

Macrophages as determinants and regulators of fibrosis in systemic sclerosis

Al-Adwi, Yehya; Westra, Johanna; van Goor, Harry; Burgess, Janette K; Denton, Christopher P; Mulder, Douwe J

Published in: Rheumatology

DOI: 10.1093/rheumatology/keac410

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Final author's version (accepted by publisher, after peer review)

Publication date: 2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Al-Adwi, Y., Westra, J., van Goor, H., Burgess, J. K., Denton, C. P., & Mulder, D. J. (Accepted/In press). Macrophages as determinants and regulators of fibrosis in systemic sclerosis. *Rheumatology*, [keac410]. https://doi.org/10.1093/rheumatology/keac410

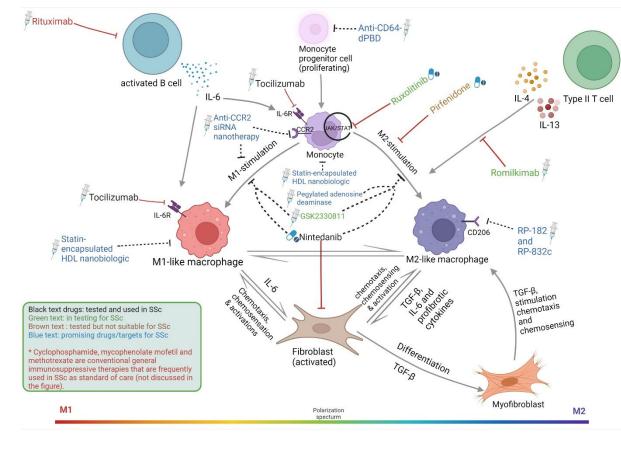
Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.


2		
3 4	1	Macrophages as determinants and regulators of fibrosis in systemic sclerosis
5	2	
6	2	
7 8	3	Yehya Al-Adwi ¹ , Johanna Westra ² , Harry van Goor ³ , Janette K. Burgess ³ , Christopher P. Denton ^{4,5} ,
9	4	Douwe J. Mulder ^{1*}
10	5	
11	5	
12 13	6	¹ University of Groningen, University Medical Centre Groningen, Department of Internal Medicine,
14	7	Division of Vascular Medicine, Groningen, The Netherlands.
15	8	² University of Groningen, University Medical Centre Groningen, Department of Rheumatology and
16 17	9	Clinical Immunology, The Netherlands.
17	10	
19	11	³ University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical
20	12	Biology, Groningen, The Netherlands.
21 22		
22	13	⁴ UCL Division of Medicine, University College London, London, UK.
24	14 15	⁵ UCL Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, London, UK.
25	16	oce centre for kneumatology and connective fissue Diseases, koyar riee hospital, condoir, ok.
26 27	10	
28	17	
29 30	18	
31 32	19	
33	20	*Corresponding author: Douwe J Mulder, MD, PhD, Department of Internal Medicine, Division of
34 25	21	Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The
35 36	22	Netherlands.
37	23	Postal address: Hanzeplein 1, 9700RB, Groningen, The Netherlands.
38		
39 40	24	E-mail: d.j.mulder@umcg.nl
41	25	ORCiD: 0000-0003-3715-6474
42		
43	26	
44 45	27	
46		
47	28	
48 49	29	
50	20	
51	30	
52	31	
53 54	22	
55	32	
56	33	
57	24	
58 59	34	© The Author(s) 2022. Published by Oxford University Press on behalf of the British Society for Rheumatology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
60	35	(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

36 Abstract

Systemic Sclerosis (SSc) is a multiphase autoimmune disease with a well-known triad of clinical manifestations including vasculopathy, inflammation and fibrosis. Although a plethora of drugs has been suggested as potential candidates to halt SSc progression, nothing has proven clinically efficient. In SSc, both innate and adaptive immune systems are abnormally activated fuelling fibrosis of the skin and other vital organs. Macrophages have been implicated in the pathogenesis of SSc and are thought to be a major source of immune dysregulation. Due to their plasticity, macrophages can initiate and sustain chronic inflammation when classically activated while, simultaneously or parallelly, when alternatively activated they are also capable of secreting fibrotic factors. Here, we briefly explain the polarization process of macrophages. Subsequently, we link the activation of macrophages and monocytes to the molecular pathology of SSc, and illustrate the interplay between macrophages and fibroblasts. Finally, we present recent/near-future clinical trials and discuss novel targets related to macrophages/monocytes activation in SSc.

49 Graphical Abstract

50 Created with BioRender.com

Key words: scleroderma, systemic sclerosis, macrophages, monocytes, fibrosis, potential targetedtherapeutics.

Key messages:

Page 3 of 23

Rheumatology

- Systemic sclerosis (SSc) is a heterogeneous disease and monocytes/macrophages are central within this heterogeneity.
- Plasticity of monocytes/macrophages allow them to reflect and affect all disease phases of SSc.
- There is an urgent unmet need for personalized medicine to treat SSc patients.

57 Systemic Sclerosis

Systemic sclerosis (SSc) is an autoimmune disease that involves microangiopathy, early inflammation and progressive fibrosis of the skin and internal organs (1-6). Limited cutaneous (lcSSc), diffuse cutaneous (dcSSc) and sine SSc forms of SSc can present as stable conditions but can also progress to severe disease modes with increased morbidity and mortality (7-9). Although advances have been made in biomarker discovery for SSc, it is still difficult to predict which patients are going to progress to severe fibrotic disease for which no disease-modifying treatment is currently available (9,10). Interstitial lung disease, a result of inflammatory and fibrosing processes, is the leading cause of mortality in SSc patients who develop this complication (~50%) (10,11). Therefore, new treatment strategies are urgently needed to attenuate progression and potentially modify the disease course. Recently, macrophages have captured the interest of the SSc scientific community. This interest is due to the abundance of these cells in affected tissues and their potential in driving both inflammatory, as well as fibrotic processes (12). Macrophages possess great plasticity which allows them to adopt different polarization states.

This review focuses on the polarization dynamics of macrophages and their precursors (monocytes) in SSc, the influence of monocytes and macrophages on the disease course and the role of cytokines in the activation of macrophages in SSc patients. We also discuss the interplay between activated macrophages and fibroblasts. Furthermore, we describe the heterogeneity of the disease and what a multi-phased disease means for the clinic when it comes to treatment. Finally, we discuss how focussing on macrophage polarization could potentially facilitate novel targeted therapy discovery for SSc patients.

80 Macrophage in health and disease

Macrophages play a principal role in maintaining (physiological) homeostasis by engulfing, degrading
 and clearing of cellular debris, dead cells, and cancer cells (13). Additionally, macrophages function as

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keac410/6647835 by University Library user on 25 July 2022

reparatory machines, playing an essential role in the wound healing process, allowing quicker postinsult recovery (14). Their capacity of releasing chemoattractants and cytokines to recruit other effector immune cells, make them crucial in terms of host defence response (15).

 Macrophage tissue infiltration is a known phenomenon in most autoimmune diseases including SSc
(16–24). Accumulating evidence has revealed a crucial role of innate immune reactions in driving not
only disease flare ups (causing progression) but also contributing to the ignition processes in such
diseases (25,26).

92 Macrophage polarization

93 Monocytes are circulating cells, composing around 10% of the cells in healthy peripheral blood, that 94 are known to be precursors of macrophages and dendritic cells forming the mononuclear phagocytic 95 system. CD14 is expressed on the surface of monocytes and is used as a marker to identify them. A 96 complex network of stimuli including cytokines, chemokines and inter-cellular signalling is coordinated 97 in a healthy individual to regulate the differentiation of monocytes to macrophages (27,28).

Historically, macrophages were classified according to their activation pattern into classically activated macrophages (M1) or alternatively activated macrophages (M2). Certain cytokines will polarize/differentiate macrophages into a pro-inflammatory phenotype (classical) which handles pathogen destruction. On the other side of the spectrum, another set of cytokines, chemokines and hormones skew the activation of macrophages into a healing/regenerative phenotype (alternative) which are (pro)fibrotic, anti-inflammatory and in charge of tissue repair (29,30). The contribution of specific factors will be explored later in this review. Recent scientific observations on macrophage classification confirmed that the earlier nomenclature is based on in vitro experimentation and does not represent in vivo scenarios. Thus, macrophage polarization is rather considered as a continuum than two distinct populations where classical activation is at one end and alternative activation is at the other. Therefore, macrophage phenotypes can slide across this spectrum of the classical/alternative paradigm of activations (31).

112 Classically activated macrophages maintain inflammation as a defence mechanism to ward off
 intruders. To be able to function in that manner, classically activated macrophages express a distinct

Page 5 of 23

Rheumatology

set of surface receptors (see table.1) that allow them to respond adequately to specific stimuli (27,30). An important stimulus for macrophage polarization towards the classical phenotype is interferon-gamma (IFN-y) through its ability to directly activate effector genes including antiviral proteins, microbicidal molecules, phagocytic receptors, chemokines and cytokines (32). Additionally, IFN-y can indirectly activate macrophages by enhancing their reaction to other stimuli through what is known as "priming" (32). When macrophages are stimulated with IFN-y, the result is Janus kinase 1 (JAK 1) and JAK 2 activation, and signal transducer and activator of transcription 1 (STAT1)/interferon regulatory factors (IRF) signalling, leading to differentiation to the classical phenotype as the product (33). This activation pathway is not the only means to produce classical macrophages. During bacterial infections, lipopolysaccharide (LPS) is present abundantly in the body which is well-recognized for stimulating the classical polarization through its binding with toll-like receptors 2 and 4 (TLRs) which in turn initiates nuclear factor-light-chain-enhancer of activated B cells (NF-KB), activator protein-1 (AP-1), IRF and STAT1 signalling (34). Finally, granulocyte-macrophage colony-stimulating factor (GM-CSF) is capable of inducing the classical phenotype through the activation of the JAK2 pathway (35) (Fig.1).

29 129

On the other side of the spectrum lies the alternatively activated macrophage phenotype. The central aim of alternative macrophages is to release anti-inflammatory cytokines and recruit specific tissue-regenerating cells (36,37). Activated adaptive immune cells such as mast cells, basophils and type 2 T helper (T_{H2}) cells release IL-4/IL-13 which, in turn, stimulate alternative polarization through the JAK 1 and JAK3/STAT6 pathway. This pathway is considered to be the canonical pathway for alternative activation (38). However, to have a more discrete nomenclature within the alternative phenotype, the IL-4/IL-13-induced activation of macrophages is named M2a (39). Other specific alternative subtypes can be induced by other stimuli such as immune complexes and TLR ligands (40). Such interactions shut down the proinflammatory cytokine IL-12 release and substitute it with the profibrotic cytokine IL-10. This macrophage-activation state involves spleen tyrosine kinase (Syk) and phosphoinositide 3-kinase (PI3K) activation and is known as M2b. The M2b macrophages can release both pro-inflammatory and anti-inflammatory cytokines (41) (see table.1). Both glucocorticoids and IL-10 are able to induce the third subtype of alternative macrophages; M2c through the glucocorticoid receptor (GRC) or IL-10R, respectively. The M2c subtype has a strong fibroproliferative cytokine signature releasing IL-10 and TGF- β cytokines. The fourth subtype is M2d macrophages which are activated through the binding of TLR agonists to the Adenosine 2 receptor. Consequently, significant suppression of pro-inflammatory cytokine release and promotion of anti-inflammatory cytokines

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keac410/6647835 by University Library user on 25 July 2022

production occurs (42) (Fig.1). The detailed macrophage polarization pathways, different cytokine
signatures and distinct surface markers have all been previously described elsewhere (43,44).

150 Monocyte/Macrophage signature in Systemic Sclerosis

Plasticity allows macrophages to influence all phases of SSc. Although limited in number, severalstudies have investigated the role of macrophage polarization in SSc pathogenesis.

Higashi-Kuwata et al. utilized flow cytometry and immunohistochemistry (IHC) techniques to show that the blood and skin of SSc, respectively, have higher expression of macrophage fibrotic markers (CD163 and CD204) compared to healthy controls. Flow cytometry was used on isolated peripheral blood mononuclear cells (PBMCs) where CD14 surface marker was used to gate for monocytes and CD163 and CD204 surface markers were used to detect the fibrogenic phenotype. Skin biopsies were stained with antibodies against the pan-macrophage surface markers CD68, CD163 and CD204. They found an enhanced expression of CD163 and CD204 on the PBMCs and in skin biopsies from SSc patients compared to controls. Consequently, the authors suggested that the activation status of monocytes/macrophages in SSc patients is profibrotic compared to controls. However, they did not investigate M1 markers to detect classical polarization. (45). Mathai and colleagues showed that CD14 monocytes isolated from PBMCs of SSc-associated interstitial lung disease (SSc-ILD) patients show higher expression of CD163 compared to controls. Interestingly, when CD14+ monocytes were isolated from PBMCs of SSc-ILD patients and treated in vitro with LPS, a classical activation inducer, these monocytes were skewed into a more profibrotic pattern in contrast to a proinflammatory profile, with more CD163+, CCL18 and IL-10 expression compared to controls (46). However, as the primary question in this study was whether monocytes from SSc-ILD patients have higher expression of profibrotic markers, inflammatory markers were not studied.

In a monocyte-derived macrophage (MDMs) in vitro transcriptomic study, Morano-Moral et al identified 602 genes that were differentially regulated in SSc patients compared to controls. Upregulated genes were related to hypoxia, glycolysis and mTOR pathways while IFN-y response pathways were downregulated. This study also highlighted gasdermin A specific variant as an SSc risk factor when upregulated, suggesting that MDMs could be the reason behind dysregulated pyroptosis in SSc. This study robustly links SSc pathogenesis with genetic changes and presents a transcriptomic signature in MDMs of SSc patients (47).

Page 7 of 23

Rheumatology

It is known that the affected skin of SSc patients is infiltrated with immune cells, especially T cells and macrophages. To understand the recruitment of macrophages to the skin, researchers have studied the chemokine gene expression in affected skin from SSc patients. RT-qPCR data of homogenised skin showed a higher expression of CCL2, CCL5, CCL18, CCL19 and CXCL13 in dcSSc patients when compared to control skin. Skin biopsies from dcSSc patients exposed a colocalization of CD163+ macrophage subset with CCL19, strongly suggesting the release of CCL19 from the CD163+ macrophage subset. Moreover, not only was CCL2, an important macrophage recruiting chemokine, expression positively correlated with skin thickening in dcSSc skin but also serum levels of CCL2 were elevated in these patients. These localized and systemic correlations are strongly suggestive of the involvement of the alternative macrophage phenotype in the development of skin lesions in SSc. Another group studied patients with SSc-ILD compared to those SSc patients without ILD. There were increased mixed classic (CD80, CD86, TLR2 and TLR4) and alternative (CD206, CD204 and CD163) circulating monocytes in patients with SSc-ILD. (48). Additionally, they found that these markers were significantly elevated on PBMCs isolated from SSc patients compared to healthy controls (49). These results point out that the circulating monocytes from SSc patients have enriched classic and alternative markers compared to controls while this enrichment is even greater when ILD is present.

On a single-cell level, RNA-sequencing of SSc-ILD lung tissue revealed several monocyte/macrophage subgroups in which SPP1^{hi} proliferating macrophages were more predominant in SSc-ILD lungs compared to controls (50). SPP1 macrophages have been attributed to lung fibrosis through the activation of myofibroblasts in idiopathic pulmonary fibrosis (51) which could be having the same role in SSc-ILD. On the same level, RNA-sequencing of dcSSc skin tissues revealed innate immune system activation(52). Specifically, macrophages highly expressing Fcy receptor IIIA were only associated with dcSSc skin but not in healthy skin. Importantly, the proliferating macrophages were exclusively detected in dcSSc skin but not in healthy ones (52). Thus, it is plausible that proliferating macrophages are fundamental to skin and lung disease progression in SSc.

Due to their plasticity, monocytes/macrophages could be an important link for the transition from the inflammatory to the fibrotic phase in SSc pathology. Perhaps, monocyte/macrophage polarization shifts along the classic/alternative spectrum of activation to a more fibrotic state over time due to intracellular changes and differential presence of cytokines and chemokines in their environment. The change in the cytokine and chemokine profile can be attributed to reactive B cells (IL-6 release) and activated CD4+ T_{H2} cells (IL-13 and IL-4 release) (53,54). Consequently, monocytes/macrophages become profibrotic and start to release fibrotic factors that lead to the activation of more

monocyte/macrophages (and of fibroblasts) into the profibrotic phenotype generating an autocrine loop. Moreover, the mounting recruitment of fibrogenesis-effector cells such as fibrocytes and fibroblasts into affected tissues, and their activation by the released fibroproliferative chemokines are key events in SSc- related tissue fibrosis.

The interplay between fibroblasts and macrophages

Activation of monocytes/macrophages is crucial for stimulation of the fibrosis effector cells (fibroblasts) in affected tissues. Bhandari et al. (55) showed that the activation of fibroblasts is dependent on SSc plasma-differentiated macrophages. SSc plasma significantly activated monocytes from both control and SSc groups into the profibrotic (alternative) phenotypes when compared to monocytes cultured with control plasma. Moreover, significantly higher mRNA and protein expression and production of CCL2, IL-6 and TGF- β were reported in SSc plasma-cultured compared to control-cultured monocytes. This experiment illustrated that SSc plasma can differentiate control monocytes into SSc phenotype macrophages. Additionally, RT-qPCR data from dermal fibroblasts revealed overexpression of α-SMA in SSc fibroblasts co-cultured with SSc plasma-differentiated macrophages, compared to healthy dermal fibroblasts co-cultured with SSc plasma-differentiated macrophages. These data indicate that SSc macrophages induce and activate dermal fibroblasts into becoming fibrogenic cells through fibroblast to myofibroblast transdifferentiation (55).

In in vivo scenarios, macrophages have to be in close proximity to fibroblasts to stimulate them to myofibroblasts (56). Pakshir et al (57) described how mechanosensation and integrins help myo/fibroblasts attract macrophages to the vicinity of the fibrotic niche. Fibroblasts establish ECM cues through remodeling collagens to form deformation fields in the collagen mesh which guides macrophages to come closer to myo/fibroblasts. Importantly, these ECM alterations have more far-reaching effects than chemotaxis.

Thus, the interaction between macrophages and myo/fibroblasts is necessary to establish a progressive fibrotic niche.

Emerging role of oxidative stress in monocyte/macrophage polarization in SSc

Antioxidant/oxidant imbalance is thought to be connected to SSc pathogenesis (58) The nuclear

factor erythroid 2 (NF-E2)-related factor 2 (Nrf-2) is an important cellular sensing protein for

Page 9 of 23

Rheumatology

oxidative stress which- in turn- can stimulate the transcription of antioxidants including glutathione (GSH). In an SSc mouse model, Nrf^{-/-} knockdown and wild-type (control) mice were intradermally injected with hypochloric acid (a substance to induce oxidative stress). The Nrf^{-/-} mice showed more severe inflammation and fibrosis than controls. Importantly, in the skin of hypochloric acid-treated mice, the Nrf^{-/-} type had a more pronounced M2 polarization marker profile than the wild-type mice. This indicates that oxidative stress induces a shift towards M2 polarization and suggests a strong link between Nrf-2 function, alternative polarization, fibroblasts activation and fibrogenesis (59).

Systemic Sclerosis is a multi-phase disease – Interventional remarks focusing on targeting monocytes/macrophages (summary of current and prospective/promising SSc therapeutics is stated in table.2)

SSc-investigated targeted therapies

In SSc patients who present early in their disease course, inflammation is generally the predominant process activated, especially in progressive dcSSc. As elaborated, M1 phenotype macrophage activation may be central at this stage, and it would be reasonable to introduce drugs that target the effector pathways early. In patients with SSc-ILD, monocytes are known to produce higher amounts of IL-6 compared to healthy controls (60). This high production is strongly associated with SSc pathogenesis since it leads to the activation, differentiation and proliferation of T lymphocytes. Tocilizumab (anti-IL-6R monoclonal antibody) is of growing interest and use in clinical practice. It is FDA-approved to slow the rate of decline of lung function in adult patients with SSc-ILD (61,62). Moreover, IL-6 is abundantly produced by activated B cells expressing CD20. The DESIRES RCT showed that using rituximab, an anti-CD20 monoclonal antibody, in SSc patients resulted in a significant reduction in mRSS compared to the placebo arm (63). Rituximab's positive results can be indirectly attributed to the blockage of macrophage polarization leading to mitigated skin and lung disease (64,65).

An IFN type I serum profile is related to higher mRSS and HAQ-Disability Index. Researchers have indirectly targeted IFN type I by targeting CD52. In a translational study, transcriptomic analyses of circulating CD14+ monocytes obtained from SSc patients revealed enhanced expression of IFN I-related genes compared to healthy controls. These monocytes also displayed down-regulated CD52

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keac410/6647835 by University Library user on 25 July 2022

expression which is an important T cell inhibitory antigen. Interestingly, when healthy monocytes were
treated with an anti-CD52 antibody, enhanced activation of IFN I pathways were achieved.
Consequently, targeting the CD52-IFN I pathway is a promising approach in early SSc patients (66).

Targeting the profibrotic cytokines IL-4 and IL-13 to prevent further activation of monocytes/macrophages to the profibrotic forms has shown promising results. Romilkimab was developed as a humanized bispecific mAB against both IL-4 and IL-13. When neutralizing these serum elevated cytokines, the paracrine and autocrine activation loops of macrophages are blocked. Indeed, a phase 2 RCT in early dcSSc was performed where romilkimab efficacy was tested vs placebo. After 24 weeks, patients who have been treated with romilkimab had a significant improvement in their mRSS compared to the placebo group (67).

24 290

Although it is known to work as a multi tyrosine kinase inhibitor, nintedanib also functions by disturbing the expression of surface markers, and/or the chemokine and cytokine signature of monocyte-derived macrophages. It also inhibits the phosphorylation of the colony-stimulating factor 1 receptor in monocyte/macrophages which is essential in activation and polarization of these cells. When monocytes were stimulated to polarize to classical or alternative macrophages -in vitro-subsequent to treatment with nintedanib, several alterations were observed. First, classical macrophages continued to express classical surface markers at the same level as untreated macrophages but released significantly less proinflammatory cytokines. Second, the alternatively-stimulated macrophages had a significant decrease in their M2 markers while their profibrotic cytokines and chemokines release remained comparable to untreated alternative macrophages (68,69). Clinically, Azuma et al. (70) performed a phase 3 RCT where SSc patients with at least 10% lung fibrosis on HRCT were included. The primary endpoint was the annual rate of decline in FVC. After 52 weeks, the annual rate of decline in FVC was significantly higher in the placebo arm than in the treatment arm. Based on these data, nintedanib was the first drug to be approved for treating SSc-ILD (71–73).

51 306

Pirfenidone has shown inhibitory effects on rat alternatively-activated lung macrophages cultured in *vitro.* This was demonstrated by a significant reduction of TGF- β release and lower expression of M2 surface markers when macrophages were treated with pirfenidone. When the supernatant of the pirfenidone-treated macrophages was used to treat rat lung fibroblasts, suppressed proliferation, and collagen mRNA expression and production were observed in these fibroblasts (74). In light of these

Rheumatology

data, Khanna et al. (75) and Sharma et al. (76) performed phase 2 clinical trials to assess the efficacy of pirfenidone in SSc-ILD patients. Although the data from these trials have not shown significant differences in lung function decline between the treatment and placebo groups, pirfenidone was well tolerable and appeared likely to maintain lung function better than the placebo.

Current studies

Several studies are currently investigating pharmaceutical agents that could hinder the activation and/or the release of cytokines/chemokines from monocytes/macrophages. For example, in the "Hit hard and early" study [NCT03059979], very early diagnosed SSc (VEDOSS) patients are being treated with high dose methylprednisolone, potentially preventing early vasculopathy by forcing attenuation of inflammation (77). It is also highly plausible that the mechanism behind this strategy is mitigating the polarization of macrophages towards the classical inflammatory phenotype, as this is a known effect of prednisolone (78,79). Another strategy is being investigated using upfront autologous hematopoietic stem cell transplantation (AHSCT) in early dcSSc patients with the aim of resetting the immune system (the UPSIDE study; [NCT04464434]) (80). Monocytes derived from myeloid progenitors are activated and play a role in igniting and perpetuating the inflammatory, and thereafter the fibrosis processes, in SSc patients. Studies show that dcSSc patients have higher expression of CD16+ monocytes which are known to have enhanced pro-inflammatory activation (81). The upfront depletion of these cells, coupled with replacing them with "normal/undiseased" precursors through AHSCT could yield monocytes that can suppress the pathogenetic pathways of SSc by enhancing T_{ress} cell production, inhibiting fibroblast to myofibroblast transdifferentiation and suppressing CD4 T cells proliferation (82).

The SCLERO JAK [NCT04206644] study is investigating the efficacy of the JAK 1/2 inhibitor ruxolitinib in SSc patients. one of the outcomes aims to gather a greater understanding of the impact of this drug on the activation states of monocyte-derived macrophages obtained from SSc patients. It is hypothesized that blocking the JAK-STAT pathway would attenuate the profibrotic properties of monocyte-derived macrophages. This will be tested in an in vitro model by measuring CCL18 levels in the culture media of ruxolitinib-treated SSc macrophages compared to untreated (as a primary outcome). In addition, macrophage surface markers studies will be performed.

GSK2330811 is a humanized monoclonal antibody against the oncostatin M (OSM) protein, which is implicated in inflammation, fibrosis and vasculopathy, typical features of SSc pathogenesis. Activated

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keac410/6647835 by University Library user on 25 July 2022

monocytes/macrophages are known to produce OSM which alters fibroblasts -among other connective tissue cells- production of cytokines and chemokines such as MCP-1 and IL-6 which in turn affects the polarization of macrophages (paracrine activation loop) (83,84). After showing a welltolerated safety profile in phase I clinical trial (85), proof of mechanism phase II randomized clinical trial [NCT03041025] in dcSSc patients is currently being undertaken and it is hoped the data will be available soon.

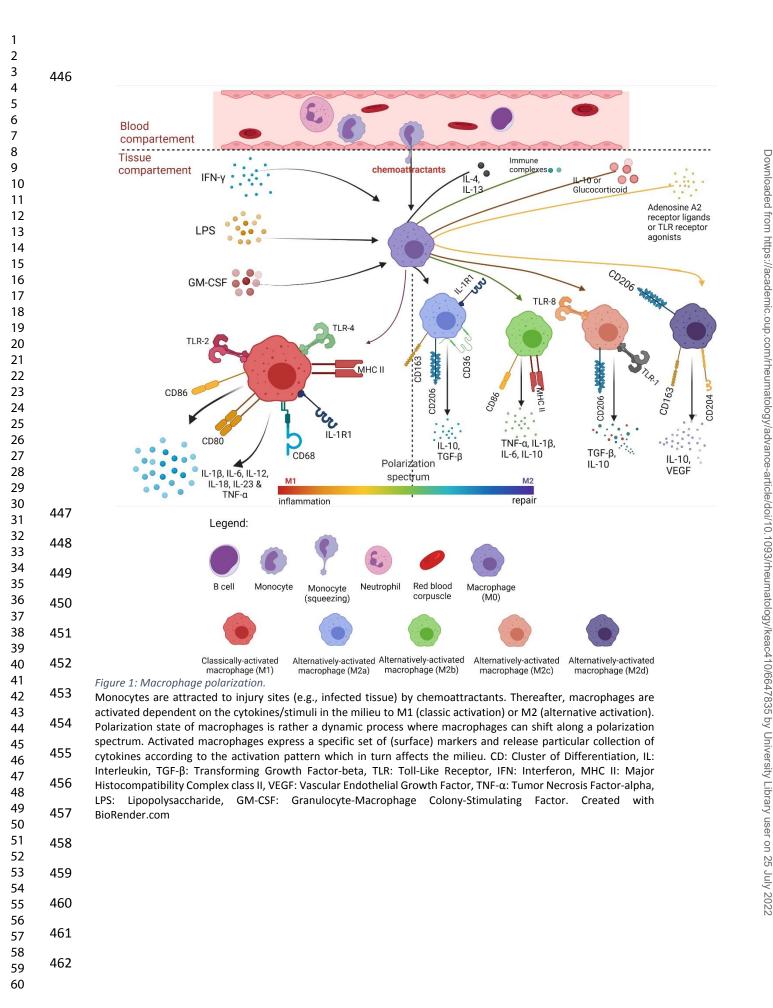
Future perspectives – promising therapeutics/pathways

SSc upstream processes involve both the innate and adaptive immune systems. repurposing drugs from other medical fields such as oncology and haematology to the field of autoimmune diseases is not unusual. Therefore, we are suggesting the following potential drugs abide the recent understanding of SSc pathogenesis.

Targeting purinergic signalling may ameliorate fibrosis. As explained above, adenosine can skew macrophages towards the alternative phenotype. Degradation of adenosine using pegylated recombinant adenosine deaminase reduced fibrogenesis in SSc preclinical models. Adenosine deaminase has also shown promising results regarding vasculopathy and inflammation in a mouse model of SSc (86). The effects of such a drug should be examined in a clinical trial to better comprehend its potential efficacy in SSc patients.

Direct targeting of proliferating monocyte progenitor cells without affecting other progenitor cells or mature monocytes could be an approach to diminish monocytes' contribution to pathophysiology in SSc patients. Using dimeric pyrrolobenzodiazepine (dPBD)-conjugated anti-CD64 antibody (anti-CD64-dPBD), Izumi et al (87) were able to selectively induce apoptosis in proliferating human monocyte progenitors.

Targeting the migration of inflammatory monocytes to sites of injury using small interfering RNA (siRNA) is another promising approach that could benefit SSc patients. CCR2 chemokine receptor is known to be over-expressed on inflammatory monocytes. Targeting cells with high levels of this receptor with nanoparticles-containing anti-CCR2 siRNA showed promising results in several inflammatory diseases in preclinical settings. In these preclinical models, anti-CCR2 siRNA was able to silence CCR2 mRNA of inflammatory monocytes and consequently reduced migration as well as numbers of monocyte-derived macrophages without affecting other healing, physiologically essential functions of monocytes and associated macrophages (88).


2		
3 4	379	
5 6 7 8 9 10 11 12	380	Non-specific memory of the innate immune system, also as known as "Trained immunity", is thought
	381	to be part of the enhanced and continuity of cytokines and chemokines production by monocytes in
	382	SSc patients. Pharmacological blocking of upstream processes of trained immunity using NOD2 and
	383	dectin 1 inhibitors, GSK669 or laminarin, respectively could be beneficial (89). Additionally,
	384	nanomedicine could offer another novel approach for directly targeting and skewing localized
13 14	385	inflammatory monocytes to a less inflammatory phenotype through limiting epigenetic and metabolic
15 16	386	changes (89). Statin-encapsulated reconstituted high-density lipoprotein (HDL) nanobiologic is a
17	387	promising tool targeting inflammatory monocytes and macrophages. Such a drug has shown
18 19	388	promising results in inflammatory atherosclerotic plaques (90) but has not yet been applied to
20 21	389	autoimmune diseases including SSc.
22	390	
23 24	391	Reprogramming alternatively-activated macrophages towards apoptosis or classical polarization is a
25 26	392	well-characterized strategy in tumour research. RP-182 and RP-832c, host immune peptides, can
27	393	target CD206 alternative MDMs in lung fibrosis leading to alleviation of fibrogenesis. This mechanism
28 29	394	could be beneficial for SSc patients, especially for those who are suffering from dermal and lung
30 31	395	fibrosis (91,92).
32	396	
33 34	397	Conclusion
35 36	398	SSc is a multi-organ, multi-phase disease with various potential pharmaceutical interventions. In order
37	399	to combat its complications, it is first necessary to identify the phase of the disease. Interpretations of
38 39	400	literature and previous research highlight monocytes/macrophages as promising biomarkers that
40 41	401	dynamically change according to disease progression reflecting disease status. They can also be
42	402	considered as potential therapeutic targets through modulation of their polarization.
43 44	403	
45 46	404	Due to the heterogeneity of SSc pathogenesis, examination of SSc patients must recognise that each
47 48	405	patient is a unique case. This is a unique opportunity to address the unmet need for personalized
49	406	medicine in treating SSc patients. Most SSc complications share similar phenotypical and molecular
50 51	407	characteristics, however, several important differences have been observed when it comes to
52 53	408	progression and initiating factors. Finally, although this personalized approach is still under
54	409	development, each SSc patient requires a special set of therapeutics according to their disease phase,
55 56	410	active pathogenesis pathway, and number and type of complications.
57 58	411	
59 60	412	Acknowledgements:

2 3	413	All figures have been created using BioRender.com							
4 5 6 7 8 9	414	Funding:							
	415 416	No specific funding was received from any bodies in the public, commercial or not-for-profit sectors to carry out the work described in this article.							
10 11	417	Conflict of interest:							
12 13 14	418 419	JKB receives unrestricted research funding from Boehringer Ingelheim. All other co-authors have declared no conflicts of interest.							
15 16	420	Data availability stateme	<u>nt</u>						
17	421	Data are available upon reasonable request.							
18 19	422								
20 21	423								
22 23	424								
24 25	425								
26 27	426								
28	427	<i>Table.1:</i> Differences in surface markers and cytokine signatures in classical and alternative							
29 30	428	(phenotypes) macrophages							
31 32	429								
33 34	430								
35	431								
36 37		Macrophage phenotype	Surface markers	Cytokine signature					
38 39		Classical	CD86, CD68, CD80, MHC-II,	IL-1β, IL-6, IL-12, IL-18, IL-23, TNF-α					
40			TLR-2, TLR-4, IL-1R						
41 42		Alternative (M2a)	CD206, CD36, CD163, IL-1R	IL-10, TGF-β					
43 44		Alternative (M2b)	CD86, MHC-II	TNF-α, IL-1β, IL-6, IL-10					
45		Alternative (M2c)	CD206, TLR-1, TLR-8, CD163	IL-10, TGF-β					
46 47		Alternative (M2d)	CD206, CD204, CD163	IL-10, VEGF					
48 49	432								
50	433								
51 52	434								
53 54	435								
55 56 57	436								
	437	Table.2: SSc-investigated targeted therapies and suggested novel monocyte/macrophage targeted							
58 59	438	therapies in the treatment of systemic sclerosis and systemic sclerosis-associated interstitial lung							
60	439	disease							

1
2
2
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Therapeutic	Target (action)
AHSCT	resetting myeloid progenitor cells including monocytes
Tocilizumab	Anti-IL-6 receptor α -subunit (attenuates monocyte downstream
	effects)
Rituximab	Anti-CD20 "B cells depletion" (attenuates downstream
	macrophage polarization)
Romilkimab	Anti- IL-4 and IL-13 cytokines (blocks alternative activation)
Nintedanib	Multi-tyrosine kinase inhibitor (disturbs classical and alternative
	activations)
Pirfenidone	Blocks alternative activation
Ruxolitinib	JAK 1/2 inhibitor (proposed to attenuate alternative activation)
GSK2330811	Anti-oncostatin M protein (attenuates monocytes downstream
	effects)
Pegylated adenosine deaminase	adenosine molecules (blocks alternative polarization)
anti-CD64-dPBD	proliferating monocyte progenitors
anti-CCR2 siRNA nanotherapy	inflammatory monocytes migration
Statin-encapsulated HDL	inflammatory monocytes systemically and inflammatory
nanobiologic	macrophages locally
RP-182 and RP-832c	CD206+ cells "alternatively-activated macrophages"

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keac410/6647835 by University Library user on 25 July 2022

Downloade
d from
https://ac
cademic.
oup.co
m/rheum:
natology,
/advance
ce-article
/doi/10.
1093/rheur
93/rh
93/rheumatology/keac41
93/rheumatology/keac410/664
93/rheumatology/keac410/6647835 by Ui
93/rheumatology/keac410/6647835 by
93/rheumatology/keac410/6647835 by Universi
93/rheumatology/keac410/6647835 by University L
93/rheumatology/keac410/6647835 by University Library user o

1 2			
2 3 4	463	<u>Refer</u>	rences:
4 5 7 8 9 10 11	464 465	1.	Herrick AL. Systemic sclerosis : clinical features and management Key points. Medicine [Internet]. 2018;46(2):131–9. Available from: https://doi.org/10.1016/j.mpmed.2017.11.007
	466 467 468	2.	Pavec L, Girgis RE, Lechtzin N, Mathai SC, Launay D, Hummers LK, et al. Systemic Sclerosis – Related Pulmonary Hypertension Associated With Interstitial Lung Disease. Arthritis and Rheumatism. 2011;63(8):2456–64.
12 13 14	469 470	3.	McFarlane IM, Bhamr MS, Kreps A, Iqbal S, Al-Ani F, Saladini-Aponte C, et al. Gastrointestinal Manifestations of Systemic Sclerosis. Rheumatology (Sunnyvale). 2018;8(1):1–35.
15 16 17	471 472	4.	Chrabaszcz M, Małyszko J, Sikora M, Stochmal A, Rudnicka L. Renal Involvement in Systemic Sclerosis : An Update. Kidney & Blood Pressure Research. 2020;45:532–48.
18 19 20	473 474	5.	Lambova S. Cardiac manifestations in systemic sclerosis. World Journal of Cardiology. 2014;6(9):993–1005.
21 22 23 24 25	475 476 477	6.	Denton CP, Khanna D. Seminar Systemic sclerosis. The Lancet [Internet]. 2017;390(10103):1685–99. Available from: http://dx.doi.org/10.1016/S0140-6736(17)30933- 9
25 26 27 28 29 30 31 32 33	478 479 480	7.	Gester F, Seny D de, Bonhomme O, Moermans C, Struman I, Louis R, et al. Biomarkers in systemic sclerosis-associated interstitial lung disease : review of the literature. Rheumatology. 2019;58(July):1534–46.
	481 482 483	8.	Diab S, Dostrovsky N, Hudson M, Tatibouet S, Fritzler MJ, Baron M, et al. Systemic Sclerosis Sine Scleroderma : A Multicenter Study of 1417 Subjects. The Journal of Rheumatology. 2009;2179–85.
34 35 36 37	484 485 486	9.	Distler O, Assassi S, Cottin V, Cutolo M, Danoff SK, Denton CP, et al. Predictors of progression in systemic sclerosis patients with interstitial lung disease. European Respiratory Journal [Internet]. 2020;55. Available from: http://dx.doi.org/10.1183/13993003.02026-2019
38 39 40 41 42 43 44 45 46 47	487 488 489	10.	Elizabeth R. Volkmann, Aryeh Fischer. Update on Morbidity and Mortality in Systemic Sclerosis-Related Interstitial Lung Disease. Journal of Scleroderma and Related Disorders. 2021;6(1):11–20.
	490 491 492 493	11.	Cappelli S, Randone SB, Camiciottoli G, Paulis A de, Guiducci S, Matucci-cerinic M. Interstitial lung disease in systemic sclerosis : where do we stand ? European Respiratory Review [Internet]. 2015;24(137):411–9. Available from: http://dx.doi.org/10.1183/16000617.00002915
48 49 50	494 495	12.	Toledo M D, Pioli A P. Macrophages in Systemic Sclerosis: Novel Insights and Therapeutic Implications. Current Rheumatological Reports. 2020;21(7).
51 52 53	496 497	13.	Hirayama D, lida T. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. International Journal of Molecular Sciences. 2018;19(92).
54 55 56	498 499	14.	Ghobrial RM, Kloc M, Jacek L. Macrophage functions in wound healing. Journal of Tissue Engineering and Regenerative Medicine. 2019;9(November):99–109.
57 58 59 60	500 501	15.	Cassetta L, Cassol E, Poli G. Macrophage Polarization in Health and Disease. The Scientific World Journal. 2011;11:2391–402.

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keac410/6647835 by University Library user on 25 July 2022

1 2			
3 4 5	502 503	16.	Laria A, Mazzocchi D, Scarpellini M. The macrophages in rheumatic diseases. Journal Inflammation Research. 2016;9:1–11.
6 7 8	504 505	17.	U. Sack, P. Stichl GG. Distribution of macrophages in rheumatoid synovial membrane and its association with basic activity. Rheumatology International. 1993;13:181–6.
9 10 11 12	506 507 508	18.	Wildenberg ME, Bootsma H, Vissink A, Rooijen N van, Merwe JP van de, Drexhage HA, et al. Increased frequency of CD16 + monocytes and the presence of activated dendritic cells in salivary glands in primary Sjogren syndrome. Annals of Rheumatic Diseases. 2009;68:420–6.
13 14 15 16 17	509 510 511	19.	Zhou D, Chen Y ting, Chen F, Gallup M, Vijmasi T, Bahrami AF, et al. Critical Involvement of Macrophage Infiltration in the. The American Journal of Pathology [Internet]. 2012;181(3):753–60. Available from: http://dx.doi.org/10.1016/j.ajpath.2012.05.014
18 19 20	512 513	20.	Mathew J, Hines JE, Toole K, Johnson SJ, Burt OFWJAD. Quantitative analysis of macrophages and perisinusoidal cells in primary biliary cirrhosis. Histopathology. 1994;25:65–70.
21 22 23	514 515	21.	Orme J, Mohan C. Macrophage subpopulations in systemic lupus erythematosus. Discov Med. 2012 Feb;13(69):151–8.
24 25 26	516 517	22.	Kuhl AA, Erben U, Kredel LI, Siegmund B. Diversity of intestinal Macrophages in inflammatory Bowel Diseases. Frontiers in Immunology. 2015;6(December):1–7.
27 28 29	518 519	23.	Ishikawa O, Ishikawa H. Macrophage infiltration in the skin of patients with systemic sclerosis. J Rheumatol. 1992 Aug;19(8):1202–6.
30 31 32 33	520 521 522	24.	López-cacho JM, Gallardo S, Posada M, Aguerri M, Calzada D, Mayayo T, et al. Association of Immunological Cell Profiles with Specific Clinical Phenotypes of Scleroderma Disease. Biomedical Research International. 2014;2014.
34 35 36 37 38	523 524 525	25.	Ma W tao, Gao F, Gu K, Chen D kun. The Role of Monocytes and Macrophages in Autoimmune Diseases : A Comprehensive Review. Frontiers in Immunology. 2019;10(May):1– 24.
39 40 41 42 43	526 527 528 529	26.	Ma W tao, Chang C, Gershwin ME, Lian Z xiong. Development of autoantibodies precedes clinical manifestations of autoimmune diseases : A comprehensive review. Journal of Autoimmunity [Internet]. 2017;83:95–112. Available from: http://dx.doi.org/10.1016/j.jaut.2017.07.003
44 45 46 47	530 531 532	27.	Chávez-galán L, Olleros ML, Vesin D, Garcia I, Harris RA. Much more than M1 and M2 macrophages , there are also CD169 + and TCR + macrophages. Frontiers in Immunology. 2015;6(May):1–15.
48 49 50 51 52	533 534 535	28.	Yang J, Zhang L, Yu C, Yang X feng, Wang H. Monocyte and macrophage differentiation : circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker Research. 2014;2(1):1–9.
53 54 55 56	536 537 538	29.	Ricardo SD, Goor H van, Eddy AA, Ricardo SD, Goor H van, Eddy AA. Macrophage diversity in renal injury and repair Science in medicine Macrophage diversity in renal injury and repair. The Journal of Clinical Investigation. 2008;118(11):3522–30.
57 58 59 60	539 540	30.	Viola A, Munari F, Sánchez-rodríguez R, Scolaro T, Castegna A. The Metabolic Signature of Macrophage Responses. Frontiers in Immunology. 2019;10(July):1–16.

Page 19 of 23

1

Rheumatology

2			
3 4 5 6	541 542 543	31.	Bertani FR, Mozetic P, Fioramonti M, Iuli M, Ribelli G, Pantano F, et al. Classification of M1 / M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Nature Scientific Reports. 2017;7(February):1–9.
7 8 9 10 11	544 545 546	32.	Hu X, Ivashkiv LB. Cross-regulation of Signaling Pathways by Interferon-γ: Implications for Immune Responses and Autoimmune Diseases. Immunity [Internet]. 2009;31(4):539–50. Available from: https://www.sciencedirect.com/science/article/pii/S1074761309004063
12 13 14 15	547 548 549	33.	Pace JL, Russell SW, Schreibert RD, Altmant A, Katzt DH. Macrophage activation : Priming activity from a T-cell hybridoma is attributable to interferon-V Immunology : Proc Natl Acad Sci U S A. 1983;80(June):3782–6.
16 17 18	550 551	34.	Grassin-delyle S, Salvator H. The Role of Toll-Like Receptors in the Production of Cytokines by Human Lung Macrophages. Journal of Innate Immunity. 2020;12(December):63–73.
19 20 21	552 553	35.	Hamilton TA, Zhao C, Jr PGP, Datta S. Myeloid colony-stimulating factors as regulators of macrophage polarization. frontiers in Immunology. 2014;5(November):1–6.
22 23 24	554 555	36.	Martinez FO, Helming L, Gordon S. Alternative Activation of Macrophages : An Immunologic Functional Perspective. Annual Review of Immunology. 2009;27:451–83.
25 26 27 28	556 557 558	37.	Wager CML, Jr FLW. Classical versus alternative macrophage activation : the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunology. 2014;7(5):1023–35.
29 30 31	559 560	38.	Ferrante CJ, Leibovich SJ. Regulation of Macrophage Polarization and Wound Healing. Advances in Wound Care. 2012;1(1):10–6.
32 33 34 35	561 562 563	39.	Stein BM, Keshav S, Harris N, Gordon S. Interleukin 4 Potently Enhances Murine Macrophage Mannose Receptor Activity: A Marker of Alternative Immunologic Macrophage Activation. The Journal of External Medicine. 1992;176(July):287–92.
36 37 38 39	564 565	40.	Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019 Aug;106(2):345–58.
40 41 42 43	566 567 568	41.	Shapouri-moghaddam Abbas, Saeed Mohammadian, Vazini Hossein, Taghadosi Mahdi, Esmaeili Seyed-Alireza, Mardani Fatemeh, et al. Macrophage plasticity , polarization , and function in health and disease. Journal of Cellular Physiology. 2018;9:6425–40.
44 45 46 47	569 570 571	42.	Ferrante CJ, Pinhal-enfield G, Elson G, Cronstein BN, Hasko G, Outram S, et al. The Adenosine- Dependent Angiogenic Switch of Macrophages to an M2-Like Phenotype is Independent of Interleukin-4 Receptor Alpha (IL-4Rα) Signaling. Inflammation. 2014;36(4):921–31.
48 49 50 51	572 573 574	43.	Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature Publishing Group [Internet]. 2008;8(12):958–69. Available from: http://dx.doi.org/10.1038/nri2448
52 53 54 55	575 576	44.	Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation : time for reassessment. F1000Prime Reports. 2014;13(March):1–13.
55 56 57 58 59 60	577 578 579	45.	Higashi-Kuwata N, Jinnin M, Makino T, Fukushima S, Inoue Y, Muchemwa FC, et al. Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther. 2010;12(4):R128.

1 2			
3 4 5 6	580 581 582	46.	Mathai SK, Gulati M, Peng X, Russell T, Shaw A, Murray LA, et al. Circulating Monocytes from Systemic Sclerosis Patients with Interstitial Lung Disease Show an Enhanced ProfibroticPhenotype. Laboratory Investigation. 2013;90(6):812–23.
7 8 9 10 11 12 13 14 15	583 584 585	47.	Moreno-Moral A, Bagnati M, Koturan S, Ko JH, Fonseca C, Harmston N, et al. Changes in macrophage transcriptome associate with systemic sclerosis and mediate GSDMA contribution to disease risk. Annals of the Rheumatic Diseases. 2018 Apr 1;77(4):596–601.
	586 587 588	48.	Trombetta AC, Soldano S, Contini P, Tomatis V, Ruaro B, Paolino S, et al. A circulating cell population showing both M1 and M2 monocyte / macrophage surface markers characterizes systemic sclerosis patients with lung involvement. Respiratory Research. 2018;19(186):1–12.
16 17 18 19	589 590 591	49.	Soldano S, Trombetta A, Contini P et al. Increase in circulating cells coexpressing M1 and M2 macrophage surface markers in patients with systemic sclerosis. Annals of Rheumatic Diseases. 2018;77(12):1842–5.
20 21 22 23 24 25	592 593 594 595	50.	Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J, Trejo Bittar H, et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Annals of the Rheumatic Diseases [Internet]. 2019 Oct 1;78(10):1379. Available from: http://ard.bmj.com/content/78/10/1379.abstract
25 26 27 28 29 30 31 32 33 34 35 36 37	596 597 598 599	51.	Morse C, Tabib T, Sembrat J, Buschur KL, Bittar HT, Valenzi E, et al. Proliferating SPP1/MERTK- expressing macrophages in idiopathic pulmonary fibrosis. European Respiratory Journal [Internet]. 2019 Aug 1;54(2):1802441. Available from: http://erj.ersjournals.com/content/54/2/1802441.abstract
	600 601 602 603 604	52.	Xue D, Tabib T, Morse C, Yang Y, Domsic RT, Khanna D, et al. Expansion of Fcy Receptor IIIa– Positive Macrophages, Ficolin 1–Positive Monocyte-Derived Dendritic Cells, and Plasmacytoid Dendritic Cells Associated With Severe Skin Disease in Systemic Sclerosis. Arthritis & Rheumatology [Internet]. 2022 Feb 1;74(2):329–41. Available from: https://doi.org/10.1002/art.41813
38 39 40	605 606	53.	Pillai S. T and B lymphocytes in fibrosis and systemic sclerosis. Current Opinion. 2019;31(6):576–81.
41 42 43 44	607 608 609	54.	Perelas A, Silver RM, Arrossi A v, Highland KB. Series Systemic sclerosis 2 Systemic sclerosis- associated interstitial lung disease. The Lancet Respiratory [Internet]. 2020;8(3):304–20. Available from: http://dx.doi.org/10.1016/S2213-2600(19)30480-1
45 46 47 48 49 50	610 611 612 613	55.	Bhandari R, Ball MS, Martyanov V, Popovich D, Schaafsma E, Han S, et al. Profibrotic Activation of Human Macrophages in Systemic Sclerosis. Arthritis & rheumatology (Hoboken, NJ) [Internet]. 2020;72(7):1160–9. Available from: http://europepmc.org/abstract/MED/32134204
50 51 52 53 54 55	614 615 616 617	56.	Monika L, Elizabeth C, M KH, Pardis P, Brian W, Stellar B, et al. Cadherin-11–mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-β. Science Signaling [Internet]. 2019 Jan 15;12(564):eaao3469. Available from: https://doi.org/10.1126/scisignal.aao3469
56 57 58 59 60	618 619 620	57.	Pakshir P, Alizadehgiashi M, Wong B, Coelho NM, Chen X, Gong Z, et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications. 2019 Dec 1;10(1).

1 2			
3 4 5 6	621 622 623	58.	Doridot L, Jeljeli M, Chêne C, Batteux F. Implication of oxidative stress in the pathogenesis of systemic sclerosis via inflammation, autoimmunity and fibrosis. Vol. 25, Redox Biology. Elsevier B.V.; 2019.
7 8 9 10 11	624 625 626	59.	Kavian N, Mehlal S, Jeljeli M, Saidu NEB, Nicco C, Cerles O, et al. The Nrf2-antioxidant response element signaling pathway controls fibrosis and autoimmunity in scleroderma. Frontiers in Immunology. 2018 Aug 16;9(AUG).
12 13 14	627 628	60.	Crestani B, Seta N, de Bandt M, Soler P, Rolland C, Dehoux M, et al. Interleukin 6 Secretion by Monocytes and Alveolar Macrophages in Systemic Sclerosis with Lung Involvement.
14 15 16 17 18	629 630 631	61.	Khanna D, Lin CJF, Furst DE, Goldin J, Kim G, Kuwana M, et al. Articles Tocilizumab in systemic sclerosis : a randomised , double- blind , placebo-controlled , phase 3 trial. The Lancet Respiratory Medicine. 2020;8(October):963–74.
19 20 21 22	632 633 634	62.	Rudnik M, Rolski F, Jordan S, Mertelj T, Stellato M, Distler O, et al. Regulation of Monocyte Adhesion and Type I Interferon Signaling by CD52 in Patients With Systemic Sclerosis. Arthritis and Rheumatology. 2021;73(9):1720–30.
23 24 25 26	635 636 637	63.	Ebata S, Yoshizaki A, Oba K, Kashiwabara K, Ueda K, Uemura Y, et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): a double-blind, investigator-initiated, randomised, placebo-controlled trial. The Lancet Rheumatology. 2021 Jul 1;3(7):e489–97.
27 28 29	638 639	64.	Boonstra M, Meijs J, Dorjée AL, Marsan NA, Schouffoer A, Ninaber MK, et al. Rituximab in early systemic sclerosis. RMD Open. 2017 Jul 1;3(2).
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	640 641 642	65.	Sircar G, Goswami RP, Sircar D, Ghosh A, Ghosh P. Intravenous cyclophosphamide vs rituximab for the treatment of early diffuse scleroderma lung disease: Open label, randomized, controlled trial. Rheumatology (United Kingdom). 2018 Dec 1;57(12):2106–13.
	643 644 645	66.	Rudnik M, Rolski F, Jordan S, Mertelj T, Stellato M, Distler O, et al. Regulation of Monocyte Adhesion and Type I Interferon Signaling by CD52 in Patients With Systemic Sclerosis. Arthritis and Rheumatology. 2021;73(9):1720–30.
	646 647 648 649 650	67.	Allanore Y, Wung P, Soubrane C, Esperet C, Marrache F, Bejuit R, et al. A randomised, double- blind, placebo-controlled, 24-week, phase II, proof-of-concept study of romilkimab (SAR156597) in early diffuse cutaneous systemic sclerosis. Annals of the Rheumatic Diseases [Internet]. 2020 Dec 1;79(12):1600 LP – 1607. Available from: http://ard.bmj.com/content/79/12/1600.abstract
	651 652 653	68.	Bellamri N, Morzadec C, Joannes A, Lecureur V, Wollin L, Jouneau S, et al. Alteration of human macrophage phenotypes by the anti-fibrotic drug nintedanib. International Immunopharmacology. 2019 Jul 1;72:112–23.
	654 655 656 657	69.	Bellamri N, Morzadec C, Lecureur V, Joannes A, Wollin L, Jouneau S, et al. Effects of Nintedanib on the M1 and M2a polarization of human macrophages. European Respiratory Journal [Internet]. 2018;52(suppl 62). Available from: https://erj.ersjournals.com/content/52/suppl_62/PA5250
55 56 57 58	658 659	70.	Azuma A, Fischer A, Mayes MD, Stowasser S, Tetzlaff K, Kuwana M, et al. Nintedanib for Systemic Sclerosis– Associated Interstitial Lung Disease. NEJM. 2019;380:2518–28.
58 59 60	660 661	71.	Bruni T, Varone F. The adoption of nintedanib in systemic sclerosis : the SENSCIS study. Breathe. 2020;16(2):1–4.

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keac410/6647835 by University Library user on 25 July 2022

2			
3 4 5	662 663	72.	Campochiaro C, Allanore Y. An update on targeted therapies in systemic sclerosis based on a systematic review from the last 3 years. Arthritis Research & Therapy. 2021;5:1–14.
6 7 8	664 665	73.	Rivera-ortega P, Hayton C, Blaikley J, Leonard C, Chaudhuri N. Nintedanib in the management of idiopathic pulmonary fibrosis : clinical trial evidence and real-world experience. 2018;1–13.
9 10 11 12	666 667 668	74.	Toda M, Mizuguchi S, Minamiyama Y, Yamamotoooka H, Aota T, Kubo S, et al. Pirfenidone suppresses polarization to M2 phenotype macrophages and the fibrogenic activity of rat lung fibroblasts. J Clin Biochem Nutr. 2018;63(1):58–65.
13 14 15 16 17 18 19	669 670 671 672 673	75.	Khanna D, Albera C, Fischer A, Seibold J, Raghu G, Khalidi N, et al. Safety and tolerability of pirfenidone (PFD) in patients with systemic sclerosis-associated interstitial lung disease (SSc- ILD)–The LOTUSS study. European Respiratory Journal [Internet]. 2015 Sep 1;46(suppl 59):OA4489. Available from: http://erj.ersjournals.com/content/46/suppl_59/OA4489.abstract
20 21 22 23 24	674 675 676 677	76.	Acharya N, Sharma SK, Mishra D, Dhooria S, Dhir V, Jain S. Efficacy and safety of pirfenidone in systemic sclerosis-related interstitial lung disease—a randomised controlled trial. Rheumatology International [Internet]. 2020;40(5):703–10. Available from: https://doi.org/10.1007/s00296-020-04565-w
25 26 27 28 29 30	678 679 680 681	77.	van den Hombergh WMT, Kersten BE, Knaapen-Hans HKA, Thurlings RM, van der Kraan PM, van den Hoogen FHJ, et al. Hit hard and early: Analysing the effects of high-dose methylprednisolone on nailfold capillary changes and biomarkers in very early systemic sclerosis: Study protocol for a 12-week randomised controlled trial. Trials. 2018 Aug 22;19(1).
31 32 33	682 683	78.	Ehrchen JM, Roth J, Barczyk-Kahlert K. More than suppression: Glucocorticoid action on monocytes and macrophages. Vol. 10, Frontiers in Immunology. Frontiers Media S.A.; 2019.
34 35 36 37	684 685 686	79.	Xie Y, Tolmeijer S, Oskam JM, Tonkens T, Meijer AH, Schaaf MJM. Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration. DMM Disease Models and Mechanisms. 2019 May 1;12(5).
38 39 40 41 42	687 688 689	80.	Spierings J, van Rhenen A, Welsing PMW, Marijnissen ACA, de Langhe E, del Papa N, et al. A randomised, open-label trial to assess the optimal treatment strategy in early diffuse cutaneous systemic sclerosis: The UPSIDE study protocol. BMJ Open. 2021 Mar 18;11(3).
42 43 44 45 46	690 691 692	81.	Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B. Non- Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Scientific Reports. 2015 Sep 11;5.
47 48 49 50	693 694 695	82.	Servaas NH, Spierings J, Pandit A, van Laar JM. The role of innate immune cells in systemic sclerosis in the context of autologous hematopoietic stem cell transplantation. Vol. 201, Clinical and Experimental Immunology. Blackwell Publishing Ltd; 2020. p. 34–9.
51 52 53	696 697	83.	Stawski L, Trojanowska M. Oncostatin M and its role in fibrosis. Vol. 60, Connective Tissue Research. Taylor and Francis Ltd; 2019. p. 40–9.
54 55 56	698 699	84.	Richards CD, Botelho F. Oncostatin M in the regulation of connective tissue cells and macrophages in pulmonary disease. Vol. 7, Biomedicines. MDPI AG; 2019.
57 58 59 60	700 701 702	85.	Reid J, Zamuner S, Edwards K, Rumley SA, Nevin K, Feeney M, et al. In vivo affinity and target engagement in skin and blood in a first-time-in-human study of an anti-oncostatin M monoclonal antibody. British Journal of Clinical Pharmacology. 2018 Oct 1;84(10):2280–91.

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\32\\4\\25\\26\\27\\28\\29\\30\\31\\32\\33\\4\\5\\36\\37\\38\\9\\40\\1\\42\\43\\44\\56\\67\\58\\56\\57\\58\\59\end{array}$	703	86.	Zhang Y, Zhu H, Layritz F, Luo H, Wohlfahrt T, Chen CW, et al. Recombinant Adenosine Deaminase Ameliorates Inflammation, Vascular Disease, and Fibrosis in Preclinical Models of Systemic Sclerosis. Arthritis & Rheumatology [Internet]. 2020 Aug 1;72(8):1385–95. Available from: https://doi.org/10.1002/art.41259
	704 705 706		
	707 708	87.	Izumi Y, Kanayama M, Shen Z, Kai M. An Antibody-Drug Conjugate That Selectively Targets Human Monocyte Progenitors for Anti-Cancer Therapy. 2021;12(February):1–15.
	709 710 711	88.	Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology. 2011 Nov;29(11):1005–10.
	712 713	89.	Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. Therapeutic targeting of trained immunity. Nature Reviews Drug Discovery. 2019 Jul 1;18(7):553–66.
	714 715 716	90.	Duivenvoorden R, Tang J, Cormode DP, Mieszawska AJ, Izquierdo-Garcia D, Ozcan C, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature Communications. 2014;5.
	717 718 719 720 721	91.	Ahmed Abdi B, Lopez H, Martin G, Garvin C, Jaynes J, Stanway J, et al. Novel Therapeutic Peptides Which Target CD206 Inhibit Macrophage Dependent Fibroblast Activation in Scleroderma. https://acrabstracts.org/abstract/novel-therapeutic-peptides-which-target- cd206-inhibit-macrophage-dependent-fibroblast-activation-in-scleroderma/. Accessed March 30, 2022. 2018.
	722 723 724 725 726	92.	Ghebremedhin A, Salam A bin, Adu-Addai B, Noonan S, Stratton R, Ahmed MSU, et al. A Novel CD206 Targeting Peptide Inhibits Bleomycin Induced Pulmonary Fibrosis in Mice. bioRxiv [Internet]. 2020 Jul 29; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32766584