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a b s t r a c t

In this paper, we show that the domain of attraction of a compact asymptotically stable submanifold in
a finite-dimensional smooth manifold of an autonomous system is homeomorphic to the submanifold’s
tubular neighborhood. The compactness of the submanifold is crucial, without which this result is false;
two counterexamples are provided to demonstrate this.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The domain of attraction of an attractor of a continuous dy-
amical system has been widely studied. An attractor is a closed
nvariant set of which there exists an open neighborhood such
hat every trajectory of the dynamical system starting within
he neighborhood eventually converges to the attractor, in the
ense that the distance between the trajectory and the attractor
onverges to zero; namely, the attractor is attractive. And the set
f all initial conditions rendering the corresponding trajectories to
onverge to the attractor is called the domain of attraction of the
ttractor [1,2]. Generally, it is difficult or sometimes impossible
o find analytically the domain of attraction of an attractor. Since
n attractor is attractive, if additionally it is Lyapunov stable [1,
hapter 4], then it is called an asymptotically stable attractor;
ometimes Lyapunov functions can be utilized to estimate its
omain of attraction, but the estimate can be conservative [1,
hapters 4 and 8].
Partly due to the difficulty of calculating the domain of at-

raction of an attractor, some studies in the literature instead
nvestigate the ‘‘shapes’’ or ‘‘sizes’’ of domains of attraction in the
opological sense [2–6]. In particular, in the simplest case where
he attractor is an asymptotically stable equilibrium point, it has
een shown in [3, Theorem 21] that the domain of attraction is
ontractible. This result characterizes the ‘‘shape’’ of the domain
f attraction, and it also implies the ‘‘size’’ of the domain of at-
raction. Namely, it leads to the topological obstruction that if the
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state space of the system is not contractible, then an equilibrium
point cannot be stabilized globally [3, Corollary 5.9.3]. Another
topological obstruction is shown in [6], which states that the
domain of attraction of an asymptotically stable equilibrium point
cannot be the whole state space (i.e., global asymptotic stability of
an equilibrium is impossible) if the state space of the continuous
dynamical system has the structure of a vector bundle over a
compact manifold. Some studies partly generalize these results
to asymptotically stable attractors that are not necessarily equi-
librium points. In [5], it is proved that a compact, asymptotically
stable attractor defined on a manifold (or more generally, on a
locally compact metric space) is a weak deformation retract of its
domain of attraction. The conclusion is further developed in [4],
which shows that if the considered manifold is the Euclidean
space Rn, then the compact asymptotically stable attractor is a
strong deformation retract of its domain of attraction.

Assuming that the asymptotically stable attractors are compact
submanifolds of some ambient finite-dimensional smooth man-
ifolds, stronger conclusions can be made about the domains of
attraction. For example, it is proved in [2, Chapter V, Lemma 3.2]
that the intersection of an ϵ-neighborhood of the attractor and
some sublevel set of a corresponding Lyapunov function (of which
the existence is automatically guaranteed [7]) is a deformation
retract of the domain of attraction of the attractor. This result is
refined in [5,8], which conclude that the attractor itself is a strong
deformation retract of its domain of attraction. Therefore, the
attractor and its domain of attraction are homotopy equivalent.
This result has practical significance. For example, it facilitates the
analysis regarding the existence of singular points and the possi-
bility of global convergence of trajectories to desired paths in the

vector-field guided path-following problem for robotic control

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ystems [8]. Furthermore, Theorem 3.4 in [9] claims that, the do-
ain of attraction of a uniformly asymptotically stable attractor

s diffeomorphic to a tubular neighborhood of the attractor. Note
hat the attractor is assumed to be an embedded submanifold
hich can be compact or non-compact. However, in this paper,
e will show that the compactness of the attractor is crucial,
ithout which such a claim becomes inaccurate.1 In addition, the
roof of [9, Theorem 3.4] is very brief, only indicating the method
ithout giving sufficient detail. In this paper, we will detail the
roof for a corrected version of this theorem, where the attractor
s required to be compact. For convenience, we will henceforth
efer to [9, Theorem 3.4] as Wilson’s theorem.

Contributions: Throughout the paper, manifolds or submani-
folds are without boundaries, and they are second countable and
paracompact. We assume that the attractor is compact, (uni-
formly) asymptotically stable and it is a submanifold of some
finite-dimensional smooth manifold. We show that the compact-
ness of the attractor is crucial by providing counterexamples
where Wilson’s theorem no longer holds if the attractor is not
compact. Taking the compactness of the attractor into account,
we will prove the following theorem:

Theorem 1. The domain of attraction of a compact asymptotically
stable submanifold S in a finite-dimensional smooth manifold M of
an autonomous system is diffeomorphic to the tubular neighborhood
of S .

In this paper, we will give a complete and detailed proof
of Theorem 1, along with some auxiliary results to gain more
insights into the theorem.

The remainder of the paper is organized as follows. Section 2
provides some preparatory results for the convenience of proving
Theorem 1. Then the detailed proof of Theorem 1 is elaborated
in Section 3. To justify the importance of the compactness of
the attractor in this theorem, we provide two counterexamples
where the attractor is not compact and hence Theorem 1 fails to
hold in Section 4. Finally, Section 5 concludes the paper.

2. Preparatory results

In this section, we recall some preliminaries. Let M and N be
smooth manifolds, and S be a submanifold of M. Note that in this
section, the submanifold S can be compact or non-compact unless
its compactness is specified explicitly. The notation := means
‘‘defined to be’’, and the notation ◦ denotes the composition of
functions. For example, f ◦ g is the composition of the functions
f and g . The map id is the identity map where the domain and
codomain are clear from the context.

For convenience, throughout this paper we consider
autonomous systems with complete vector fields on a Rieman-
nian manifold M with the distance function d. Note that the
assumption on the completeness of vector fields can be dropped
(see Remark 21).

Denote by ϕ the flow of the system, and by Uϵ , Uδ and Ur
the neighborhoods consisting of all points in M from which the
distances to S are not larger than ϵ, δ and r respectively. If an
attractor S is uniformly asymptotically stable, then (i) it is stable;
namely, for any ϵ > 0, there exists δ > 0 such that ϕt (Uδ) ⊆ Uϵ

for t ≥ 0; (ii) there exists r > 0, such that for any ϵ > 0, there is
some positive number Tϵ with ϕt (Ur ) ⊆ Uϵ for t ≥ Tϵ [7]. Uniform
asymptotic stability is stronger than asymptotic stability, but if A
is compact, then these two notions are equivalent.

Now we recall the definitions of topological and smooth em-
beddings.

1 If the attractor is compact, then asymptotic stability automatically implies
niform asymptotic stability.
2

Definition 2 (Topological and Smooth Embeddings, [10, p. 85]).
A (topological) embedding is an injective continuous map that
is a homeomorphism onto its image (with the subspace topol-
ogy). A smooth embedding is a smooth immersion that is also a
(topological) embedding.

If f : M → N is an embedding, the image f (M) can be
regarded as a homeomorphic copy of M inside N . If f : M → N
is a smooth embedding, then it is both a topological embedding
and a smooth immersion.

For each p ∈ M, denote by TpM and TpS the tangent spaces
respectively of M and S at p, and by TM and TS the tangent
bundles. Note that TS can be regarded as a subbundle of TM in
a natural way.

Definition 3 (Normal Bundle). The normal bundle NS of S in M
is the quotient bundle TSM

/
TS :=

⨆
p∈S(TpM/TpS), where

⨆
denotes the disjoint union.

Fact 1 ([11, Sections 6.1 and 7.1]). Let g be any Riemannian metric
on M. For each p ∈ M, let Np be the orthogonal complement of
TpS in TpM with respect to g . Then

⨆
p∈S Np is a subbundle of

TSM and it is isomorphic to TSM
/
TS. This gives another way of

defining the normal bundle of S in M.

Fact 2 ([11, Section 5.1]). For any vector bundle E over S , (the
image of) the zero section of E can be canonically identified with
S via

ιS : 0̄S ⊆ E → S
0x ↦→ x

where 0̄S ⊆ E denotes (the image of) the zero section of E , and 0x
denotes the zero vector in the vector space Ex for x ∈ S. Therefore,
ιS is a diffeomorphism from 0̄S to S. Note that viewing S as a
submanifold of M, ιS can also be regarded as an embedding of
0̄S into M.

Definition 4 (Tubular Neighborhood). A tubular neighborhood of
S is an open embedding τ : E → M from some vector bundle E
over S to M satisfying

τ
⏐⏐
0̄S

= ιS .

More loosely, we often call the open set W := τ (E) a tubular
neighborhood of S.

Whether we refer to a tubular neighborhood as an embedding
or an open set should be clear from the context.

Theorem 5 (Existence of Tubular Neighborhood, [11, Proposition
7.1.3]). Suppose that S is a submanifold of M. Then there exists
an embedding τ : NS → M from the normal bundle NS of S into
M such that τ keeps the zero section of NS (i.e., τ (0x) = x for all
x ∈ S , or τ

⏐⏐
0̄S

= ιS).

Remark 6. This means that τ : NS → M is a tubular neighbor-
hood of S , and τ is a diffeomorphism between NS and τ (NS ). ◁

Before presenting the uniqueness result of tubular neighbor-
hoods, we first recall the definitions of isotopy and diffeotopy.

Definition 7 (Isotopy and Diffeotopy, [12, pp. 177–178]). An isotopy
from M to N is a map F : M × I → N , where I ⊆ R is an
interval, such that for each t ∈ I, the map Ft : M → N defined
by x ↦→ F (x, t) is an embedding. We also say F is an isotopy from
F0 to F1, and F0 and F1 are called isotopic. If each Ft is a smooth
embedding, then F is a smooth isotopy from M to N . If each Ft is
a diffeomorphism, then F is called a diffeotopy.
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Fig. 1. Relations in Theorem 8. If f0 and f1 are two tubular neighborhoods, then
there exists a bundle map λ : E0 → E1 such that f0 and f1 ◦ λ are isotopic.

Throughout the paper, whenever we mention an isotopy, we
mean a smooth isotopy. Now we show the uniqueness result of
the tubular neighborhood as follows.

Theorem 8 (Uniqueness of Tubular Neighborhood I, [11, Theorem
7.4.4]). Suppose that fi : Ei → M, i = 0, 1, are tubular
eighborhoods of S . Then there exists a bundle map2 λ : E0 → E1
uch that f0 and f1 ◦ λ are isotopic (see Fig. 1).

Denote by G : E0 × (−δ, 1 + δ) → M the isotopy from f0 to
1 ◦ λ. Then Theorem 8 implies that Gt : E0 → M is a tubular
eighborhood for any t ∈ (−δ, 1 + δ). Now let

(x, t) = G(f −1
0 (x), t)

or (x, t) ∈ f0(E0) × (−δ, 1 + δ). We have the following corollary.

orollary 9 (Uniqueness of Tubular Neighborhood II, [11, Theorem
.4.4]). Suppose that S is a submanifold of M, and W0 and W1 are
wo tubular neighborhoods (as open sets) of S inM, then there exists
n isotopy h : W0 × (−δ, 1 + δ) → M such that

0 = jW0 , h1(W0) = W1, ht
⏐⏐
S = jS

or every t ∈ (−δ, 1 + δ), where ht := h(·, t), jW0 and jS are the
inclusions of W0 and S into M respectively.

Therefore, any two tubular neighborhoods W0 and W1 are
homeomorphic.

Definition 10 (Closed Tubular Neighborhood). Fix a Euclidean met-
ric g on the vector bundle E over S , and for any r > 0, let3

BEr = {v ∈ E : g(v, v) ≤ r2}.

A closed tubular neighborhood K of S is a closed neighborhood of
S in M such that there is an embedding φ : BEr → M satisfying

φ(BEr ) = K, φ
⏐⏐
0̄S

= ιS .

Remark 11. If S is compact, then BEr is by definition a closed
tubular neighborhood of 0̄S in E and that it is compact. Since
Er = {v ∈ E : g(v, v) < r2} can homeomorphically map to E while
keeping the zero section, it is an (open) tubular neighborhood of
0̄S in E . In particular, E itself is a tubular neighborhood of 0̄S in
E . ◁

Due to Remark 11, the following proposition holds.

Proposition 12. If S is compact, then there exists some tubular
neighborhood W of S such that its closure W̄ is a closed tubular
neighborhood which is also compact.

2 More specifically, the bundle map γ is a bundle isomorphism. This is
ecause f0 and f1 are embeddings and their images are open sets in M;

therefore, E0 and E1 are vector bundles which, as manifolds, have the same
dimensions as M does.
3 Note that BEr is a submanifold of E with boundary ∂(BEr ) = {v ∈ E :

(v, v) = r2}.
 s

3

Fig. 2. Proof of Lemma 17.

We will use a technique which relies on the following results
to prove Theorem 1 later.

Lemma 13 ([12, Chapter 8, Theorem 1.4]). Suppose that U is an
pen set of the manifold N and that C is a compact subset of N

contained in U . Suppose that h : U × (−δ, 1+ δ) → N is an isotopy
ith h0 : U → N being the inclusion. Then for any δ′

∈ (0, δ), there
exists a diffeotopy H : N × (−δ′, 1 + δ′) → N with some open
neighborhood U0 of C in U such that

H
⏐⏐
U0×(−δ′,1+δ′) = h

⏐⏐
U0×(−δ′,1+δ′).

Remark 14. Let h̃ be the level preserving map4:

h̃ : U × (−δ, 1 + δ) → N × (−δ, 1 + δ)
(p, t) ↦→

(
ht (p), t

)
.

Note that Theorem 1.4 in Chapter 8 of [12] requires h̃
(
U×(−δ, 1+

δ)
)
to be open in N × (−δ, 1 + δ). However, this requirement is

unnecessary at least in our case, since it can be easily checked
that h̃ is a submersion5 and hence an open map. ◁

Corollary 15. Suppose that U is an open set of the manifold N
and that C is a compact subset of N contained in U . Suppose that
h′

: U × (−δ, 1 + δ) → N is an isotopy, and there exists a
diffeomorphism f0 : N → N that agrees with h′

0 on U ; i.e.,

f0|U = h′

0. (1)

Then for any δ′
∈ (0, δ), there is a diffeotopy F : N×(−δ′, 1+δ′) →

N with some open neighborhood U0 of C in U such that

F
⏐⏐
U0×(−δ′,1+δ′) = h′

⏐⏐
U0×(−δ′,1+δ′)

.

Proof. Let h = f −1
0 ◦ h′. Therefore, from (1), we have h0 =

f −1
0 ◦ h′

0 = jU , where jU : U → N is the inclusion map from
U to N . According to Lemma 13, there is a diffeotopy H such that
H

⏐⏐
U0×(−δ′,1+δ′) = h

⏐⏐
U0×(−δ′,1+δ′). Then let F = f0 ◦ H . □

Remark 16. Note that the open set U in the theorems above
may be N itself, which is the case in Lemma 17 to be discussed
later. ◁

Now we prove a lemma concerning tubular neighborhoods
of the submanifold S of M. This lemma greatly facilitates the
arguments in Section 3.

Note that (NS, π, 0̄S ), where π : NS → 0̄S defined by p ↦→ 0x
for any p ∈ Nx and x ∈ S , is a vector bundle over 0̄S . Though
this might be trivial since 0̄S is identical to S in a canonical way,
we still point it out as follows for the sake of clarity from the
set-theoretic perspective.

4 The map h̃ is called the track of h [12, p. 111].
5 This is because h̃ is an immersion and the dimensions of U and N are the

ame.
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emma 17 (Extension of Tubular Neighborhoods). Suppose that
: NS → NS is a tubular neighborhood of 0̄S ; i.e., j is an embedding

and j(0x) = 0x for all x ∈ S . Then for any compact set K in NS ,
there is a diffeomorphism β on NS such that β agrees with j on some
neighborhood of K.

Proof. The idea is to use Corollary 15. To this end, we seek an
isotopy h : NS × (−δ, 1 + δ) → NS such that h1 = j and h0 is a
iffeomorphism on NS .
Note that both idNS : NS → NS and j : NS → NS are tubular

eighborhoods of 0̄S in NS . Hence, according to Theorem 8,
there exists a bundle isomorphism λ : NS → NS such that
there exists an isotopy h from idNS ◦ λ to j (see Fig. 2). Since
idNS ◦ λ is a diffeomorphism, according to Corollary 15, there
exists a diffeotopy H : NS × (−δ, 1 + δ) → NS such that H
agrees with h on some neighborhood of K. Let β = H1 and
then it is a diffeomorphism and agrees with h1 = j on such a
neighborhood. □

3. Proof of Theorem 1

The proof of Theorem 1 is based on [9, Lemma 3.3]. For clarity,
we decompose the proof into several propositions. Denote by M
the state space with a vector field X . Denote by ϕ the flow of
X and assume that S is a compact boundaryless submanifold of
M and is an asymptotic stable attractor of ϕ. Denote by DA the
domain of attraction of S.

We start by fixing a precompact tubular neighborhood

fo : NS → W

of S in DA, where W := fo(NS ). The existence of fo is guaranteed
by Proposition 12.

Proposition 18. For each compact set K in the domain of attraction
DA, there exists some TK > 0, such that ϕT (K) ⊆ W for any T > TK .
Consequently, K ⊆ ϕ−T (W) for any T > TK .

Proof. Due to the asymptotic stability of S , there is some neigh-
borhood U of S in W such that ϕ[0,∞)(U) ⊆ W . For any x ∈ K,
here is some Tx > 0 with some neighborhood Bx of x such
hat ϕTx (Bx) ⊆ U . Since K is compact, there is {Bxi}i=1,...,k, where
k < ∞, such that

⋃
i Bxi ⊇ K. Let TK := maxi=1,...,k Txi and the

proof is completed. □

Note that S is invariant under ϕ, and hence S ⊆ ϕ−T (W)
for any T ∈ R. Since ϕ−T

: W → WT := ϕ−T (W) is a diffeo-
orphism and W is a tubular neighborhood of S , it is natural

o conjecture that WT should also be a tubular neighborhood of
. This is indeed true as shown in the next proposition, but it is
ot straightforward. According to Definition 4, we still need to
ind a diffeomorphism fT from NS to WT such that fT

⏐⏐
0̄S

= ιS .
Although f = ϕ−T

◦ fo is a diffeomorphism from NS to WT , we
have f

⏐⏐
0̄S

= ϕ−T
◦ ιS , which is not necessarily equal to ιS , and

hence f : NS → WT is not necessarily a tubular neighborhood.
Yet f

⏐⏐
0̄S

= ϕ−T
◦ ιS and ιS are isotopic as maps from 0̄S to WT

while f and ϕT are both diffeomorphisms. This makes it possible
to use Lemma 13.

Proposition 19. For any T > 0, WT := ϕ−T (W) is a tubular
neighborhood of S in DA. That is, there exists a diffeomorphism
fT : NS → WT such that fT

⏐⏐
0̄S

= ιS .

Proof. Obviously f = ϕ−T
◦ fo is a diffeomorphism from NS to

WT with 0x ∈ 0̄S ↦→ ϕ−T (x). Now we need to ‘‘rectify’’ the map.
Denote by fS the restriction of f on 0̄S . Then j1 = f −1

◦ ϕT
◦ fS is

a map mapping 0̄ diffeomorphically to 0̄ . Let j = f −1
◦ϕs·T

◦ f
S S s S

4

for s ∈ (−δ, 1 + δ) and then j : 0̄S × (−δ, 1 + δ) → NS is an
isotopy such that j0 is the inclusion map, and f ◦ j1 = ιS on 0̄S .

Note that g = ϕ ◦ f with g(x, t) = ϕt
◦ f (x) is a smooth map

from NS × R to DA. Since ϕ[−δ,1+δ]·T
◦ f (0̄S ) = S ⊆ WT and

[−δ, 1 + δ] · T is compact, there exists an open neighborhood U
of 0̄S in NS such that ϕ[−δ,1+δ]·T

◦ f (U) ⊆ WT . Moreover, for any
fixed s ∈ [−δ, 1 + δ], ϕs·T

◦ f (·) is an injective submersion, and
hence a smooth embedding. Define

h : U × (−δ, 1 + δ) → NS

h(x, s) = f −1
◦ ϕs·T

◦ f (x),

which is an isotopy with h0 being the inclusion map of U into
NS and hs

⏐⏐
0̄S

= js. Then by Lemma 13, there exists a diffeotopy
H : NS × (−δ′, 1 + δ′) → NS for δ′

∈ (0, δ) such that H agrees
with h on U0 × (−δ′, 1+ δ′) for some open neighborhood U0 of S.

Let fT = f ◦ H1 and this is a diffeomorphism between NS and
WT . Moreover, restricted on S , fT = f ◦ h1 = f ◦ j1 = ιS . Hence,
fT : NS → WT is a tubular neighborhood. □

Since the domain of attraction DA is a smooth manifold with
the second countability, there exists an ascending chain of com-
pact subsets K0 ⊆ K1 ⊆ · · · such that

⋃
i∈N Ki = DA. Choose

0 < T0 < T1 < · · · such that

Wi := ϕ−Ti (W)

contains Ki for each i and that W i ⊆ Wi+1. This is possible due to
the precompactness of W . By Proposition 19, there exist tubular
neighborhoods fi : NS → Wi for all i ∈ N. The strategy to
prove Theorem 1 is to construct by induction an ascending chain
of compact subsets C0 ⊆ C1 ⊆ · · · with tubular neighborhoods
gi : NS → Wi ‘‘rectified’’ from fi such that gi(Ci) ⊇ Ki, gi+1
grees with gi on Ci and

⋃
i Ci = NS . Then the theorem follows

y defining a map g : NS → DA with g = gi on Ci.

heorem 20. There exists a diffeomorphism g : NS → DA such
hat g

⏐⏐
0̄S

= ιS .

roof. Let K0 ⊆ K1 ⊆ · · · be an ascending chain of compact
ubsets such that

⋃
i∈N Ki = DA and K0 ⊇ S. Since W is

recompact in DA, ϕ−T (W) is precompact for any T > 0 in DA.
hen by Proposition 18 we can choose inductively 0 < T0 < T1 <
· · such that W i ∪ Ki+1 ⊆ Wi+1. According to Proposition 19, for

each i ∈ N, there is a diffeomorphism fi : NS → Wi such that
fi(0x) = x for all x ∈ S . Now we construct {(gi, Ci) : i ∈ N} with
Ci being compact sets in NS and gi : NS → Wi being tubular
neighborhoods such that

(i) Ci ⊆ int Ci+1;
(ii) gi(Ci) ⊇ Ki;
(iii) gi+1

⏐⏐
Ci

= gi
⏐⏐
Ci
;

(iv)
⋃

i∈N Ci = NS ;

Take g0 = f0 and C0 = BEr0 with r0 large enough such that
Er0 ⊇ g−1

0 (K0). Let j1 = f −1
1 ◦ g0. Then j1 : NS → NS is a

ubular neighborhood of 0̄S in NS and f1 ◦ j1 = g0. According to
emma 17, there is a bundle isomorphism β1 : NS → NS such
hat β1 agrees with j1 on C0. Let g1 = f1 ◦ β1. Then g1 : NS → W1
s a diffeomorphism and g1 = g0 on C0. Take r1 large enough such
hat r1 > 2r0 and C1 = BEr1contains g−1

1 (K1).
Suppose that for n ∈ N, An = {(gi, Ci) : 0 ≤ i ≤ n} such that

(i), (ii), (iii) are satisfied and Cn = BErn with rn > 2nr0. Let jn+1 =
−1
n+1 ◦ gn. Then jn+1 : NS → NS is a tubular neighborhood of 0̄S in
S . Again, according to Lemma 17, there exists a diffeomorphism
n+1 on NS such that βn+1 = jn+1 on Cn. Set gn+1 = fn+1 ◦ βn+1

and then gn+1 = gn on Cn. Pick a positive number rn+1 such that
−1
rn+1 > 2rn and Cn+1 = BErn+1 ⊇ gn+1(Kn+1). Then An+1 =
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n ∪ {(gn+1, Cn+1)} again satisfies (i), (ii), (iii) with rn+1 > 2n+1r0.
y induction we have {(gk, Ck) : k ∈ N} satisfying (i), (ii), (iii) with
k > 2kr0 for all k ∈ N.

Define g : NS → DA with g
⏐⏐
Ci

= gi
⏐⏐
Ci

for all i ∈ N. Then g
is well defined and Im g = DA due to (ii) and (iii) respectively.
Moreover, since the maps gi are diffeomorphisms and

⋃
i int Ci =

S , g is a local diffeomorphism. It is also obvious that (iv) is
atisfied. For any p, q ∈ NS , there exists i such that Ci contains p
nd q. Then g(p) = g(q) H⇒ gi(p) = gi(q) H⇒ p = q. Hence g is
lso injective. Therefore, g is a diffeomorphism from NS onto DA.
oreover, since K0 is chosen to contain S in the beginning and

0 keeps the zero section (i.e., g(0x) = x for all x ∈ S), C0 ⊇ 0̄S .
herefore g

⏐⏐
0̄S

= g0
⏐⏐
0̄S

= ιS , which concludes the proof. □

emark 21. In the argument above, the vector field X is assumed
o be complete and then the flow γ exists for all t ∈ R. In the
eneral case where X is not necessarily complete, we can resort
o the existence of a complete Riemannian metric on the manifold

[13]. For any point p ∈ M, denote by |Xp| the norm of the
ector Xp at p with respect to such a Riemannian metric. Then
he vector field Y =

X
1+|X |2

is a complete vector field on M since
Y| is bounded and the Riemannian metric is complete. Moreover,
ince the phase portraits of X and Y are the same [14, Proposition
.14], S is still a compact asymptotically stable attractor under
he flow of Y with the same domain of attraction as that under
he flow of X . ◁

. Two counterexamples

In this section, we illustrate two counterexamples to show
hat the original claim of Wilson’s theorem is inaccurate in the
ases with non-compact attractors. The first counterexample is
resented in Section 4.1. The idea of constructing the counterex-
mple is straightforward, but it usually involves an incomplete
iemannian manifold as the ambient space. Nevertheless, another
ounterexample in Section 4.2 involves a complete Riemannian
anifold as the ambient space. The idea of the counterexample

s to present two topologically equivalent dynamical systems,
here the domains of attraction of the non-compact attractor are
ot homotopy equivalent. As a result, the domain of attraction
f the non-compact attractor of either of the system is of a
ifferent homotopy type from its tubular neighborhood. Note that
ll the vector fields of the dynamical systems in this section are
omplete; i.e., solutions exist for all t ∈ R.

.1. M is an incomplete Riemannian manifold

(The original) Wilson’s theorem states that the domain of
ttraction of a uniformly asymptotically stable attractor, be it a
ompact or non-compact manifold, of a complete autonomous
ystem is diffeomorphic to its tubular neighborhood. While the
rgument in Section 3 holds for a compact attractor S , it does not
old for a non-compact attractor, since Proposition 18 may be in-
alid when the attractor is non-compact. More specifically, when
is non-compact, it is possible that none of its tubular neighbor-
ood contains any ϵ-neighborhood of S. To see this, note that if

we take out one point from a submanifold, the ϵ-neighborhood
of the new submanifold will only miss one point compared to
that of the original submanifold, while its tubular neighborhood
(viewed as a vector bundle) would lose the whole fiber over the
missing point. Exploiting this observation, we can construct a
counterexample by starting with a compact asymptotically stable
attractor and then taking one fixed point out of it.
5

Example 22. Start with the smooth function f̄ (x) = (dist(x, S1))2
on R2 and let X̄ = − grad f̄ . This system has the unit circle S1

⊆
2 as the asymptotically stable attractor, and all points on S1 are
ixed points. Now consider the state space M = R2

−{(1, 0)}. Let
S = S1

− {(1, 0)}. It is a closed set and also a submanifold of M,
but it is non-compact. Let f be the function on M such that f (x) =

dist(x, S))2. The function f is the restriction of f̄ on M, and hence
it is smooth. The vector field X = − grad f is then the restriction
of X̄ on M, and it has S as an attractor, which is uniformly
asymptotically stable. The domain of attraction is M − {(0, 0)},
hich is not contractible. However a tubular neighborhood of S

is homeomorphic to S × R, which is contractible. ◁

4.2. M is a complete Riemannian manifold

In this section we demonstrate a dynamical system (M, ϕ)
where the state space M is a complete Riemannian manifold
and the asymptotically stable attraction S is not compact. Instead
of directly showing the construction of the flow map ϕ on M,
we first construct an auxiliary system (M0, ϕ0), and then obtain
(M, ϕ) via a topological conjugacy [15, Chapter 2] h : M0 → M.
As an extra benefit to be seen later, such a demonstration shows
that when the attractor is non-compact, its uniform asymptotic
stability is rather a ‘‘geometric’’ concept than a ‘‘topological’’
one. Namely, even if two dynamical systems are topologically
conjugate, properties concerning the uniform asymptotic stability
of the systems may not be (fully) preserved by the conjugacy.

4.2.1. The auxiliary system (M0, ϕ0)
Let

M0 = {(x, y, z) ∈ R3
: x2 + z2 = 1}

and

S0 = {(x, y, z) ∈ M0 : x = 0, z = 1}.

Endow M0 with the Riemannian metric g0 induced by the stan-
dard Riemannian metric (dx)2+(dy)2+(dz)2 on R3. Then (M0, g0)
is a complete Riemannian manifold with the distance dM0 .

Let Y0, Z0 be the vector fields on M0 defined by

Y0(x, y, z) =

{
e−

1
y ∂

∂y

⏐⏐
(x,y,z) y > 0

0 y ≤ 0

and

Z0(x, y, z) = x ·

(
x

∂

∂z
− z

∂

∂x

) ⏐⏐⏐
M0

.

Let X0 = Y0 + Z0 and denote by ϕ0 the flow of X0 on M0. Then
S0 is a uniformly asymptotically stable manifold of the dynamical
system (M0, ϕ0) with its domain of attraction being

D0 = {(x, y, z) ∈ M0 : z > −1}.

The following characterization of the stability of S0 will be needed
later. Namely, given any a > −1 with W ′

z>a = M0 ∩ {(x, y, z) ∈

M0 : z > a}, corresponding to each ϵ > 0, there exists some
Tϵ > 0 such that dM0

(
ϕ

[Tϵ ,+∞)
0 (W ′

z>a), S0
)

< ϵ. To see this, denote
by (x′

t , y
′
t , z

′
t ) the orbit ϕt

0(p
′) for p′

= (x′, y′, z ′) ∈ M0. Then
(x′

t , z
′
t ) ⊆ S1 is subject to the equation

d
dt

(x′

t , z
′

t ) =
(
−x′

tz
′

t , x
′

t
2)

. (2)

Note that the dynamical system (2) on S1 has the point q′

0 =

(0, 1) as an asymptotically stable equilibrium with the domain of
attraction {(x, z) ∈ S1

: z ̸= −1}. Hence for any ϵ > 0, there exists
T ′ > 0 such that for any t ≥ T ′ and q′

= (x′, z ′) ∈ S1 with z ′
≥ a,
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ist
(
φt (q′), q′

0

)
< ϵ, where dist is the distance on S1 measured by

lengths of minor arcs, and φ is the flow of (2). Therefore,

dM0

(
ϕt
0(x

′, y′, z ′), S0
)

≤ dist
(
φt (x′, z ′), q′

0

)
< ϵ

for all t > T ′ and (x′, y′, z ′) ∈ W ′
z>a. Moreover, dist(φt (q′), q′

0) ≤

ist(q′, q′

0), and then

M0 (ϕ
t
0(x

′, y′, z ′), S0) ≤ dist
(
(x′, z ′), q′

0

)
= dM0

(
(x′, y′, z ′), S0

)
.

(3)

For a point (0, y, −1) ∈ M0 − D0 with y ≤ 0, it holds that
X0

⏐⏐
(x,y,z) = 0. For any y > 0,

X0
⏐⏐
(0,y,−1) = Y0

⏐⏐
(0,y,−1) = e−

1
y

∂

∂y

⏐⏐⏐
(0,y,−1)

, (4)

mplying
t
0(0, y, −1) = (0, γ (t), −1) (5)

ith

˙ (t) = e−
1

γ (t) > 0. (6)

herefore, both γ (t) and γ̇ (t) increase strictly with respect to
> 0.

.2.2. The system (M, ϕ)
Now we construct the dynamical system (M, ϕ) which will

erve as a counterexample. More specifically, a vector field X
n some Riemannian manifold (M, g) is to be constructed with
uniformly asymptotically stable submanifold S of which the
omain of attraction D is not homotopy equivalent to S itself.
Let

(y) =

{
1 − e−

1
y y > 0

1 y ≤ 0.

et M be the two-dimensional cylinder embedded in R3 defined
y

= {(x, y, z) ∈ R3
: x2 + z2 = r(y)},

and let

S = {(x, y, z) ∈ M : x = 0, z =

√
r(y)}.

hen S is an embedded submanifold and a closed subset in
. Endowed with the Riemannian metric gM induced by the

standard Riemannian metric g = (dx)2 + (dy)2 + (dz)2 on R3, M
is a complete Riemannian manifold. Note that although the Rie-
mannian metric gM is induced by g , the corresponding distance
dM on M is not the restriction on M of the Euclidean distance
d on R3. Generally speaking, it holds that dM(p, q) ≥ d(p, q) for
p, q ∈ M. However, the topology τM induced by dM on M is
exactly the subspace topology inherited from R3, meaning that
M is also the same as the topology induced by (the restriction
f) d. Then, if a sequence {pn} on M is a Cauchy sequence with
espect to dM, it is also a Cauchy sequence with respect to d. Due
to the completeness of R3 and the closedness of M in R3, there
exists p̄ ∈ M such that pn

d
−→ p̄ (i.e., the sequence {pn} converges

to p̄with respect to the metric d). Since dM and d induce the same
topology on M, this implies that pn

dM
−−→ p̄ (i.e., the sequence

{pn} converges to p̄ with respect to the metric dM), ensuring the
completeness of (M, dM).

The map h : M0 → M defined by

h(x, y, z) =
(√

r(y) · x, y,
√
r(y) · z

)
is a diffeomorphism between the pairs (M0, S0) and (M, S). Here,
e define X to be the vector field on M related to X by h. That
0

6

s, X = h∗(X0), where h∗ : TM0 → TM is the tangent map. Let ϕ

e the flow of X on M. Then h is a conjugacy between the flows
ϕ0 and ϕ. That is, the identity h◦ϕ0 = ϕ◦h holds, or equivalently,

ϕt (p′′) = h ◦ ϕt
0 ◦ h−1(p′′) (7)

for all p′′
∈ M.

Note that for a point p′
= (x′, y′, z ′) on M0, the distance

dM0 (p
′, S0) is exactly the length of the minor arc on the circle

M0∩{(x, y, z) ∈ R3
: y = y′

} between p′ and (0, y′, 1). Meanwhile,
for a point p′′

= (x′′, y′′, z ′′) = h(p′) on M, the distance dM(p′′, S)
is no larger than the length of the minor arc on the circle M ∩

{(x, y, z) ∈ R3
: y = y′′

} between p′′ and
(
0, y′′,

√
r(y′′)

)
. With

r(y) ≤ 1, this implies

dM
(
h(p′), S

)
≤ dM0 (p

′, S0)

for all p′
∈ M0. Combined with (7), it yields the following

inequality:

dM
(
ϕt (p′′), S

)
= dM

(
h◦ϕt

0◦h
−1(p′′), S

)
≤ dM0

(
ϕt
0◦h

−1(p′′), S0
)
.

(8)

Since h−1 maps D̃0 := {(x, y, z) ∈ M : z > −1} diffeomorphically
to D0, it implies that as t → +∞, dM

(
ϕt (p), S

)
→ 0 for all p ∈

D̃0. However, if S is an attractor, then the domain of attraction of
S should be

D = D̃0 ∪ {
(
0, y, −

√
r(y)

)
: y > 0}.

o see this, first note that for any point p′′
= (x′′, y′′, z ′′) in

{
(
0, y, −

√
r(y)

)
: y > 0},

ϕt (p′′) =h ◦ ϕt
0 ◦ h−1(p′′)

=h ◦ ϕt
0(0, y

′′, −1)
=h(0, γ ′′(t), −1)

=
(
0, γ ′′(t),

√
r ◦ γ ′′(t)

)
,

where dγ ′′

dt > 0. Then from (6) we can deduce that γ ′′(t) and dγ ′′

dt
oth strictly increase with respect to t . Hence dM(ϕt (p′′), S) ≤
√
r ◦ γ ′′(t) → 0 as t → +∞. Meanwhile, for any point p ∈ M−

D, i.e. p = (0, y, −1) with y ≤ 0, X |p = h∗(X0|p) = 0, and hence
p stays stationary under the flow ϕ. Therefore, if p′′

∈ M, then
ϕt (p)

dM
−−→ S as t → ∞ if and only if p′′

∈ D. Since D contains
circles in the form of {(x, y, z) ∈ R3

: x2 + z2 = r(y), y > 0} in
M, its fundamental group is non-zero and hence is not homotopy
equivalent to S.

To show that this is a counterexample, it remains to prove
that S is indeed a uniformly asymptotically stable manifold of the
system (M, ϕ).

We first show the uniform attractiveness of S. Let

W := {(x, y, z) ∈ M : z > 0} ∪ {(x, y, z) ∈ M : y > 1}.

We will first show that W contains some α-neighborhood Nα of
S for some α > 0, and then show that for each ϵ > 0, there exists
some Tϵ > 0 such that dM

(
ϕ[Tϵ ,+∞)(W), S

)
< ϵ.

To see that W contains some α-neighborhood of S , we only
need to show that there is a positive distance between its com-
plement Wc and S. Note that

Wc
= {(x, y, z) ∈ M : z ≤ 0, y ≤ 1} = C ∪ K

with

C := {(x, y, z) ∈ M : z ≤ 0, y ≤ −π}

and

K := {(x, y, z) ∈ M : z ≤ 0, −π ≤ y ≤ 1}.
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hen K is compact and C is closed in M, and C∩S , K∩S are both
empty. Since (M, gM) is a complete Riemannian manifold with
the distance dM, it holds that dM(S,K) > 0 as a consequence
of the disjointedness of a closed subset and a compact subset.
To see that dM(S, C) > 0, note that dM(Sy≤0, C) = π/2 and
M(Sy≥0, C) ≥ π , where Sy≤0 := S ∩ {(x, y, z) ∈ R3

: y ≤ 0}
nd Sy≥0 := S ∩ {(x, y, z) ∈ R3

: y ≥ 0}. Then for any 0 < α <

in{dM(S,K), dM(S, C)}, there holds Nα ⊂ W .
Now we proceed to show that for any ϵ > 0, there exists

ϵ > 0. Denote by Wz>0 the set {(x, y, z) ∈ M : z > 0} and
y Wy>1 the set {(x, y, z) ∈ M : y > 1}. Then W = Wz>0 ∪ Wy>1.
ote that for each point p = (x, y, z) ∈ Wy>1, X |p takes the form

p
∂
∂x + e−

1
y ∂

∂y + cp ∂
∂z , and therefore, Wy>1 is an invariant open

set of the system (M, ϕ). It holds that ϕt (p) =
(
xt , yt , zt

)
with

dyt
dt > e−1 for any p ∈ Wy>1. Choose T ′′ to be some positive
umber large enough such that r(e−1

· T ′′) < (ϵ/π )2. Then for
any t ≥ T ′′ and p ∈ Wy>1, it holds that r(yt ) < r(e−1

· T ′′) and
herefore dM

(
ϕt (p), S

)
≤ π

√
r(yt ) < ϵ. To see that the points in

Wz>0 converge uniformly towards S , first note that h−1(Wz>0) =
′

z>0 = M0 ∩ {(x, y, z) ∈ R3
: z > 0}. Then combined with (8),

t holds dM
(
ϕ[T ′,+∞)(Wz>0), S

)
< ϵ for some T ′ > 0. Finally, one

nly needs to choose Tϵ to be min{T ′, T ′′
} and the argument for

the uniform attractiveness is complete.
Now it remains to prove the stability of S , for which we need

to show that ∀ϵ > 0, ∃δ > 0 such that ϕT (Uδ) ⊆ Uϵ for any T > 0.
Here, Uϵ and Uδ stand for the ϵ− and the δ− neighborhoods of S
respectively.

Note that for any δ′ > 0, there is some y0 > 0 large enough,
such that all points (x, y, z) ∈ M with y ≥ y0 are in Uδ′ .
Moreover, the subset V≥y0 := {(x, y, z) ∈ M : y ≥ y0} is forward
invariant under the flow ϕ. Therefore, we choose δ′ < ϵ and then
ϕt (V≥y0 ) ⊆ Uϵ for all t ≥ 0.

For the compact subset V[0,y0] := {(x, y, z) ∈ M : y ∈ [0, y0]},
note that h maps h−1(V[0,y0]) homeomorphically to V[0,y0], and
then there is some constant c > 1 such that dM0 (p, q) < c ·

dM(h(p), h(q)) holds for any p, q ∈ h−1(V[0,y0]). For the subset
V≤0 := {(x, y, z) ∈ M : y ≤ 0}, the subset h−1(V≤0) of M0 is
identical to the set V≤0 and h (restricted on V≤0) is merely the
identity. Hence dM0 (p, q) = dM(p, q) for all p, q ∈ V≤0. Now we
choose δ′′ > 0 such that c · δ′′ < ϵ. Then for any p′

∈ V≤0 ∪ V[0,y0]

with dM(p′, S) < δ′′, by combining (3), (7) and (8), we have

dM(ϕt (p′), S) ≤ dM0 (ϕ
t
0(h

−1(p′)), S0) ≤ dM0 (h
−1(p′), S0)

≤ c · dM(p′, S) ≤ ϵ.

ake δ = min{δ′, δ′′
} and then the proof is done.

5. Conclusion

In this paper, we have revisited Wilson’s theorem about the
relation between the domain of attraction of an attractor and
its tubular neighborhood. Specifically, we show with detailed
and rigorous proofs that the domain of attraction of a compact
asymptotically submanifold of a finite-dimensional smooth man-
ifold of a continuous autonomous system is homeomorphic to its
tubular neighborhood. We emphasize that the compactness of the
attractor is crucial, without which Wilson’s theorem cannot hold.
7

This is shown by two counterexamples where the attractor is not
compact and the state space is either complete or incomplete.
This work is of great interest to the studies on characterizing
domains of attraction. For example, the main results may be used
for refining the topological conclusions or showing the existence
of singular points in the robotic path following problem [8,16,17].
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