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Moment conditions for the quadratic regression model with
measurement error

Erik Meijera, Laura Spierdijkb#, and Tom Wansbeekb

aCenter for Economic and Social Research, University of Southern California, Los Angeles, California, USA;
bDepartment of Economics, Econometrics & Finance, Faculty of Economics and Business, University of
Groningen, Groningen, Netherlands

ABSTRACT
We consider a new estimator for the quadratic errors-in-variables model
that exploits higher-order moment conditions under the assumption that
the distribution of the measurement error is symmetric and free of excess
kurtosis. Our approach contributes to the literature by not requiring any
side information and by straightforwardly allowing for one or more error-
free control variables. We propose a Wald-type statistical test, based on an
auxiliary method-of-moments estimator, to verify a necessary condition for
our estimator’s consistency. We derive the asymptotic properties of the
estimator and the statistical test and illustrate their finite-sample properties
by means of a simulation study and an empirical application to existing
data from the literature. Our simulations show that the method-of-
moments estimator performs well in terms of bias and variance and even
exhibits a certain degree of robustness to the distributional assumptions
about the measurement error. In the simulation experiments where such
robustness is not present, our statistical test already has high power for
relatively small samples.
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1. Introduction

The quadratic regression model is widely relevant in economics and business research. A classical
example is the Kuznets curve, which reflects the inverted-U shaped impact of economic develop-
ment on income inequality (Kuznets, 1955). A version that has recently become popular is the
environmental Kuznets curve, with environmental quality taking the place of income inequality;
see, for example, Lee and Oh (2015). Quadratic regression models have also been used to capture
the relation between firms’ input factor costs and output quantities, GDP growth and democracy,
crime and inequality and patents and competition (e.g., Aghion et al., 2005; Barro, 1996; Mart�ınez-
Budr�ıa et al., 2003; Zhu and Li, 2017). In yet another area, Haans et al. (2016) found that one out
of nine papers published in the Strategic Management Journal from 2008 to 2012 involved quad-
ratic relations. The quadratic errors-in-variables model has become particularly popular for the
study of Engel curves, which describe the relation between household expenditure and household
income (e.g., Biørn, 2017; Hausman et al., 1995; Kedir and Girma, 2007; Lewbel, 1997).
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Griliches and Ringstad (1970) were the first to underline the importance of correcting for
measurement error in quadratic regression models. They showed that the effect of measurement
error is exacerbated by the quadratic term in a regression model with a normally distributed
unobserved regressor and normal measurement error. Ever since, an increasingly large literature
on the consistent estimation of the non-linear measurement error model has emerged.

Many estimation methods for the quadratic and polynomial measurement-error model assume
that the variance of the measurement error is known or, alternatively, that the reliability or the
signal-to-noise ratio is known (e.g., Carroll et al., 2006; Kuha and Temple, 2007; Kukush et al.,
2005; Schneeweiss and Augustin, 2006).1 These estimators have limited relevance in economics,
where such prior information is typically unavailable.

Estimators for the quadratic and polynomial measurement-error model that do not make such
assumptions are more scarce; see the upper part of Table 1. The earliest study we know of is Van
Montfort (1989), who uses the method of moments. He exploits moments up to order three to
obtain consistent estimators for the quadratic measurement-error model with a normally distrib-
uted unobserved regressor. Lewbel (1997, p. 1206) briefly mentions the possibility to construct a
method-of-moments estimator for the quadratic regression model with normal measurement
errors. The proposed estimator is based on moments up to order five. Huang and Huwang
(2001) derive consistent estimators for the polynomial measurement-error model without add-
itional identifying information. They use a regression-calibration approach and impose normality
on both the measurement error and the unobserved regressor. Other methods require either

Table 1. Overview of the literature.

Author(s)-year Functional form Method Assumptions

Van Montfort (1989) polynomial MM (higher-order moments) normality of
unobserved regressor

Lewbel (1997) quadratic MM/GMM (higher-
order moments)

normality of ME

Huang and Huwang (2001) polynomial regression calibration normality of ME and
unobserved regressor

Hausman et al. (1991) polynomial MM/2SLS single repeated
measurement/external
IVs available

Hausman et al. (1995) polynomial minimum distance and
MM/2SLS

see Hausman
et al. (1988, 1991)

Lewbel (1996) polynomial GMM external IVs available
Kedir and Girma (2007) quadratic GMM see Lewbel (1996)
Biørn (2017) polynomial GMM (higher-

order moments)
multiple replicated

measurements available
Hausman et al. (1988) non-linear minimum distance single repeated

measurement available
Li (2002) non-linear non- and semi-parametric replicated

measurements available
Tsiatis and Ma (2004) non-linear score ME distribution is known/

replicated
measurements available

Hu and Schennach (2008) non-linear sieve ML non-classical ME; external
IVs available

Schennach and Hu (2013) non-linear sieve ML regularity conditions
Schennach (2014) non-linear Entropic Latent Variable

Integration by Simulation
regularity conditions

Garcia and Ma (2017) non-linear semi-parametric replicated
measurements available

Ben-Moshe et al. (2017) non-linear semi-parametric covariates can be used as IVs

Notes: (G)MM: (Generalized) Method of Moments; 2SLS: Two-Stage Least Squares; ME: measurement error; IV: Instrumental
Variables; ML: Maximum Likelihood.

1See also Chan and Mak (1985), Moon and Gunst (1995), Wolter and Fuller (1982), Buonaccorsi (1996), Cheng and Schneeweiss
(1998), Cheng and Van Ness (1999) and Cheng et al. (2000).
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replicated measurements on the error-ridden regressor or instrumental variables (Biørn, 2017;
Hausman et al., 1991, 1995; Kedir and Girma, 2007; Lewbel, 1996; Li, 2002).

Another strand of literature considers a general, non-linear parametric regression function
depending on an unknown parameter vector and proposes methods to consistently estimate this
vector in the presence of measurement error; see the lower part of Table 1. Some of these studies
require replicated measurements (e.g., Garcia and Ma, 2017; Hausman et al., 1988; Li, 2002).
Others use external instrumental variables (Hu and Schennach, 2008) or take certain covariates as
instruments (Ben-Moshe et al., 2017). Tsiatis and Ma (2004) assume that the distribution of the
measurement error is known or that replicated measurements are available such that the
unknown parameters of this distribution can be estimated. The semi-parametric estimator of
Schennach and Hu (2013) does not require such assumptions and is consistent under general
conditions. The empirical implementation of this approach is based on sieve densities. Another
very general, but highly computer-intensive approach has been proposed by Schennach (2014).
Overviews of the literature on non-linear measurement-error models can be found in Chen et al.
(2011) and Schennach (2016).

The present study proposes a new consistent estimator for the quadratic errors-in-variables
model, which exploits moments up to order four. Our estimator takes an intermediate position
relative to the existing literature. We assume a symmetric measurement-error distribution without
excess kurtosis, for which normality is a sufficient but not a necessary condition. Under these
assumptions, we obtain a relatively efficient estimator. Unlike several other studies, we do not
require any side information, such as a known measurement error variance, replicated measure-
ments, or instrumental variables. Furthermore, our approach straightforwardly allows for one or
more error-free control variables, which only requires the standard assumption that these regres-
sors are independent of the measurement and regression errors. For other methods, such as the
one proposed by Schennach and Hu (2013), the inclusion of error-free regressors requires certain
assumptions about the conditional distribution of the unobserved regressor given the error-free
control variables.

We also propose a Wald-type statistical test, based on an auxiliary method-of-moments esti-
mator, to verify a necessary condition for the consistency of our method-of-moments estimator.
We derive the asymptotic properties of our method-of-moments estimator and the statistical test.
We illustrate their finite-sample properties in several of Monte Carlo simulations and in an
empirical application to existing data from the literature. In the simulation study, we compare the
method-of-moments estimator to the inconsistent OLS estimator and the consistent sieve-based
estimator of Schennach and Hu (2013). Because OLS and the sieve-based approach represent two
ends of the spectrum, we use them as a benchmark.

Our simulation study shows that the method-of-moments estimator performs well in terms of
bias and variance and even exhibits a certain degree of robustness to deviations from the assump-
tion that the measurement error has a symmetric distribution without excess kurtosis. In the
simulation experiments where such robustness is not present, our statistical test already has high
power for relatively small samples. The method-of-moments estimator generally outperforms the
OLS estimator in terms of attenuation bias and also performs well in comparison to the semi-
parametric estimator of Schennach and Hu (2013) in the normal and symmetric case. The latter
estimator is consistent under fairly general conditions, but its optimal performance turns out dif-
ficult to achieve in practice. The main problem is the use of interior-point optimization for the
constrained optimization of the log-likelihood function. We experiment with different starting
values for the optimization and observe that it matters quite a lot, which is a well-known problem
in the literature (Gertz et al., 2004). Our simulations also illustrate the drawback of the sieve-
based method’s assumptions about the conditional distribution of the unobserved regressor given
the error-free control variables.
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Under the assumption of Schennach and Hu (2013) that “measurement error is not sufficiently
severe to completely alter the shape of the specification,” we recommend considering our
method-of-moments estimator as a potential candidate if OLS reveals a quadratic relation. On the
basis of our theoretical analysis and simulation study, we recommend our estimator as the final
choice if the Wald test fails to reject. We also discuss the possibility of combining our initial
method-of-moment estimator with the auxiliary estimator (used for the Wald test) by means of
model averaging.

In an empirical application, we use the well-known Boston data set (Harrison and Rubinfeld,
1978) and study the impact of a neighborhood’s socio-economic status on the housing prices in
that area. Because our statistical test does not reject, we base our subsequent inference on the
method-of-moments estimator that assumes a symmetric measurement-error distribution free
without excess kurtosis. We establish significant measurement error, resulting in a reliability of
around 80%. However, we are faced with a counter-intuitive sign of one of the control variables’
coefficient estimates, which remains present after winsorization of the data. This could be an
indication that the standard quadratic location-shift regression model is too restrictive and that
we need quantile regression to account for the effect that certain housing characteristic are priced
differently for houses in the upper-price range as compared to houses in the lower-price range
(Zietz et al., 2008). Alternatively, it could indicate a source of endogeneity, caused by simultaneity
or omitted variables. This would require an approach that can deal with both measurement error
and additional sources of endogeneity (e.g., Hu et al., 2015, 2016; Song et al., 2015).

Our approach directly extends the strand of literature initiated by Geary (1942), who intro-
duced the moment-based approach for the linear measurement-error model and whose approach
was elaborated on by many others (Cragg, 1997; Dagenais and Dagenais, 1997; Erickson and
Whited, 2000, 2012; Kendall and Stuart, 1973; Meijer et al., 2017; Pal, 1980; Scott, 1950; Van
Montfort et al., 1989).

The setup of the remainder of this paper is as follows. Section 2 analyzes the effects of ignor-
ing measurement error in the quadratic measurement-error model by deriving the attenuation
bias of the OLS estimator. The outline of our approach is sketched Section 3, followed by the
details of our method-of-moments estimator that assumes a symmetric measurement-error distri-
bution without excess kurtosis (referred to as “MM1”). Section 4 proposes a Wald test based on
an auxiliary method-of-moments estimator (“MM2”) to test a necessary condition for the consist-
ency of MM1. The sieve-based approach of Schennach and Hu (2013) acts as our benchmark
approach together with OLS and is described in Section 5. The results of a simulation study and
an empirical application are discussed in Sections 6 and 7, respectively. Finally, Section 8 provides
discussion and conclusions. An online appendix with supplementary material is available.

2. Attenuation bias of OLS

This section focuses on the largely ignored insights in the OLS estimator’s attenuation bias
offered by the quadratic errors-in-variables model where both the measurement error and the
unobserved regressor are normally distributed. This analysis extends Griliches and Ringstad
(1970), Van Montfort (1989) and Wansbeek and Meijer (2000).

For a generic observation, hence omitting subscripts labeling observations, we write the quad-
ratic regression model with measurement error as

y ¼ aþ bnþ cn2 þ e; x ¼ nþ v, (1)

where x is observed, n is unobserved, v is the measurement error and e the regression error. We
adopt the standard assumptions that n, e and v are mutually independent and that both the
regression error e and the measurement error v have mean zero and variances r2e and r2v ,
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respectively. For the sake of analytical tractability in the calculations that follow, we assume v �
Nð0,r2vÞ and n � Nðl1, r2nÞ: We denote lk � EðnkÞ:

We start with the measurement error bias of the OLS estimators of a, b and c. Because of the
normality of n, we have

Cov ðn, n2Þ ¼ Eðn3Þ � EðnÞEðn2Þ ¼ l3 � l1l2 ¼ 2l1r
2
n

Var ðn2Þ ¼ Eðn4Þ � Eðn2Þ2 ¼ l4 � l22 ¼ 2r4n þ 4l21r
2
n:

Now let

An � Var ðnÞ Cov ðn, n2Þ
Cov ðn, n2Þ Var ðn2Þ

� �
¼ r2n

1 2l1
2l1 2r2n þ 4l21

� �
: (2)

Hence, with r2x � r2n þ r2v , the normality of v implies

Ax � Var ðxÞ Cov ðx, x2Þ
Cov ðx, x2Þ Var ðx2Þ

� �
¼ r2x

1 2l1
2l1 2r2x þ 4l21

� �
: (3)

Let, with reliability q � r2n=r
2
x,

B � 1 2ð1� qÞl1
0 q

� �
: (4)

Then An ¼ qAxB and

plim
n!1

b̂
ĉ

 !
¼ A�1

x An
b
c

� �
¼ qB

b
c

� �
¼ qbþ 2qð1� qÞcl1

q2c

� �
, (5)

where n denotes the sample size. This result was derived by Griliches and Ringstad (1970) only
for the special case where l1 ¼ 0: The value of n where EðyjnÞ has its minimum (c > 0) or max-
imum (c < 0) is the turning point s � �b=ð2cÞ, for which we have

s� � plim
n!1

ŝ ¼ � plim
n!1

b̂
2ĉ

¼ s� ð1� qÞl1
q

: (6)

Figure 1. The effect of measurement error on the OLS-estimated curve.
Notes: The solid curve indicates the true relation, while the dotted curve reflects the estimated relation.
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Because s ¼ qs� þ ð1� qÞl1, we observe that s is overestimated when s > l1 and underesti-
mated when s < l1: Note that s� and l1 can be estimated consistently, so s is consistently
bounded. Let p � qð1� qÞcr2x ¼ ð1� qÞcr2n and note that l2 ¼ qr2x þ l21: Then for the OLS esti-
mator â of a

plim
n!1

â ¼ EðyÞ � ðplim
n!1

b̂ÞEðxÞ � ðplim
n!1

ĉÞEðx2Þ

¼ aþ bl1 þ cðqr2x þ l21Þ
� �� qbþ 2qð1� qÞcl1½ �l1 � q2cðr2x þ l21Þ

¼ aþ cðq2s2� � s2Þ þ p:

(7)

Let ymax � aþ bsþ cs2 ¼ a� cs2 be the minimum (c > 0) or maximum (c < 0) value of
EðyjnÞ: With measurement error, its estimated counterpart converges to y�max ¼ aþ cðq2s2� �
s2Þ þ p� q2cs2� ¼ ymax þ ð1� qÞcr2n: The results are depicted in Figure 1. The attenuation effect,
well-known from the linear errors-in-variables model, shows up in the quadratic model in two
forms. First, the graph has less curvature. Second, the minimal value is higher (lower if c < 0).
Another effect is that the value of n where the minimum is attained is pushed away from its true
value, but this can be in either direction depending on the position of s relative to l1. These
attenuation effects emphasize the importance of controlling for measurement error in the quad-
ratic errors-in-variables model.

3. Method-of-moments estimation

This section focuses on the quadratic regression model with measurement error given by (1). We
derive our method-of-moments estimator, discuss its identification and provide an extension to
additional error-free control variables. Throughout, we maintain the assumptions that n, e and v
are mutually independent and that both the regression error e and the measurement error v have
mean zero and variances r2e and r2v , respectively. The only distributional assumption that we
make is that v is symmetrically distributed and free of excess kurtosis, for which normality is a
sufficient but not a necessary condition. Hence, in contrast to Section 2, we no longer impose
any distributional assumptions on n.

3.1. Global outline of the approach

Our approach is to harvest enough moment conditions for consistent estimation. There are two
first moments of y and x, three second moments, four third moments. If we use moments up to
order k, their number adds up to 2þ 3þ 4þ � � � þ ðkþ 1Þ ¼ kðkþ 3Þ=2: The expectation of the
first k moments of y and x involves the parameters lj, j ¼ 1, :::, 2k: For v and e, the number of
moments is k� 1 each, since EðvÞ ¼ EðeÞ ¼ 0: There are three other parameters, namely a, b
and c. Hence, without assuming normality of any of the random terms, there are 4kþ 1 parame-
ters in total and a necessary condition for identification is kðkþ 3Þ=2 � 4kþ 1 or k2 � 5k� 2 �
0: Hence, if we do not impose any further structure on the distribution of v, we need moments
of at least order six. Estimators using such higher-order moments are expected to be sensitive to
outliers, because the impact of extreme values on sample means is amplified by raising these large
values to a high power. Under symmetry and zero excess kurtosis, the moments of v are fully
determined by r2v: As a result, the parameters of the quadratic measurement-error model are
identifiable from the first four moments of y and x.

The price we pay for the assumptions we impose on v is the risk of misspecification. Later we
will therefore develop a statistical test to verify a necessary condition for the consistency of our
method-of-moments estimator. This test is based on an auxiliary method-of-moments estimator
that is consistent under symmetric measurement error, which requires moments up to order five.

754 E. MEIJER ET AL.



3.2. Method-of-moments estimation

We formulate the following set of assumptions:

Assumptions 3.1.
i. We observe y and x, which come from the quadratic measurement-error model in (1).
ii. n, e and v are mutually independent with EðeÞ ¼ EðvÞ ¼ 0, Eðe2Þ ¼ r2e and Eðv2Þ ¼ r2v:
iii. v is symmetric. More specifically, (a) Eðv3Þ ¼ 0 and (b) Eðv5Þ ¼ 0:
iv. v is free of excess kurtosis; i.e., jv ¼ Eðv4Þ=r4v ¼ 3:

We note that the assumption of mutual independence of n, v and e is in line with, e.g.,
Schennach and Hu (2013). We impose this assumption to ensure that the expectations of certain
products of random variables reduce to the products of the expectations. The same effect could
be achieved by imposing less stringent covariance assumptions of the form Cov ðxk1, x‘2Þ ¼ 0, for
appropriate values of k and ‘ and with x1, x2 2 fv, e, ng, x1 6¼ x2:

Under Assumptions 3.1(i) – (iii), we find

EðxÞ ¼ l1 (8)

Eðx2Þ ¼ l2 þ r2v (9)

Eðx3Þ ¼ 3l1r
2
v þ l3 (10)

Eðx4Þ ¼ Eðn4 þ 6n2v2 þ v4Þ ¼ 6l2r
2
v þ l4 þ jvr

4
v (11)

Eðx5Þ ¼ Eðn5 þ 10n3v2 þ 5nv4Þ ¼ l5 þ 10l3r
2
v þ 5l1jvr

4
v , (12)

where jv � Eðv4Þ=r4v denotes the kurtosis of v. Moment conditions (8) – (12) use EðvÞ ¼ 0,
while (10) and (11) also use Eðv3Þ ¼ 0 (i.e., Assumption 3.1 (iii-a)). Moment condition (12) add-
itionally uses Eðv5Þ ¼ 0 (i.e., Assumption 3.1 (iii-b)).

With pv � ð6� jvÞr4v , we can rewrite

l1
l2
l3
l4
l5

0BBBB@
1CCCCA ¼ E

m1

m2

m3

m4

m5

0BBBB@
1CCCCA � E

x
x2 � r2v
x3 � 3r2vx
x4 � 6r2vx

2 þ ð6� jvÞr4v
x5 � 10r2vx

3 þ 5ð6� jvÞr4vx

0BBBB@
1CCCCA ¼ E

x
x2 � r2v
x3 � 3r2vx
x4 � 6r2vx

2 þ pv
x5 � 10r2vx

3 þ 5pvx

0BBBB@
1CCCCA: (13)

If we now also impose Assumption 3.1 (iv), we get pv ¼ 3r4v: Then m4 and m5 in (13) reduce
to m4 ¼ x4 � 6r2vx

2 þ 3r4v and m5 ¼ x5 � 10r2vx
3 þ 15r4vx: The parameters of interest are a, b, c,

r2e , r
2
v , while the lks are the nuisance parameters.

To estimate these parameters, we consider moment conditions involving moments up to order
four, of which there are 2þ 3þ 4þ 5 ¼ 14: We discard Eðxy3Þ and Eðy4Þ, because they involve
l7 and l8. We also ignore Eðy3Þ and Eðx2y2Þ, because they depend on l6. Theoretically, drop-
ping moments and parameters may entail a slight loss of efficiency in estimating the other
parameters. We nevertheless believe that this effect will be small relative to the advantage of not
using unstable higher-order moments.

We thus consider the moments EðyÞ,EðxyÞ,Eðx2yÞ,Eðx3yÞ,Eðy2Þ and Eðxy2Þ: Elimination of a
by centering the variables is not straightforward in a quadratic model, so we keep the intercept
and refrain from centering. We equivalently consider the moments of �y � y� a instead of y and
of the mks instead of the powers of x. We write m1 for x for the sake of transparency. The
moment conditions linear in �y that we exploit are

Eð�yÞ ¼ bl1 þ cl2 (14)

Eðm1�yÞ ¼ E ðnþ vÞðbnþ cn2Þ
� �

¼ bl2 þ cl3 (15)
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Eðm2�yÞ ¼ E ðn2 þ v2 � r2vÞðbnþ cn2Þ� � ¼ bl3 þ cl4 (16)

Eðm3�yÞ ¼ E ðn3 þ 3nv2 � 3r2vnÞðbnþ cn2Þ� � ¼ bl4 þ cl5: (17)

After eliminating the lks, this yields

Eðmj�y � bmjþ1 � cmjþ2Þ ¼ 0, (18)

for j ¼ 0, 1, 2, 3 and with m0 � 1: The moment conditions quadratic in �y that we consider are

Eð�y2Þ ¼ E ðbnþ cn2 þ eÞ2
� �

¼ b2l2 þ 2bcl3 þ c2l4 þ r2e ¼ E ðbm1 þ cm2Þ�y
� �þ r2e

Eðm1�y
2Þ ¼ E nðbnþ cn2 þ eÞ2

� �
¼ b2l3 þ 2bcl4 þ c2l5 þ l1r

2
e ¼ E ðbm2 þ cm3Þ�y

� �þ l1r
2
e :

After eliminating the ls, we find

Eð�y2 � ðbm1 þ cm2Þ�y � r2e Þ ¼ 0 (19)

Eðm1�y
2 � ðbm2 þ cm3Þ�y � r2em1Þ ¼ 0: (20)

Because (18) with j¼ 3 involves l5, we drop this condition. We then collect (18) [j¼ 0, 1, 2],
(19) and (20) and write the system of moment equations as E½h1ðh; dÞ� ¼ 0, where d �
ðx, yÞ0, h � ða, b, c, r2e , r2vÞ0 and

h1ðh; dÞ �

�y � bm1 � cm2

m1�y � bm2 � cm3

m2�y � bm3 � cm4

�y2 � ðbm1 þ cm2Þ�y � r2e
m1�y2 � ðbm2 þ cm3Þ�y � r2em1

0BBBB@
1CCCCA: (21)

The method-of-moments estimator solves

1
n

Xn
i¼1

h1ðh; diÞ ¼ 0: (22)

The resulting estimator ĥ will henceforth be referred to as “MM1” and its components are
denoted by â, b̂, ĉ, … . It uses Assumptions 3.1 (i), (ii), (iii-a) and (iv).

Alternatively, we can relax the assumption of no excess kurtosis and only assume symmetry of
v. If we drop Assumption 3.1 (iv), the expectations of m4 and m5 in (13) contain pv ¼
ð6� jvÞr4v: We therefore have to estimate the extended parameter vector g � ða, b, c, r2e , pv, r2vÞ0:
We note that we estimate pv instead of the kurtosis jv, because the underlying parameter trans-
formation turned out to make it easier to find a numerical solution to the system of
moment conditions.

Because of the additional parameter pv, we add (18) with j¼ 3 to the moment conditions we
already used for MM1. We collect (18) [j ¼ 0, 1, 2, 3], (19) and (20) and write the system of
moment conditions as E½h2ðg; dÞ� ¼ 0: Our second method-of-moments estimator ~g, referred to
as “MM2”, solves

1
n

Xn
i¼1

h2ðg; diÞ ¼ 0: (23)

This estimator uses Assumptions 3.1 (i), (ii), (iii-a) and (iii-b). The components of ~g will be
denoted by ~a, ~b,~c, … .
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3.3. Asymptotic covariance matrix and identification

The method of moments is known to yield consistent and asymptotically normal estimators. To
obtain the asymptotic covariance matrix corresponding to MM1, we need the Jacobian of the
moment conditions with respect to the parameters as a function of the observed data. To obtain
this matrix, we note that @m2=@r2v ¼ �1, @m3=@r2v ¼ �3m1, @m4=@r2v ¼ �6m2 and @�y=@a ¼
�1: The Jacobian writes as

G1ðh; dÞ ¼ �

1 m1 m2 0 �c
m1 m2 m3 0 �ðbþ 3cm1Þ
m2 m3 m4 0 �y � 3bm1 � 6cm2

2�y � bm1 � cm2 �ym1 �ym2 1 �c�y
2�ym1 � bm2 � cm3 �ym2 �ym3 m1 �ðbþ 3cm1Þ�y

0BBBB@
1CCCCA:

With observed data d1, :::, dn, this yields

dVarðĥÞ ¼ 1
n

1
n

Xn
i¼1

G1ðĥ; diÞ
 !�1

1
n

Xn
i¼1

h1ðĥ; diÞh1ðĥ; diÞ0
 !

1
n

Xn
i¼1

G1ðĥ; diÞ0
 !�1

: (24)

The model parameters are (locally) identified if the expectation of the Jacobian has full rank.
This yields our main identification result.

Result 3.1. Under Assumptions 3.1 (i), (ii), (iii-a) and (iv), EðG1ðh; dÞÞ corresponding to MM1
fails to have full rank if c¼ 0 or if l1 ¼ l2 ¼ l3 ¼ b ¼ 0: In the latter case, n¼ 0 with probability
1. This is a trivial case that we assume not applicable. As to the former:

i. If c¼ 0, then c is always identified.
ii. If c¼ 0 and b¼ 0, then all parameters except r2v are identified.
iii. If c¼ 0 and the skewness of n is 0, then only c is identified.
iv. In all other cases, all parameters are identified.

The proof of this result is in (online) Appendix A, supplementary material where we derive an
explicit expression for the expectation of the Jacobian.

In finite samples and under misspecification, it is an empirical matter whether (22) has a
unique solution ĥ that satisfies the feasibility conditions r̂2

e � 0 and 0 	 r̂2
v 	 r̂2

x, with r̂2
x the

sample variance of x. We will come back to the existence, uniqueness and feasibility of the solu-
tion in our simulation study in Section 6.

Similarly, we find that, under Assumptions 3.1 (i), (ii), (iii-a) and (iii-b), EðG2ðg; dÞÞ corre-
sponding to MM2 fails to have full rank if either l1 ¼ l3 ¼ b ¼ 0 or c¼ 0. This is shown in
Appendix A, supplementary material, where we derive an explicit expression for the expectation
of the Jacobian. Again the existence, uniqueness and feasibility of a solution of (23) is an empir-
ical matter in finite samples and under misspecification. Feasibility means that ~r2

e � 0, 0 	 ~r2
v 	

r̂2
x and ~pv 	 6~r4

v , where the latter restriction follows from the non-negativity of the kurtosis. We
will come back to this issue in our simulation study.

3.4. Error-free control variables

With an additional vector of error-free control variables z 2 RK , (1) becomes

y ¼ aþ bnþ cn2 þ z0kþ e: (25)
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For this extended model, consider the additional assumption that ðn, zÞ is independent of both
v and e. We will refer to this as Assumption 3.1 (v).2 This assumption yields the moment condi-
tions

E zð�y � bm1 � cm2Þ
� � ¼ E zðe� bv� cð2nvþ v2 � r2vÞÞ

� � ¼ 0: (26)

The inclusion of additional error-free regressors is straightforward: redefine �y ¼ y� a� z0k in
the moment conditions, add (26) to the moment conditions of either MM1 or MM2 and solve
the resulting system of moment equations.

4. Statistical test

This section proposes a statistical test to validate a necessary assumption for the consistency of
MM1 and discusses its statistical properties.

4.1. Diagnostic testing in the errors-in-variables model

With only observed covariates, the econometric literature provides an extensive array of tools for
diagnostic and goodness-of-fit testing of regression models. For example, if we used specific-to-
general model selection, we would typically first estimate an unrestricted model and perform
some diagnostic and goodness-of-fit tests. Depending on the outcomes of these tests, we would
subsequently revise the model by strengthening certain assumptions and by estimating an
adjusted, more parsimonious regression model using a more efficient estimator. We would itera-
tively repeat these steps until the diagnostic tests indicated that the model assumptions cannot be
strengthened any further, given the data under consideration.

In the presence of an error-ridden variable, however, such an approach is usually not possible.
A major issue is that we observe neither the unobserved regressor nor the measurement error,
making it impossible to apply tests to them. Simply ignoring the presence of measurement error
is not an option either, since conventional statistical tests typically do not have the usual asymp-
totic properties in the presence of measurement error. Tailor-made diagnostic testing and variable
selection for the errors-in-variables model is still in an early stage (Blalock, 1965; Bloch, 1978;
Carrillo-Gamboa and Gunst, 1992; Huang et al., 2005; Huang and Zhang, 2013; Nghiem and
Potgieter, 2019; Zhao et al., 2020).

An additional complication is that changing a single assumption of the errors-in-variables
model already requires substantial changes in the underlying estimation method to maintain con-
sistency. This form of ill-conditionedness of the errors-in-variables model explains why many esti-
mators for this model rely on the standard assumption that the unobserved regressor,
measurement error and regression error are mutually independent. We follow this convention by
maintaining the usual independence assumptions, but we propose a statistical test to verify a
necessary condition for the consistency of MM1.

4.2. Test statistic

Let pv, 2 ¼ plimn!1~pv and r4v, 2 ¼ plimn!1ð~r2
vÞ2: The restriction that we will test is pv, 2 ¼ 3r4v, 2:

This property holds if v is symmetric and free of excess kurtosis, since MM2 is consistent in this
case. We therefore use MM2 to construct a Wald test for testing the null hypothesis H0 : pv ¼
3r4v against the alternative hypothesis H1 : pv 6¼ 3r4v: This yields the test statistic

2Similar to the previous independence relaxation, the assumption that ðn, zÞ is independent of both v and e can be relaxed to
covariance restrictions of the form Cov ðzkj , x‘1Þ ¼ 0 for suitable values of k, ‘ and with x1 2 fv, eg, j ¼ 1, :::, K:
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qW ¼ f~pv � 3ð~r2
vÞ2g2 R0dVarð~gÞR� ��1

, (27)

where R ¼ ð0, 0, 0, 0, 1, � 6~r2
vÞ0: We reject the null hypothesis at the u% significance level if qW >

v21, 1�u; otherwise do not reject.
To investigate the asymptotic size and power of the Wald test, we first discuss a few special

cases. Under the null hypothesis that v has a symmetric distribution without excess kurtosis,
MM2 is consistent such that pv, 2 ¼ 3r4v, 2: As a result, qW is asymptotically v21 distributed, yielding
an asymptotic rejection rate (size) of u. For symmetric alternatives with pv 6¼ 3r4v , MM2 is still
consistent. Consequently, we must have pv, 2 6¼ 3r4v, 2, yielding an asymptotic rejection rate
(power) of 1. Because both MM1 and MM2 assume a symmetric measurement-error distribution,
we cannot construct a test for the symmetry assumption on the basis of these two estimators. For
asymmetric alternatives, nevertheless, our Wald test will have an asymptotic rejection rate of 1 as
long as pv, 2 6¼ 3r4v, 2 (Cameron and Trivedi, 2005, Ch. 7). Hence, as long as the inconsistency of
MM2 causes pv, 2 to be different from 3r4v, 2, the asymptotic power of the Wald test will be 1 for
asymmetric alternatives.

We will investigate the finite-sample behavior of MM2 and the Wald test by means of a simu-
lation study in Section 6, where we will consider both symmetric and asymmetric alternatives.

5. Benchmark approach

Before discussing the results of a simulation study, we explain the approach of Schennach and
Hu (2013). This approach will be used as a benchmark approach in our simulation study,
together with OLS.

5.1. Sieve-based estimation

The semi-parametric estimator of Schennach and Hu (2013) applies to general non-linear models
of the form y ¼ gðn, sÞ þ e, with gð�, �Þ a parametric function of the unobserved regressor and a
finite-dimensional parameter vector s: The joint density of the observables (y, x) is denoted by
fyx. This joint density depends on the marginal densities of the regression error (f1), the measure-
ment error (f2) and the unobserved regressor (f3) via the following integral equation:

fyxðy, xÞ ¼
ð
f1ðy� gðn, sÞÞf2ðx� nÞf3ðnÞdn: (28)

Schennach and Hu (2013) provide the conditions under which this equation is non-paramet-
rically identified and thus yields a unique functional solution ðs, f1, f2, f3Þ:

Schennach and Hu (2013) propose a sieve-based approach using maximum-likelihood estima-
tion. Thanks to the use of sieve densities, their approach does not require distributional assump-
tions such as symmetry of the measurement error. The method involves maximum likelihood
estimation subject to non-linear parameter constraints. Applied to our quadratic specification, the
log-likelihood function is given by

L �
Xn
i¼1

log
ð
f �1 ðyi � a� bn� cn2Þf �2 ðxi � nÞf �3 ðnÞdn: (29)

The densities f �1 , f
�
2 and f �3 are chosen to be sieve densities of the form

f �k ðzÞ ¼
�Xsk

j¼0

dkj pjðzÞ
�2

k ¼ 1, 2, 3½ �, (30)
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for unknown coefficients dk0, :::, d
k
sk

and sieve smoothing parameters sk. The functions pjðzÞ are
orthonormal Hermite polynomials, with pjðzÞ ¼ 1=

ffiffiffi
p

p
j!2j

	 

HjðzÞ exp ð�z2=2Þ, H0ðzÞ ¼

1, H1ðzÞ ¼ 2z and Hjþ1ðzÞ ¼ 2zHjðzÞ � 2jHj�1ðzÞ: Parameter constraints must be imposed to
ensure that each of the three sieve densities integrate to unity and that the first two have mean
zero: Xsk

j¼0

ðdkj Þ2 ¼ 1 k ¼ 1, 2, 3½ �;
Xsk�1

j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðjþ 1Þ

p
dkj dkjþ1 ¼ 0 k ¼ 1, 2½ �: (31)

Because of these parameter restrictions, we must have sk � 2 for k¼ 1, 2 and s3 � 1 to ensure
that the resulting sieve densities have at least one free parameter left after the parameter condi-
tions have been imposed.

Because r2e , r
2
v , r

2
n and l1 are all functions of the ds, the parameters in the parameter vector

s ¼ ðd10, :::, d1s1 , d20, :::, d2s2 , d30, :::, d3s3 , a, b, cÞ0 are estimated jointly.
Schennach and Hu (2013) show that the sieve-based approach is

ffiffiffi
n

p
-consistent for sk ! 1 as

n ! 1, k¼ 1, 2, 3. In practice, the values of the sieve smoothing parameters s1, s2 and s3 will
have to be chosen in a data-driven way, for example using a cross-validation approach that aims
to minimize a mean squared error. Such an approach would be too time-consuming for our
simulation study and is therefore omitted. Instead, we will use the same set of smoothing parame-
ters across different sample sizes.

In an empirical application, Schennach and Hu (2013) obtain standard errors using a bootstrap
procedure. Such a procedure would be again be too time-consuming for our simulation study. In
line with Schennach and Hu (2013) and Garcia and Ma (2017), we will therefore not report
standard errors for the sieve-based estimates.3

If the quadratic errors-in-variable model contains error-free control variables as in (25), we
condition all densities in (28) and (29) on these covariates. Because of the assumed independence,
the densities f1 and f2 are not affected by this conditioning. Regarding f3, we adopt the two-step
estimation approach proposed by Schennach and Hu (2013, p. 184). We first estimate EðnjzÞ by
regressing x on a constant and the vector of control variables z, yielding the estimated coefficient
vector f̂: Subsequently, we replace f �3 ðnÞ in (29) by f �3 ðn� f̂

0
zÞ and f �1 ðyi � a� bn� cn2Þ by

f �1 ðyi � a� bn� cn2 � z0k̂Þ: We then proceed as above, but with the additional constraint that
the sieve density f �3 has mean zero.

5.2. Comparison to method of moments

Table 2 compares the assumptions underlying our method-of-moments estimator MM1 and
the sieve-based estimator of Schennach and Hu (2013). Both estimators assume that n, v and e
are mutually independent. The main advantage of the method of Schennach and Hu (2013)
lies in its flexibility with respect to the functional form of gðn, sÞ, which does not have to be

Table 2. Assumptions: method-of-moments vs. sieve-based estimation.

Assumption Method of moments Sieve based estimation

Eðyjn, zÞ quadratic non-parametric (sieve)a

regression error e none non-parametric (sieve)a

measurement error v normal non-parametric (sieve)a

unobserved regressor n none non-parametric (sieve)a

distribution of njz none restrictedb

aIn practice, parametric with few terms, but more flexible than normal; see description in text.
b
EðnjzÞ is assumed linear and distribution of n� EðnjzÞjz assumed independent of z.

3More details of the computational implementation of the sieve-based approach are given in Appendix B.
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quadratic. The sieve-based approach is also relatively flexible with respect to the distribution
of the measurement error, which is not required to be symmetric or free of excess kurtosis.

We note, however, that sieve densities will impose certain parametric restrictions in practice.
This is due to the relatively low values of the numbers of terms sk that are usually selected in
(30) for the sake of computational feasibility. Such restrictions are particularly relevant for the
distributions of n and e, on which the method of moments does not impose any assumptions.
Hence, the sieve-based method will typically be more general in terms of the distribution of v,
but less general regarding the distributions of n and e.

If a vector of error-free control variables z is included in the quadratic measurement-error
model as in (25), both approaches assume that ðn, zÞ, v and e are mutually independent. The
sieve-based approach additionally assumes that EðnjzÞ ¼ z0f and that ½n� EðnjzÞ�jz does not
depend on z. Our method-of-moments estimators do not require such assumptions.

6. Simulation study

We use Monte Carlo simulation to assess the performance of MM1, the Wald test, the sieve-
based approach and OLS. In all simulation experiments, we take n ¼ 500, 2, 000, 3, 000 and 5, 000:

6.1. Normal measurement error

We start with the normal quadratic measurement-error model given by (1), with a ¼ b ¼ c ¼
1, e � Nð0, 2Þ, v � Nð0, 0:2Þ and n � Nð1, 1Þ: The model has an R2 of 0.85 and a reliability
of 0.83.4

Because the measurement error in our simulation experiment is normally distributed, MM1 is
consistent. The sieve-based approach of Schennach and Hu (2013) is also consistent in this set-
ting, provided that sk ! 1 as n ! 1, k¼ 1, 2, 3. Because we use s1 ¼ s2 ¼ s3 ¼ 6 regardless of
the sample size, the empirical implementation of the sieve-based estimator is formally inconsist-
ent. Because of the flexibility of the sieve densities even for relatively low values of the smoothing
parameters, we still expect the resulting estimator to perform well in terms of bias and standard
deviation. However, we expect MM1 to have a smaller bias and to be more efficient, since it does
not rely on approximative distributions but exploits the assumptions of symmetry and zero excess
kurtosis.

The upper panel of Table 3 (“normal errors”) shows the results for MM1, the sieve-based
approach and OLS. The rows captioned “bias” report the average value of the estimated param-
eter minus its true value. The rows captioned “s.d.” show the standard deviation of the estimated
parameters, while the rows captioned “avg. r̂” display the average estimated standard errors.
These statistics are calculated as averages over all simulation runs for which the system of
moment conditions has a unique solution. We verify the uniqueness of the solution by using dif-
ferent starting values for the root-solving routine. We confirm the existence of a unique solution
in almost all simulation runs. Regardless of the sample size, the estimates of a, b, c, r2e and r2v as
produced by MM1 are on average close to their true values. Also the average formula-based
standard errors are close to the sample standard deviations. Also for smaller sample sizes, MM1
usually turns out feasible.5

The biases of the sieve-based estimators are small in an absolute sense but larger than those
associated with MM1. Part of this difference in bias may be caused by our non-optimal choice
of the sieve smoothing parameters sk. The biases of the sieve-based estimators of b and c do

4The R2 is defined as R2 � Varðaþ bnþ cn2Þ=VarðyÞ ¼ A=ðAþ r2e Þ, for A � b2VarðnÞ þ c2Varðn2Þ þ 2bcCov ðn, n2Þ:
5Appendix C shows the exact percentage of simulation runs for which a unique (feasible) solution exists; see Table C.1.
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not show the monotonic decrease with n that we may expect on the basis of the method’s
known consistency. The pattern in the biases is also likely to reflect our fixed choice of
smoothing parameters and emphasizes the need for a data-driven choice to get optimal results.
As expected, the results in the upper panel of Table 3 confirm that the OLS estimator is
inconsistent.

We also consider the above quadratic errors-in-variables model with (demeaned) Poisson dis-
tributed regression errors. We choose the same regression error variance as before, which means
that we set the Poisson parameter equal to 2. Because MM1 does not use the distribution of e, we
do not expect that this distributional change will substantially affect its performance. By contrast,
the ability of the sieve estimator with low s1 to approximate the discrete distribution of e could
be affected. These expectations are confirmed by the results shown in the lower panel of Table 3.
Especially the bias of the sieve-based estimator of a turns out relatively large for s1 ¼ s2 ¼ s3 ¼ 6:
The OLS bias continues to be large.

Table 3. Simulation results: normal errors.

Method of moments (MM1) Sieve based OLS

a b c r2e r2v a b c a b c

Normal errors
n ¼ 500
bias –14 –44 32 –63 –1 –90 92 15 359 107 –302
s.d. 149 217 143 448 40 134 203 100 105 124 65
avg. r̂ 143 205 128 417 39 n.a. n.a. n.a. 61 68 27
n ¼ 2, 000
bias –1 –6 4 –5 –1 –83 39 40 362 112 –306
s.d. 75 103 68 229 21 72 121 59 52 63 33
avg. r̂ 72 100 66 217 20 n.a. n.a. n.a. 30 33 13
n ¼ 3, 000
bias 1 –3 2 –2 –1 –75 33 42 361 111 –305
s.d. 60 82 55 175 16 62 106 53 45 49 26
avg. r̂ 59 82 54 180 17 n.a. n.a. n.a. 25 27 11
n ¼ 5, 000
bias 1 –1 0 2 –1 –41 56 7 362 111 –306
s.d. 45 65 44 145 14 78 95 84 33 39 22
avg. r̂ 46 63 42 140 13 n.a. n.a. n.a. 19 21 8
Discrete regression error
n ¼ 500
bias –11 –29 22 –53 0 –178 110 94 2363 113 –307
s.d. 155 217 144 474 41 131 220 111 109 125 66
avg. r̂ 148 201 127 433 39 n.a. n.a. n.a. 61 68 27
n ¼ 2, 000
bias –1 –4 3 –5 –1 –123 53 73 2361 112 –306
s.d. 74 99 68 233 21 56 96 46 51 60 32
avg. r̂ 75 99 66 227 21 n.a. n.a. n.a. 30 33 13
n ¼ 3, 000
bias 1 1 –1 0 –1 –131 64 79 2362 113 –307
s.d. 62 80 53 181 16 56 83 41 44 49 26
avg. r̂ 61 81 54 186 17 n.a. n.a. n.a. 25 27 11
n ¼ 5, 000
bias 0 –1 1 –7 0 –121 56 78 2362 112 –306
s.d. 48 63 44 146 13 37 65 30 34 38 21
avg. r̂ 47 63 42 145 13 n.a. n.a. n.a. 19 21 8

Notes: The underlying measurement-error model is given by (1), with a ¼ b ¼ c ¼ 1, r2e ¼ 2 and r2v ¼ 0:2: In the upper panel
(“Normal errors”), the measurement and the regression error are normally distributed. In the lower panel (“Discrete regression
error”), the measurement error is normal again but the regression error has a (demeaned) Poisson distribution. The sieve-based
method uses s1 ¼ s2 ¼ s3 ¼ 6: In this and subsequent tables, the rows captioned “bias” report the value of the estimated par-
ameter minus its true value, averaged over the simulation runs. The rows captioned “s.d.” show the standard deviation of the
estimated parameter over the simulations, while the rows captioned “avg. r̂” displays the average estimated standard error
over the simulations. All figures have been multiplied by 1,000 for easier comparison. The number of simulation runs is 1,000
(OLS and method of moments) and 100 (sieve-based method).
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6.2. Non-normal measurement error

We take the same quadratic measurement error as before, but now with non-normal, symmetric
measurement error. As before, we set a ¼ b ¼ c ¼ 1, e � Nð0, 2Þ and n � Nð1, 1Þ, but choose v
either Laplace distributed (leptokurtic) or continuous-uniformly distributed (platykurtic) with
mean 0 and variance 0.2. Because zero excess kurtosis is a necessary condition for the consistency
of MM1, this estimator will be inconsistent in these two cases. We expect the sieve-based estima-
tor, based on s1 ¼ s2 ¼ s3 ¼ 6, to be less inconsistent than MM1.

The estimation results are shown in upper and lower panel of Table 4. Regardless of the sam-
ple size, the biases of â, b̂ and ĉ are less than 10% of the true parameter values. The biases of r̂2

e
and r̂2

v are more substantial, though. The inconsistency of the underlying approach becomes
apparent from the biases’ lack of variation with n. As expected, the biases of the sieve-based esti-
mators are small in an absolute sense. In comparison to MM1, however, the biases of the sieve-
based estimates of a and c are relatively large. As before, the biases of the sieve-based estimators
do not show the convergence to zero that would be the case with optimal smoothing parameters.
As expected, the bias of the OLS estimator is much larger than for the other two methods.

We also consider the quadratic measurement-error model with non-symmetric measurement
error. We use the same specification as used by Schennach and Hu (2013) in their simulation

Table 4. Simulation results: non-normal symmetric measurement error.

Method of moments (MM1) Sieve based OLS

a b c r2e r2v a b c a b c

Laplace measurement error
n ¼ 500
bias –84 58 31 –369 30 –129 94 39 366 156 –328
s.d. 223 342 175 724 70 120 263 116 112 146 86
avg. r̂ 186 272 149 595 60 n.a. n.a. n.a. 61 67 26
n ¼ 2, 000
bias –67 90 3 –299 30 –124 79 55 367 166 –333
s.d. 94 154 79 325 35 70 141 68 56 75 45
avg. r̂ 87 129 74 299 33 n.a. n.a. n.a. 30 33 13
n ¼ 3, 000
bias –68 92 3 –303 31 –92 68 37 366 167 –334
s.d. 73 112 64 267 29 67 144 60 47 60 36
avg. r̂ 72 107 62 251 27 n.a. n.a. n.a. 25 27 11
n ¼ 5, 000
bias –61 91 –1 –277 29 –86 63 37 367 165 –333
s.d. 55 87 49 191 21 59 131 56 36 47 28
avg. r̂ 54 81 48 191 21 n.a. n.a. n.a. 19 21 8
Uniform measurement error
n ¼ 500
bias 15 –72 24 54 –13 –126 67 51 359 84 –293
s.d. 146 206 141 440 36 116 257 118 103 121 61
avg. r̂ 139 192 125 395 34 n.a. n.a. n.a. 61 68 27
n ¼ 2, 000
bias 22 –40 3 93 –12 –97 48 44 359 89 –295
s.d. 71 92 63 214 18 71 160 62 51 60 30
avg. r̂ 69 93 63 202 18 n.a. n.a. n.a. 30 34 13
n ¼ 3, 000
bias 22 –42 4 94 –12 –94 40 48 358 87 –294
s.d. 58 78 53 176 16 63 119 54 42 50 24
avg. r̂ 57 76 52 167 15 n.a. n.a. n.a. 25 27 11
n ¼ 5, 000
bias 25 –36 –1 105 –13 –100 57 42 360 88 –295
s.d. 44 62 41 126 11 55 117 52 32 39 19
avg. r̂ 44 59 40 131 11 n.a. n.a. n.a. 19 21 8

Notes: The underlying measurement-error model is given by (1), with normal regression error and a ¼ b ¼ c ¼ 1, r2e ¼ 2 and
r2v ¼ 0:2: In the upper panel (“Laplace measurement error”), the measurement error is Laplace distributed. In the lower panel
(“Uniform measurement error”), the measurement error is uniformly distributed. The sieve-based method uses s1 ¼ s2 ¼ s3 ¼
6: Excess kurtosis: 3 (Laplace) and �6=5 (continuous uniform).
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experiments. We thus set a¼ 0, b ¼ c ¼ 1 and e � Nð0, 0:9Þ: Furthermore, n is a mixture of
Nð0, 1Þ and Nð0:2, 0:25Þ random variables with weights 0.6 and 0.4, respectively. We take v
(demeaned) minimum-Gompertz distributed, with parameters a ¼ 0:5772b and b¼ 1/2, where
0.5772 denotes the Euler-Mascheroni constant. Due to the substantial measurement-error variance
of about 0.4, the reliability in this model is lower than in the previously considered normal model
(0.64 versus 0.83). The model’s R2 is also lower than before and equals almost 0.70. Again we
expect the sieve-based estimator, based on s1 ¼ s2 ¼ s3 ¼ 5, to be less inconsistent than MM1.

The estimation results are shown in upper panel of Table 5 (“Gompertz measurement error”).
We observe that MM1 is more biased than in the previous simulation experiments. This holds
particularly true for the estimators of c and r2v: The increased bias is due to the combination of a
leptokurtic, asymmetric measurement-error distribution and a reduced reliability.

We next consider the Gompertz measurement-error model with non-normal regression errors.
The distribution of the regression errors is (demeaned) minimum-Gompertz, with parameters
a ¼ 0:5772b for b¼ 3/4, while the remaining distributions and parameters are the same as before.
Because MM1 does not rely on the distribution of e, we would not expect this distributional
change to affect its bias. The results in the lower panel of Table 5 (“Gompertz errors”) confirm
this. The ability of the sieve estimator with low s1 to approximate the distribution of e could be

Table 5. Simulation results: Gompertz errors.

Method of moments (MM1) Sieve based OLS

a b c r2e r2v a b c a b c

Gompertz measurement error
n ¼ 500
bias 12 91 –187 189 –164 –34 –11 81 181 –272 –503
s.d. 130 286 194 387 121 100 156 154 84 79 70
avg. r̂ 122 246 170 335 101 n.a. n.a. n.a. 54 43 26
n ¼ 2, 000
bias 29 96 –206 214 –144 –35 –15 86 187 –267 –512
s.d. 64 141 86 176 55 52 84 83 46 39 39
avg. r̂ 60 127 82 164 48 n.a. n.a. n.a. 27 21 13
n ¼ 3, 000
bias 31 87 –213 228 –147 –38 12 121 187 –263 –512
s.d. 50 111 68 141 44 41 62 76 36 31 31
avg. r̂ 48 102 66 133 39 n.a. n.a. n.a. 22 17 10
n ¼ 5, 000
bias 32 90 –211 226 –144 –37 9 101 188 –264 –514
s.d. 39 84 53 108 33 34 52 56 29 25 25
avg. r̂ 38 80 52 104 31 n.a. n.a. n.a. 17 13 8
Gompertz errors
n ¼ 500
bias 19 88 –200 210 –180 –55 –26 65 181 –269 –508
s.d. 135 273 193 376 357 106 166 149 81 78 68
avg. r̂ 124 233 169 327 232 n.a. n.a. n.a. 54 43 26
n ¼ 2, 000
bias 31 86 –212 221 –150 –46 –3 64 188 –264 –513
s.d. 61 139 87 186 56 57 75 83 46 40 39
avg. r̂ 60 122 83 168 49 n.a. n.a. n.a. 27 21 13
n ¼ 3, 000
bias 31 91 –210 225 –145 –46 9 74 189 –263 –513
s.d. 51 108 71 144 43 49 69 72 37 32 31
avg. r̂ 49 101 69 139 41 n.a. n.a. n.a. 22 17 10
n ¼ 5, 000
bias 30 88 –211 228 –146 –41 1 63 188 –264 –513
s.d. 38 87 54 111 35 32 64 54 30 25 26
avg. r̂ 39 81 54 110 33 n.a. n.a. n.a. 17 13 8

Notes: The underlying measurement-error model is given by (1), with a¼ 0, b ¼ c ¼ 1, r2e ¼ 0:9 and r2v ¼ 0:4: In the upper
panel (“Gompertz measurement error”), the measurement error has a Gompertz distribution and the regression error is normal.
In the lower panel (“Gompertz errors”), the measurement and the regression errors have a Gompertz distribution. The sieve-
based method uses s1 ¼ s2 ¼ s3 ¼ 5: Excess kurtosis Gompertz measurement-error distribution: 2.4.
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affected, as it did before when we considered Poisson regression error. However, this time we do
not observe the latter effect for the sieve-based estimators; the results in the lower panel of Table
5 are very similar to those in the upper panel.

6.3. Error-free control variables

We consider two simulation experiments for the quadratic normal-measurement error models
with a single error-free control variable z, such that z0k in (25) reduces to kz. In both simulation
experiments, Assumption 3.1 (v) is satisfied. In the first experiment, we take a ¼ b ¼ c ¼ k ¼
1, e � Nð0, 2Þ, v � Nð0, 0:2Þ, z � Nð0:5, 0:5Þ and njz � Nð0:75z, 0:75Þ: In the second experi-
ment, we choose a ¼ k ¼ 1, b ¼ c ¼ 0:5, e � Nð0, 2Þ, v � Nð0, 0:2Þ, n � Nð1, 1Þ and zjn �
Nðn, 1Þ, such that EðnjzÞ is non-linear. In both models, the R2 and the reliability have a value
of 0.83.

Because the functional form of EðnjzÞ does not matter for the consistency of MM1, we expect
good results for MM1 in both experiments. For the sieve-based approach (s1 ¼ s2 ¼ s3 ¼ 6), the
two-step approach described at the end of Section 5.1 will only be consistent in the first simula-
tion experiment.

The estimation results in Table C2 of Appendix C, supplementary material confirm our expecta-
tions. In both simulation experiments, the biases of MM1 are small in an absolute sense and vanish
as n increases. In the first simulation experiment, the biases of the sieve-based estimators are also
small, but larger than those associated with MM1. In the second experiment, the biases of the sieve-
based estimators are much larger, both in an absolute sense and relative to MM1. For values of n
larger than 500, the bias of the sieve-based estimator of b̂ is even larger than for OLS.

6.4. Wald test

Before turning to the performance of the Wald test in previously considered simulation experiments,
we globally discuss the behavior of the auxiliary estimator MM2 in the simulations. We first observe
that the underlying system of moment equations does not always yield a feasible solution that satis-
fies ~r2

e � 0, 0 	 ~r2
v 	 r̂2

x and ~pv 	 6~r4
v: Most of the time, infeasibility is caused by violation of the

last constraint. In a small percentage of the simulation runs, there is no solution at all.6

Our simulation experiments confirm that MM2 is consistent, but show that it may turn out
inefficient relative to MM1 if v is normal, depending on the coefficients of interest.7 Similarly,
they confirm that if v is symmetric with non-zero excess kurtosis, MM2 is consistent, as opposed

Table 6. Empirical size and power of Wald test.

n 500 2, 000 3, 000 5, 000

Normal errors 10.5 7.7 8.0 6.4
Discrete regression error 10.9 5.7 5.6 5.7
Error-free regressor (n ! z) 6.9 4.9 6.8 6.6
Error-free regressor (z ! n) 6.8 6.8 5.4 4.5
Laplace measurement error 7.6 7.8 10.7 20.5
Uniform measurement error 13.1 15.0 20.7 24.3
Gompertz measurement error 81.7 99.6 100.0 100.0
Gompertz errors 78.3 99.7 100.0 100.0

Notes: This table applies to all of the simulations experiments that we performed and reports the rejection rates (in %) for the
Wald test. In the upper panel, the reported percentages represent the empirical size of the test. In the lower panel, the per-
centages reflect the empirical power.

6The exact percentage of simulation runs with a unique (feasible) solution is shown in Appendix C, supplementary material;
see Table C.1.
7Detailed simulation results for MM2 are provided in Tables C.4 – C.7 in Appendix C, supplementary material.
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to MM1. In the asymmetric case, the relative performance of MM1 and MM2 is an empirical
matter, since both estimators will usually be inconsistent. In the Gompertz case, our simulation
results show that the biases of â, b̂ and ĉ (MM1) are smaller than those of ~a, ~b and ~c (MM2).
However, MM2 produces a less biased estimate of r2v: As a possible explanation for this perform-
ance difference, we note that MM1 erroneously imposes pv ¼ 3r4v (Assumption 3.1 (iv)) but does
not assume Eðv5Þ ¼ 0 (Assumption 3.1 (iii-b)), unlike MM2. Apparently, the former assumption
is less detrimental to the consistent estimation of a, b and c than the latter, while the opposite
holds for r2v:

Our approach consists of running the Wald test whenever MM1 and MM2 both uniquely
exist. This is virtually always the case in our simulations.8 Table 6 reports the empirical rejection
rates of our Wald test in each of the eight simulation experiments considered previously. In the
four cases with normal measurement error, these rejection rates reflect the empirical size of the
Wald test. We see that these rejection rates are close to nominal. The rejection rates for the other
simulation experiments reflect the empirical power of the Wald test. With Laplace and uniform
measurement error, the empirical power starts at a relatively low level and increases slowly with
n. The low finite sample power arises from the fact that MM1’s bias is only small in the presence
of symmetric measurement error with non-zero excess kurtosis and modest variance. Only
moment condition (11) does not hold, which results in an estimator whose inconsistency is rela-
tively modest. Because the bias of MM1 is only small in these symmetric cases, the low power of
the test poses less of a practical problem here. In the two Gompertz cases, however, the inconsist-
ency of MM1 is more severe. Here the Wald test’s empirical power is already high for n¼ 500
and reaches the value 1 quickly.

6.5. Outlier sensitivity

Because the impact of extreme values on sample means is amplified by raising these large values
to a power up and until order four (MM1) and five (MM2), our method-of-moments estimators
could be sensitive to outliers. We investigate the outlier sensitivity by means of simulation. For
this purpose, we return to the model of Section 6.1 with normal measurement-error and regres-
sion error. In this adjusted simulation experiment, both n and e contain 25 randomly placed out-
liers. The fixed number of outliers implies that their presence becomes less of an issue as n
grows, which seems a realistic setup. These outliers have a positive or negative sign with probabil-
ity 0.5 and their fixed magnitude is qr2n and qr2e (q¼ 2, 4, 5), respectively. To save space, the
simulation results for MM1 are shown in Table C3 of Appendix C, supplementary material.

MM1 still feasibly exists in most simulation runs, even for the smaller sample sizes. But we
observe that the presence of outliers tends to increase the bias of the estimated coefficients. This
holds true especially for r2e : Also the standard deviation and average formula-based standard
error of r2e increase substantially due to the presence of outliers. This effect becomes particularly
apparent for q¼ 4, 5 and n¼ 500.

The simulation results reveal similar outlier effects for MM2 as for MM1.9 However, the per-
centage of simulation runs in which MM2 feasibly exists is relatively low for q¼ 4, 5 and
n¼ 500. For example, if we take q¼ 5 and n¼ 500, then MM2 uniquely (feasibly) exists in 83.0%
(18.3%) of the simulation runs. Further inspection shows that it is usually MM2’s infeasibility of
r2v that is a problem in these simulations. For MM1, the two percentages are both 99.1%. Hence,
MM2 is more sensitive to outliers than MM1 in terms of feasibility. The simulation results in the
Appendix, supplementary material additionally show that our Wald test exhibits more overrejec-
tion if the magnitude of the outliers increases.

8This is shown in Appendix C; see Table C.1, supplementary material.
9The simulation results for MM2’s outlier sensitivity can be found in Appendix C; see Table C.8, supplementary material.
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We conclude that our method-of-moments approach requires us to remain alert for outliers,
especially if the sample size is relatively small.

6.6. Empirical strategy

Under the assumption of Schennach and Hu (2013) that “measurement error is not sufficiently
severe to completely alter the shape of the specification,” we recommend considering our
method-of-moments estimator as a potential candidate if OLS reveals a quadratic relation. Based
on our analysis and simulations, we propose the following strategy to determine if MM1 should
be used. If both MM1 and MM2 exist and the Wald test fails to reject, we recommend MM1 as
the estimator of the quadratic errors-in-variables model. If the Wald test rejects, we recommend
the approach of Schennach and Hu (2013) instead. We also recommend the latter approach if
either MM1 or MM2 does not exist. However, we advise to remain alert for possible misspecifica-
tion in such cases, especially in the presence of error-free control variables z. That is, in the pres-
ence of such regressors, the method of Schennach and Hu (2013) imposes certain assumptions on
the conditional distribution of n given z; see the discussion in Section 5.2. Our simulations in
Section 6.3 have shown that imposing these assumptions may lead to serious bias if they do
not hold.

7. Empirical application

Our empirical application uses housing data from Harrison and Rubinfeld (1978).10 This data set
contains information on 506 geographical neighborhoods (census tracts) in the Boston Standard
Metropolitan Statistical Area in 1970. The dependent variable of interest is the median value of
the owner-occupied homes in the census tract. The average median value of the homes in the
data set equals $22,523, with a standard deviation of $9,182.

We assume that there is a single unobserved regressor of interest, namely the percentage of
the population in the census tract with a lower socio-economic status. This percentage is meas-
ured as the equally-weighted average of the percentage of adults without some high-school

Table 7. Estimation results for the Boston housing data.

OLS Sieve-based method Method of moments (MM1)

Coeff. s.e. 5% 95% Coeff. s.e. 5% 95% Coeff. s.e. 5% 95%

Intercept 3.630 0.250 3.179 3.991 4.017 0.311 3.379 4.384 4.722 0.541 3.827 5.605
Log(Status) 0.069 0.119 –0.120 0.277 0.129 0.180 –0.125 0.465 0.896 0.281 0.441 1.386
Log(Status)2 –0.111 0.028 –0.161 –0.067 –0.154 0.042 –0.230 –0.093 –0.404 0.067 –0.516 –0.300
Rooms 0.078 0.023 0.044 0.120 0.037 0.024 0.007 0.086 –0.113 0.046 –0.193 –0.044
Log(NOx) –0.514 0.099 –0.678 –0.357 –0.350 0.112 –0.541 –0.167 –0.013 0.170 –0.297 0.253
Log(Dist) –0.195 0.040 –0.264 –0.129 –0.193 0.044 –0.261 –0.120 –0.306 0.058 –0.403 –0.214
PT–ratio –0.036 0.004 –0.042 –0.029 –0.032 0.005 –0.040 –0.025 –0.019 0.008 –0.031 –0.006
r2e 0.009 0.004 0.001 0.015
r2v 0.064 0.007 0.051 0.074
Reliability 0.824
Adj. R2 0.745

Notes: The underlying quadratic measurement-error model is given by (32). For the sake of comparability, all standard errors
(“s.e.”) and 5% and 95% quantiles are based on a standard bootstrap with replacement consisting of 1,000 runs. The reliability
is calculated as 1� r̂2

v=r̂
2
x : Covariates used: Log(Status) ¼ log percentage of lower status population; Rooms¼ average num-

ber of rooms per house; Log(NOx) ¼ log of nitric oxides concentration in parts per 10 million; Log(Dist) ¼ log of weighted
distance in miles to five Boston employment centers; PT-ratio¼ pupil-teacher ratio.

10In our empirical analysis, we use the data set BostonHousing2 from the R package mlbench; see https://search.r-project.org/
CRAN/refmans/mlbench/html/BostonHousing.html and Gilley and Pace (1996).
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education and the percentage of male workers classified as laborers. On average, the observed
percentage of lower status population equals 12.7%, with a standard deviation of 7.1%. We infor-
mally investigate the normality of the log of the observed percentage of lower status population
by drawing a QQ plot; see the first graph in Figure 2. The dashed line in this graph represents
the 45 degree line, corresponding to the standard normal distribution. We observe some devia-
tions from normality in the right tail, which is less heavy than in the normal case.

We consider the quadratic measurement-error model specified by

log ðyÞ ¼ aþ b log ðnÞ þ c log ðnÞ� �2 þ z0kþ e; log ðxÞ ¼ log ðnÞ þ v, (32)

where y is the median value of the owner-occupied homes in the census tract expressed in thou-
sands of dollars, x the observed percentage of lower status population, n the true percentage of
lower status population, v the measurement error and e the regression error. The vector z ¼
ðz1, z2, z3, z4Þ0 includes four additional explanatory variables that were also used by Wooldridge
(2012): z1 is the average number of rooms per house, z2 the log of the nitric oxides concentration
in parts per 10 million, z3 the log of the weighted distance in miles to five Boston employment
centers and z4 the pupil-teacher ratio in the neighborhood. We assume these covariates to be free
of measurement error. Detailed sample statistics for the dependent and explanatory variables are
given in Table D1 of Appendix D, supplementary material.

We proceed as in Sections 3.4 and 4.2 to obtain the method-of-moments estimator MM1
under Assumptions 3.1 (i) – (v). Subsequently, we run the Wald test to verify the assumption of
no excess kurtosis. To obtain the sieve-based estimator, we follow the two-step approach outlined
in Section 5.1 and make the required assumptions about the distribution of log ðnÞjz:

Figure 2. Boston housing data.
Notes: The QQ plot in the left-hand-side figure applies to the log of the observed percentage of lower status population (after
standardization). The dashed line indicates the 45 degree line, corresponding to the standard normal distribution. In the right-
hand-side figure, the open dots reflect the observed data, while the closed dots correspond to the OLS-based predicted
(¼expected) log housing value.
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7.1. Benchmark approaches

As mentioned in the introduction, we maintain the assumption of Schennach and Hu (2013) that
“measurement error is not sufficiently severe to completely alter the shape of the specification.”
On the basis of OLS and the Bayesian Information Criterion (BIC), we conclude that we have to
include log ðnÞ and ½log ðnÞ�2 to parsimoniously capture the relation between log ðyÞ and log ðnÞ
but that higher-order terms are not required.11 We therefore continue with the model that has
the lowest BIC value, which is the model with linear and quadratic terms, but no cubic terms.
The corresponding OLS estimation results are shown in the left-most panel of Table 7.

We observe that the OLS estimate of c is significantly negative according to the 90% boot-
strap-based confidence interval that is reported in Table 7. As a result, the estimated relation
between the expected log housing value and the log percentage of lower status population is
described by a parabola that opens downwards. For each observation, we display the OLS-based
predicted log housing value in the second graph of Figure 2, together with a scatter plot of
log ðxÞ and log ðyÞ: The curve in Figure 2 shows that we expect lower log housing values for
neighborhoods with a higher log percentage of lower status population.

We use the 5% and 95% sample quantile of x to determine a relevant range of values for n.
For this range of values, we obtain the OLS-based elasticity of y with respect to n; i.e., the mar-
ginal effect of log ðnÞ on log ðyÞ: We visualize these results in Figure 3 and observe that housing
values are inelastic in all neighborhoods.

Figure 3. Comparison of different estimators.
Notes: For each method, the solid lines in the left-hand-side figure show the estimated elasticity of the housing value with
respect to the percentage of lower status, plotted as a function of the log percentage of lower status. The dashed lines consti-
tute the corresponding 90% pointwise confidence interval based on a bootstrap with replacement. The log percentage of lower
status population is taken between the 5% and 95% quantile of the observed log percentage of lower status population. In the
right-hand-side figure, the three methods are compared in terms of the predicted log housing value (in $1,000) as a function of
the log percentage of lower status. Here, the additional control variables have been set at their sample medians.

11The values of the BIC in the models with only linear terms, linear and quadratic terms and linear, quadratic and cubic terms
are �100.9671, �119.9552 and �119.1272, respectively.
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Subsequently, we estimate the quadratic measurement-error model using the sieve-based
approach. In line with our simulation experiments, we use a trial-and-error procedure to deter-
mine the sieve smoothing parameters. This procedure entails that the values of the sks are
increased until the resulting maximum likelihood estimates do not change any further, which
yields the values s1 ¼ s2 ¼ s3 ¼ 4: In line with Schennach and Hu (2013), we use a standard boot-
strap with replacement to obtain the corresponding standard errors. The estimation results are
shown in the middle panel of Table 7. According to the sieve-based method, the estimate of c is
significantly negative. We next calculate the estimated elasticity of y with respect to n and visual-
ize the results in the first graph of Figure 3. We observe that housing values are either inelastic
(low and medium percentage lower status) or unit elastic (very high percentage lower status).

According to both OLS and the sieve-based approach, the estimated coefficients of the add-
itional control variables are significant and have the expected signs. However, on the basis of our
simulation experiments, we note that some caution is required here. We seen that the bias of the
OLS estimator can be substantial in the presence of measurement error. Furthermore, the sieve-
based approach assumes that Eð log ðnÞjzÞ ¼ z0f and that ½log ðnÞ � Eð log ðnÞjzÞ�jz does not
depend on z. Our simulation results have shown that erroneously imposing these assumptions
may also induce substantial bias.

7.2. Method of moments

Lastly, we use MM1 to estimate the quadratic measurement-error model. The system of moment
equations has a unique and feasible solution. Estimation results, including bootstrap-based stand-
ard errors, are reported in the right-most panel of Table 7. The estimate of c is significantly nega-
tive. Furthermore, the estimate of the measurement-error variance is r̂2

v ¼ 0:064, which translates
into a reliability of 82%. Our empirical strategy recommends us to perform the Wald test, based
on the auxiliary method-of-moments estimator. The latter estimator turns out to have a unique
solution. We use a bootstrap-based version of the Wald test, which yields a p-value of 0.494.
Hence, our test provides no evidence against the consistency of MM1.12

The first graph in Figure 3 visualizes the estimated elasticity of y with respect to n as a func-
tion of log ðnÞ, from which we conclude that housing values are inelastic (low percentage lower
status), unit elastic (medium percentage lower status) or elastic (high percentage lower status).
For medium to high percentages of the lower status population, the OLS-based elasticity curve
lies significantly above the one based on MM1, in the sense that the former curve does not fall
within the confidence bounds of the latter. The elasticity curve based on the sieve-based method
falls in between the other two curves, but is relatively close to the OLS-based curve. The differ-
ence between the elasticity curves produced by OLS and MM1 is consistent with the effect of
attenuation on the OLS estimates, as discussed in Section 2. To illustrate more directly that the
graph based on MM1 has more curvature, the second graph in Figure 3 displays the predicted
(¼expected) value of log ðyÞ as a function of log ðnÞ for each of the three estimators.

According to MM1, the number of rooms has a significantly negative marginal effect, which
seems counter-intuitive. We first investigate whether this finding is due to outliers, since our
simulation results have shown that outlier sensitivity may be an issue for smaller sample sizes.
We winsorize the dependent and explanatory variables at the 95% level and re-estimate the
model. This adjustment leads to very little change in the sign, magnitude and significance of the
estimated coefficients, suggesting that the counter-intuitive finding is not due to outliers.13 We
provide two alternative explanations. First, Sirmans et al. (2005) and Zietz et al. (2008) address

12Detailed estimation results for MM2 are provided in Table D.2 in Appendix D, supplementary material.
13We do not report the estimation results after winsorization, because they are very similar to those in Tables 7 (MM1) and
D.2 in Appendix D, supplementary material (MM2).
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the insignificant or significantly negative coefficients of the number of (bed- or bath-)rooms that
have shown up in certain studies. Zietz et al. (2008) argue that particular housing characteristics
are priced differently for houses in the upper-price range as compared to houses in the lower-
price range and recommend quantile regression to deal with this variation in pricing. Hence, the
significantly negative sign of the coefficient estimate of the number of rooms may indicate that
the standard quadratic location-shift regression model that we adopted is too restrictive. We refer
to Chesher (2017) for a discussion of the effect of measurement error on the estimation of quan-
tile regression functions. Consistent estimation of the quantile regression model in the presence
of measurement error is also discussed in Schennach (2008) and Wei and Carroll (2009). We
note, however, that these studies make use of side information in the form of instrumental varia-
bles and replicated measurements, respectively. A second possible explanation for the counter-
intuitive sign is endogeneity due to simultaneity or omitted variables. Such a situation would
require an approach that can deal with both measurement error and additional sources of endo-
geneity; see, e.g., Hu et al. (2015), Song et al. (2015) and Hu et al. (2016).

8. Discussion

This study has proposed a new consistent estimator for the quadratic errors-in-variables model,
based on exploiting higher-order moment conditions. Our approach assumes a symmetric meas-
urement-error (ME) distribution without excess kurtosis, but does not require any side informa-
tion, such as a known measurement error variance, replicated measurements, or instrumental
variables. We straightforwardly allow for one or more error-free control variables, which only
requires the standard assumption that these regressors are independent of the measurement and
regression errors. We have combined our estimator with a Wald-type statistical test to verify a
necessary condition for its consistency.

Under the assumption that the measurement error does not alter the shape of the specification,
we recommend considering our method-of-moments estimator as a potential candidate if OLS
reveals a quadratic relation. On the basis of our theoretical analysis and simulation study, we rec-
ommend our estimator “MM1” as the final choice if the Wald test fails to reject. Especially if the
sample size is small, we advise to investigate the sensitivity of the estimation results to outliers in
the data.

We mention a few directions for future research. Instead of using our Wald test to choose
between MM1 (symmetric ME with zero-excess kurtosis) and MM2 (symmetric ME), we may
want to consider a different approach to obtain our final estimator. Because MM2 – unlike MM1
– is consistent even in the presence of excess kurtosis, an alternative possibility is to discard
MM1 altogether and to resort to MM2 in all cases. Our simulation results have illustrated that
this strategy does not necessarily lead to an estimator with a smaller bias or a lower variance,
though. Furthermore, MM2 turned out relatively sensitive to outliers and small samples in terms
of feasibility. Alternatively, we could resort to an approach that minimizes the final estimator’s
Mean Squared Error (MSE). Methods such as shrinkage or model averaging could be used to
strike an optimal balance between bias and variance. For a practical implementation of the latter
approach, we refer to Lavancier and Rochet (2016). The latter study discusses a method to aver-
age different estimators of which at least one is consistent in order to reduce the MSE of the final
estimator. We note that, in the absence of symmetry, both MM1 and MM2 will typically be
inconsistent. As a result, the benefits of model-averaging remain theoretically unclear (Lavancier
and Rochet, 2016). Preliminary estimation results in Lavancier and Rochet (2016) for a specific
example show that the model-averaging approach is robust to model misspecification, but further
research would be required to extrapolate this conclusion to our method-of-moment estimators.

The quadratic model is the natural first extension of the linear model, and arguably the most
common extension used in practice. In principle, our approach could be extended to higher-order
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polynomials, but this would require fitting moments of a very high order, which would often lead
to unacceptably large sampling variability. For other functional forms, it may be more natural to
transform the error-ridden covariate first and assume additive measurement error on the trans-
formed scale, similar to what we did in our empirical application.

We mention two other directions for future research. The first is the consistent estimation of
the quantile regression model in the presence of measurement error and in the absence of any
side information, as suggested by our empirical application. The second direction for future
research is to relax the homoscedasticity implied by the independence assumption, which is often
at variance with economic reality. We can extend our approach to handle heteroscedasticity, but
only so at the cost of using moments of an order well beyond four. This requires enormous sam-
ple sizes and is hence not attractive. An alternative is to go back to earlier literature and express
the heteroscedasticity as a parametric function of the regressors. In our case, this would involve
the unobserved regressor, cf. Meijer and Mooijaart (1996) and Meijer (1998, Ch. 4). This option
seems feasible, but our approach then evidently loses its relative simplicity. We emphasize,
though, that this limitation is not unique to our approach (e.g., Garcia and Ma, 2017); heterosce-
dasticity remains a difficult issue to deal with and there is no simple escape by just using robust
standard errors.
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