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Propositions
belonging to the thesis

Topics in algebra, geometry and di�erential
equations

by

Marc Paul Noordman

1. Di�erential equations of the formP (u, u′) = 0, whereP ∈ C[X,Y ] is an
irreducible polynomial involving both variables and C is an algebraically
closed �eld of constants of characteristic 0, naturally fall into four classes.
For the classes of exact, exponential type and Weierstrass type equations,
algebraic relations between non-constant solutions are common, while
for the class of general type equations, such relations are rare. Moreover,
algebraic relations between non-constant solutions of di�erent, pairwise
non-isogenous di�erential equations of general type do not occur.

2. �e study of di�erential equations of the form indicated in Proposition 1
is greatly aided by tools from algebraic geometry – in particular, the the-
ory of di�erential forms and generalized Jacobian varieties a�ached to
smooth curves.

3. Given a �eld C of characteristic p > 0, a formal group law F ∈ C[[X,Y ]]
of height ≥ 2, a separable extension K/C(t) and a C-linear derivation
D : K → K such that Dp = 0, there exists an F -iterative derivation
∂ : K → K[[T ]] such that ∂1 = D. Moreover, the components of such a
derivation can be explicitly constructed.

4. �e Zassenhaus formula, which describes for non-commuting variables
A and B the expression (A + B)n in terms of iterated commutators
adnA(B) (where adX(Y ) = [X,Y ] = XY − Y X), can be regarded as a
special case, corresponding to the formal group law of the additive group,
of a more general formula a�ached to any formal group law in charac-
teristic 0.



5. Let G ⊆ K[[t1, . . . , tm]]{x1, . . . , xn} be a di�erential ideal, where K
is an uncountable algebraically closed �eld of characteristic 0. �e sup-
port of any power series solution of G is constrained by the need for
cancellations to occur. If for a potential support these constraints are
satis�ed, then a power series solution with that support indeed exists.
�ese cancellation constraints can be equivalently formulated in terms
of monomial-freeness of certain initial ideals. �is leads to a “tropical”
description of the set of supports of power series solutions of G.

6. �e tropical description of the set of supports of power series solutions
in Proposition 5 does not hold in general when K = Q, nor when one
replaces power series with Laurent series or Puiseux series.

7. Siegel’s theorem on the �niteness of the set of integral points on an ellip-
tic curve can be reproven using the method of Lawrence and Venkatesh.
For this purpose one can use an explicitly constructed �nite-by-abelian
cover of a punctured elliptic curve obtained from the Legendre family of
elliptic curves over P1 \ {0, 1,∞}.

8. While proving theorems in the most general se�ing formally provides
the most powerful versions of these theorems, such generality comes at
a practical cost when readers need to invest a large amount of time and
e�ort in order to understand the theory. A researcher interested in pro-
ducing results that are useful to the research community at large should
carefully weigh the advantages of a more general se�ing against this cost.

Propositions 1 and 2 are based on joined work with Marius van der Put and
Jaap Top. Propositions 5 and 6 are based on joined work with François Boulier,
Sebastian Falkensteiner, Cristhian Garay-López, Mercedes Haiech and Zeinab
Toghani.


