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Analysis of Neural Network Based Proportional
Myoelectric Hand Prosthesis Control

Michael Wand , Associate Member, IEEE, Morten B. Kristoffersen , Andreas W. Franzke ,
and Jürgen Schmidhuber

Abstract—Objective: We show that state-of-the-art deep
neural networks achieve superior results in regression-
based multi-class proportional myoelectric hand prosthesis
control than two common baseline approaches, and we
analyze the neural network mapping to explain why this
is the case. Methods: Feedforward neural networks and
baseline systems are trained on an offline corpus of 11
able-bodied subjects and 4 prosthesis wearers, using the
R2 score as metric. Analysis is performed using diverse
qualitative and quantitative approaches, followed by a rig-
orous evaluation. Results: Our best neural networks have
at least three hidden layers with at least 128 neurons per
layer; smaller architectures, as used by many prior studies,
perform substantially worse. The key to good performance
is to both optimally regress the target movement, and to
suppress spurious movements. Due to the properties of the
underlying data, this is impossible to achieve with linear
methods, but can be attained with high exactness using
sufficiently large neural networks. Conclusion: Neural net-
works perform significantly better than common linear ap-
proaches in the given task, in particular when sufficiently
large architectures are used. This can be explained by
salient properties of the underlying data, and by theoretical
and experimental analysis of the neural network mapping.
Significance: To the best of our knowledge, this work is the
first one in the field which not only reports that large and
deep neural networks are superior to existing architectures,
but also explains this result.

Index Terms—Electromyography, machine learning, neu-
ral networks, prosthesis.
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I. INTRODUCTION

R ECENT years have seen major improvements in the de-
velopment and commercialization of electric hand pros-

theses which are capable of performing complex movements
involving a large number of degrees of freedom (DOF). A
common method to obtain control signals for such prostheses
is based on surface electromyography (EMG) [1], where small
electrical currents are captured from the residual muscles in the
arm stump via electrodes which are built into the prosthesis
socket. Unfortunately, it is still an open question how to obtain
optimal control signals for these highly dexterous prostheses.
Conventional devices, which have been in widespread use for
years, are based on a direct control scheme: A pair of electrodes
is attached to two antagonist muscles, allowing straightforward
proportional control of one degree of freedom [2]. In order to
switch between functions of the prosthesis (e.g. wrist rotation
vs. grips), a special signal (usually a co-contraction of muscles)
must be performed. While this method is conceptually simple,
users nonetheless describe it as “too time consuming, unreliable,
non-intuitive, and mentally exhausting” [3]. Furthermore, it does
not allow to control multiple DOFs simultaneously.

In the past years, more sophisticated electromyographic con-
trol schemes have been researched [5]–[8] and brought to the
market (e.g. [9]). These systems are based on pattern recogni-
tion: The user performs a phantom movement corresponding
to the desired prosthesis action, and a machine learning (ML)
system translates the observed myoelectric signals to a motor
command to be executed by the prosthesis. An easy way to
achieve simultaneous proportional control of multiple DOF is
to treat this task as a regression problem, i.e. as a mapping from
EMG frames to real-valued vectors [10].

Over the past few decades, deep learning based on neural
networks (NN) has become the method of choice for solving a
large variety of complicated classification and regression prob-
lems [11], [12]. NNs have been applied to myoelectric prosthesis
control [13]–[17], but usually with very small NN topologies,
only very recently, larger networks [18], [19] and specialized
topologies [20] have been employed. Little work has been done
on systematically comparing state-of-the-art NN regressors, in
particular using large neural networks with several hidden layers,
with the linear baseline systems, and on explaining why the
former yield superior performance compared to the latter.

The present study aims to fill this gap: We systematically
optimize a state-of-the-art feedforward neural network, trained
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Fig. 1. Overview of the processing pipeline for EMG-based prosthesis control (image of electrode ring taken from [4] under the terms of the CC
BY license).

TABLE I
COMPARISON OF CLASSIFICATION AND REGRESSION SETUP FOR ML-BASED

PROSTHESIS CONTROL

∗ can be performed separately.

as a nonlinear regressor from EMG features to movement
commands, and analyze the mapping it performs. We compare
this network to two baseline systems (linear regression and
LDA-based classification), showing not only that the NN has
indeed superior performance, but also explaining why this is
the case. To the best of our knowledge, the latter is a genuinely
new contribution in the field of NN-based myoelectric prosthesis
control; we likewise believe the optimization part to be extensive
and useful to researchers and practitioners alike.

We consider both single and simultaneous movements. Our
evaluation metric is the R2 score [21] on an offline corpus taken
from [22] of 15 subjects, 4 of whom are transradial amputees,
and 11 are able-bodied. While it is acknowledged that the
offline performance of a myoelectric controller does not fully
correspond to the usability of the prosthesis [23], it nonetheless
is efficient for comparing a large number of different systems;
for a presentation of our full system, including user studies and
training, we refer to the companion paper [24].

II. RELATED WORK

While the first myoelectric hand prosthesis has been devel-
oped as early as during the 1940’s ([25], cited according to
[26]), here we focus on more contemporary work, considering
only techniques based on pattern recognition. Two categories of
systems have been presented in literature, Table I presents an

overview of their key properties; Fig. 1 displays the processing
chain graphically.

Classification-based systems translate every (preprocessed)
EMG frame into one of several movement classes, e.g. wrist
rotations, grips, etc. Linear Discriminant Analysis (LDA) is
commonly used as classifier due to its simplicity, the possibility
of real-time implementation, and its relatively good performance
[22], [27]–[30]. Other linear methods have occasionally been
applied, e.g. Common Spatial Patterns [31], as well as nonlinear
approaches, e.g. Quadratic Discriminant Analysis [32]. Neural
networks (NN) have likewise been used as classifiers [33]. The
contraction level is estimated separately, for example directly
from the EMG signal energy, or (better) by regressing on the
basis of some nonlinear feature derived from the raw EMG
signal, e.g. the root mean square [16], [30]. While this method
provides natural and intuitive control and scales well in the
number of possible movements, it still does not allow to control
several DOF simultaneously, since only one movement is even
recognized at a given time step. In order to overcome this lim-
itation, somewhat complex setups for multi-way classification
have to be devised [28], [34].

Second, one can consider the mapping between EMG frames
and control commands as a regression task, which means that
the system outputs a vector of movement commands for each
input frame. This is a natural way to allow simultaneous propor-
tional control of multiple DOF, additionally, it has been shown to
be more robust to signal nonstationarities than the classification
approach [10]. Linear Regression is the most straightforward
choice for this task, its performance can be substantially en-
hanced by using well-chosen EMG features [16], or by using
kernel methods [17]. Neural networks have been applied [13],
[15]–[17] using very small network topologies with only one
hidden layer.

ML-based systems require annotated training data, i.e. train-
ing data with target movement labels, in order to bootstrap the
system. In the case of able-bodied control subjects, it is easy to
measure the movement which the user performs, for example
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by force/torque transducers [13], or even by manually or auto-
matically annotating a visual recording of the data collection.
For prosthesis wearers, this method is clearly not possible. A
common idea for unilaterally amputated subjects consists in the
subjects mirroring the intended movement with the healthy arm
[15], [33]. Alternatively, one gives heuristic real-time feedback
during the recording process [16], [31]. This latter method was
also used for this study, it has the advantage of also working for
bilateral amputees.

Finally, when the prosthesis is re-donned, the pretrained ML
system may not exactly fit the new recording conditions, due
to slight position shifts, environmental conditions, etc. Several
methods to efficiently adapt the system to the new setup have
been presented, often relaxing the requirement to have exact
data annotations for the adaptation data (unsupervised or semi-
supervised adaptation) [32], [35]–[37].

III. DATA CORPUS AND PREPROCESSING

Corpus Our experiments are based on a data corpus of 15
subjects, namely 11 able-bodied persons (subjects 1 – 11) and 4
amputees (subjects 12 – 15). This corpus was first presented in
[22], where we refer the reader for further details. The recording
protocol was as follows.

8 equally spaced double differential electrodes were placed
around the forearm of the subject, at approximately 6.5 – 7 cm
distance to the elbow. For each amputee, an individual hard shaft
prosthesis socket housing the electrodes was manufactured;
for the able-bodied subject, a standard commercially-available
electrode ring (13E200 = 50AC Otto Bock Healthcare Products
GmbH, Vienna, Austria) was used. For able bodied subjects,
recordings were performed on five different days; on each day,
three sessions were recorded, where the electrodes were rotated
with a shift of ±8 mm between the sessions. For amputees,
10 sessions were collected on 5 days, where the position of
the electrodes varied naturally, an exact repositioning was not
possible since the prosthesis socket covered the electrodes.
Recordings were performed at a sampling rate of 1 kHz; the
total corpus length is slightly above 34 hours.

A session consists of 120 sample recordings, each of which
lasts 5 seconds. For each recording, the user was prompted to
perform one out of seven movements, namely fine pinch, hand
open, key grip, wrist extension, wrist flexion, wrist pronation,
wrist supination, or to keep the arm in a resting position (no
movement). In the case of actual movements, the user was
asked to perform a trapezoidal contraction trajectory, reaching
a maximum contraction level of 30%, 60%, or 90% MVC; a
corresponding reference line was shown to the subject along
with the RMS value across all EMG channels as biofeedback.
The subjects were asked to follow the trapezoidal reference lines
as well as possible, so that the contractions would be consistent
and repeatable.

Data Augmentation Since the original corpus does not con-
tain EMG recordings of simultaneous movements, we simulate
these as follows. Movements are exclusive within any of the
three groups: a) grips (fine pinch, key grip, hand open), b)
wrist extension/flexion, c) wrist pronation/supination. However

movements from two different groups can be freely combined;
we did not consider combinations of three movements. Thus,
for example wrist pronation combined with a key grip would
be a valid combination. For each possible combination of two
movements, we randomly chose two corresponding sample
movements from the corpus and summed the raw EMG signals
for each channel, thus simulating a combined movement. Note
that the two movements can have different maximum contrac-
tion levels. This data augmentation approximately doubled the
corpus size, i.e. around half the samples in the final corpus are
the original single movements, the other half are simultaneous
movements. It has been demonstrated experimentally that EMG
signals behave approximatively linearly when overlaying inde-
pendent contractions [38].

Features To compute features from single or simultaneous
movements, each EMG channel is windowed into overlapping
windows of 128 ms with a step size of 50 ms; in a real-time
application this allows to transmit control commands at 20 Hz
with less than 200 ms delay. We experimented with a set of
time-domain features following Hudgins [39] (mean absolute
value (MAV), zero crossing rate (ZC), waveform length (WL),
slope sign change (SSC)) and Hahne [16] (variance (VAR),
log-variance (LV), RMS). In order to keep the complexity of
our experiments under control, we refrained from using more
complex features, like autoregressive or wavelet coefficients
[13]. Since Hahne’s features, which are related to the original
Hudgins features by relatively simple transformations, did not
improve any of our systems (see Section V), we finally chose
the set of four Hudgins features as our standard feature set; thus
a standard feature vector has 4× 8 = 32 components. Features
of each recording session are z-normalized separately.

Data Splits Our systems are always subject-dependent. From
each recording session of a subject, 25% of the samples are
chosen for testing, while the remaining samples are used for
training the neural networks. The choice is performed in a strat-
ified manner, so that all single and all simultaneous movements
appear in both the training and the test subsets. Data from all
sessions of a subject is combined in both training and test.
Furthermore, data of 5 able-bodied subjects (#1,3,5,7,9) and two
prosthesis subjects (#12 and #15)1 are used for developing the
system and tuning parameters, data of the remaining subjects
were held back for final evaluation.

IV. MACHINE LEARNING BASED CONTROL SYSTEM

The ML control system consists of three components [24]:
(1) feature extraction, as described above, (2) computation of
movement commands from EMG features, (3) post-processing
of movement commands to improve usability and suppress
errors, applied only in online settings.

We use a feed-forward NN as a regressor to compute hand
movement commands from EMG features. The NN consists of
a series of hidden layers, each followed by a ReLU nonlinearity,

1Subject 15 was chosen to be in the development set because preliminary
evaluations had shown that this subject is a negative outlier regarding data quality,
thus making it interesting for our experiments.
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Fig. 2. Breakdown of test R2 scores for different network topologies, standard Hudgins features, corpus with and without simultaneous
movements. Averaged over development subjects.

and a final linear layer with seven target neurons for regression
to the seven possible movements.

Based on a series of preliminary experiments, we limit our
investigation to networks where all hidden layers have the same
number of neurons, thus we did not investigate “bottleneck” or
“funnel” style networks. We experimented with using dropout
in various configurations to improve the NN performance on the
test data, but did not observe any improvement; see Section V
for a further consideration. We likewise did not obtain improved
results by training our neural networks on raw EMG data, using
convolutional architectures as in [40] (for speech recognition).
Finally, we excluded recurrent neural networks (RNNs) from
our experiments since they did not yield any practical benefit,
neither in the offline evaluation nor in user studies; however
they required substantially more computations in training and
application, which may be detrimental if the system is deployed
on an embedded microcontroller. A further disadvantage of
RNNs could be their very capability of learning entire sequences
of movements: During system application, the RNN might be
biased towards movement sequences which occurred during
training.

The NN is trained with the ADAM optimizer [41] with
standard parameters. The training criterion is the Mean Squared
Error (MSE) between the regression output and the target. The
system evaluation is based on the R2 score, which derives from
the MSE; thus it makes sense to use the MSE as training target.
For this study, the algorithm was implemented in PyTorch [42].

When the system is applied in real-time (“online”) mode, the
regression output is processed as follows: First, when conflicting
movement commands (like wrist flexion and extension) occur,
the command with higher amplitude is kept. Second, a set of
postprocessors can be applied; in our experiments, the most
useful ones were thresholding of low-amplitude movements and
a low-pass (momentum) filter. For the offline evaluation in this
paper, no postprocessing was performed.

We compare the NN regressor with two baseline systems. The
first one applies linear regression from the EMG features to the
movement commands. The second one applies LDA as a move-
ment classifier, and linear regression to estimate the strength
of the movement [30], note that this method does not allow to
perform simultaneous movements. The baseline systems were
implemented in Scikit-Learn [43].

V. SYSTEM OPTIMIZATION

Fig. 2 displays a breakdown ofR2 scores for different network
topologies, with and without augmenting the data corpus with
simultaneous movements (always for both training and test data,
see section III). All results are averaged over the test sets of the
seven development subjects, unless indicated otherwise. Note
that the LDA cannot be applied for simultaneous movements.

A. Topology Optimization

As a first observation, we note that the R2 score is substan-
tially higher in the (simpler) case where only single movements
need to be recognized. Apart from this, the behavior is consistent
across both these data setups: Both linear methods, i.e. linear
regression and LDA, perform substantially worse than the neural
networks. The NNs improve with increasing size and depth, up
to approximately three layers with 128 neurons each; yet even a
single hidden layer with only 8 neurons offers substantial benefit.
In the remainder of this paper, the NN with three 128-neuron
layers will be our reference NN; its average R2 score over the
development subjects is 0.87 for single movements, and 0.77
for single and simultaneous movements. For future reference,
we also define a small architecture, namely an NN with one
hidden layer with 32 neurons, here the R2 scores are 0.81
and 0.68 for single and simultaneous movements, respectively.
Remarkably, increasing the size of the neural network does not
cause the system to degrade, as one observes is some other
machine learning tasks, where this is explained with the network
overfitting to the training data set.

For single movements, LDA gives much better results than
linear regression, yielding an R2 score of 0.70 compared to
0.56 for linear regression. The average accuracy of the LDA
classifier is 78% on eight classes including No Movement, which
is substantially better than chance level, but still means that
more than 1 in 5 frames is classified wrongly; for these frames,
the recognized prosthesis movement command is completely
off (which can however be ameliorated with a smoothing post-
processing, see section IV). This lack of graceful degradation
is a common property of many classifiers, it stems from the
discreteness of the class space and may be very relevant in online
applications, where the prosthesis user can adapt to errors of
the ML system [10]. Still, from the fact that LDA (a simple
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Fig. 3. Breakdown of R2 scores on training and test subsets for different subjects and two network topologies (small: one hidden layer with 32
neurons, reference: three hidden layers with 128 neurons), standard Hudgins features, corpus with and without simultaneous movements.

linear classifier) attains an accuracy of almost 80%, we can
deduce that the movement classes in feature space are quite
well separated; we cover this topic further in Section VI. We
finally report that LDA performs much better on high-amplitude
movements than on low-amplitude movements: On movement
frames with normalized amplitude greater or equal 0.5, the
average accuracy is 89%, whereas on movements with amplitude
below 0.5 (excluding the no movement class), the accuracy is
only 57%.

When training and testing with simultaneous movements, the
R2 scores are always lower than in the above single-movement
case. A further analysis of the results shows that the score is de-
cidedly better when testing is applied to the single movements in
the test corpus. For example, with the reference NN, the average
R2 score is 0.86 on single movements and 0.70 on simultaneous
movements. Yet, we obtain the encouraging result that regression
on the simultaneous movements is possible despite the increased
complexity of the task.

B. In-Depth Analyses

Having established the neural network system, we turn to a
further analysis of its performance. In a first step, we analyze
differences between the subjects, and we aim at understanding
how much the system overfits to the training data. Fig. 3 shows
a breakdown of training and test R2 scores for the development
subjects, considering two different network topologies (small
and reference) and the corpora with and without simultaneous
movements.

Subject 15, who is a prosthesis user, reaches low R2 scores,
in particular when using combined movements. Yet subject 12
is very good, despite likewise being an amputee. Thus even with
the small amount of data considered so far, we can conclude
that our method can be made to work not only on able-bodied
subjects, but also for prosthesis wearers. In general, the variation
between subjects is substantial; note that subject 12 had rather
ample experience in recording data for ML based prosthesis
control, whereas all other prosthesis subjects were novices.

We confirm that the larger (reference) network performs
consistently better than the small one. Notably, the performance
on the training data is not much higher than on the test data.

Consider the single-movement corpus: The average R2 scores
of the small NN are 0.82 and 0.81 for training and test data,
respectively: a difference of 1.2%. The reference NN achieves a
training score of 0.93 and a test score of 0.87 (6.5% difference).
Thus we can confirm some overfitting on the training data, in
particular for the larger reference network, which is what was
to be expected; yet the difference is not very large, compared
to other challenging machine learning tasks. This would also
explain why we did not observe an improvement when using
Dropout: Dropout improves the generalization capability of the
network, yet in our case, generalization is already quite good.

As a final evaluation and future reference, we now consider the
performance on diverse feature sets, always using the reference
NN. Fig. 4 shows average R2 scores on all single features,
as well as on the standard four-feature Hudgins set, and on a
feature set which combines all seven features defined in section
III. Augmenting the standard Hudgins features with Hahne’s
additional features does not yield any substantial benefit, thus
confirming our choice of using the former as the basis of our
experiments. In terms of single features, two of them (zero-
crossing rate and slope sign change) perform badly in isolation.
The other features perform more or less equal in the case of
single movements, the picture is more complicated when we
train and test on combined movements: here the MAV feature
performs comparatively badly across all subjects. This result is
clearly unexpected, however since feature optimization is not
the main focus of this paper, we leave its further investigation to
future work.

VI. SYSTEM ANALYSIS

Here, we analyse our trained systems, shedding some light on
why our systems behave in the way they do. We draw on results
from the previous section by always using the Hudgins features,
and by considering the reference architecture (3 hidden lay-
ers, 128 neurons/layer) and occasionally the small architecture
(1 hidden layer with 32 neurons).

A. Regression as a Linear Map

We first aim at understanding the most striking result from the
previous section, namely, we ask why linear regression performs
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Fig. 4. R2 scores on different single features, as well as on the standard Hudgins feature set and an extended feature set (see section III for
details), using the reference NN architecture. Averaged over development subjects.

Fig. 5. Analysis of the feature space, using standard Hudgins features. (a) Scatter plot of features in PCA space (two most relevant components),
for a typical subject (#1) and a badly performing subject (#15). Lighter color means greater contraction strength. (b) Explained variance per PCA
component on features from all movements, averaged over development subjects.

poorly on our task. It is helpful to consider the question from
a theoretical perspective first, noting that linear regression is a
linear mapping from the 32-dimensional feature space to the
7-dimensional “regression” space, with a bias which calibrates
the regression output and which we can mostly ignore for this
analysis. Each component of the regression vector is computed
as the scalar product between the input feature vector and a
weight vector. The entire mapping can also be written as matrix
product, where the mapping matrix is formed by the stacked
weight vectors.

It is sufficient to consider only the case of single movements.
Take the first movement (fine pinch) as an example: The fea-
tures corresponding to this movement need to be mapped to a
one-dimensional subspace of the regression space, namely, to
the space spanned by the target vector (1,0,0,0,0,0,0). Clearly,
the first component of the mapped features should reflect the
strength of the contraction which the user performed.

It is usually not hard to find such a mapping for any single
movement. Consider the left part of Fig. 5(a), which shows a
scatter plot of EMG features of the different movements for
the rather typical subject 1, using a projection to the two most
important principal components for visualization. The lightness
of each data point corresponds to the contraction level (the
lighter, the stronger). From the examples of the movements
hand extension (EXT) and hand flexion (FLEX), one con clearly
discern a direction along which the contraction level can be

easily recovered; the same is true for the other movements, even
if less discernible in the PCA space2.

We can verify this observation by the following experiment:
We filter the dataset so that it contains only samples of a
single movement, and then train a linear regressor with one-
dimensional output to recognize the contraction strength for this
movement only. In this way, we remove any effects which may
arise from the interference of several movements, which might
overlap in feature space. Averaged over all seven movements
(excluding the no movement class) and all seven development
subjects, this yields an R2 score of 0.81 on the test samples,
which is almost as high as with the optimal nonlinear neural
network system (0.87), and far higher than linear regression on
the entire dataset (0.56).

Thus it is proven that the difficulty lies in finding a mapping
which performs well for all seven movements simultaneously.
In particular, for perfect regression, the weight vectors for
the seven movements would have to be pairwise orthogonal
(otherwise activity from one movement “leaks” into the other
one). However, this condition alone is not enough to guarantee
separation of movements: Assuming two movements m and n
with corresponding weight vectors wm and wn, for good regres-
sion of movement m, its features need to have high variance

2Hand flexion and extension often have rather high amplitudes, so it is not a
coincidence that they appear clearly in PCA space.
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along direction wm and (almost) zero variance in direction wn.
Furthermore, the variation of the features in direction wm must
reflect the contraction strength.

Can such a condition be satisfied, at least approximately, for
all movements? The low performance of the linear regression
system demonstrates that this is not the case. Fig. 5 indicates
where the difficulties lie. First, while the features are 32-
dimensional, 80% of the variance is found in an 8-dimensional
subspace (as can be seen by summing up the values of the
first 8 bars in Fig. 5(b)), thus greatly limiting the choice of
possible weight vectors (this may have to do with the fact
that eight EMG electrodes were used, we do not investigate
this question here). Second, directions which optimally reflect
the contraction strength are by no means orthogonal between
movements, which can be visually discerned from Fig. 5(a)
and rigorously concluded from the different performances of
the single-movement and the full linear regressor.

From Fig. 5(a), it also becomes clear that each single move-
ment spans at least two dimensions in feature space. Mak-
ing the simplifying assumption that the entire data spans an
8-dimensional space, and that each movement spans a two-
dimensional subspace, it is clear that finding a perfect mapping
would mean that for each movement, one direction needs to
be mapped to the target, and another one to zero. Since the
mapping is surjective from 8 to 7 dimensions, all the directions
which are mapped to zero would have to be identical. From
Fig. 5(a), it is obvious that such a mapping is not possible. Still,
when training the linear regression system, the best possible
mapping is found, given the constraints. We have observed that
this mapping tends to focus on three to four movements which
are recognzied quite well, usually, hand flexion and extension
are in this group. For the other movements, the regression output
is almost constant, and the bias is calibrated such that the output
command is approximately 0.4 ...0.5 (i.e. the mean value of the
training target).

We finally note from Fig. 5(a) that at least for subject 1, the
classes are indeed quite well separated, confirming our earlier
observation derived from the LDA classification accuracy. Over-
lap occurs mostly at low contraction levels. From the case of
low-performing subject 15, it can be seen that the movements can
be much more intermingled than for subject 1; this is however
not a typical case and can be prevented by suitable user training
[4], [44], [45].

B. Nonlinear Mappings Solve the Problem

Having established why linear regression cannot solve the
given task very well, we turn our consideration to neural net-
works. Remember that the samples of a movement class in
feature space span at least two dimensions.

We aim at displaying the mapping graphically. For this pur-
pose, we plot a two-dimensional space at feature or regres-
sion level, where we filter the dataset to contain only a single
movement. At feature level, we obtain the plot space from the
two first PCA components, computed from all samples of the
respective movement. At regression level, the x-axis is the target
dimension, the y-axis corresponds to the first PCA component

Fig. 6. Mapping of diverse movements of subject 7 in PCA space, for
several regressors. Right column shows explained variances averaged
over all movements.

computed on the remaining components of the regression space
(the “spurious” space).

In feature space, we approximate each class distribution with
an ellipse whose axes correspond to the two main PCA directions
for this movement, scaled by the respective explained variance.
We orient the ellipse such that samples with low contraction
strength are at the left (blue color), and samples with high
contraction strength are at the right (red color). Note that this
approximation is not very accurate, since the class distributions
are not Gaussian – still, we will draw conclusions from examin-
ing how this ellipse is transformed by different NN architectures
and by linear regression.

We display how the class approximations are mapped by
diverse systems in Fig. 6, taking three movements (namely the
grips, and hand opening) of subject 7 as a typical example. All
systems were trained on single movements only. The first row
of the figure shows the ellipses in feature space, note that they
are aligned to the coordinate axes since both the coordinate
axes and the axes of the ellipse are taken from the PCA of the
features of that class. The size of the ellipse differs by class and
represents the feature amplitude.

The lower three rows show how these ellipses are transformed
by linear regression, and by two NNs (small and reference). In
the linear case, we see that the ellipses are scaled and rotated, but
retain their elliptical form. It is instructive to compare classes:
For Hand Open, we see that the mapped features are close to
one-dimensional in the regression space, and this one dimension
is almost aligned with the target direction (i.e. the x-axis).
However, the nonzero variance along the y-axis indicates that
some spurious movements are generated, and also that they are
correlated with the main movement; one could now analyze the
PCA in the “spurious” space to obtain further understanding
about which error is made by the mapping. The same applies for
the Key Grip movement, but the variance in the target direction
is not as large as it should be (the regression needs to span
an output range from 0.0 to 0.9, note that the mean output is
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calibrated by the NN bias), indicating that the strength of this
movement command is underestimated. A user would thus find
it difficult to achieve full force or velocity for the movement
Key Grip. In the case of Fine Pinch, we see that more activity
is created for spurious movements than for the target class. The
R2 score (over all classes) for linear regression is 0.53.

The small NN achieves a substantially betterR2 score, namely
0.77. This is reflected in the processing of the movement classes.
First, note that Key Grip now has substantially more variance
in the target direction. The ellipses get substantially distorted,
a common pattern is the compression of the second axis of the
ellipse (i.e. the first “spurious” direction) for strong contractions
(red-colored). This means that movements with strong contrac-
tion levels are well regressed to their target classes, with little
spurious activity. For low contraction strengths, we see a more
diverse pattern (but this may also be an artifact of the slightly
incorrect modelling of classes as two-dimensional Gaussians:
we have observed that the ellipses overestimate the variance of
the features at low contraction levels). Finally, the reference NN
reaches an R2 score of 0.85, and we see that the mapping is
much better in particular for lower contraction strengths (blue-
colored). In both cases, we also see that the contraction strength
(from blue to red) is well regressed to the target dimension.

The rightmost column of Fig. 6 displays the explained vari-
ance by PCA component in feature space (first row) and in
the target spaces (lower rows), averaged over all movements.
As before, in regression space, the first bar (’T,’ blue-colored)
corresponds to the target dimension, and the other bars repre-
sent PCA components along spurious dimensions. Clearly, the
larger the NN architecture, the more regression-level variance is
concentrated on the target dimension.

We can also confirm our observations numerically: Averaged
over all development subjects and all movements, the linear
regressor maps 48% of the total variance in regression space to
the target class, the remainder is mapped to spurious movements.
For the small NN, in contrast, 80% of the variance in regression
space is found along the target direction, and for the reference
NN, this number rises to 96%.

C. The NN Exhibits Localized Behavior

How does the NN achieve its mapping power? A major restric-
tion of linear mappings is globality, i.e. they behave identially
in their entire domain of definition. Nonlinear mappings can
instead be very different in different regions.

The NN always computes a mapping from the 32-dimensional
feature space to the 7-dimensional regression space, and we can
analyze it by computing its linearization at specific points in fea-
ture space. This linearization takes the form of a 32-dimensional
weight vector and is computed as the gradient of the NN at that
point, ReLU networks specifically are piecewise linear and thus
allow an even easier computation.

Fig. 7 shows linearizations of the regression mapping in
different regions, taking three movements of subject 7 as the
usual typical example. As before, all systems were trained on sin-
gle movements. Linearizations were computed for the “target”
movement Hand Open, the reference points for the linearization

Fig. 7. Linearization of the mapping for the target movement Hand
Open in different regions, for several regressors. Each panel shows the
linearization of the mapping as a 32-dimensional weight vector in feature
space, each column refers to the region of the features for a specific
source movement.

were the sample means of the features of the “source” move-
ments Fine Pinch, Hand Open, and Key Grip. The linearizations
are displayed as bar plots of weight vectors, note that as be-
fore, we can ignore the biases. Three systems were considered,
namely linear regression and the small and reference NNs.

Clearly, in the linear case the mappings for each movement
class are identical everywhere. The behavior of the neural net-
works is very consistent: the mapping is approximately zero
where target and source movements do not match (blue-colored
plots); the larger network achieves this optimal mapping more
accurately than the smaller one. Taking the square Euclidean
norms of the linearized mappings, we numerically verify this
observation by taking means over non-matching respectively
matching movements, and then computing the ratio between
these two numbers. Averaged over all development subjects, this
ratio is 0.07 for the small NN and 0.08 for the reference NN in
the case of single movement systems, when systems are trained
on single and simultaneous movements, the ratios are 0.45
and 0.15 respectively, indicating somewhat different behaviors
of these two setups. (By definition, the ratio is 1.0 for linear
systems.) We observed this pattern in a variety of configurations
and for all subjects. There are occasional exceptions where the
mapping for a specific movement responds also to (usually) one
different movement; we believe that this indicates an overlap of
movements in feature space.

D. Class Distributions are Nonlinearly Distorted

Finally, we ask whether the locality of the nonlinear map-
ping completely explains its superiority over linear regression.
While Fig. 7 clearly shows that non-matching movements are
approximately mapped to zero, strictly speaking this only holds
for the mean of the respective classes in feature space, which
is where we computed the linearization. Also, we do not know
much about how the features of the matching movements are
transformed.

It turns out that the nonlinear distortion of each class, which is
very evident in Fig. 6, plays a major role. We verify this by com-
paring the NN mapping with its linearization in the same way as
we did in section VI-B, i.e. by representing each movement class
with an ellipse and displaying the transformation it undergoes.
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Fig. 8. Linearized mapping of diverse movements of subject 7 in PCA
space, for the reference neural network. Right column shows explained
variances averaged over all movements.

The result is displayed in Fig. 8, again taking subject 7 (without
combined movements) and the reference NN as example.

From the figure, it is clear that the linearized mapping and the
full mapping are different, one sees this particularly in the case of
the movements Fine Pinch and Key Grip. Thus, the inner distor-
tion of each movement class clearly plays a role for performing
an optimal mapping. Yet, already from the linearized mapping,
we discern the dimensionality reduction between the input fea-
tures and the regression output. As in Fig. 6, the rightmost
column displays the explained variance in the diverse spaces, av-
eraged over all movements. As usual, we report results averaged
over the entire development set: For the linearized mapping, 90%
of the variance is mapped to the target direction, for the full map-
ping, this number rises to 96%, which means a reduction of spuri-
ous movements by about 60% relative. With simultaneous move-
ments, the numbers are slightly lower, namely 87% and 93%
explained variance in the target dimension, respectively. There
is a lot of variance between subjects: in some cases, the linearized
mapping has almost the same properties as the full mapping.

VII. EVALUATION

In this section, we rigorously evaluate the results from both
section V and VI. We start by considering the R2 scores on the
evaluation subjects (see Section III); comparing the two linear
baselines and three neural network architectures (including a
“very small” net with only 8 hidden neurons, in order to be in
line with prior work [13], [15]–[17]). From Table II, it becomes
clear that the NN systems indeed improve substantially over both
linear systems, and that increasing the size of the NN brings fur-
ther improvement. We statistically validated the improvements
by performing a t-test (one-tailed for paired samples) between
each pair of subsequent results: All improvements marked with
∗ are significant (p < 0.05). The reference NN achieves an R2

score of 0.86 on single movements, and 0.74 on single and
simultaneous movements; this result is not very different from
the one obtained on the development subjects.

We now statistically validate the results of the system analysis,
considering again the usual three architectures, namely Linear
Regression and the small and reference neural networks, both

TABLE II
R2 SCORES ON EVALUATION SUBJECTS FOR DIVERSE CONFIGURATIONS

P-Values Indicate Significance of Improvement W.r.t. the Previous Line in
the Table, Improvements Marked With ∗ are Significant (p < 0.05).

TABLE III
EVALUATION OF SEVERAL INDICATORS USED FOR ANALYZING AND

COMPARING OUR SYSTEMS

Differences Marked With ∗ are Significant (p < 0.05).

with and without simultaneous movements, with all values av-
eraged over the evaluation subjects. We formulate the following
three hypotheses: 1) the larger the NN architecture, the greater
the percentage of explained variance in the target direction (see
section VI-B); 2) the larger the NN architecture, the lower the ra-
tio of squared mapping norms between nonmatching source and
target movements (see section VI-C); 3) the linearized mapping
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maps less variance to the target direction than the full mapping
(see Section VI-D). All differences are statistically validated
using a t-test (one-tailed for paired samples), at a significance
level of 0.05.

From Table III(a), we see that our hypothesis 1 is valid: for
linear regression, the target direction accounts for 46%/41%
of the explained variance in regression space without and with
augmented simultaneous movements, respectively; with the ref-
erence network, these numbers rise to 94% resp. 92%. The small
NN is worse than the reference NN, but far better than linear
regression. All improvements are significant.

Table III(b) likewise shows that hypothesis 2 holds: in the
linear case, the mapping for any movement remains the same in
all areas of the feature space (hence a ratio of 1.0 between areas
of matching and nonmatching movements), whereas this ratio
is far lower for the NN systems. All ratio reductions between
systems are highly significant.

Finally in Table III(c), we compare the linearized and full
mappings, always for the usual three systems. It is not trivial
to find a metric for the difference between mappings, so we
resort to the metric which we successfully used before, namely,
we evaluate how much of the variance in regression space is
concentrated on the target direction; this is fundamentally a
measure of how little spurious activity is generated. In all cases,
this value is higher for the full mapping than for the linearized
mapping, the difference is significant in three out of four cases –
thus, not only the locality of the nonlinear mapping, but also
the nonlinear inner distortion of each class play a substantial
role.

VIII. CONCLUSION

In this paper, we have thoroughly investigated simultaneous
proportional prosthesis control, based on nonlinear regression
implemented with feedforward neural networks. Our key re-
sult is twofold: First, we have shown that sufficiently large
architectures solve the task better than both linear systems and
small-scale neural networks. Growing the NN in number and size
of the layers, the quality of the mapping, given by the R2 score,
converges to a stable value; this is a good result because it means
that optimizing such a system to a new task (e.g. with different
movements, or different EMG recording setup) should not be
too difficult. Second, we have analyzed the behavior of the NN
and compared it to the linear regression baseline, explaining why
the latter is theoretically inferior to the former, given the data at
hand. To the best of our knowledge, this is the first analysis of this
kind in the field of prosthesis control. Based on the theoretical
analysis, we believe that our results will also hold with different
regression-based setups (for example, with different movements,
or a larger amount of training data).

Since classification-based systems are conceptually unsuit-
able for controlling simultaneous movements, we have not inves-
tigated the extent to which our results transfer to neural networks
trained for classification. Since classification-based systems us-
ing linear methods are commercially relevant [9], this could be
an interesting extension of our research. Finally, we remark that
we observed the surprising anomaly that the well-known MAV

feature performs badly on simultaneous movements; we leave
the explanation, and mitigation, of this result to future work.
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