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ABSTRACT

Component trees are powerful image processing tools to an-
alyze the connected components of an image. One attrac-
tive strategy consists in building the nested relations at first
and then deriving the components’ attributes afterward, such
that the user can switch between different attribute functions
without having to re-compute the entire tree. Only sequential
algorithms allow such an approach, while no parallel algo-
rithm is available. In this paper, we extend a recent method
using distributed memory techniques to enable posterior at-
tribute computation in a parallel or distributed manner. This
novel approach significantly reduces the computational time
needed for combining several attribute functions interactively
in Giga and Tera-Scale data sets.

Index Terms— Mathematical morphology, Connected
filters, Component trees, Image representation, Parallel com-
puting

1. INTRODUCTION

Component Trees [1] are hierarchical structures that encode
the nested relations of the connected components at all thresh-
old sets of an image. They are well suited to perform attribute
filtering operations, which are filters discarding the connected
components that do not satisfy a given criterion [2]. Tree
techniques were successfully applied for analyzing biomed-
ical [3], remote-sensing [4, 5], and astronomical images [6].

Recently, these tools have been improved to process Giga
and Tera-Scale data sets using shared-memory [7, 8] and
distributed-memory techniques [9, 10], or a combination
of both [11, 12]. These approaches typically build upon a
divide-and-conquer approach where the data set is split into
several tiles. Component trees are concurrently built for each
tile and latter merged together to correct the nested relations
of the connected components in a parallel manner. Addition-
ally, [7, 10, 12] also presented algorithms to perform attribute
filtering or multi-scale analyses in parallel.

The methods mentioned above require choosing the at-
tribute function a priori, such that the components’ attributes
are computed during the construction of the hierarchical tree

representation. This means that using a different attribute
function requires to re-build the underlying tree structure.
MTDEMO [3] allows sequential computation of the compo-
nents’ attributes on an already existing tree, yet, no algorithm
exists to perform the attribute computation in a parallel man-
ner. Such improvement would be valuable for large data sets
where re-building the tree is computationally expensive. In
this paper, we present a novel approach that enables paral-
lel attribute computation using the Distributed Component
Forest (DCF) framework implemented in DISCCOFAN [12].

This paper is organized as follows: Section 2 introduces
component trees and attribute filters. Section 3 details the im-
plementation of the parallel attribute computation. Section 4
discusses the performance of this novel approach and Sec-
tion 5 summarizes our main results.

2. ATTRIBUTE FILTERS AND COMPONENT TREES

Attribute filters are a type of connected filters that remove
connected components whose attributes are lower than a
given criterion λ. A simple attribute function is the area A
(number of pixels) of the connected components [13]. Con-
nected components at a given threshold level are removed if
they have A < λ. Diverse attribute functions exist depending
on the applications considered. State-of-the-art component
tree methods ([7, 12]) include the moment invariants of the
components which is useful to extract structures based on
their shape properties [3]. In pixel-based processing applica-
tions, the filtered image is obtained by applying the attribute
filter at all threshold sets and stacking the resulting slices.

However, the use of attribute filters is much more efficient
when applied to component tree representations. Component
trees are powerful region-based image representations to ap-
ply connected filtering or multi-scale analyses. Tree struc-
tures encode the relationship between the connected compo-
nents of an image or volume for all the threshold sets in the
data. In a tree structure, connected components are repre-
sented by nodes which characteristics can be reached through
a single element, called the levelroot of the node. Construct-
ing the nested relations of the connected components corre-



sponds to building the parent-child relations of all the nodes
of the trees by connecting their levelroots. Two typical types
of Component Trees are the Max-Tree and Min-Tree, where
leaves represent the bright and dark connected components
features, respectively [1].

Performing attribute filtering on the tree representation of
a given data set can be done by accessing the levelroots of
the different nodes in the tree and removing the ones that do
not meet the given criterion. In typical tree construction al-
gorithms, the attribute function and criterion must be chosen
beforehand so that the attributes are computed while build-
ing the tree [12]. This is limiting for applications that require
testing several attribute functions on vast data sets because the
tree has to be rebuilt every time. However, the computational
load can be lowered by computing the components’ attributes
in a parallel manner on existing trees. In the next section, we
detail how we implemented this approach within the recent
DCF method DISCCOFAN [12].

3. DISTRIBUTED COMPONENT FOREST

Component Trees are powerful approaches for image filter-
ing or segmentation but the size of component trees is typ-
ically 20 to 50 times the size of the image itself, which be-
comes prohibitive for dealing with vast data sets. To over-
come this limitation, Kazemier et al. [9] introduced the Dis-
tributed Component Forest, later extended by Gazagnes &
Wilkinson [10, 12]. The image is first divided into tiles as-
signed to different MPI nodes such that local component trees
(with attributes) are built concurrently for all tiles. Because
the individual trees only encode the connected components
within their tile, the local component trees are corrected for
features spanning over the whole image using Boundary Tree
structures. The latter consists of the subset of nodes in the
local tree that characterizes the connected components span-
ning over the borders of each tile. Boundary Trees are merged
and combined two-by-two to correct the parent-child relations
and attributes of the spanning components in the whole im-
age. Once all the trees have been merged, the updated infor-
mation is used to correct the local component trees of each
tile. Then, post-processing concurrently the individual local
trees (the DCF) yields the same result as processing the entire
component tree of the image. Recently, we implemented DIS-
CCOFAN, a DCF-based method, and highlighted its promising
results to process vast 2D and 3D, low to high dynamic range,
data sets [12]. The next section shows how we extended this
framework to perform the parallel attribute flooding.

3.1. Parallel Attribute Flooding

Using several attribute functions successively, in an or-
ganized or interactive manner, requires splitting the compu-
tation of the DCF into two steps: (1) constructing the cor-
rect nested relations of the connected components within the

Algorithm 1 Attribute flooding of the local component trees
1: procedure TREE ATTR FLOODING(ComponentTree

tree, long[] ranks, AttrFunction f attribute)
2: INIT ATTR ARRAY(tree.attr, f attribute)
3: visited← ALLOC EMPTY ARRAY(size tree)
4: for i ∈ [size tree− 1, 0] do
5: node← ranks[i]
6: visited[node]← True
7: parent← tree.par[node]
8: MERGE ATTR(tree.attr[node], tree.attr[parent])
9: if tree.gval[node] == tree.gval[parent] and

visited[parent] then
10: parent← tree.par[parent]
11: MERGE ATTR(tree.attr[node], tree.attr[parent])
12: end if
13: end for
14: end procedure

DCF and (2) computing and propagating the components’ at-
tributes depending on the attribute function chosen. The first
step requires little modification of the original DCF imple-
mentation, hence, for space considerations, we only describe
the changes related to the second step.

In this new approach, the attributes are propagated on an
existing DCF. To do so, we first derive the components’ at-
tributes in the local trees within each MPI node. This is done
in a concurrent manner using the procedure from Algorithm 1.
We initialize the attributes of all the nodes in the tree using a
generic function INIT ATTR ARRAY that adapts to the choice
of the attribute function f attribute. The computation of the
components’ attributes (stored in the array tree.attr) starts
from the leaves of the tree and progresses to the bottom until
we reach the root. The array ranks holds the mapping of the
pixel intensities (tree.gval) into an array of prefixes, sorted
in decreasing order. Because path compression is guaranteed
in the first DCF phase, the attribute of each node that is not a
levelroot is directly merged to the levelroot at the same level
(found with the array tree.par). For the levelroot nodes, their
attribute is merged with the levelroot at the lower level. We
use an array visited to ensure that attributes from the same
node are not propagated several times.

Once the attributes have been propagated in the local com-
ponent trees, they must be corrected in a parallel manner such
that filtering these trees yield the same result as filtering the
tree of the whole image. We adapted the Boundary tree struc-
tures mentioned in Section 3. This procedure, detailed in Al-
gorithm 2, is adapted from Algorithm 3 found in [12]. Since
the parent-child relations have already been computed in a
previous step, Algorithm 2 is much simpler and enables effi-
cient attribute propagation within the Boundary trees. Hence,
for two nodes x and y, belonging to two boundary trees a and
b, to be merged, we simply propagate the attribute of x to y
and assign y as the new parent of x. Hence, x is no longer



Algorithm 2 Merging two branches with the nodes x and y,
belonging to two boundary trees a and b

1: procedure MERGE BRANCHES(BoundaryNode x,
BoundaryNode y)

2: x← B LEVELROOT(x)
3: y ← B LEVELROOT(y)
4: while x is not ⊥ and x ̸= y do
5: z ← B PARENT(x)
6: MERGE ATTR(B ATTR(x), B ATTR(y))
7: B PARENT(x)← y
8: x← z
9: y ← B PARENT(y)

10: end while
11: end procedure

a levelroot of the merged a − b structure its attribute is only
propagated once.

Once all boundary trees have been merged, the compo-
nents’ attributes in the boundary trees are used to update the
attributes in the local component trees of each tile. Hence, the
DCF can be concurrently processed to perform attribute filter-
ing or multi-scale analysis similarly as in the original DISC-
COFAN implementation. We refer the reader to [12] for more
details on the DCF post-processing functions.

4. RESULTS

We assess in this section the performance of the approach de-
scribed in Section 3. All the tests are run on the Peregrine
cluster of the Center for Information Technology of the Uni-
versity of Groningen. We use the 7 high memory nodes (1024
or 2048 GB memory) with each 48 Intel Xeon E7 4860v2 2.6
GHz cores used as individual MPI processes during our ex-
periments. The libraries used in all tests are gcc 8.2.0, HDF5
1.10.5, and OpenMPI 3.1.3. The code was compiled with
an optimization level O3. We used a large 2D data set of
81503 by 108199 pixels (≈ 9 Gpx), which an ESO astro-
nomical image of the Milky Way taken at the Paranal Ob-
servatory in Chile [14]. The image is an RGB data set that
we converted into a floating-point data set by creating a lu-
minance image where the intensity of each pixel is given by
L = 0.2126R + 0.7152G + 0.0722B. Additionally, we de-
rived a lower quantization level image from this data set, by
scaling down the intensities between 0 and 255.

Our experiment is defined as follow: for each of the two
data sets, we first construct the nested relations of the com-
ponents of the individual trees of the DCF and then compute
the components’ attributes for three different characteristics:
their area; the area of the minimum enclosing rectangle; and
the non-compactness. The first two are a measure of the size
of the connected components, and the last one is a scale-
invariant measure of the components’ deviation in shape from
a solid Euclidean disc.

Figure 1 shows the computational time of successively
building and correcting the parent-child relations of the lo-
cal component trees, and flooding and filtering the DCF using
the three different attribute functions mentioned previously
(referred to as Area, Rect, and Ncomp in the figures), for
the two quantized versions of the ESO data set. The right
panel shows the corresponding speed-up for both cases, com-
puted as t(1)/t(Np) where t(1) is the wall-clock time ob-
tained when using 1 process, and t(Np) the processing time
when using Np processes. We use up to 64 MPI processes
in total, and the number of tiles used in each case is equal to
the number of processes (e.g. for two processes, the original
image is divided into two tiles). We do not detail the mem-
ory usage of this approach, as no change is expected from
the original implementation [12] when both the parents and
attributes are computed simultaneously.

The computational time needed to compute the attributes
and filter the image varies depending on the attribute function
used. This is expected given the different degrees of com-
plexity of these functions. The Area attribute is less com-
putationally expensive given that it only sums the number of
pixels belonging to a given connected component. The mini-
mum area of enclosing rectangle, or the non-compactness are
more expensive since they include additional operations such
as multiplications, MIN or MAX functions. The right panel
of Figure 1 shows that this alternative approach has a linear
speed-up for both low and moderate/high dynamic range data
sets, highlighting that the attribute computation can be done
efficiently in a parallel manner.

We also investigate the time gains obtained by enabling
only the attributes to being re-computed in parallel rather
than the whole DCF. W run the original implementation of
DISCCOFAN, which computes both the parent-child relations
and the attributes simultaneously, using the three same at-
tribute functions (Area, Rect, and Ncomp). Figure 2 left and
middle panels compare the computational time of computing
both the tree and attributes (dotted lines) and computing only
attributes on already existing trees (solid lines). The right
panel shows the corresponding speed-up gains, computed as
t(Attributes + trees)/t(Attributes), for different number
of processes used. As expected, computing the attributes on
the already built DCF is faster than constructing both simulta-
neously. We note that for the 8-bit image, the computational
gain is a factor of 2 approximately, suggesting that not having
to reconstruct the whole tree would divide the timings by 2.
For the floating-point case, the performance is slightly lower
with a speed-up factor of ∼ 1.5. Typically, in the latter case,
the local components trees have a larger number of nodes
than in the 8-bit case, which impacts the overall size of the
boundary tree structures that are merged in parallel. Hence,
propagating the attributes takes longer in the latter case.

Figure 2 highlights that these gains are roughly constant
as we use more processes, showing that this alternative strat-
egy has a similar scaling relation as the original approach.
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Fig. 1. Computational time of our modified approach on the two quantized version of the ESO image (left and middle panel),
and the corresponding speed-up compared to the linear expectation (right panel).
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Fig. 2. Left and middle panels: time comparison of computing both the trees and attributes (dotted lines) and computing only
attributes on already existing trees (solid lines). Right panel: corresponding speed-up (t(Attributes + Trees)/t(Attributes))
for the two data sets.

The slight decrease in speed-up when using 64 processes in
the 8-bit case suggests that we might reach a plateau as us-
ing more MPI nodes does not significantly decrease the com-
putation time. For the floating-point case, having smaller
chunks further might still improve the performance because
the length of each tree decreases. We note that, while the
speed-ups reported in Figure 2 might look moderate, the over-
all speed-up of e.g. performing several attribute filters on the
same data set will be significant when one uses a large number
of attributes functions.

5. CONCLUSION

In this work, we presented an extension of a recent DCF ap-
proach, DISCCOFAN that enables parallel attribute computa-
tion once the DCF representation has been built. This novelty
allows to choose and switch between several attribute func-
tions without having to recompute the whole DCF structure.
This is particularly useful for Giga and Tera-scale applica-
tions, where building the individual local component trees can
be computationally expensive.

Our results highlight that the scaling performance of the
parallel attribute computation is linear. Additionally, com-
puting only the components’ attributes in parallel divides
the computational time by a factor of 2 and 1.5 for 8-bit
and single-precision floating-point data sets, compared to
the case where the underlying tree structure is rebuilt. This
method could be trivially extended to more complex pro-
cessing approaches, for example by storing the DCF into
a file, which could be read and re-processed with different
attribute functions depending on a given application require-
ment. This would further reduce the cost of building the
parent-child nested relations. These techniques could also
be used to further develop the MTDEMO software [3] which
was suited for interactive visualization of 2D or 3D data
sets using a sequential post-attribute computation. Overall,
this paper paves the way for complex region-based filter-
ing, visualization applications, or vector-attribute processing
techniques, which require combining several attribute func-
tions on large data sets. The code is publicly accessible:
https://github.com/sgazagnes/disccofan.
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Matthias Book, and Morris Riedel, “Parallel compu-
tation of component trees on distributed memory ma-
chines,” IEEE Transactions on Parallel and Distributed
Systems, 2018.

[12] Simon Gazagnes and Michael H. F Wilkinson, “Dis-
tributed connected component filtering and analysis in
2d and 3d tera-scale data sets,” IEEE Transactions on
Image Processing, vol. 30, pp. 3664–3675, 2021.

[13] L. Vincent, “Grayscale area openings and closings, their
efficient implementation and applications,” in Proc.
EURASIP Workshop on Mathematical Morphology and
its Application to Signal Processing, Barcelona, Spain,
1993, pp. 22–27.

[14] R. K. Saito, D. Minniti, B. Dias, M. Hempel, M. Re-
jkuba, J. Alonso-Garcı́a, B. Barbuy, M. Catelan, J. P.
Emerson, O. A. Gonzalez, P. W. Lucas, and M. Zoccali,
“Milky Way demographics with the VVV survey. I. The
84-million star colour-magnitude diagram of the Galac-
tic bulge,” ”Astronomy and Astrophysics”, vol. 544, pp.
A147, Aug 2012.


