced with a rising share of renewable electricity 
generation in the future. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd

Supporting information may be found in the online version of this article.
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Introduction

F
or decades, biofuel has been utilized as a type of 
renewable energy alternative to fossil fuel mitigate 
greenhouse gas (GHG) emissions. As the main 

output products of the lignocellulose-based conversion 
technologies, advanced biofuels such as bioethanol, 
biodiesel, biobutanol, and renewable jet fuel (RJF) could 
be utilized in the transport sector in the medium to long 
term.1,2 The International Energy Agency (IEA) has 
estimated that the primary demand for bioenergy would 
account for 9.1%, 10.3%, and 12.3% of total global primary 
energy demand in 2040 under the ‘current policies scenario’, 
‘stated policies scenario’, and ‘sustainable development 
policies scenario’, respectively.3 To achieve the goals of 
sustainable development and mitigation of global climate 
change, it is important to increase the share of biofuels in 
the future energy mix, and the successful production of 
biofuels depends heavily on a secure supply chain.

The supply chain of the biomass-to-biofuels industry 
is full of uncertainties, such as the scattered distribution 
of biomass supply sites, uncertain availability of biomass 
resources, and logistical problems.4–6 It is therefore crucial 
to carry out strategically economic optimization of the 
biofuel supply chain to tackle such uncertainties and realize 
large-scale biofuel production. Many studies have been 
performed on the economic optimization of the biofuel 
supply chain using mixed integer linear programming 
(MILP) models based on geographic information systems 
(GIS).7 The GIS-based optimization model allows the 
locations of biomass supply sites, storage and pretreatment 
(SP) and biorefinery (BR) facilities to be identified, as well 
as possible routines with the shortest distance between 
transport networks.8 A few studies have developed and 
applied a GIS-based MILP model called BioScope to 
minimize the total cost of biofuel supply chains with various 
feedstocks and conversion pathways.9–13

Environmental performance, including GHG emissions 
and soil health, needs to be taken into account in supply 
chain optimization. To achieve global or regional GHG 
mitigation targets by replacing fossil fuels with biofuels, 

the production of biofuels has to follow GHG emission 
regulations. The EU Renewable Energy Directive and the 
US Renewable Fuel Standard both stipulate a GHG emission 
reduction threshold of 60% for lignocellulosic-based biofuels 
in comparison with the fossil fuel baseline.14,15 Hence it is 
necessary to find ways to optimize the biofuel supply chain 
economically within such regulatory frameworks. To identify 
possible biomass supply regions where GHG reduction 
potential is lower than the threshold in a biofuel supply 
chain, it is necessary to calculate the unit GHG emission 
from each biomass supply region. Many studies have used 
the Ɛ-constraint method to create the pareto-optimal curves 
revealing the trade-off between economic and environmental 
performance.12,16–23 However, when the cost optimization 
of the biofuel supply chain is carried out on the premise of 
reaching a certain GHG reduction criterion, the Ɛ-constraint 
method cannot solve this problem efficiently because 
creating the pareto-optimal curves is time-consuming and 
not necessary. Furthermore, most of these studies were 
carried out with a county‐level or above. They failed to 
calculate the unit biofuel production cost and GHG emission 
on a grid cell basis at a high spatial resolution and did not 
adequately analyze the spatial variations in the unit biofuel 
production cost and GHG emission.

In addition to GHG emissions, the biomass supply faces 
uncertainties from the perspective of maintaining soil health, 
which is important for building a sustainable biofuel supply 
chain because the excessive removal of agricultural residues 
for biofuel production might come at the cost of reduced 
soil quality.20,24 Some studies have shown that residues are 
important contributors to maintain soil organic carbon 
(SOC) and could prevent soil erosion.25–27 Appropriate land 
management, such as conservation tillage, could significantly 
reduce the decomposition of SOC.28 Consequently, 
maintaining high SOC content may require a large volume of 
residues to be retained in the soil, thus reducing the removal 
rate of residues for biofuel production.29 Furthermore, 
agricultural residues are valuable as feedstocks for 
producing animal feed, industry materials, bio-chemicals, 
and mushroom matrix. The competing uses of agricultural 
residues add great uncertainty to supply.29 Hence, the supply 
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potential of agricultural residues for biofuel production 
would depend on the SOC level being maintained, land 
management being implemented, and the competing use of 
agricultural residues. Besides, the commercial production 
of perennial lignocellulosic energy crop from marginal land 
has not yet appeared in many countries. Thus, the supply of 
energy crop in the future may change with time, policies, 
and marginal land availability. The uncertainty of biomass 
supply affects the optimal design of the biofuel supply chain. 
Moreover, differences in procurement costs and GHG 
emissions between agricultural residues and energy crops can 
have a great impact on the economic and GHG performances 
of the biofuel supply chain.29,30 The uncertainty of the 
biomass feedstock supply and dual-feedstock sourcing from 
the same region should be considered in the optimization.

To the best of our knowledge, no comprehensive work 
has been conducted on a grid cell-based optimization of the 
biofuel supply chain where the economic objective is achieved 
by simultaneously meeting certain criteria for GHG emission 
reduction and considering soil health and the uncertainty of 
biomass supply. To fill the research gap, this study proposes a 
three-step MILP-based modeling approach that can design an 
economically optimal biofuel supply chain strategically on a 
spatial grid cell basis on the premise of reaching a certain GHG 
reduction criterion and maintaining soil health. The overall 
structure of this approach is presented in Fig. 1. Considering the 
strong demand for biofuel in the future, the approach was built 
based on the assumption that all biomass resources are selected 
in the biofuel supply chain. This study is differentiated from 
other works by simultaneously incorporating the following 
specific characteristics: (1) the impact of GHG emissions 
on the economic optimization of the biofuel supply chain 
quantified by setting a certain GHG reduction criterion; (2) the 
impacts of maintaining soil health, different combinations of 
biomass resources, and competing uses of agricultural residues 
on biomass availability; (3) the selection of distributed and 
centralized supply chain configurations; (4) the unit production 
cost and GHG emission of the optimal supply chain on a grid 

cell basis, which are calculated by the model. This approach was 
applied to a case-study in the Jing-Jin-Ji region of North China 
under three biomass availability scenarios.

Methodology

Biomass supply

Agricultural residues from cropland and perennial energy 
crops from marginal land are selected as feedstocks for 
biofuel production due to their potential availability and 
because they are no threat to food security. However, 
the uncertainty of biomass availability mentioned above 
should be considered. This work considered several 
biomass availability scenarios comprehensively (see below) 
considering SOC balance, different feedstock combinations, 
and competing use of agricultural residues.

A method developed by Zhang et al. (2021)29 was used to 
calculate the volume of agricultural residues collectible for 
biofuel production at different SOC levels. The theoretical 
quantity of residues is first estimated according to the yields 
of crop products, the residue-to-product ratio, and the 
root-shoot ratio. Then the volume of returned residues for 
maintaining the target SOC level is calculated by the RothC 
soil carbon model. Finally, the quantity of collectible residues 
available for biofuel production is calculated by subtracting 
the returned volume from the theoretical volume of residues.

Modeling framework

The model used for supply chain optimization is adapted 
from the BioScope model,9–12 whose purpose is to develop a 
biofuel supply chain consisting of three consecutive echelons, 
i.e. biomass feedstock supplying region, SP, and biorefinery, 
taking the lowest cost as objective function. The location and 
capacity of facilities and the flux of biomass between echelons 
are key decision variables. The original BioScope model aims 
to design a distributed supply‐chain configuration in which 

Figure 1. Overall structure of the three-step optimization of the sustainable biofuel supply chain considering GHG emission 
criterion and uncertain biomass availability.
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Figure 2. The framework, parameters, and data flow of the biofuel supply chain optimization model.

biomass commodity can only be transported from the supply 
region to the SP and then to the biorefinery assuming there 
is no preprocessing facility for raw biomass in the terminal 
biorefinery. However, in the present study, environmental 
emissions were added to the objective function of the 
improved BioScope model. By allowing the biomass feedstock 
to be transported directly from supply region to biorefinery, 
the BioScope model was also improved so that it can 
construct a hybrid supply-chain system, which can integrate 
distributed and centralized structures. The improved model 
was developed on the Spyder platform using Python 3.7 and 
solved by Gurobi 9.0.3. Its framework is presented in Fig. 2. 
The total GHG emissions ( Z1 ) and total annual supply cost 
( Z2 ) of the biofuel supply chain are minimized by using 
the following objective functions Eqn (1, 2), respectively. 
Model constraints, detailed formulas, and nomenclature are 
presented in Appendix A.

 min Z E E E EB T S F1 � � � ��  (1)

 min Z C C C CB T S F2 � � � �� ��  (2)

The improved model enables dual‐feedstock sourcing when 
two types of feedstocks with different yields, procurement 
costs, and provision GHG emissions are located within 
the same region, and choosing the optimum configuration 
between the distributed and centralized modes. The decision 
variables including biomass flow and the optimal numbers, 
location, and capacities of SP and biorefinery facilities are 
determined by the model.

To run the model, spatially gridded data include the supply 
volume, procurement cost, and GHG emission of feedstock 
provision, the potential locations of SP and biorefinery, 
and the road network are required (Fig. 2). The techno-
economic and GHG emission-related parameters include SP 
and the biorefinery-related parameters and transportation-
related parameters (Fig. 2). The SP and biorefinery-related 
parameters include capital expenditure (CAPEX) for SP and 
biorefinery, variable operational expenditure (OPEX) for SP 
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and biorefinery, CAPEX-dependent OPEX, annuity factors 
for annualized CAPEX calculation, conversion rates of SP 
and biorefinery process, and economic allocation factor for 
biofuel. The impact of economies of scale on capital-related 
costs presented a power law,31 and the non-linear power law 
was approximated by a three-stage piecewise linear function,9 
as shown in Appendix B (Figure B1). The transportation 
distance was pre-optimized. The shortest distance between 
any two sites was selected by running the Network Analyst 
of ArcGIS. The GHG emissions accrue at the stages of 
crop cultivation, feedstock on-farm collection and harvest, 
transportation, pretreatment, and biorefinery.

Optimization procedure

Greenhouse gas emission criteria are set to exclude grid 
cells (biomass supply site) that have a high GHG emission 
of biofuel production to conduct economic optimization 
while taking into account specific environmental constraints. 
For instance, if a 70% reduction of GHG emission of biofuel 
production compared to fossil fuel is considered to be a 
sustainable criterion, it means that grid cells with a GHG 
reduction potential of lower than 70% will be excluded from 
the original biomass supply sites. The whole optimization is 
carried out as the following steps:

 • Step I. Estimating the minimum GHG emission of the 
supply chain on a grid-cell basis using the improved 
BioScope model by minimizing the total GHG emissions 
as the objective, using Eqn (1).

 • Step II. Excluding grid cells that have a GHG emission 
of biofuel production higher than the GHG emission 
criterion from the original biomass supply sites, and 
keeping the rest of the grid cells for further economic 
optimization.

 • Step III. Conducting economic optimization of the 
biofuel supply chain by minimizing the total production 
cost as the objective, using Eqn (2).

Case study

Design of the case study

The Jing-Jin-Ji district, known as the Beijing-Tianjin-Hebei 
metropolitan region of China, was selected as the case study 
region. The reasons for choosing the region are: (1) the 
lignocellulosic biomass resources are substantial;29,30,32 (2) 
a huge jet fuel consumption potential exists because it is the 
biggest urbanized megalopolis region in north China with a 
total population of 112 million people and the second-largest 
airport cluster in China; (3) the strong advantages to biofuel 
production and consumption as the region has traditionally 
been involved in heavy industries, manufacturing, 
petrochemical sectors, aviation, and logistics.

Previous studies show that there is a huge availability 
potential of lignocellulosic biomass for biofuel production in 
China, and they estimated that up to 888 Mt of agricultural 
residues are theoretically collectible at an on-farm collection 
cost below 17.6 $∙Mg−1 in 2050, and 1644 Mt of Miscanthus 
and switchgrass from marginal land are available for biofuel 
production at a farm-gate production cost below 65.1 $∙Mg−1 in 
2050.29,30,32

Renewable jet fuel is selected as the target product in this 
study as GHG emissions from the commercial aviation 
industry have increased rapidly with the growth in demand 
for air travel and air cargo over the past decades globally. 
Using lignocellulosic biomass as feedstock for RJF production 
could be realized by Fischer–Tropsch (FT), hydrothermal 
liquefaction (HTL), pyrolysis, alcohol-to-jet (ATJ), and 
direct sugars to hydrocarbons (DSHC) technologies.33 
Comprehensively considering the GHG emission 
performance and economic assessment, the gasification-FT 
technology is selected as the conversion technology among 
the five technologies for RJF production as it achieves the 
lowest GHG emissions,33 which is specifically important 

Figure 3. Design of a three-stage renewable jet fuel supply chain.
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for its market competitiveness when carbon policies are 
introduced in the future.12,34 For the gasification-FT jet 
fuel production, the torrefied pellets (TOPs) are selected 
as the output of pretreatment and the feedstock fed to the 
gasification process in this study.35,36

The design of the RJF supply chain with various biomass 
feedstocks and supply chain configurations is shown in 
Fig. 3. In the distributed configuration, baled biomass is 
pre-processed to TOPs by torrefaction technology at the 
storage and pretreatment (SP) facility, and then the TOPs 
are transported to the TOPs-feed biorefinery plant. In the 
centralized configuration, baled biomass is transported 
directly to the bale-feed biorefinery plant instead of the SP 
facility. The gasification process in this study is operated at a 
high temperature of 1300 °C by using a pressured, oxygen-
blown, and entrained-flow-based gasifier.37 Although there 
are many kinds of gasification-FT equipment and technical 
routes,38–40 it is not the objective to evaluate all of them in this 
case study. It is assumed that jet fuel is the main product and 
naphtha is the by-product of the gasification-FT conversion 
pathway with a product to by-product ratio of 3.4:1 except 
for electricity.33 The three levels of biomass input capacity 
for SP and biorefinery facilities were assumed to be 50 
000–600 000 Mg∙year−1, 600 000–1 300 000 Mg∙year−1, and 1 
300 000–2 000 000 Mg∙year−1 for small, medium, and large 
scale, respectively. A scaling factor of 0.7 was used for the 
estimation of total capital expenditure.

The GHG emission criterion was set to be a 70% reduction 
in the GHG emissions from biofuel production compared to 
fossil fuel in this case study. This criterion is higher than the 
highest GHG reduction threshold (60%) for biofuels from two 
prominent regulatory frameworks, the EU Renewable Energy 
Directive and the US Renewable Fuel Standard.14,15 A life-
cycle GHG emission factor of 86 kg CO2−eq∙GJ−1 for fossil fuel 
is used in this study,41 thus the GHG emission criterion with 
a 70% reduction in GHG emission compared to fossil fuel is 
calculated to be 25.8 kg CO2−eq∙GJ−1 for biofuel production.

Scenario

To explore the future (2050) optimal layouts and minimize 
the cost of the RJF supply chain under scenarios from 
the minimum to the maximum biomass availability, we 
established three scenarios (Min, Inter, and Max) by 
combining various elements that affect biomass availability. 
These elements include the combination of biomass 
feedstock, SOC stock and land management, and competing 
demands of agricultural residues for alternative use.

A previous study calculated the volume of agricultural 
residues required to be retained in the soil to maintain 
certain target SOC levels at equilibrium status in China 

under different SOC and land-management scenarios, which 
are called the improved high SOC scenario (IHSS) and the 
base scenario.29 The detailed scenarios are depicted in more 
detail in Table 1. The SOC stock and land management are 
not considered for energy crops in this study, because the 
cultivation of perennial herbaceous energy crops has very 
limited negative impacts or even positive impacts on the 
SOC stock of marginal land and it is hard to quantify the 
overall SOC stock change due to the land‐use change from 
marginal land to land for energy‐crop cultivation.42–45 Biomass 
avalability scenarios with combinations of multiple elements 
are shown in Table 2. It is assumed that the RJF demand in 
2050 will be very large, and the RJF production under each 
scenario is constrained by the supply potential of all available 
biomass resources.

Input data

Spatial input data

The spatial data include gridded data of feedstock supply 
volume and procurement cost, GHG emission of feedstock 
provision, potential locations of SP and biorefinery, and 
road networks. The spatial distributions of production and 
procurement cost of energy crops are originally at 1 × 1 km 
resolution from the previous studies.30,32 Then all these 
spatial data were aggregated at a 25 × 25 km spatial resolution. 
We assumed that the locations of feedstock supply, SPs 
and biorefineries fall in the center of the 25 × 25 km grid 
cells (Figure B2 in Appendix B). The road network layer 
used in the network analysis was extracted from the 1:1 
000 000 National Basic Geographical Database, which was 
derived from the National Catalogue Service for Geographic 

Table 1. Definitions of the SOC and land 
management scenarios and BASE scenario.29

Scenarios Definition
IHSS A certain amount of agricultural residue is 

required to remain in the soil to maintain a target 
SOC level of 2% or more with the implementation 
of no-till cultivation (I) and increased crop yield by 
2050 (II).

Base No agricultural residues are required to remain 
in the soil, no target SOC level is set, and all 
theoretical amounts of agricultural residues could 
be removed from the field with increased crop 
yield by 2050.

I No-tillage cultivation is implemented to all the arable land in 
China to increase the SOC level by 1.23 for tropical moisture 
climate, 1.17 for the tropical dry climate, 1.16 for temperate 
moisture climate, and 1.10 for the temperate dry climate.
II Crop productivity increase by a certain increase rate by 2050 
as agricultural technology is improved while considering possible 
climate change in 2050.
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Information.46 The acquisition of the spatial data of biomass 
provision GHG emissions is described below.

Techno-economic parameters

The case study-specific techno-economic parameters, 
including SP-, biorefinery- and transportation-related 
parameters are shown in Table 3. The scale parameters of 
CAPEX for SP, bale- and TOPs-feed gasification-FT plants are 
shown in Tables 4–6.

Greenhouse-gas emission-related data and 
parameters

The GHG emissions at the crop-cultivation stage are derived 
from applications of fertilizers, pesticides, machinery, 
irrigation, methane from rice paddies, and other activities.

For the agricultural crops, the detailed calculation of 
GHG emission from the crop cultivation stage is shown in 
Appendix C. The spatial data of GHG emission per unit of 
collectible residue at the cultivation and on-farm collection 
stage under different biomass availability scenarios are shown 
in Figure B3 in Appendix B.

For energy crops, the GHG emissions from Miscanthus and 
switchgrass on-farm production and harvest are assumed to 
be the same and calculated to be 625 kg CO2−eq/ha according 
to the data from Felten et al. (2013).48 Then the spatial 
distribution of GHG emission per unit of energy crop at the 
stage of cultivation and harvest are generated based on the 
previous study32 and shown in Figure B3 in Appendix B. 
Other data of GHG emissions from transportation, 
pretreatment, and biorefinery are summarized in Table 7.

Results and discussion

Environmental optimization

The results from the first-step environmental optimization are 
demonstrated by GHG-supply curves (Fig. 4). Under the Min 
scenario, almost all jet fuel (19 PJ) is supplied at a unit GHG 
emission of less than 25.8 kg CO2−eq∙GJ−1. For the Inter and 
max scenarios, around 240 PJ and 290 PJ of jet fuels could be 
supplied applied at a unit GHG emission of less than 25.8 kg 
CO2−eq∙GJ−1, respectively. Grid cells with unit GHG emission 

Table 2. Biomass availability scenarios with combinations of multiple elements.

Scenarios Agricultural residues Energy crops

IHSS Base Competing use
Minimum biomass supply (Min) √

Intermediate biomass supply (Inter) √ √ √

Maximum biomass supply (Max) √ √

Table 3. Techno-economic parameters.
Description Value Source

Economic allocation factor 
for jet fuel

0.82a 33

Annualized capital cost 
factor for SP facility

0.117 13,35

Annualized capital cost 
factor for biorefinery facility

0.121 12

Biomass loss rate at the SP 
or bale-feed biorefinery

0.05 12

Conversion rate from 
biomass to jet fuel

0.18 Mg fuel/Mg 
biomass

33

Conversion rate from 
biomass to TOPs

0.791 Mg TOPs/Mg 
biomass

47

Conversion rate from TOPs 
to jet fuel

0.228 Mg fuel/Mg 
biomass

33

Variable transportation cost 
of raw biomass (bale)

0.15 $/Mg biomass/km 9,59

Variable transportation cost 
of pre-processed biomass 
(TOPs)

0.06 $/Mg biomass/kmb -

Fixed transportation cost 
of raw biomass (bale)

5.42 $/Mg biomass 9,59

Fixed transportation cost 
of pre-processed biomass 
(TOPs)

2.17 $/Mg biomassb -

Total variable OPEX for SP 10.25 $/Mg biomass 35,47

Total variable OPEX for 
bale-feed biorefinery

10 $/Mg biomass 12

Total variable OPEX for 
TOPs-feed biorefinery

0.56 $/Mg biomassc 12,37

CAPEX-dependent OPEX 0.102* CAPEX/capacityd 13,33
ais calculated according to the mass production yields and 
product market prices of jet fuel and by-product naphtha from.33

bThe density of TOPs and baled biomass is assumed to be 
800 kg/m3 and 100 kg/m3, respectively. Assuming the truck for 
material transportation has a load limit of 25 Mg with a volume 
limit of 100 m3. Therefore, the transportation cost for TOPs is 
assumed to be 40% of the transportation cost of baled biomass.
c0.6 MW electricity for chopper and dry air blower is saved because 
the chopping and drying processes are not included in the TOPs-
feed biorefinery, and more electricity (10.004 MW) is generated 
because the power used for drying feedstock is used for electricity 
generation according to Swanson et al.37 The extra electricity 
generation is considered as a credit that contributes to a reduction 
in the variable OPEX compared to the bale-feed biorefinery.
dThe CAPEX-dependent OPEX cost is calculated as a factor 
(0.102) of the total CAPEX and thus scales with capacity.
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Table 4. Capital expenditure of storage and pretreatment facility (TOPs).47

Capacity level of SP Lower limit capacity of 
SP slowcap

l  (mg/year)
Upper limit capacity of 

SP supcap
l  (mg/year)

Variable capital 
expenditure sv

l  ($/mg)
Fixed capital 

expenditure sf
m l,  ($)

l = 1 50,000 600,000 47.323 4,909,300

l = 2 600,000 1,300,000 32.983 13,037,000

l = 3 1,300,000 2,000,000 28.122 19,088,000

Table 5. Capital expenditure of baled biomass-feed gasification-FT biorefinery facility.40

Capacity level of 
biorefinery

Lower limit capacity 
of biorefinery flowcap

m l,  
(mg/year)

Upper limit capacity of 
biorefinery fupcap

m l,   
(mg/year)

Variable capital 
expenditure ev

m l,   
($/mg biomass)

Fixed capital 
expenditure ef

m l,  ($)

l = 1 50,000 600,000 695.9 72,193,000

l = 2 600,000 1,300,000 485.01 191,709,000

l = 3 1,300,000 2,000,000 413.54 280,693,000

higher than the criterion were excluded. The final economic 
optimization was then carried out based on the rest of the 
grid cells. The breakdown of the curves by biomass category 
curves indicates that the energy crop-derived jet fuel achieves 
a much lower GHG emission than the residue-derived jet fuel 
due to the lower provision GHG emission of energy crops.

Optimal layout under economic 
optimization

The optimal spatial layouts of the RJF supply chain under 
least-cost optimization before excluding grid cells under 
the three scenarios are shown in Fig. 5 while Fig. 6 shows 
the optimal RJF supply chain layouts under the economic 
optimization after excluding grids under the three scenarios. 
There is almost no change in the optimal layout of the supply 
chain after excluding grid cells compared with the layout 
before excluding under the Min scenario because only one 
grid cell was excluded. However, a large number of grid cells 
locating in the south of the region have been excluded, so the 

optimal layouts of the supply chain under the Inter and Max 
scenarios have changed greatly. The optimal layouts show that 
all biorefineries are chosen to be at a large scale (1 300 000–
2000,000 Mg∙year−1 biomass input) to achieve cost reduction 
by the economies of scale (Table 8). The supply chain 
configuration tends to be more centralized than distributed 
according to the quantity of bale-feed biorefineries, which 
is more than TOPs-feed biorefineries under the Inter 
and Max scenarios (Table 8). However, the supply chain 
configuration under the Min scenario is half centralized and 
half distributed. The difference between scenarios is mainly 
caused by their different spatial distributions of biomass 
resource density. The resource density in most regions under 
the Min scenario is relatively low, thus requires more area 
to fulfill a large-scale biorefinery that could benefit from the 
economies of scale and increases the transportation distances 
from biomass supply sites to the biorefinery. To reduce the 
transportation cost, a distributed configuration is suggested. 
In this case, although the capital investment for a bale-feed 
biorefinery is cheaper than the sum of SP and TOPs-feed 

Table 6. Capital expenditure of TOPs-feed based gasification-FT biorefinery facility (assumed to be 91.5% 
of the total capital cost for baled biomass feed based FT biorefinery facility).

Capacity level of 
biorefinery

Lower limit capacity 
of biorefinery flowcap

m l,  
(mg/year)

Upper limit capacity 
of biorefinery fupcap

m l,  
(mg/year)

Variable capital 
expenditure ev

m l,  ($/mg 
biomass)

Fixed capital 
expenditure ef

m l,  ($)

l = 1 50,000 600,000 636.75 66,056,000

l = 2 600,000 1,300,000 443.79 175,414,000

l = 3 1,300,000 2,000,000 378.39 256,835,000

Note: Considering the proper size and low moisture content (1–5%) of TOPs, chopping and drying related equipment are assumed not to be 
used in the TOPs feed based gasification-FT plant, which contributes to a lower total installed equipment investment compared to the baled 
biomass feed based gasification-FT plant. A factor of 0.915 as the ratio of the total installed equipment investment without the chopping 
and drying related equipment to the total installed equipment investment with the chopping and drying related equipment is used to 
estimate the capital expenditure of the TOPs feed based gasification-FT biorefinery facility. This factor is calculated based on the equipment 
cost list from Swanson et al.37
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biorefinery facilities, the advantage of reduced transportation 
cost of processed biomass overweigh the benefit of the low-
priced bale-feed biorefinery. On the other hand, the supply 
chain prefers a centralized configuration in a region with high 
resource density.

Economic performance

Figure 7 compares the average unit production costs and 
their breakdown of RJF production between the economic 
optimization before and after excluding under the three 
scenarios. The least average cost after excluding grid cells 
of the RJF supply chain is calculated to be 24.7, 30.2, and 
29.2 $∙GJ−1 with a total RJF production of 19.1, 244.6, 
and 290.3 PJ under the Min, Inter, and Max scenarios, 
respectively. There is a slight increase in RJF production 
cost and a dramatic decrease in total RJF production 
volume after excluding compared to that before excluding. 
The cost breakdown shows the visible cost increases in 
biomass provision, SP, and transportation. The reason 
for the increase in biomass provision cost is the increase 
in the share of energy crops after excluding the grid cells 
that are mostly occupied by agricultural residues that 
have a higher GHG emission but lower procurement 
costs than energy crops. The increased SP cost after 
excluding is caused by the increased quantity of SP, and the 
increased transportation costs result from the increased 
transportation distances between sites after excluding grid 
cells. The biorefinery cost accounts for the majority of 
the total RJF production cost under the three scenarios, 

Table 7. GHG emission-related parameters.

Description Value Source
Energy allocation factor for 
jet fuel

0.77a 33

GHG emission during 
raw biomass (baled) 
transportation

0.1206 kg CO2−eq/
Mg biomass/km

34

GHG emission during pre-
processed biomass (TOPs) 
transportation

0.096 kg CO2−eq/Mg 
biomass/km

34

GHG emission during SP 
process

126.336 kg CO2−eq/
Mg biomassb

35

GHG emission during bale-
feed biorefinery process

−9.63 kg CO2−eq/
GJ fuelc

33

GHG emission during 
TOPs-feed biorefinery 
process

−34.84 kg CO2−eq/ 
GJ fueld

33,37

ais calculated according to the mass production yields and energy 
contents of jet fuel and by-product naphtha from de Jong et al.33

bis calculated based on the GHG emission factor (1.128 kg 
CO2−eq/kWh) of coal-fired electricity produced in China and the 
net electricity consumption (108.9 kWh/Mg biomass) data from 
Batidzirai et al.35

cis calculated based on the GHG emission factor (1.128 kg 
CO2−eq/kWh) of coal-fired electricity produced in China and GHG 
emission data from de Jong et al.33

d0.6 MW electricity for chopper and dry air blower is saved 
because chopping and drying processes are not included in 
the TOPs-feed biorefinery, and more electricity (10.004 MW) is 
generated because the power used for drying feedstock is used 
for electricity generation according to Swanson et al.37 This extra 
electricity generation is regarded as a GHG emission credit that 
results in a higher negative GHG emission compared to the bale-
feed biorefinery.
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Figure 4. Greenhouse gas emission supply curves on a grid cell basis under environmental optimization for three scenarios: 
(a) Min; (b) Inter; (c) Max. The green line represents the criterion for excluding grids with a GHG emission higher than 25.8 kg 
CO2−eq∙GJ−1.
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Figure 5. Optimal RJF supply chain layouts under economic optimization before excluding grid cells for the three scenarios: 
(a) Min; (b) Inter; (c) Max. A same colored area represents one biomass supply region served by storage and pre-processing 
(SP) or biorefinery (BR) facilities contained within that region. Biorefineries source biomass from SPs or directly from biomass 
supply sites of the same color. A common colored area where SP appears represents a distributed supply chain configuration, 
while a common colored area where no SP appears means that there is a centralized supply chain configuration.

followed by biomass provision cost under Inter and Max 
scenarios (Fig. 7). The biomass provision cost is lower 
under the Min scenario than the other two scenarios 

because the Min scenario does not include energy crops 
that have a higher procurement cost than residues. The 
differences in total RJF production costs between scenarios 

Figure 6. Optimal RJF supply chain layouts under economic optimization after excluding grids with high GHG emission for the 
three scenarios: (a) Min, (b) Inter, (c) Max. A common colored area represents one biomass supply region served by storage 
and pre-processing (SP) or biorefinery (BR) facilities contained within that region. Biorefineries source biomass feedstock 
from SPs or directly from biomass supply sites of the same color. A common colored area where SP appears represents a 
distributed supply chain configuration, while a common colored area where no SP appears means that there is a centralized 
supply chain configuration.
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mainly result from the different biomass provision costs 
of agricultural residues and energy crops. The proportion 
of SP costs to total costs under the Min scenario (7.3%) is 
much higher than the other two (3.2% and 1.4% for Inter 
and Max scenarios, respectively) because the proportion 
of grid cells served by the distributed configuration under 
Min scenario is higher than the other two scenarios 
where the most chosen supply chain configuration is the 
centralized configuration that does not include an SP 
facility. Figure 8 shows that there are great variations in RJF 
production cost between grid cells. The grid cells with high 
production costs normally have a distribution of expensive 
energy crops with high resource density.

The lowest cost of RJF production still exceeds the 
production cost range of fossil jet fuel (2.8–22.7 $∙GJ−1) 
at a crude oil price range of 16.5–133.9 $∙barrel−1 (with 
a 15-year average price of 70.9 $∙barrel−1) from 2006 
to 2020 (Fig. 7).49,50 It is not cost-competitive to fossil 
jet fuel until the crude oil price hit 145.7, 178.0, and 
166.4 $∙barrel−1 under Min, Inter, and Max scenarios, 
respectively. In comparison with other studies, the 
costs of FT jet fuel in this study are within the range of 
14.9–45.4 $∙GJ−1 from the literature survey.12,33,37,40,51–55 
The difference compared with the costs of other studies is 
mainly caused by the different biomass procurement costs 
used in this study.

Table 8. Quantity and scale range of the biomass supply sites, SPs, and biorefineries under economic 
optimization after excluding grid cells.

Biomass supply site SP Biorefinery

Number Number Scale range (1000 mg) Number Scale range (1000 mg)
Min 81 2 50–600 0 50–600

0 600–1300 0 600–1300

1 1300–2000 2 1300–2000

Inter 210 11 50–600 0 50–600

3 600–1300 0 600–1300

4 1300–2000 23 1300–2000

Max 212 10 50–600 0 50–600

2 600–1300 0 600–1300

0 1300–2000 27 1300–2000
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Figure 7. Breakdown of the average unit cost of RJF supply chain and the total volume of jet fuel for three scenarios under 
cost optimization (a) before excluding grid cells; (b) after excluding grid cells with a GHG reduction potential lower than 
70%. The lines in purple represent the up-and-down production costs of fossil jet kerosene with a crude oil price range of 
16.5–133.9 $/barrel from 2006 to 2020. The line in black represents the average production costs of fossil jet kerosene with a 
15-year average crude oil price of 70.9 $/barrel from 2006 to 2020. The lines in blue represent the up-and-down production 
costs of fossil jet kerosene with a carbon tax ranged from 50 to 150 $/tonne CO2−eq based on the 15-year average production 
cost of fossil jet kerosene.
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The cost-supply curves (Fig. 9) depict how much RJF 
could be supplied annually at certain levels of production 
cost. For the economic potential, the results show that 
almost all jet fuel could be obtained at a production cost 
of less than 35 $∙GJ−1 for Inter and Max scenarios and less 
than 30 $∙GJ−1 for Min scenario. The breakdown of the 
cost-supply curve by biomass category indicates that energy 
crops contribute to most of the biomass feedstock for RJF 
production but have a high RJF production cost, while 
agricultural residues achieve a lower RJF production cost 
but only contribute to a minority of the feedstock under 
Inter and Max scenarios.

Greenhouse gas emission performance

Figure 10 compares the average unit GHG emissions 
and their breakdown of RJF production between the 
economic optimization before and after excluding under 
the three scenarios. The average unit GHG emissions of 
RJF production under economic optimization have been 
significantly reduced by 52% and 47% after excluding grid 
cells with high GHG emission for Inter and Max scenarios, 
respectively, whereas almost no change in average unit 
GHG emission for the Min scenario. The reduction in GHG 
emissions mainly comes from the reduction in the emission 

Figure 8. Spatial distributions of RJF supply chain cost and GHG emission on a grid cell basis under least-cost optimization 
after excluding grid cells for three scenarios: Cost under (a) Min, (b) Inter, and (c) Max; GHG under (d) Min, (e) Inter, and (f) 
Max.
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of biomass provision, which is caused by the increased 
share of low-emission energy crops after excluding (Fig. 4). 
The biomass provision emission accounts for the majority 
of total positive GHG emissions, followed by SP and 
transportation GHG emissions. The GHG emissions during 
the biorefinery process are the only negative emissions and 
make a significant contribution to GHG reduction. There are 
notable increases in positive GHG emissions during the SP 

process and negative GHG emissions during the biorefinery 
process for Inter and Max scenarios after excluding grid cells 
with high GHG emission. This because the supply chain 
configuration after excluding becomes more distributed than 
before, which contributes to high quantities of SP facility and 
distributed biorefinery facility that has a stronger negative 
GHG emission than the centralized biorefinery facility. 
Figure 8 shows that almost all grid cells have a positive 
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Figure 9. Cost-supply curves on a grid cell basis under economic optimization after excluding grid cells for three scenarios: 
(a) Min, (b) Inter, and (c) Max. The dotted line in purple represents the average production costs of fossil jet kerosene with a 
15-year average crude oil price of 70.9 $/barrel from 2006 to 2020.
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Figure 10. Breakdown of the average unit GHG emission of RJF supply chain for three scenarios under least-cost 
optimization: (a) before excluding grid cells; (b) after excluding grid cells with a GHG reduction potential lower than 70%. The 
line in purple represents the life cycle GHG emission of the fossil jet kerosene.
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GHG emission under the Min scenario, while about 20% of 
the grid cells achieve a negative GHG emission under Inter 
and Max scenario. The regions with high GHG emission 
normally do not have distribution or have a low density of 
energy crops, which is characterized by low-provision GHG 
emission.

The RJF achieves a reduction of 79.5%, 94.4%, and 89.8% 
in GHG emission compared to fossil jet fuel (86 kg CO2−

eq∙GJ−1) under Min, Inter, and Max scenarios, respectively. 
If the GHG reduction credit from RJF could be monetized 
by a carbon tax, the price of RJF could be cost-competitive 
compared to fossil jet fuel. According to the 15-year average 
production cost of fossil jet fuel (12 $∙GJ−1) from 2006 to 
2020, the up and down production costs of fossil jet kerosene 
with a carbon tax ranged from 50 to 150 $/tonne CO2−eq 
were estimated to be 16.3 and 24.9 $∙GJ−1, respectively, 
which are still cheaper than the production costs of RJF with 
the same carbon tax (Fig. 7). The price of RJF will not be 
cost-competitive until the carbon tax reaches 184.9, 224.0, 
and 222.8 $∙tonne−1 CO2−eq under Min, Inter, and Max 
scenarios, respectively.

Comprehensive performance of scenarios

For the Min scenario, there is negligible change in the 
average unit cost and GHG emission of RJF production 
between the first-time environmental optimization (before 
excluding grid cells) and the second time economic 
optimization (after excluding grid cells), because only one 
grid cell was excluded. For the Inter and Max scenarios, 
the dramatic reductions in GHG emissions only result in 
a small increase in cost, especially for the Inter scenario. 
The Inter scenario yields the lowest GHG emission but 
the highest production cost, while the Min scenario yields 
the lowest production cost but the highest GHG emission, 
with the Max scenario in between. In comparison with the 
Max scenario, the Inter scenario has a much lower GHG 
emission with a negligible higher production cost. Although 
its total production volume is a little lower than that of 
the Max scenario, it still accounts for around 62% of the 
total jet fuel consumption in the Jing-Jin-Ji region in 2050. 
Therefore, from the perspective of GHG reduction potential, 
the Inter scenario is the most suitable and realistic for RJF 
production in the future due to its GHG reduction benefit 
and the consideration of competing demands of agricultural 
residues. However, both Inter and Max scenarios do not 
consider the SOC stock balance of agricultural land. If 
maintaining the SOC content at 2% or more is a priority, the 
Min scenario should be seriously considered even though 
it could only meet 5% of jet fuel demand in the Jing-Jin-Ji 
region in 2050.

Sensitivity analysis

The GHG emissions estimated in this study exceed the 
range of −3–14 kg CO2−eq∙GJ−1 reported on other prior 
studies.12,34,56,57 The difference in GHG emissions is mainly 
caused by the different input data for biomass provision 
GHG emission and the methods (energy allocation and 
displacement methods) used to deal with co-products.

Some GHG emission factors used in this study are 
facing uncertainties and this may have an impact on the 
results. One important factor is the GHG emission factor 
of the product that is used to replace the co-product 
produced during the biorefinery process. The negative 
GHG emissions during the biorefinery process were 
calculated based on the co-product (electricity in this 
study) production by using a displacement method. The 
GHG emission credits of the co-product therefore depend 
on the GHG emission factors of the displaced product. The 
displaced product used to replace the co-product in this 
study is coal-fired electricity produced in the Jing-Jin-Ji 
region, which has a higher GHG emission factor than 
electricity from other sources, such as biomass co-fired 
power, hydropower, nuclear power, wind power, and solar 
power from other regions. To illustrate the impact of using 
different displaced power on the GHG performance of 
the supply chain, a sensitivity analysis is carried out with 
a variation of −50% in the GHG emission factor of the 
displaced electricity. This study used coal-fired electricity, 
which has the highest GHG emission factor in China, 
a positive variation in the GHG emission factor is not 
considered in this study. Another important factor is that 
the allocation factor that is used to calculate the GHG 
emission from agricultural residues at the cultivation stage. 
The allocation factor used in this study was calculated by 
the share of mass of crop product and residue. However, 
the value of residues is uncertain and may fluctuate in the 
future depending on the residues market. The emission 
factor of residues will therefore change along with the price 
of residues if the price is counted in the calculation of the 
allocation factor. To evaluate the impact of the allocation 
factor on the GHG emissions result, a sensitivity analysis is 
conducted with a variation of ±20% in the allocation factor.

The GHG emission factor of the displaced electricity has a 
great impact on the total GHG emission of the supply chain 
(Fig. 11). A 50% reduction in the factor results in six times 
higher total GHG emissions for the Inter scenario, four times 
higher for the Max scenario, and two-and-a-half times higher 
for the Min scenario. It indicates that the GHG emission 
credit from producing extra electricity during the FT process 
will be significantly reduced with the increase in the share 
of renewable electricity generation in the future. The residue 
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allocation factor is shown to have a modest impact (25–32% 
range) on the total GHG emissions.

The production of electricity from the FT process might be 
reduced by recycling the off-gas to produce more FT liquids 
instead of combusting the off-gas to generate electricity.58 
This would maximize the yield of FT liquids and result 
in a lower production of electricity.58 The GHG emission 
performance would therefore be affected by the improved FT 
conversion efficiency and the reduced GHG emission credit 
from net electricity production.

Uncertainty and future research 
recommendation

This study focuses on the strategic optimization of the supply 
chain rather than a tactical optimization. Therefore, seasonal 
variations in biomass supply and the differences in harvest 
windows of multiple feedstocks are not within the scope 
of this study. However, it should be noted that the real cost 
of the supply chain may increase with the inclusion of the 
storage costs, which result from the short harvest windows 
of agricultural residues and energy crops. Combining both 
agricultural residues and energy crops implies larger harvest 
windows and less storage time, which contributes to lower 
biomass losses. It is therefore necessary to consider the 
harvest window and storage cost in a tactical optimization of 
biofuel supply chain in further studies.

In this work, the procurement costs of agricultural residues 
were assumed to be the same under scenarios with or without 
considering competing use. However, the competing demand 
of agricultural residues for alternative use may have an impact 
on the selling price of residues from farmers based on market 
rules. Nevertheless, the extent to which competing demand 
of agricultural residues affects the selling price is unclear 

due to lack of relevant research. In this study, we assumed 
that all available biomass resources are used to produce as 
much renewable jet fuel as possible to explore the maximum 
potential of RJF production. However, the amount of biomass 
resources used for RJF production depends on future policy 
and local fuel demand. To explore the impact of different 
jet fuel demands on the RJF supply chain, and consider the 
distribution of jet fuel to consumers, it is necessary to carry 
out the optimization of a complete four-stage supply chain 
with different replacement rates for renewable jet fuel.

Conclusions

This study developed a GIS-based MILP optimization model 
to incorporate dual feedstock resources and two supply 
chain configuration types (centralized and distributed) for 
economic and environmental optimization of a three-stage 
lignocellulosic-based biofuel supply chain. A universal 
three-step optimization approach integrating this model was 
proposed to design an economically optimal biofuel supply 
chain strategically on a grid-cell basis on the premise of 
meeting a certain GHG reduction criterion (70% reduction 
compared to fossil jet fuel) and maintaining soil health with 
the assumption that all biomass resources are selected in the 
biofuel supply chain. A few biomass supply sites would be 
excluded from the original dataset according to the GHG 
emission criterion based on the GHG emission performance 
of each grid cell by the first‐step environmental optimization. 
Then economic optimization was conducted to evaluate 
the economic and environmental performance including 
production costs and GHG emission on a grid-cell basis and 
optimize the decisions.

This approach was applied to optimize a renewable jet 
fuel supply chain in the Jing-Jin-Ji region in North China 
at a 25 × 25 km grid cell resolution under different biomass 
availability (minimum, intermediate, and maximum) for case 
study. The results show that the differences in procurement 
costs and GHG emissions between energy crops and 
agricultural residues have a great impact on the layout of 
the supply chain. The supply chain configuration tends to 
be more centralized with large-scale biorefineries when a 
supply region has an intensive and centralized distribution of 
resources. Biorefinery-related costs account for the majority 
of the total production costs; whereas biomass provision and 
biorefinery-related GHG emissions are the main contributors 
for the total positive and negative GHG emissions, 
respectively. The breakdown of cost-supply curves by biomass 
category indicates that agricultural residue-derived jet fuel 
achieves lower production costs compared to energy crop-
derived jet fuel. Given the great potential of GHG emission 

Figure 11. Sensitivity analysis of residues allocation factor 
and GHG emission factor of displaced electricity.
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reduction of renewable jet fuel, the production cost of RJF 
will start to be cost-competitive compared to fossil fuel if 
carbon tax and crude oil price increased seriously in the 
future. The Max scenario achieves the highest RJF production 
that accounts for 73% of the projected demand for jet fuel in 
the Jing-Jin-Ji region in 2050. The Inter scenario is the most 
suitable and realistic for RJF production in the future due to 
its GHG reduction benefit and its consideration of competing 
demands of agricultural residues. However, if maintaining 
the SOC content at 2% or more is a priority, the Min scenario 
should be seriously considered. This study assumed a 70% of 
reduction in GHG emission compared with conventional jet 
fuel to be the GHG emission criterion, which is a high-level 
standard. It should be noted that the GHG emission criterion 
could be assumed to be any value by policymakers according 
to the local GHG reduction goals. A lenient GHG reduction 
standard will allow more biomass resources to be used.

This study provides researchers and industries with a 
modeling approach to economically optimize the layout of 
the biofuel supply chain under local biofuel development 
schemes or regulatory frameworks, especially including 
GHG emission reduction and soil carbon stock balance 
goals. It can be adapted to other kinds of biofuel supply 
chain optimization with different feedstocks and conversion 
pathways by incorporating related input spatial data, techno-
economic, and environmental parameters.
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