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Component-Tree Simplification through Fast
Alpha Cuts

Michael H. F. Wilkinson

Bernoulli Institute for Mathematics, Computer Science, and Artifical Intelligence,
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

m.h.f.wilkinson@rug.nl

Abstract. Tree-based hierarchical image representations are commonly
used in connected morphological image filtering, segmentation and multi-
scale analysis. In the case of component trees, filtering is generally based
on thresholding single attributes computed for all the nodes in the tree.
Alternatively, so-called shapings are used, which rely on building a com-
ponent tree of a component tree to filter the image. Neither method is
practical when using vector attributes. In this case, more complicated
machine learning methods are required, including clustering methods. In
this paper I present a simple, fast hierarchical clustering algorithm based
on cuts of α-trees to simplify and filter component trees.

Keywords: Connected filters, component trees, α-trees, clustering, al-
gorithms

1 Introduction

Connected filters [1–3] have found many uses in image processing and analysis,
and many different types of filters and multi-scale tools have been developed
since the introduction of the first connected filters in the form of openings by
reconstruction [4], and area openings [5, 6]. Many methods are built using hier-
archical image representations in the form of tree structures [7–10], for a recent
review see [11]. In the grey-scale case, much work has been done on attribute
filters [12], in particular using tree structures variously known as component
trees [9], min-trees and max-trees [7]. They have also found use for multi-scale
analysis, e.g. through pattern spectra [13] or morphological profiles [14].

This paper will focus on component trees, which are trees containing the con-
nected components of threshold sets of a grey-scale image. Each node represents
a single connected component, and usually contains some scalar attribute value
like area or elongation to characterise the component. Filtering is done by ap-
plying some threshold to the attributes, and removing nodes that have attribute
values lower than the threshold.

Selecting the ”right” threshold for attribute filtering is not an easy task.
Apart from simple trial and error, only a few papers address this issue systemat-
ically. Jones [9] notes that threshold on attributes could be chosen automatically
by traversing the tree from leaf to root, and choosing thresholds at points where
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the attribute value changes abruptly. Thresholds could be chosen per branch, or
globally in the tree. In [15], various automatic grey-scale thresholding methods
are studied, but these do not always take the topology of the tree into account.

In the case of increasing attributes like area, filtering essentially boils down
to pruning the tree such that the remaining leaves have an area larger than some
threshold. For non-increasing attributes, such as elongation or perimeter, several
other filtering strategies have been proposed [7, 13]. Xu et al. [16] introduced the
idea of tackling non-increasing scalar attributes in max-trees by computing a
max-tree of a max-tree. Because a max-tree of an image with scalar attributes
on the nodes is just a node-weighted graph, it is fairly trivial to compute a
secondary max-tree of this primary max-tree. The idea is to filter this secondary
max-tree, reconstituting the primary max-tree based on the filtering results,
and then generating a filtered image from the filtered primary max-tree. The
resulting filters were dubbed ”shapings”. Though interesting new results were
obtained, it remains hard to envisage the precise effect of filtering a max-tree
based on a secondary max-tree in this way.

None of the above approaches are suitable for so-called vector-attribute fil-
tering [17], in which each connected component has a feature vector instead of a
single scalar value. In this paper we will extend the idea of Xu et al. [16] to the
vector-attribute case. Rather than building a max-tree of a max-tree, which re-
quires a total order on the attributes, I construct an α-tree [10] of the max-tree.
For α-trees, which derive from partition hierarchies described in [18], no total
order is needed, which is why they are suitable for graphs with vectorial weights.
The aim is to create a hierarchy of simplifications of the input component tree,
each of which contains only the nodes at which large transitions in attribute
vectors occur. These ideally contain the most essential information in the tree.

In the rest of the paper, I will focus on max-trees, although the method
described will work on other tree structures as well. I will first discuss attribute
filters and max-trees, and hierarchical clustering using α-trees, and the principles
behind the method. I will then present a fast algorithm to generate simplified
max-trees at any level of the α-trees, by cutting at a particular dissimilarity
threshold α, and where necessary correct the attribute values in the case of
attributes that depend on grey-scale content. An algorithm for pattern spectra
based on α-cuts is also presented, along with a discussion of the computational
complexity. A simple experiment showing the effect of applying α-cuts to pattern
spectra is presented, followed by a discussion future and plans for future work
are given in the final section.

2 Attribute filters and component trees

Breen and Jones [12] introduced attribute filters, which are attribute thinnings
in the non-increasing, anti-extensive case we will focus on here. In the binary
case they remove connected foreground components that do not meet some non-
increasing criterion T .
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Definition 1 The binary attribute thinning ΦT of set X with criterion T is
given by

ΦT (X) = {x ∈ X| T (Γx(X))} (1)

where ΦT is the trivial thinning with non-increasing criterion T , and Γx is the
connectivity opening at point x. The latter returns the connected component to
which x belongs if x ∈ X and ∅ otherwise. As can be seen, only those points x
that are members of a connected component that meets criterion T are retained.

Vector-attribute filtering [17] was introduced as an extension to attribute
filtering. Rather than computing a single attribute, a vector of attributes is
computed for each node. As it would be impractical to set thresholds for each
vector, Urbach et al. [17] proposed using thresholds to distances to some col-
lection of prototypes to detect objects in images. Later Naegel et al. [19] used
Mahalanobis distances to a set of prototypes for segmentation of dermatological
images. Formally, vector-attribute thinnings can be defined as follow:

Definition 2 The vector-attribute thinning Φτ⃗
r⃗,ϵ of X with respect to a reference

vector r⃗ and using vector-attribute τ⃗ and scalar value ϵ is given by

Φτ⃗
r⃗,ϵ(X) = {x ∈ X| T τ⃗

r⃗,ϵ(Γx(X))}. (2)

The criterion T τ⃗
r⃗,ϵ is defined as

T τ⃗
r⃗,ϵ(C) = ρ(τ⃗(C), r⃗) > ϵ. (3)

with ρ some metric or dissimilarity function.
The above definitions can be generalised to grey scale by the usual thresh-

old superposition method [21], and implemented using max-trees in the anti-
extensive case [7]. Max-tree nodes represent the connected foreground compo-
nents of threshold sets at all threshold levels in the image. The connected compo-
nents of the threshold levels are referred to as peak components. A simple example
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Input image Thresholded sets(peaks) Max-tree

Fig. 1. A simple grey-scale image, the foreground components of each threshold set,
also know as peak components, and the resulting component tree, which is referred to
as a max-tree in this case. Figure from [20].
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is shown in Figure 1. Each node may be assigned one or more attributes, and
filtering the image applies the attribute criterion to all of the nodes, and recon-
stituting the image based on which nodes are preserved and which removed. In
the case of an increasing criterion T , i.e. if C ⊆ D then T (C) ≤ T (D), filter-
ing corresponds to pruning the tree. In the non-increasing case, more complex
strategies are used [7, 13, 16].

3 Hierarchical clustering of max-trees

Previously, the use of cluster analysis on max-tree nodes has been explored in
[22]. In that case, nodes were clustered purely based on the attribute vectors,
completely disregarding the tree structure. Here I propose to use hierarchical
clustering of nodes taking the tree structure into account explicitly, through the
use of α-trees [10] of max-trees.

Ouzounis and Soille [10] introduced term α-tree as a way of representing
hierarchies of α-connected components (α-CCs) of images, suitable for vector
images such as colour and hyperspectral images. The α-CCs of an edge-weighted
graph are connected subgraphs of maximal extent such that there exists a path
within the α-CCs between each pair elements, such that the edge weights in the
path are all smaller than or equal to some threshold α [18]. An α-tree can be
created on any graph with vector weights on the vertices by assigning weights
to the edges between any two vertices, based on some dissimilarity measure.
This allows α-trees to be built on any image, whereas max-trees are restricted
to those cases where a total order can be imposed upon the pixel values. It has
been shown that α-trees are equivalent to min-trees of an edge-weighted graph
[23], and the computational complexity of building one is therefore equivalent
to that of building a max-tree.

If we have a max-tree of an image, with vector attributes on the nodes,
we cannot readily compute a max-tree of this max-tree to compute a shaping
[16]. However, we can obviously compute an α-tree, using any of the existing
algorithms. This does not make use of the fact that the max-tree is a tree, not a
general graph, which means that there is just a single shortest path connecting
any two nodes, and any longer path (taking detours to the root) must traverse
the edges in the shortest path. This in turn means that the dissimilarity δ of the
edge linking a node to its parent forms a boundary between two α-CCs for any
α < δ. In the following I will discuss the special case of α-trees, and in particular
α-cuts of max-trees.

Let us assign a weight δ on the edge between current node and its par-
ent. I will refer to these edges and weights as parent edges and parent weights
respectively. The weights can be computed using some dissimilarity measure
ρ : Rn × Rn → R, assuming n-dimensional attribute vectors on each of the
nodes.

Definition 3 An α-connected component of any tree with weights δ on the edges
is a subtree of maximal extent containing no edges with δ > α.
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Fig. 2. Hierarchical clustering of a max-tree (top left) using increasing α-cuts. At
α = 15 the tree would become a single connected component

It can readily be seen that the root element of any α-connected component
must have a parent weight δ > α on its parent-edge. Furthermore, these root
nodes uniquely identify the α-connected components of the tree. Indeed, to deter-
mine which α-connected component any node with parent weight δ ≤ α belongs
to we simply need to find its α-parent.

Definition 4 The α-parent of a node with parent weight δ ≤ α is the nearest
ancestor with parent weight δ > α.

Thus, the nodes with parent weights δ > α can be seen as the canonical
elements of the nodes at level α in the α-tree of the max-tree. An example of
a series of α-cuts of a simple max-tree is shown in Figure 2. The assignment of
α-parents and reduction to a simplified max-tree is shown in Figure 3.
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4 Algorithm

We assume that we have a max-tree built using any one of many available algo-
rithms [24]. Without loss of generality, we can assume the nodes are stored in
an array node. For the moment we assume each node has a vector of attributes
attr which do not depend on grey level, like area or various moment invariants
used previously [13, 25]. Each node also contains an index par to its parent, and
a field delta containing the dissimilarity measure between its attribute vector
and that of its parent in the max-tree. Finally, we add a field alpha par to each
node, which is initialized to be equal to that of the par field. To simplify the
algorithm, the root node is initialized to have a maximal value of its delta field
and both its par and alpha par point to root node itself.

The algorithm to compute an α-cut of a max-tree now boils down to the
following steps:

1. Create an index array Index of max-tree nodes, sorted in increasing order
of their delta field.

2. For all nodes in the max-tree set the alpha par field to its α-parent.

The first step ensures we can easily select all the roots of the α-CCs for a given
value of α, simply by using e.g. binary search in the index array to find the first
node in which node[index[i]].delta > α.

The latter step ensures the α-parents of the tree are properly set. This can be
achieved in linear time by calling function find alpha par shown in Algorithm 1
for each node of the tree. Each call to this function follows the root path until
the α-parent has been found, and sets all the alpha par field along the root
path. This means that subsequent calls that explore the same root path will
essentially yield a shortcut to the correct α-parent. Note that before the initial
construction of the α-cut, each alpha par was set to the value of the par field,
which is the correct value for α = 0. Therefore, the algorithm follows the usual
root paths in the max-tree initially, and should process at most all the nodes
in the max-tree once. Once a particular α-cut has been computed, and we wish
to compute a new cut with α′ > α, we need only call find alpha par for the
nodes with node[index[i]].delta > α′, and these calls would only traverse
those nodes with node[index[i]].delta > α.

The result of calling the above algorithm for α = 4 on the max-tree from
Figure 2 is shown in Figure 3. It also shows how limiting the tree to only the
nodes with node[index[i]].delta > α yields a simplified version of the max-
tree.

4.1 Attributes of α-CCs of max-trees

Until now, we have only considered the structure of the simplified trees, but not
the attributes. If we consider all “flat” attributes, i.e. those that only depend
of the shape of the peak component, but not the grey-levels within it, nothing
needs to be done, as each node contains all the information pertaining to that
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∞
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Fig. 3. The result of the find alpha par function for α = 4: (left) alpha par pointers
of max-tree, (right) Simplified max-tree.

shape. In the case of non-flat attributes, i.e. those that depend on the grey-level
content of the node, not just its shape, some extra post-processing needs to be
done, if we want to represent the properties of each partition of the max-tree
from the computed attributes. Here I will restrict myself to the attributes based
on the first and second moments of the grey level distribution, although the
method can be extended to higher orders, and in principle also to certain other
attributes.

We assume that each node stores the sum of grey levels and sum of squared
grey levels of all the pixels within the peak component in fields SumGrey and
SumGreySquare respectively. A field Gval stores the grey value of each node.

The process traverses the tree in increasing grey level order. Whenever it finds
a node such that node[i].delta > α it calls function correct alpha par on
that node. This looks up the α-parent, and subtracts the sum of (squared) grey
levels of the current node from the sum of (squared) grey levels of the α-parent.

Algorithm 1 The find alpha par function. Note that MTnode is a max-tree
node struct type, and *node is the array representing the max-tree.

index find_alpha_par(float alpha, MTnode *node, index current){

index alpha_par = node[current].alpha_par;

if (node[alpha_par].delta <= alpha)

node[current].alpha_par = find_alpha_par( alpha, node, alpha_par );

return node[current].alpha_par;

}
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It then adds the product of the area of the current node and the (squared) grey
level of the α-parent to the sum of the (squared) grey levels of the α-parent.
This effectively clips off the contribution of the current node to these sums in
its α-parent at the level of the latter’s grey level. The algorithm is shown in
Algorithm 2.

Algorithm 2 The correct alpha par function

Precondition: node[current].delta> alpha

void correct_alpha_par ( MTnode *node, index current ){

index alpha_par = node[current].alpha_par;

node[alpha_par].SumGrey =

node[alpha_par].SumGrey - node[current].SumGrey

+ node[current].area]*node[alpha_par].Gval;

node[alpha_par].SumGreySquare =

node[alpha_par].SumGreySquare - node[current].SumGreySquare

+ node[current].area * node[alpha_par].Gval * node[alpha_par].Gval;

}

After application of this algorithm, attributes like power [26] and volume (or
flux) [27] can be computed in the usual way from these corrected sums. Once the
attributes have been computed, we can in principle filter the original max-tree
based on only the simplified α-cut version of the tree, by only applying a criterion
T to the nodes with δ > α, and for all other nodes copy the decision made for
their α-parent. Likewise, granulometries based on α-cuts might also reveal more
structure, as single objects are not smeared out over a range of attributes.

4.2 Pattern Spectra

Computation of pattern spectra using alpha-cuts of max-trees can be done with
a very minor adaptation of the original code from [13], as shown in Algorithm 3.
After α-parents have been assigned, and the array containing the pattern spec-
trum has been set to zero, we compute each node’s contribution to the total
sum of grey levels in the image, add it to the appropriate bin of the pattern
spectrum. The only difference with the original algorithm is the if-statement in
Algorithm 3. If δ > α the node is also a node in the simplified tree, and we
add the flux to its bin in the spectrum in the usual way. If not, we add it to its
α-parent.
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Algorithm 3 The alpha cut pattern spectrum function

Precondition: find alpha par has been applied to all nodes in the max-tree array node.
BinFunc computes the bin in the spectrum to which a node should be assigned.

void alpha_cut_pattern_spectrum ( MTnode *node,

greyval *Spectrum

float alpha){

Set all elements of Spectrum to zero

for all node[i] except root {

par = node[i].parent;

flux = (node[i].Gval - node[par].Gval) * node[i].area;

if (node[i].delta <= alpha)

bin = BinFunc(node, node[i].alpha_par );

else

bin = BinFunc(node, i);

Spectrum[bin] = Spectrum[bin] + flux;

}

}

4.3 Computational Complexity

Assuming the computation of the dissimilarities δ between node and parent is
independent of the number of node N , the initial step of computing the dissim-
ilarities is O(N), as each node need only inspect its own parent, and compute
a single value. Sorting the edges by δ is simply O(N logN). Note, however that
this sorting is not necessary in all cases. It is useful if we want to choose α
as a percentile of the distribution of δ values. The find alpha par function of
Algorithm 1 is essentially the same as the restitution stage of regular max-tree
filtering, which is also linear in N [7]. Indeed, the entire process (without sorting)
is essentially the same as that of the entire filtering phase of a max-tree, which
in practise is between 1 and 5 % of the total compute time. The building phase
is the costly phase. By contrast, if we explicitly built an α-tree of the max-tree
this is equivalent to building a min-tree of N items [23] which is evidently more
costly, both computationally and in terms of memory use.

The complexity of correct alpha par in Algorithm 2 is independent of N ,
so applying it in grey-level order to the entire tree is O(N logN) if the nodes
are not sorted in grey level order by the max-tree building algorithm, and O(N)
if they are. This too is quite similar to the compute load of filtering an existing
max-tree. Likewise, the complexity of Algorithm 3 is O(N), assuming BinFunc

is independent of N (which is usually the case).
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5 Some initial results

Algorithm 1 and 3 were implemented in C, within the code base for 2D pattern
spectra of [13], and applied to a 621× 501 image of a diatom from the ADIAC
data set [28]. The δ value was computed as

δ(C) =
area(parent(C))− area(C)

area(parent(C))
(4)

Timings revealed small differences in timings between computation of pattern
spectra with and without α-cuts, using a desktop PC with an Intel® Core™ i7-
6700 CPU at 3.40GHz. Running 100 iterations of the code with and without
α-cuts resulted in a difference of 58 ms on average (or 0.58 ms for a single
iteration), out of a total compute time of 929 ms. Thus, roughly 6% of compute
time is spent on the computation of δ values, α-parents, and the modifications
needed for the α-cut pattern spectra. There seems to be a slight decreasing trend
as a function of α, with 64 ms required at α=0, and 52 ms at α=0.8. The average
compute time of 0.58 ms is much smaller than building an α-tree of the same
image (not its max-tree), which took around 110 ms. Given that the image has
311,121 pixels, vs the max-tree having 70,296 nodes, we can roughly estimate
the required time for computing an α-tree of the max-tree as around 24 ms, or
some 40× slower than computing a single α-cut.

Figure 4 shows the resulting spectra for α=0, 0.2, and 0.4. These show a
pattern reminiscent of a skewed butterfly, in particular at α=0. The left-hand
“wing” mainly represents the structures within the diatom, whereas the right-
hand side, with larger areas, mainly shows the structure in the background. By
increasing α, the flux in these background structures almost all become focused in
the top right corner of the spectrum. Changes on the left are subtler, suggesting
the detail in the diatom cell is preserved. Much more extensive tests are needed
to draw any further conclusions.

Fig. 4. Pattern spectra of a diatom image for α-cuts at 0, 0.2, and 0.4

6 Conclusions

I have presented a simple algorithm to compute α-cuts of component trees, which
are horizontal cuts through α-trees of component trees. These provide an easily
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tunable simplification of the component trees. Apart from selecting a value of α
and searching for the appropriate location in the index array, we could simply
just use the top 10% of the nodes in term of their δ value. A simple slider in an
interactive tool would readily allow finding the appropriate level of simplification.
Tree simplification could also simplify the analysis and visualization of these
trees. Besides, it is hoped that this will allow better selection of meaningful nodes
and their attribute vectors for training of machine learning methods. This in turn
could lead to better integration of machine learning methods with morphological
connected filtering.

Obviously, α-trees and level-line trees can be simplified in the same way, as
the presented algorithm for α-cuts carries over without modification to these
tree structure, although some modifications would be needed for the grey-scale
attribute correction. In principle binary partition trees could be processed this
way, if you allow for the fact that the resulting simplified tree might no longer
be binary. It should even be possible to extend the technique to the distributed
component graph used for distributed computing of attribute filters [20, 29], as
each local modified component tree contains all the data necessary to compute
any filtering or analysis step.

In the near future we will apply this method to detection of important struc-
tures in CT, MRI and PET scans, and to detection and analysis of astronomical
objects. Given the speed of the simplification method, we aim at building inter-
active tools for adaptation of the α values to the task at hand.
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