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ABSTRACT
Operator migration is a crucial concept to adapt event pro-
cessing systems to dynamic changes. When the placement
of a stateful operator changes, the operator state must be
migrated to the new host. However, operator state size and
time constraints can make it impossible to migrate the op-
erator without severe Quality of Service (QoS) degradation.
As a relief, we propose to perform state shedding in such a
situation. The core idea of state shedding is to partition the
operator state, assign a utility to each partial state, and use
the utility and size of each partial state to identify the most
useful partial states that can be migrated in a given time
frame. Thus, state shedding can maintain a substantially
higher QoS with a lower impact on query results than state-
of-the-art solutions targeting consistent state at the old
and new host. In this paper, we define this novel approach
and in a simulation environment evaluate state shedding in
migration scenarios with pattern-matching queries.
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1 INTRODUCTION
Stream and event processing systems are of fundamental
importance and an integral part of Big Data systems. They
support important requirements of Big Data applications to
integrate and analyze in real-time high volume data streams
which can stem from many distinct and highly distributed
data sources. Current stream and event processing systems
operate in a highly distributed manner, i.e., the operators
in charge of analyzing data streams can be flexibly exe-
cuted on systems resources in the cloud, at the edge, or
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even on connected (mobile) devices. This way they can sup-
port application requirements regarding Quality of Service
(QoS).

System and application dynamics, like bursty input rates,
resource contention, and mobility can lead to reduced QoS
and require adapting the way operators are executed. Two
established methods to react to such changes are operator
migration [18] and load shedding [3, 17, 20]. In operator mi-
gration, the placement of operators on resources is changed
by migrating one or several operators from their current
host (further on referred to as old host) to a new host, which
is better suited to meet the required QoS. Load shedding
allows reacting to temporary overload situations, by drop-
ping tuples in the input stream or dropping some state of
the operator to ensure the operator can process fresh data
tuples timely.

Both approaches are effective to deal with overload sit-
uations, but they also impose a cost for the distributed
operator execution and therefore need to be carefully de-
signed and applied. Operator migration allows changing
the resources and this way also the performance, e.g., the
processing rate for executing and operator or communica-
tion delays for input tuples. Operator migration requires
(1) to set up a new resource, the new host of the operator,
(2) transmit state from the old host to the new host, and
(3) coordinate the handover between the old and new host.
As such operator migration can consume temporally redun-
dant resources and increase delays until the new host be-
comes operational. Load shedding reduces the time to react
to overload situations, but dropping tuples and state reduce
the accuracy of the results produced by the operators. For
longer periods of overload situations, load shedding may
therefore be costly in terms of ensured accuracy.

Adapting distributed operator execution approaches mostly
treat these two mechanisms as alternatives performed in
isolation. We propose and study the combined use of mi-
gration and load shedding mechanisms. In particular, we
propose to apply state shedding in the course of operator
migration to counteract unexpected long delays during oper-
ator migrations. State-of-the-art methods aim to atomically
transfer the entire operator state based on good estimates
of the transfer cost. Contrary, in this paper, we observe that
the combination of state shedding and migration is promis-
ing for operator migration to better adapt to unexpected
situations. We propose to counteract abrupt changes, such

This work is licensed under a Creative Commons Attribution International 4.0 License.
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as reduced bandwidth and increased transmission latencies,
by transferring only the most necessary state. This requires
appropriate online migration procedures to prioritize the
partial state to ensure a high utility in terms of accuracy
and imposed migration and execution delays.

In this paper, we contribute to (1) a novel concept of com-
bining state shedding and operator migration by maximizing
the utility of partially migrated state, and (2) an analysis
including a first empirical evaluation that illustrates possi-
ble advantages of utility-based load shedding in the context
of two real-world data sets: the Citi Bike data set [2] and a
bus GPS data set from Dublin [1].

2 BACKGROUND
In this section, we introduce background on distributed
operator execution, operator migration and load shedding.

2.1 Distributed Operator Execution
In stream and event processing systems, the logic and
the computational functions to analyze and transform data
streams are given in form of operators, e.g., filter, join,
grouping, and pattern detection operators. The operators
are commonly organized in a data flow graph, called the
operator graph. The operator graph models dependencies
between operators and data sources in receiving and pro-
ducing tuples from/to specific streams. The operators are
executed on hosts of the distributed infrastructure. They
can also be dynamically migrated between hosts to meet
the performance requirements of the application or react
to other changes, such as failures. It is important to note
that during the execution of an operator on a host, state
is built up while performing processing steps on the re-
ceived input tuples. Such state can be modeled in the form
of (1) tuples in input and output queues and (2) so-called
partial states [17, 20], which correspond to intermediate
results needed to produce output tuples. When adapting
the operator execution, e.g., performing migrations or load
shedding, managing the operator state is highly important
for the resulting accuracy and consistency.

2.2 Operator migration
Operator migration is a mechanism for exchanging the hosts
engaged in the distributed operator execution. It requires
organizing the state transfer between the old and new host
and reorganizing the flow of data streams, also named data
stream management. A major objective of current opera-
tor migration procedures is to ensure consistency, i.e., to
ensure the migration of the entire state completes and the
resulting migration has no impact on the operator results.

Approaches for performing operator migration can be
classified according to their stream management during the
state transfer, i.e., in a single track or parallel track [18].
In single-track migration, the tuples of upstream operators

are buffered (at the upstream node, new host, or old host).
Therefore, the migration procedure results in a temporary
downtime during the handover between the new and old
host until all upstream tuples and operator state are trans-
ferred consistently.

Parallel-track migration algorithms are able to migrate
state without operator downtime by upstream nodes send-
ing tuples to the old and new host [18]. Either the old host
continues its executions until the state transfer has been
completed or the old host gradually moves state to the new
host. These algorithms require temporary duplication of
input streams and good connectivity. Under high system
dynamics, e.g., slow communication links and drastically
reduced bandwidth, these mechanisms can significantly re-
duce the performance of the distributed operator execution.

2.3 Load shedding
Load shedding is an established mechanism for operator
execution to react to overload situations, e.g., as origi-
nally proposed for the data stream management system
Aurora [3, 16]. In overload scenarios, part of the workload
for an operator is dropped to stabilize the system. Most of
the literature describes solutions where input tuples are
dropped [6–10, 12, 13, 16]. For aggregation operators, the
goal is to minimize the relative error of the calculated aggre-
gate. For join operators, the goal is to drop the tuples that
eventually join with the fewest tuples. Another method is to
drop windows [17] internally, which reduces the number of
produced aggregates instead of reducing the aggregates’
accuracy. In pattern-matching operators, dropping input
tuples is likely to distort the results completely, because
individual tuples can determine whether a sequence ful-
fills a pattern or not. In such cases, a different state-based
load shedding mechanism that drops partial states from
the operator is a better option. A partial match might or
might not result in an output complex event. If the likeli-
hood of the partial match in producing output is low, the
entire sequence of tuples might be dropped. This is done
for the pattern-matching operator in a few recent works
[5, 14, 19, 20]. As a result of load shedding, the consistency
may be invalidated, but the accuracy and utility of the query
may remain high.

3 PROBLEM STATEMENT
All state-of-the-art operator migration approaches aim to
establish a consistent state at the new host. Unforeseen
network conditions can prevent a timely transmission of the
entire state between the old and new host. Consequently,
operators can experience unexpected freeze times before
the operator execution can be resumed. This is an inherent
limitation of single-track operator migration algorithms.

Figure 1 shows a VANET scenario executing with three
roadside base stations running applications and collecting
data from passing vehicles. The red base station has a
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Figure 1: Example VANET scenario

critically high load and needs to reduce it by moving some
operators to the green node that has sufficient capacity. In
this scenario, the operators deployed on the colored nodes
execute operators for detecting collisions, bottlenecks and
other traffic situations which need to be timely reported
to traffic participants to properly act. Clearly, freezing the
operator execution can lead to the situation where traffic
participants cannot react while the operator execution is
suspended during an unexpected long migration.

Therefore, a better strategy, which we study in this paper,
is to limit the effect of delayed migrations by transmitting
the most relevant state until the time the operator needs
to be resumed. With the help of state shedding, the old
host can decide on the most relevant partial state to be
transmitted yielding the highest utility for the application,
e.g., to react to a possible dangerous traffic event. In this
paper, we address the following research questions (RQ):

• RQ1: How to partition operator state in such a way
that each partial state is useful for further processing?
• RQ2: How to determine the utility of partial states?
• RQ3: How to select the partial states that can be

sent in a given time frame and provide the highest
accumulated utility?
• RQ4: How do different approaches for operator mi-

gration with state shedding perform?

In the next section, we present the overall approach of
operator migration with state shedding. RQ1 and RQ2 are
addressed in Section 5. RQ3 is addressed in Section 6 and
RQ4 is answered in Section 7.

4 APPROACH
In this section, we present the overall approach that com-
bines operator migration with state shedding. It comprises
six steps illustrated in Figure 2 and Algorithm 1. (1) a mon-
itor detects an overload situation or a network problem,
which triggers (2) the placement module to determine the
new placement and the maximum migration time, and trig-
gers (3) the migration module to extract the current opera-
tor state 𝑆 and to partition 𝑆 into 𝑖 partial states, i.e, 𝑆1 to
𝑆10. Each partial state is the smallest useful unit for resum-
ing the operator at the new host. (4) The state shedding
function determines the utility of each partial state 𝑢𝑖 , and
(5) selects the most useful partial states, i.e., 𝑆8, 𝑆5, 𝑆1, and
𝑆9, migrates them to the new host, and drops the remaining
partial states. The final Step (6) is to resume the operator
at the new host.

Placement 
module

State 
shedding 
function

Migration 
module

Op1 U1 S=s1,s2,s3,s4,s5,s6,s7,s8,s9,s10 Op1 U1 S'=s8,s5,s1,s9

New 
host

Old 
Host

State window 
(OH -> NH)

Maximum migration time B
an

d
w

id
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Monitor

Op1 U1

1 2 3
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Figure 2: Migration with state shedding in six steps

Algorithm 1 Operator migration from old host (𝑜ℎ) to new
host (𝑛ℎ) with state shedding. Abbreviations: operator (𝑜𝑝),
partial states (𝑝_𝑠𝑡𝑎𝑡𝑒𝑠), available bandwidth (𝑏𝑤), latency
(𝑙𝑎𝑡), shedded state (𝑠_𝑠𝑡𝑎𝑡𝑒), state shedding function (𝑙𝑠)

1: 𝑡𝑟𝑖𝑔𝑔𝑒𝑟_𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 ←𝑚𝑜𝑛𝑖𝑡𝑜𝑟 (𝑙𝑜𝑎𝑑, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠)
2: 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 (𝑜ℎ,𝑛ℎ, 𝑜𝑝)
3: 𝑝_𝑠𝑡𝑎𝑡𝑒𝑠 ← 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑠𝑡𝑎𝑡𝑒)
4: 𝑝_𝑠𝑡𝑎𝑡𝑒𝑠_𝑢𝑡𝑖𝑙 [𝑆𝑖 ,𝑈𝑖 ] ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑢𝑡𝑖𝑙𝑠 (𝑝_𝑠𝑡𝑎𝑡𝑒𝑠 [𝑆𝑖 ])

5a: 𝑐 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑐 (𝑜ℎ,𝑛ℎ, 𝑜𝑝,𝑏𝑤 (𝑜ℎ,𝑛ℎ), 𝑙𝑎𝑡 (𝑜ℎ,𝑛ℎ))
5b: 𝑠_𝑠𝑡𝑎𝑡𝑒 ← 𝑙𝑠 (𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒,𝑚𝑎𝑥_𝑡𝑖𝑚𝑒, 𝑝_𝑠𝑡𝑎𝑡𝑒𝑠,𝑏𝑤 (𝑜ℎ,𝑛ℎ)𝑙𝑎𝑡 (𝑜ℎ,𝑛ℎ))
5c: 𝑚𝑖𝑔𝑟𝑎𝑡𝑒 (𝑜ℎ,𝑛ℎ, 𝑠ℎ𝑒𝑑_𝑠𝑡𝑎𝑡𝑒, 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒)
6: 𝑟𝑒𝑠𝑢𝑚𝑒_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑛ℎ)

The optimization problem of selecting the most useful
partial states to migrate during the maximum migration
time can be reduced to solving the knapsack problem. The
objective function is to maximize the utility of the operator’s
partial states, each with utility 𝑢𝑖 and size 𝑠𝑖 , subject to a
limited capacity 𝑐 that represents the maximum amount of
data that can be sent during the migration.

max
𝑛∑︁
𝑖=1

𝑢𝑖

s.t.
∑︁
𝑗

𝑠 𝑗 < 𝑐

(1)

The success of the solution depends highly on the specific
operator semantics which determine how to partition the
state and assign utility.

5 STATE PARTITIONING
This section explores how to partition the operator state into
partial states of limited size and determine their utility (RQ1
and RQ2). We identify three common stateful operators that
differ significantly in how their state manifests: aggregation,
join and pattern-matching operators (see example queries
in Figure 3). Based on the established design procedures of
these operators, we want to analyze how state needs to be
represented in order to be be ready for partitioning, and its
impact on utility.

An aggregation operator such as in Q1 can record the
state as partial aggregates (Figure 3a) that are updated for
each tuple that is processed. If it uses a sliding window, it
will update multiple aggregates for each tuple. Alternatively,
all received tuples can be stored until the end of the window,
and the tuples are aggregated (Figure 3b). However, the
latter method requires substantially more storage space
and can increase the delay of the aggregation.
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Figure 3: Internal state of operators

A pattern-matching operator looks for particular sequences
of tuples that indicate a higher-level event. The stored tu-
ples in the sequences might vary in size and the length
of the partial matches may vary. A pattern-matching oper-
ator such as in Q2 looks for patterns in a single stream
and groups the patterns by a key, leading to an internal
state of a tuple sequence for each group (Figure 3c). If the
pattern-matching operator looks in multiple streams, such
as in Q3, it is only able to keep one sequence in the internal
state at the time, because a group is defined for one stream
only (Figure 3d). If a query joins and does pattern-matching
with groups in the same query, the query must first join the
streams as in Q4 before matching patterns.

A join operator such as in Q4 might store the internal
state as tuples in a window and evict tuples when the win-
dow jumps (Figure 3e). It may keep cached matches on
filter predicates to match new tuples to stored tuples faster,
using some lookup mechanism. Tuples often vary in size,
especially tuples from two different streams that are being
joined. Even within the same stream, some attributes, e.g.,
text attributes, can vary in size.

A state shedding function can drop random state, but
there is a strong incentive to keep the most important states.
What this means depends on the type of operator that is
being assessed. The utility of a partial state is not trivial to
define or calculate. It is an operator-specific function that
depends also on the type of application that is executed.

In traditional aggregation queries, the shedding of input
tuples reduces the accuracy of the results produced out-
put, but keeps the number of produced tuples the same.
As such, the goal has traditionally been to minimize the
relative error in results [4]. On the other hand, the number
of produced tuples may be reduced when shedding tuples
in a join operator, sequences in a pattern-matching operator
or window extents in an aggregation operator. The accuracy
of the produced tuples is retained, but the accuracy of the
query is reduced.

A tuple for a join operator has utility if it joins with other
tuples. Therefore, the overall goal is to maximize the num-
ber of tuples that are produced by the join operator. For

the pattern-matching operator, the goal is the same. Either
a match completes and produces a complex event, or it
expires and never completes. A partial match has no utility
until tuples are produced. For an aggregation operator, this
is different. A window extent can be considered as just a
few integers that indicate the start and stop of the window
extent, the count of tuples in the window, and the current
aggregate. An incoming tuple triggers an increment of the
count in every window extent, and the aggregate is updated.

6 PARTIAL STATE SELECTION
This section discusses how to select the partial states to
migrate (RQ3). The knapsack problem can be solved in a
few ways, where the greedy approach of sending partial
states in a descending order of utility density is the easiest
way, but it can not guarantee to achieve the optimum. If
all partial states have an identical size, such as for the
aggregation operator in Figure 3a, the greedy solution will
perform exactly as the optimum. However, with variable
partial state sizes in Figure 3b, c, d and e, the state shedding
solution might result in a significantly higher utility than
the greedy solution. In some cases, the maximum migration
time is uncertain, and therefore, the best effort provided
with the greedy method might perform reasonably well.

However, if the maximum migration time is short or the
state size varies significantly, finding the optimum or near-
optimum might yield a significantly higher utility than the
greedy solution. Since the knapsack problem is NP-hard,
brute-forcing is unfeasible for even small input sizes. How-
ever, the knapsack problem has a polynomial-time approxi-
mation scheme that uses dynamic programming to find the
optimum. This solution has a run-time and space complexity
of 𝑂 (𝑛2 ·𝑚), where 𝑛 is the total number of partial states,
𝑚 is the highest utility of the partial states, and 𝑛 ·𝑚 is the
highest possible sum of utilities. A simplification can be
done with the fully polynomial-time approximation scheme
algorithm that scales down the utility with factor \ > 0 to
reduce the number of iterations. This reduces the run-time
and space complexity significantly to 𝑂 (𝑛2 ⌊𝑚

\
⌋).

These algorithms might still have a significant run-time
and memory usage, which might be unfeasible if the migra-
tion must occur quickly. If we design the utility functions
such that the utility values depend on each other, we can
create a heuristic that binds the complexity of the optimal
search without compromising the accuracy: (1) each partial
state 𝑖 gets assigned a utility through 𝑈 (𝑖), (2) the utilities

are updated as 𝑈 ′(𝑖) = 𝑈 (𝑖)
𝑚 · 100. Each partial state gets a

utility between 0 and 100, depending on the most important
partial state. Since the maximum utility is capped at 100
for each partial state, and the inner loop iterates through
maximum

∑𝑛
𝑖=1 𝑢𝑖 , the worst case number iterations is 𝑛 · 100,

which leads to a run-time and space complexity of 𝑂 (𝑛2).
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7 ANALYSIS
This section studies a practical application of the state shed-
ding technique to compare the different approaches for
partial state selection (RQ4). We apply a scenario similar
to the VANET scenario from Section 3 with two real-world
VANET data sets: (1) a data set from Citi Bike [2] that de-
scribes bike trips of users, and (b) a data set containing
GPS readings from buses in Dublin [1]. We describe three
queries in Listing 1, 𝑄𝑝𝑚1 uses the Citi Bike data set and
𝑄𝑝𝑚2 and 𝑄𝑝𝑚3 use the bus data set. The configurations re-
sult in different state characteristics: 𝑄𝑝𝑚1 produces many
partial states; 𝑄𝑝𝑚2 only produces eight partial states; and
𝑄𝑝𝑚3 produces many partial states.

Listing 1: Queries used in the simulations
𝑄𝑝𝑚1 SEQ(A+B)

GROUP BY BikeTrip . bikeid

DEFINE B AS BikeTrip . end_station_id == 3116

WITHIN 1 day

𝑄𝑝𝑚2 SEQ(A+B)

GROUP BY BusRecord. operator

DEFINE B AS BusRecord. block_id == 67002

WITHIN 1 hour

𝑄𝑝𝑚3 SEQ(A+B)

GROUP BY BusRecord. vehicle_id

DEFINE B AS BusRecord. block_id == 67002

WITHIN 1 hour

We simulate a connectivity issue scenario where the old
host is about to lose connection or experience heavily de-
graded link connection with the upstream and downstream
nodes, and has to complete the migration by a certain dead-
line. The connectivity failure can be due to imminent node
failure or network disconnection. The deadline is estimated
by the migration decision model Figure 2, and the data it
uses to predict this time is assumed to be collected through-
out normal execution. The old host attempts to migrate
the operator state using the state shedding function, and
after the scheduled state is sent, it continues sending the
remaining states as long as possible.

7.1 Simulations
Simulations are performed using the distributed stream
processing simulator DCEP-Sim [15]. The simulator imple-
mentation incorporates a small-scale stream processing
engine and builds upon the well-established discrete-event
network simulator ns-3 [11]. Four nodes are deployed in
DCEP-Sim: one upstream node, one downstream node, the
old and new host. The upstream node produces tuples and
sends them to the query that produces tuples for the down-
stream node. During the simulation, the old host migrates
state to the new host, and the utility achieved from the
migration is measured and analyzed.

We do three runs, one for each query in Listing 1. The
first run compares optimal partial state selection with the
random ordering, i.e., without prioritization, where partial
states are sent until the old host disconnects. Three utility
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Figure 4: Simulation results where (a) and (b) use
𝑄𝑝𝑚1, (c) uses 𝑄𝑝𝑚2, and (d) uses 𝑄𝑝𝑚3

distributions are used: one balanced and two skewed dis-
tributions. In the first distribution, each partial state gets
a random utility between 0 and 100. In the second distri-
bution, the random utility is assigned and for 10% of the
partial states, i.e., those with utility above 90, we introduce
skew by multiplying the utility by ten. In the third distri-
bution, utility values above 50 are multiplied by ten. State
shedding is expected to have a more significant effect on
skewed utility distributions. The random scenario is only
executed with the balanced distribution, but with a high
number of partial states, the random case without skew
has a very similar utility result as the random case with
skew. The second and third runs compare the optimal to the
greedy solution, without any utility skew. These runs aim to
show how the size and number of partial states affect the
achieved utility.

7.2 Results
The utility obtained with the Citi Bike data set are shown
in Figure 4a. For the state shedding technique, the utility
achieved depends on the utility distribution of the partial
states. In the case with skew for 10% of the partial states,
80% of the total utility is reached when the disconnection
time is 2 s, less than 20% of the time it takes to send all
partial states. When the skew is 50% of the partial states, it
takes 3.6 s to send partial states with 80% of the total utility.
At 5.5 s disconnection time, the 50% skew reaches >95% of
total utility. Even without skew, there is a clear advantage
to using state shedding.
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Figure 4b illustrates the internal state of the query through-
out the simulation, including during and after the migration.
The query reaches a bit over 8000 partial states. The mi-
gration goes on until the old host is disconnected, at which
point, the remaining partial states are dropped. The config-
urations migrate approximately the same number of tuples,
but a different number of partial states. Since the utility
is random, the state shedding scheme drops fewer partial
states than the random case to achieve a higher utility.

Figure 4c and 4d compare the optimal and greedy solu-
tions. The utility is a function of the state size—the bigger
the partial state is, the higher the utility is. The optimal
solution performs visibly better than the greedy solution
in Figure 4c, but not in Figure 4d. Figure 4c illustrates a
case with few big partial states of varying size and Figure
4d is based on many small partial states of similar size.
The main difference between the two runs is the size of
the partial states compared to the disconnection time. This
suggests that the benefit of optimization increases with the
proportion of the partial state size variance to the total
capacity.

8 CONCLUSION AND FUTURE WORK
This work presents the first investigation of the opportuni-
ties and challenges of state shedding for operator migration.
It is grounded in the insight that the triggers for operator
migration, i.e., overload or network problems, can be limit-
ing factors to successfully performing operator migration
with state-of-the-art solutions. Instead of the prevailing all-
or-nothing solutions, we propose to perform state shedding
to migrate the most useful partial state under the given
situation. Both partitioning operator state and estimating
the utility of partial state depend on the particular operator.
To maximize the aggregated utility of the migrated par-
tial states, we present a solution to the given optimization
problem with complexity 𝑂 (𝑛2). The simulation-based com-
parison of this optimal solution with the greedy approach
reveals that the distribution of the partial size and the num-
ber of partial states play an important role. With few larger
partial states the optimal solution outperforms greedy and
with many partial states of similar size, they perform almost
identically. Further simulation experiments confirm the in-
tuition that the larger the skew in the distribution of the
utility of partial states, the faster the aggregated utility at
the new host increases. Random selection of partial states
to migrate will in cases with utility skew and disconnection
before all state is migrated result in lower utility achieved
than when using state shedding.

To thoroughly investigate the full potential of state shed-
ding, future work will address novel solutions for utility
estimation, e.g., to consider application requirements and
to use statistics about previous upstream data, as well as to
combine state shedding with scheduling of operator migra-
tion, e.g., to delay migration.
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