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Abstract. Long-term survival of oropharyngeal squamous cell carci-
noma patients (OPSCC) is quite poor. Accurate prediction of Progres-
sion Free Survival (PFS) before treatment could make identification of
high-risk patients before treatment feasible which makes it possible to
intensify or de-intensify treatments for high- or low-risk patients. In this
work, we proposed a deep learning based pipeline for PFS prediction. The
proposed pipeline consists of three parts. Firstly, we utilize the pyramid
autoencoder for image feature extraction from both CT and PET scans.
Secondly, the feed forward feature selection method is used to remove
the redundant features from the extracted image features as well as clin-
ical features. Finally, we feed all selected features to a DeepSurv model
for survival analysis that outputs the risk score on PFS on individual
patients. The whole pipeline was trained on 224 OPSCC patients. We
have achieved a average C-index of 0.7806 and 0.7967 on the indepen-
dent validation set for task 2 and task 3. The C-indices achieved on the
test set are 0.6445 and 0.6373, respectively. It is demonstrated that our
proposed approach has the potential for PFS prediction and possibly for
other survival endpoints.

Keywords: Progression free survival prediction · OPSCC ·
DeepSurv · Autoencoder · PET-scans and CT-scans

1 Introduction

Almost 60,000 US patients are diagnosed with head and neck (H&N) cancer every
year, causing 13,000 deaths annually [1]. The treatment strategies of H&N cancer
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such as Oropharyngeal squamous cell carcinoma (OPSCC) are usually nonsur-
gical such as chemotherapy, radiotherapy, and combinations of these. Although
loco-regional control of most OPSCC is good, five-year OS for OPSCC have
ranged from 46% to 85% including all stages, and 40–85% in advanced stage
cohorts [2]. It would be beneficial to be able to identify patients with an expected
worse treatment response before start of treatment. When prediction models for
tumor related endpoints and complications would be available it would become
possible to select the most optimal treatment method (with the optimal balance
between predicted tumor control and complications) for individual patients. E.g.
a more intensive treatment regimen could be considered for patients with a pre-
dicted high-risk for tumor recurrence, whereas a de-intensified treatment regimen
could be an option for patients with a low risk for tumor recurrence, to limit the
risk of complications like swallowing problems and xerostomia [3]. Therefore, we
have developed a PFS prediction mode using clincial data and image data.

Radiomics [4] - quantitative imaging features from high throughput extrac-
tion - has been successfully applied to outcome prediction of H&N cancers [5–8].
However, its clinical application is restricted due to its dependence on man-
ual segmentation and handcrafted features [9]. Deep learning-based methods
includes algorithms and techniques that identify more complex patterns than
radiomics in large image data sets without handcrafted feature extraction, and
they have been employed in various medical image fields [10–12] as well as H&N
cancer outcome prediction [13–16]. In our method, we select Autoencoders as
the basic architecture for image feature extraction.

Features significantly relating to PFS prediction can be obtained through
features selection process. The obtained features can be used to create a survival
analysis model, such as Cox proportional hazard model (CPHM) [17], random
survival forests (RFS) [18] and DeepSurv [19] (a Cox proportional hazards deep
neural network). We chose DeepSurv as our PFS prediction model because it
can successfully model increasingly complex relationships between a patient’s
covariates and their risk of failure.

Our aim is building a DeepSurv model with the capability of predicting PFS
prior to treatment using available clinical data and image features of CT and
PET extracted by the Autoencoder. The work described in this paper was used
to participate in the task 2 and task 3 of HECKOR 2021 challenge [20,21] .

2 Materials

2.1 Dateset Description

The training set includes 224 head and neck cancer patients from 5 hospitals
(CHGJ, CHUS, CHMR, CHUM and CHUP). There are co-registered 3D CT
and FDG-PET images and GTVt images (primary Gross Tumor Volume label)
for each patient. The voxels sizes are nearly 1.0 mm in the x and y directions and
vary between 1.5 to 3.0 mm along the z direction. A bounding box is provided
for each patient around the oropharyngeal primary tumors. Clinical data of all
patients can be found in a csv file. The testing set consists of 101 patients treated
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in 2 hospitals (CHUP and CHUV). Co-registered CT- and PET-scans, bounding
box and clinical data are available for patients in the test set, but not the GTV
contour.

2.2 Data Preparation

We selected Gender, Age, T-stage, N-stage, TNM group, HPV status and
Chemotherapy as the potential predictive data. Age is normalized by divid-
ing by 100, and other clinical data are used as categorical variables. Through
KM-survival analysis, some categories values with similar survival curves were
combined. A detailed description of the definition of the categorical values is
summarized in Table 1.

Table 1. The summary of classification of values in each category variables of clinical
data.

Category variable Value classification

Gender (Male = 0), (Female = 1)

T-stage (T1 T2 T3 = 0), (T4 T4a T4b = 1)

N-stage (N0 N1 = 0), (N2 N2a N2b N2c = 1), (N3 = 2)

TNM group (I = 0), (II III IV = 1), (IVA IVB IVC= 2)

HPV status (negative = 0), (positive = 1), (unknown: 2)

Chemotherapy (not = 0), (yes = 1)

The bounding box region image of CT, PET and GTVt (the mask image of
gross tumor volume of the primary tumor) of each patient in training set and
testing set are first cropped and extracted. Then, these CT and PET 3D images
were resampled to 1 × 1 × 1 mm3 pixel spacing with trilinear interpolation. The
GTVt masks were resampled to the same resolution with 1 × 1 × 1 mm3 CT
but using nearest interpolation. CT region image pixel values are truncated to
[−200, 200] and then normalized to [0,1] by the max-min value method. The pixel
values of the PET region image smaller than 0 are set to 0. PET region images
are normalized by first z-score and then the max-min value method. Finally, the
normalized CT and PET region images of each patient are summed up to form a
new combined image named CT/PET image. The pre-processed CT, PET and
CT/PET with the size of 1 × 144 × 144 × 144 are the input of the autoencoder
in task 2 (not using GTVt). To get the input of autoencoder in task 3 (using
GTVt), we first dilated GTVt with size of 5 voxels, and use the dilated GTVt
to multiply with CT and PET, then extracting the GTVt-region CT, PET and
CT/PET images by two methods. The first method is GTVt center cropping
(to a size of 64 × 64 × 64). The second method is first cropping a sub-cube of
GTVt according to the border positions in three directions of the tumor, then
resampling the sub-cube to a size of 64 × 64 × 64 voxels. Method 1 gives GTVt
images with the same pixel spacing across cases whereas method 2 results in
GTVt images with varying pixel spacing across cases depending on the tumor
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size. By combining both GTVt images information about the tumor size as well
as tumor images with an optimal resolution, tumor information are effectively
used in the training process. Images from the two methods are concatenated
together to a size of 2 × 64 × 64 × 64, and they are the input of the task 3
autoencoder.

We adopt two different strategies to divide the provided dataset (224
patients) into a training and validation set. The first one is to use leave-one-
center-out, in which 4 centers are used as the training set while one as the
validation set. The second one is that we randomly selected 179 patients as
the training while 45 as the validation set. Thus, we could perform 6-fold cross
validation and ensemble results of different models on the final test set (101
patients).

3 Methods

The success of deep learning methods in computer vision tasks has brought
its wide applications to the medical image analysis. They, however, require a
large amount of labeled samples. The model performances are also biased by
the manually provided labels. In this work, we proposed a deep learning based
pipeline that adopts unsupervised learning approach for image feature extraction
in the prediction of progression free survival (PFS) for head and neck cancer.
We utilized a self-supervised deep learning approach for the extraction of tumor
characteristics from both CT and PET scans. The extracted image features and
clinical parameters were then used to train a DeepSurv model for time-to-event
prediction on the PFS. Figure 1 illustrates the proposed pipeline.

For each image set of CT, PET, CT/PET, CT-GTVt, PET-GTVt
and CT/PET-GTVt, we trained 6 models using 6-fold-cross-validation. The
train/validation set ratio of each fold is different, because we performed leave
one center out cross validation. For each fold, feature selection is performed in
all image features that were identified by the autoencoders. The selected image
features (around 2–6 features) and selected clinical data (Age, T-stage and HPV
status) are used to train a DeepSurv model. We trained 30 DeepSurv models
using the training set in each fold, and finally selected 3 models with the highest
validation set C-index. In total 18 DeepSurv models (each fold has 3 DeepSurv
models) are obtained, and their predicted risk scores on the test set are averaged
to obtain the final result in the test set.

3.1 Autoencoder

Autoencoders are used to extract high-level features through reconstructing the
input. In our method, we used CT, PET and CT/PET images to train three
autoencoders, separately. An autoencoder consists of an encoder and a decoder.
The encoder compresses the input image to high-level features, then the decoder
reconstructs input image from these features. Those high-level features from the
last layer of the encoder are chosen for the feature selection process.
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Fig. 1. The whole pipeline of the proposed method. 6-fold cross validation is applied
in training autoencoder and DeepSurv models. Each modality image (CT, PET and
CT/PET of task 2 or CT-GTVt, PET-GTVt and CT/PET-GTVt of task 3) is used
to train one autoencoder to extract image features. All extracted image features and
clinical data are selected using feedforward selection. The selected features are applied
to train 30 DeepSurv models for each fold. Finally, 18 models (3 models for each fold)
with highest validation C-index are used for testing, and their output on the test set
are ensembled.

Fig. 2. The 3D ResNet-like architecture of autoencoders in task 2 (a) and task 3 (b).
In task 2, the input is CT, PET or CT/PET patches in boxing regions with size
144×144×144. In task 3, the input is CT, PET or CT/PET patches in primary tumor
region only with size 2 × 64 × 64 × 64. Identity (solid arrows) and projection (dashed
arrows) shortcuts are shown in residual blocks. Yellow and green rectangle stand for
convolution and deconvolution, seperately (Color figure online)

The architecture of autoencoders in task 2 and task 3 are displayed in Fig. 2.
Our autoencoder is built upon on 3D ResNet [22] with the use of a pyramid
architecture between convolution blocks. We used NxHxWxDxS to descript the
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convolution or transpose convolution kernel number (N), size in three directions
(H, W, D) and the stride (S) in Fig. 2. The encoder consists of one convolu-
tion layer, a maxpooling layer and 4 convolution residual blocks and a pyramid
architecture to combine different level images features. The stride of all max-
pooling layers is 2. At the end of the encoder, 512 high-level feature maps with
size of 5 × 5 × 5 (task 2) or 32 high-level feature maps with size of 4 × 4 × 4
(task 3) are obtained. Four continuous transposed convolution residual blocks,
an upsampling layer with sampling factor 2 and a final transposed convolution
layer form the decoder. A Relu function and Batch Normalization layer follow
all convolution and transposed convolution layers of the autoencoder.

A combined loss function including L1 loss, mean square error (MSE) and
Structual Similarity (SSIM) is employed in the autoencoder training process.
The L1 loss for one training example can be written as:

LL1 = ||A(x) − x||1 (1)

the MSE is defined as:

LMSE = ||A(x) − x||2 (2)

For SSIM the loss function LSSIM as described in [23] was used: SSIM is
designed by modeling any image distortion as a combination of three factors
that are loss of correlation, luminance distortion and contrast distortion. The
combined loss function is:

Lcombined = LL1 + LMSE + 0.5 ∗ LSSIM (3)

3.2 Feature Selection

We first selected clinical data which are known to be related to PFS prediction.
Gender, Age, T-stage, N-stage, TNM group, HPV status and Chemotherapy
are kept for selection. We used the SequentialFeatureSelector of scikit-learn as
feature selector (set direction as forward). The estimator of the selector is set
as CPHM model. We ran the feature selector 1000 times using a random subset
of the training set every time. Finally, the most frequently selected 3 features
(Age, T-stage, HPV status) are reserved to perform PFS prediction.

We use the same feature selection method for image features selection. First
each 3D feature map extracted from autoencoders is changed to single value
feature by maxpooling. Then these 512 CT, 512 PET, 512 CT/PET, 32 CT-gtv,
32 PET-gtv and 32 CT/PET-gtv features are input to feature selector. All those
image features are ranked according to their selected frequency. The 2–6 features
with highest rankings are chosen.

3.3 DeepSurv

DeepSurv [19] is a deep learning based survival analysis model. We do not elab-
orate on it here and refer the interested readers to [19]. We set the DeepSurv
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architecture as two fully connected layers with 50 nodes, Relu and Batch Nor-
malization. The DeepSurv outputs the risk score of PFS. The loss function is
the average negative log partial likelihood.

4 Experiment

4.1 Training Details

The Autoencoders were trained using the Adam optimizer with the initial learn-
ing rate 0.001 in Tesla V100 GPU. The total number of training epochs is set
to 80. The learning rate will decrease by multiplying by 0.1 if the training loss
doesn’t reduce in 10 consecutive epochs. Flipping and random rotation are used
for data augmentation.

The official DeepSurv (https://github.com/jaredleekatzman/DeepSurv) code
setting is applied to train our DeepSurv models. The total training steps are
5000, the validation set is used to select the best C-index model.

4.2 Results

This section shows the reconstructed images of the autoencoder and the C-index
on the training set, validation set and test set.

The input images and the reconstructed images by autoencoders from one
patient in the test set are displayed in Fig. 3. The reconstructed PET image
is very similar to the input one. And we can recognize the highlighted tumor
region in the reconstructed CT/PET image. Autoencoders successfully restored
the shape of the tumor from the high-level features when we compare the input
and output of CT-GTVt, PET-GTVt and CT/PET-GTVt. These results show
that the high-level features extracted from autoencoders are representative and
relevant.

Fig. 3. The input and output of autoencoders. Tumor region images are successfully
reconstructed in the output PET and CT/PET images. Tumor shape information are
recovered on the output of CT-GTVt, PET-GTVt and CT/PET-GTVt images.

We summarized the training set and validation set C-index values of the
DeepSurv model with highest validation C-index of each fold in Table 2. In task 2,

https://github.com/jaredleekatzman/DeepSurv


Self-supervised Image Feature Extraction for the PFS Prediction 315

we used selected clinical features and images features of CT, PET and CT/PET
to train the DeepSurv models. In task 3, in addition to the features used in task
2, we added image features from CT-GTVt, PET-GTVt and CT/PET-GTVt.
However, compared with C-index values on the validation set in fold 1, 4 and 6
of task2, we did not obtain a higher C-index value in task 3 when adding image
features from CT-GTVt, PET-GTVt and CT/PET-GTVt. Therefore, we used
the image features from task 2 also in task 3 in these three folds in where task
2 and task3 had the same C-indexes results. In fold 2, 3 and 5, task 3 obtained
higher C-index values on both training and validation sets than task 2 because
of adding features from CT-GTVt, PET-GTVt and CT/PET-GTVt.

From the Table 3, we can see that our method achieved good C-index values
in the independent test set (0.6445 in task2 and 0.6373 in task 3). Although the
C-index values of the validation set in task 3 were little higher than that in task
2, the C-index values of the test set were a little lower in task 3. This is pos-
sible due to the noise when training. The experimental results showed that our
method does not need GTVt to locate the tumor. Our autoencoder can auto-
matically extract image features in the tumor region, which is demonstrated by
the reconstructed PET and CT/PET images in Fig. 3, in which the highlighted
tumor image was constructed successfully from high-level features extracted by
the encoder.

Table 2. The C-index values of training set and validation set of task 2 and task 3,
using the best DeepSurv model with highest validation C-index.

Task name Set name fold1 fold2 fold3 fold4 fold5 fold6

Task2 Training 0.5939 0.6418 0.4389 0.7233 0.5723 0.7009

Task2 Validation 0.8073 0.7052 0.7644 0.8360 0.7383 0.8324

Task3 Training 0.5939 0.8025 0.4852 0.7233 0.5723 0.7009

Task3 Validation 0.8073 0.7063 0.8506 0.8360 0.7477 0.8324

Table 3. The C-index values on test set of task 2 and task 3.

Task name C-index

Task2 0.6445

Task3 0.6373

5 Discussion and Conclusion

We have shown that our method was able to predict PFS with relative high
average C-indexes of 0.7806 and 0.7967 for task 2 and 3 respectively in the
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validation set of all folds. However, the C-index of the test set is much lower
than that of the validation sets (>0.7), which shows that our DeepSurv models
overfit on the validation set. For example in fold 3, the C-index on the training
set were very low (0.4389 in task2 and 0.4852 in task 3) but much higher (0.7644
in task2 and 0.8506 in task 3) on the validation set. The reason may be that the
validation set (only 18 patients) has a very different feature distribution from the
training set (206 patients). In our experiment, we selected the DeepSurv models
with highest C-index values in the validation set for testing purpose, but they
might perform worse in both the training and testing set. Thus, these models
performing worse in the training set will decrease the final test set C-index value.

In order to improve the result on the test set in the future, we plan to change
the methods in three aspects. Firstly, we will only select a part of DeepSurv
models have good C-index in both the training and validation set for using on
the test set, such as only using models in fold 2,4 and 6. Secondly, splitting
the training set and validation set in a another way to make them have similar
feature distribution. Finally when we retrain DeepSurv models of each fold in the
future, we should save the model with high validation C-index on the condition
of a high training C-index value instead of selecting models with only highest
validation C-index.

We proposed a method that used a 3D pyramid autoencoder to extract high-
level image features for PFS prediction. Obtained images features and clinical
data are selected to acquire PFS-prediction related features. These selected fea-
tures are applied to train a DeepSurv model for PFS prediction. Experimental
results demonstrated that whether using GTVt or not, we could obtain a good
C-index value on the test set. The proposed method has the potential for PFS
prediction and possibly for other survival endpoints.
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