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a b s t r a c t

We consider a profit-maximizing renewable energy producer operating in a rural area with limited
electricity distribution capacity to the grid. While maximizing profits, the energy producer is responsible
for the electricity supply of a local community that aims to be self-sufficient. Energy storage is required to
deal with the energy productions' uncertain and intermittent character. A promising, new solution is to
use strategic hydrogen reserves. This provides a long-term storage option to deal with seasonal mis-
matches in energy production and the local community's demand. Using a Markov decision process, we
provide a model that determines optimal daily decisions on how much energy to store as hydrogen and
buy or sell from the power grid. We explicitly consider the seasonality and uncertainty of production,
demand, and electricity prices. We show that ignoring seasonal demand and production patterns is
suboptimal and that introducing hydrogen storage transforms loss-making operations into profitable
ones. Extensive numerical experiments show that the distribution capacity should not be too small to
prevent local grid congestion. A higher storage capacity increases the number of buying actions from the
grid, thereby causing more congestion, which is problematic for the grid operator. We conclude that a
profit-maximizing hydrogen storage operation alone is not an alternative to grid expansion to solve
congestion, which is essential knowledge for policy-makers and grid operators.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Renewable energy sources have become increasingly popular.
For example, renewable energy production in the EU has increased
from 9.6% in 2004 to 18.9% in 2018 [14]. However, seasonality
mismatches between supply and demand are among the main
challenges that should be dealt with to facilitate growth in
renewable energy production. Large solar parks tend to be located
in rural areas where land is relatively cheap, even though the
electricity grid infrastructure is often limited. This typically causes
cable congestion at the location where the solar park is connected
to the grid, which causes outages, grid balance problems, and af-
fects operational costs of the electricity grid [29,47]. The high peaks
of solar energy production in summer often cause cable congestion,
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which may inhibit the installation of new solar parks. For the grid
operator, designing electricity grids that can accommodate
location-specific energy generation and do consider physical con-
straints is a challenging task [33].

Connecting hydrogen storage to solar parks is a promising
method to spread the feed-in to the electricity grid throughout the
year, thereby mitigating cable congestion in the summer [1]. It is
also suitable as a long-term and strategic buffer to alleviate sea-
sonal mismatches in production and local electricity demand.

Owners of solar parks with hydrogen storage (SPH) facilities
connected to an external electricity grid face variable electricity
prices as a result of market mechanisms to balance the grid, match
supply and demand, and reduce congestion. For example, location-
specific (nodal) electricity prices are a solution to reduce grid
congestion caused by renewable energy sources [37]. Furthermore,
time-of-use tariffs are expected to become more common since
these provide advantages to grid operators in alleviating expected
congestion [43]. The resulting market mechanisms facilitate the re-
dispatching of energy production by stimulating additional
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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production in areas without congestion and reducing production in
areas of congestion by using nodal or zonal prices [50]. Electricity
prices are also determined by other factors such as congestion in
other areas of the grid, the balancing market, and supply and de-
mand at the national level. As a result, facility owners’ electricity
prices are stochastic and uncertain. This requires SPH facility
owners to take into account these stochastic prices to maximize
their profits.

Electricity generated by solar parks directly supplies a local
electricity demand of connected households in a rural area. Excess-
produced electricity can also be fed to the electricity grid or stored
in a nearby hydrogen storage location. The local consumption of the
generated electricity avoids energy-transportation over long dis-
tances. It enables fulfilling a local electricity demand of households
who require a stable supply of green electricity and desire to be
self-sufficient. The electricity demand of consumers and solar en-
ergy production is characterized by differences in seasonality [2,6].
The confinement of the produced energy in the area of generation,
seasonality differences in supply and local demand, and variable
electricity prices have significant consequences for the facility
owner's decision to store energy and the resulting congestion levels
at the cable connection observed by the grid operator. Efficient
long-term strategies that determine when energy is stored as
hydrogen and sold to or bought from the electricity grid are vital in
achieving successful renewable energy penetration. Since
hydrogen storage is characterized by relatively high investment
costs and limited conversion efficiencies, these strategies become
even more critical in enhancing the economic viability of hydrogen
storage.

This paper focuses on a profit-maximizing SPH facility that faces
daily decisions on how much hydrogen to store, how much elec-
tricity to buy from and sell to the grid while providing a local
electricity demand of connected households with a stable supply of
green electricity.

While our primary focus is on the SPH facility owner, we also
investigate the congestion levels at the cable connection from the
grid operator's perspective due to the SPH owner's profit-
maximizing decisions. The decision to store energy by the SPH fa-
cility owner is affected by the presence of seasonality in supply and
demand. It is also dependent on the level of solar energy produc-
tion, the amount of local electricity demand, the amount of
hydrogen in storage, and the current electricity price. Additionally,
solar energy production levels, electricity demand, and prices in the
future are uncertain. For example, even though solar energy pro-
duction can be predicted rather accurately for several days in
advance, specific days' solar energy production levels are uncertain
when predicted for more extended periods, such as months. As a
result of seasonal patterns, solar energy production and electricity
demand's stochastic behavior is time-dependent. These aspects
affect storage decisions throughout the year. A Markov decision
process formulation is proposed to obtain optimal policies for the
above problem. Although we take daily aggregated decisions that
ignore intra-day fluctuations, it does not affect our long-term
strategic focus for which hydrogen storage is most suitable.
Namely, inspired by practice, we assume that a battery handles the
intra-day fluctuations so that, from a technical perspective, the
electrolyzer is provided with stable loads to maximize its conver-
sion efficiency. Using a battery to balance load of the electrolyzer
facilitates the utilization of the electrolyzer. For example [36],
found that using a battery to balance the load of the electrolyzer
enabled larger utilization rates by providing a stable load. This can
also be attributed to the fact that a battery enables the electrolyzer
to be used during the day at times when there is no PV production
[31].

We make the following contributions. Firstly, we identify the
77
characteristics of optimal storage policies for solar field operators
with hydrogen storage. These policies differ from short-term bat-
tery storage policies due to seasonality effects, annual timescales,
and hydrogen storage for long-term and strategic energy storage.
The policy characteristics include price thresholds for each period
which depend on the inventory level, price, and net production
after demand. Secondly, we show how the facility owner's profit-
maximizing decisions either solves or creates congestion prob-
lems for the grid operator, which occur at the cable to which the
solar park is connected. This results from selling or buying-related
decisions depending on the cable distribution capacity and includes
the actions taken during overages and shortages throughout the
year. Thirdly, we indicate how different combinations of storage
and distribution capacity affect these decisions. Next, we analyze
profits, congestion levels, and electrolyzer utilization by high-
lighting the trade-off between profits for the facility owner and
congestion levels for the grid operator. Finally, we show how con-
version losses and differences between selling and buying prices
affect these results.

The remainder of this paper is organized as follows. A literature
review is presented in Section 2. Section 3 describes the problem
and Section 4 formulates a model. Section 5 provides an overview
of the calibration of the parameter settings and the base case sys-
tem that we consider. Section 6 provides a sensitivity analysis of
key performance indicators based on the parameter settings of
each of the system elements’ capacities. Section 7 provides
concluding remarks.

2. Literature review

The existing literature has mostly addressed energy manage-
ment strategies in which the owner of an energy storage device
decides when to buy or sell energy from or to the grid. For a
detailed review of energy management decisions for electric stor-
age systems, we refer to Weitzel and Glock [51] and Zakaria et al.
[54]. While seasonality differences between supply and demand
are important characteristics of renewable energy systems, most
papers focus on intraday and day-ahead buying and selling de-
cisions using battery storage for short planning horizons and small
discretization levels. In contrast, our approach focuses on hydrogen
storage decisions for longer planning horizons covering seasonality
during a year. We take into account limited electricity grid distri-
bution capacity that supports the need for local storage. Seasonal
patterns in supply and demand, limited grid infrastructure, and
electrolyzer and fuel-cell constraints all affect storage decisions.

The literature on energy management decisions optimizes grid
interactions using storage by treating supply levels as deterministic
[11,38,55] or by optimizing the buying, selling, or storage decisions
in which the uncertainty of the generated renewable energy is
taken into account [17e20,23,24,26,42,48]. Literature on energy
procurement decisions without storage include Wang and Deng
[49] and Woo et al. [52]. For example, Wang and Deng [49] analyze
an energy procurement problem for a centralized energy aggre-
gator that can control both procurement and consumptionwithin a
24-h planning horizon inwhichwind energy is generated. From the
perspective of a grid distribution operator, Woo et al. [52] address
the energy procurement decisions of a grid distributor that need to
balance procurement risks and expected costs. Regarding prices,
Densing [10], Hassler [20], Jiang and Powell [23,24], Zhou et al. [56]
specifically take into account stochastic electricity prices, whereas
Grillo et al. [18], Keerthisinghe et al. [26], Shin et al. [42], Steffen and
Weber [46] treat these as deterministic. These studies are explained
in more detail below.

Several studies that consider hydrogen systems connected to
solar or wind power and the electricity grid have developed buying



Fig. 1. Visual representation of the studied system.
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or selling policies that either take into account electricity prices
that are known beforehand or use a heuristic approach. For
example, Hemmati et al. [21] consider the interactions with the
electricity grid using a hybrid storage system with a battery, a
hydrogen storage facility with a fuel cell and use fixed hourly prices.
Rouholamini and Mohammadian [41] consider the energy man-
agement of a hydrogen storage tank connected to wind and solar
power, an electrolyzer and the electricity grid by using heuristic
policies. Moreover, Bernal-Agustín and Dufo-L�opez [4] examine the
production of hydrogen for use in vehicles, and surplus electricity
that is sold to the grid with a fixed price.

Studies that jointly optimize the use of storage and the decision
to buy from or sell to the grid mostly focus on detailed intra-day
decisions [17e20,23,24,26,42]. For example, Jiang and Powell [24]
address the arbitrage problem with energy storage to place bids in
an hour-ahead spot market. Grillo et al. [18] optimally schedule
batteries with renewable energy. G€onsch and Hassler [17], Hassler
[20] optimize energy arbitrage decisions for short time horizons
within one day and time intervals of 15 min. Keerthisinghe et al.
[26] develop energy-storing policies for a battery in a residential
homewithin single days. In contrast, Shin et al. [42] have addressed
the problem for both intraday and yearly planning horizons. Zhou
et al. [56] address the energy storage arbitrage problem within a
week for 5-min periods. They address seasonality by using specific
parameter settings for each week that is solved. While these papers
all address detailed arbitrage and storing decisions for short time
horizons using batteries, hydrogen or a combination, none of them
provide an integrated approach to address the issue of seasonality
over one year.

The related literature on energy storage and arbitrage that has
included transmission or distribution capacity constraints is rela-
tively scarce. Larscheid et al. [30] examine the use of electrolyzers
to counteract grid congestion and maximize revenues by buying
from the electricity grid and perform cross-commodity trading by
selling hydrogen. Fertig and Apt [15] investigate the economics of
pairing a wind farm with compressed air energy storage and
limited transmission capacity. They use heuristic control policies to
decide on buying and selling to the grid. Most work that in-
corporates transmission constraints focuses on energy storage
planning from a strategic perspective rather than an operational
perspective. For example, Babrowski et al. [3] optimize storage
planning for the German electricity sector while including trans-
mission constraints. Wang et al. [50] examine to what extent
transmission congestion affects the profitability of arbitrage by
energy storage, including transmission constraints. Jorgenson et al.
[25] analyze to what extent transmission or storage can assist in
reducing curtailment. Korpås and Greiner [27] consider trans-
mission constraints, by connecting an electrolyzer to weak power
grids and using hydrogen as a load management method.

To the best of our knowledge, Zhou et al. [56] and G€onsch and
Hassler [17] are the only papers that have included transmission
constraints in focusing on the operational decision of when to buy,
sell or store energy, while taking into account stochastic electricity
prices. They have addressed wind-based electricity with co-located
storage. However, their numerical study encompasses only one
week and does not consider hydrogen storage, which would
become relevant for longer terms. To the best of our knowledge,
optimal buying and selling policies for uncertain and seasonal
electricity production, local electricity demand and price levels
have not yet been considered for solar field operators with
hydrogen storage, even though this is important for the economic
viability of hydrogen storage facilities. Moreover, the effect of these
policies on the interactions with the electricity grid connection
throughout the year have not yet been examined, even though this
is essential knowledge for grid operators.
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3. Problem description

We consider a profit-maximizing renewable energy producer
using a photovoltaic (PV) system (i.e., solar panels) who is also the
owner of a hydrogen storage facility and provides the energy to a
local electricity demand. For instance, it may form a self-sufficient
community together with a small village, by selling the energy to an
energy company for a fixed price cd, which in turn provides the
energy to the directly-connected households. The energy producer
can also sell or buy electricity from the electricity grid, and the co-
located hydrogen storage is used to store electricity in the form of
hydrogen temporarily. We consider a time horizon T that re-
sembles a complete year, and each period t2T resembles a single
day. Fig. 1 provides a graphical overview of the considered system
[16]. The left side of Fig. 1 shows the solar energy producer and the
hydrogen storage facility, and the right side shows the local elec-
tricity demand and electricity grid connection. Our goal is to decide
upon when and how much to 1) sell and buy electricity from the
grid, 2) store or consume hydrogen from our local storage to satisfy
local demand and maximize profits. We assume the owner of the
storage and PV facilities and the households are connected to the
grid through an external connection and are the single users of this
connection.

In the following, we describe our system in detail. Table 1 pro-
vides an overview of all the parameters and variables.

The installed capacity of solar energy production in MWp is
assumed constant throughout the year and denoted by w. Solar
energy production per day is a random variable Yt, where the de-
pendency on the period follows from seasonal differences in energy
production throughout the year. Local electricity demand is deno-
ted by the random variable Dt and is normally distributed with
mean mt and a period-independent standard deviation s. As it is
optimal to satisfy local demand with local supply of solar energy
(this comes at no cost), we assume that the produced electricity Yt
is first used to supply and sell it to the local demand Dt with a
constant and fixed price cd. We then convert our production and

demand process in a net solar energy production level Y
̄
t ¼ Yt � Dt .

The net solar energy production per day Y
̄
t can then bemodeled via

a truncated probability distribution f y
̄

ðtÞ with a maximum of lþt in
period t due to a restricted installed capacity of solar energy.

Hydrogen inventory xt is held inside a hydrogen storage tank
with energy capacitym. The tank is filled using an electrolyzer with
a maximum rate kþ at which energy can be stored per period and a
conversion efficiency of a where a � 1. Moreover, the producer can



Table 1
Sets, parameters and state variables.

Sets

T Set on the number of periods T ¼ f0;…;Tg

Parameters

w Installed peak capacity of the solar park (MWp)
lþt Maximum amount of solar energy that can be generated (MWh) in period t
m Maximum hydrogen inventory level (storage capacity, MWh)
kc Maximum load sent to the grid per period (distribution capacity, MW)
kþ Maximum load at which energy can be stored per period (electrolyzer capacity, MWh)
k� Maximum load from storage to electricity per period (fuel-cell capacity, MWh)
c Price markup added to the selling price for buying energy from the grid
cd Price for selling energy to the connected local demand (MWh)
a Conversion efficiency to storage
s Penalty per unit of unmet demand

State variables

y
̄
t

Net production realization after demand (MWh) in period t

ct Prevailing selling price of electricity in period t
xt Inventory level (MWh) in period t

Stochastic variables

Yt Solar energy production in period t

Y
̄
t

Net production level after demand in period t

Ct Electricity prices in the local spot market in period t
Dt Local electricity demand in period t
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obtain at most k� energy units per period from storage due to a
limited fuel cell capacity. The grid distribution capacity kc de-
termines the maximum electricity amount sold to or bought from
the grid in each period. Throughout this paper, capacities (except
the installed solar energy capacity) are defined as the maximum
amount of energy per period that our system's related component
can handle.

Electricity prices are stochastic and are modeled as an autore-
gressive AR(1) process via Ct¼ qCt�1þ xt, where xt ~N(0, sc). Similar
to Densing [10] and Zhou et al. [56], we assume that the energy
producer is sufficiently small so that it is a price taker that cannot
influence electricity prices. Since we explicitly consider long-term
strategic decisions, we assume that prices are exogenous, sto-
chastic, and therefore independent of the facility owner's decisions.
Since the producer can ramp the feed-in to the grid up and down as
a result of price signals, we assume that the prices also reflect the
demand for ancillary services on the electricity grid. Consequently,
solar energy can be sold to the grid for Ct. The producer can also buy
from the grid at a price Ctþ cþ, where cþ � 0 is a fixed price markup
which the grid operator imposes to discourage excessive selling to
the grid. Similar mechanisms occur in the Netherlands for example,
in which annual net production differences sold to the grid are
priced at a lower level. As is commonly assumed, it is not possible to
simultaneously buy and sell from the grid [see, e.g., 56].

The solar energy producermakes the buying, selling, and storing
decisions at the end of each period t2T . Since hydrogen conver-
sion is associated with relatively high conversion losses and elec-
trolyzers perform better at stable loads, we assume that a battery
handles intra-day load fluctuations of net production levels.

The storage owner's objective is to maximize the expected
future profits related to interacting with the electricity grid during
the planning horizon. The decisions made in each period affect the
total profit. These decisions have to satisfy several detailed con-
straints and depend on the system's state at the end of a period. We
discuss these aspects in the next section.
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4. Markov Decision Process formulation

We formulate our problem as a Markov decision process (MDP).
We first describe our state and action spaces, and the constraints
upon them. We also specify our reward function. We then discuss
howwe discretized our state and action spaces, and formally define
our MDP which we solve via backward dynamic programming.
4.1. State and action space

At the end of period t, we observe an inventory level xt, the
current and previous price level ct and ct�1 and net production level

after demand y
̄
t . The price ct�1 is included in the state because we

consider prices to be an autoregressive process. The transition
probability between states also depends on the price level in the

previous period. Let Stðy
̄
t ; xt ; ct ; ct�1Þ2S be the state of our system

in period t. We write S for the state space. For each state St2S, we
define the action uðStÞ2R as the number of energy units to buy
from or sell to the grid at the end of period t. Negative values
represent the number of energy units to buy from the grid.

The action u is bounded by the characteristics of the state St. It is
most easily described if we consider the range of actions
[ � umin(St), umax(St)]. Here, umin(St) � 0 denotes the maximum
amount of energy bought from the grid at the end of a period, and
umax(St) � 0 denotes the maximum amount of energy that can be
sold to the grid at the end of a period. In the following, we describe
for each state St2S how to obtain umin(St) and umax(St).

The maximum amount of energy that can be bought umin(St), for
all St2S is the largest value which must satisfy three constraints
such that

uminðStÞ � kc (1)

uminðStÞ � ðm� xtÞ
�

a� amaxf0; y
̄
tg �minf0; yt

̄
g (2)
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uminðStÞ � kþ �maxf0; y
̄
tg: (3)

These constraints ensure that the distribution capacity is
respected, that we do not store more energy than fits in the storage
tank, and that the electrolyzer capacity is respected. The minima
and maxima within these constraints ensure correctness in case of
net overages and shortages. The maximum amount of energy that
can be sold umax(St), for all St2S is the largest value such that

umaxðStÞ � kc; umaxðStÞ � xt þ y
̄
t ; umaxðStÞ � k�; (4)

which indicates that the cable distribution capacity should be
respected, that we can sell at most the inventory we have plus the
net overage, and that the fuel cell capacity should be respected.

Note that these actions allow for unmet demand, in case y
̄
t <0. We,

therefore, introduce a penalty s per unit of unmet demand that
represents a very large negative number to avoid this could happen
under any optimal policy. The action space U can then be defined as

U ¼
nh

� uminðStÞ;umaxðStÞ
i���St2S; s:t: ð1Þ and ð2Þ; t2T

o
:

(5)

the reward r(u(St)) of taking action u(St) is the sum of the revenues
and costs during period t as a result of interacting with the grid. It is
defined as

rðuðStÞÞ ¼ uðct þ Ifu�0gc
þÞ þ Ifxtþ1ju<0gs; (6)

where Ið,Þ equals 1 if (,) evaluates to true, and is 0 otherwise. Here,
by slight abuse of notation, we denote by xtþ1ru the hypothetical
inventory level at time t þ 1 given action u(St). If that is negative,
demand is unmet and penalty costs s are incurred.

Note that if energy is sent to storage, that is for any state St, �

uþ y
̄
t � 0, the amount of energy that is stored depends on the

conversion efficiency a. To avoid numerical issues in the MDP
implementation associated with conversion losses for both
charging and discharging and resulting fractional numbers, we
directly calculate the round-trip conversion losses when sending
energy to storage, which is exact.
VnðSnÞ ¼ maxuðSnÞ2U

8>><
>>:
rðuðSnÞÞ þ

X
y
̄

n

2Yn
̄ X
cn2C

pn�1ðy
̄
n�1; cn�1; cnÞVn�1ðSn�1Þ

9>>=
>>;
: (12)

1 For readability, we ignore the case that inventory becomes negative, but this is
4.2. Discretization

For the numerical analysis, we need to discretize the state space.
We discretize the amount of hydrogen inventory, the net produc-
tion throughout the year, and the observed prices. We define X as
the set of possible net inventory levels, where Dxt represents the
interval size of the inventory levels. The intervals towhich an action
u belongs are split into equally-sized intervals which correspond to
the discretization of the inventory levels Dxt. We denote the dis-
cretized set of actions by U. The stochastic net solar energy pro-

duction Y
̄
t is discretized according to Djt, and electricity prices are

discretized with Dct. Accordingly,
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X ¼ f0;Dxt ;2Dxt ;…;mg; (7)

Yt
̄
¼ fl�t ;Djt ;2Djt ;…; lþt g; (8)

C ¼ f0;D;2Dct ;…;Cg: (9)

4.3. MDP for storing, buying from or selling to the grid

The selling and buying policies result in an inventory process
over time inwhich an immediate reward of rðuðStÞÞÞ is earned after
choosing an action at the end of period t. The action is chosen after
the solar production and electricity prices have been fully observed
at the end of a period. Therefore, the decision-maker knows with
certainty to which new inventory level the action will lead in the
next period. The future inventory xn�1 in period n� 1 with n¼ T� t
can be defined as.1

xn�1ðu; y
̄
nÞ ¼ xn þ

8><
>:aðuþ y

̄
n
Þ if uþ y

̄
n

� 0uþ y
̄
n if uþ y

̄
n <0: (10)

The transition probability pn�1ðy
̄
n�1; cn�1; cnÞ is defined as the

probability of net production realization of y
̄
n�1 and a price reali-

zation of cn�1 in period n � 1 given price cn in period n. Similar to
Zhou et al. [56], we assume that the underlying stochastic processes
are independent. We define V0(S0) as the total expected profit at the
end of the horizon with n ¼ 0 periods to go. We assume that

V0ðS0Þ ¼ 0: (11)

For all other time periods in which n > 0, action uðSnÞ2U can be
executed. Accordingly, we define
Via backwards dynamic programming, Vn(Sn) can be obtained for
all periods-to-go n2T . The associated optimal periodic policy
ðu*1ðS1Þ;u*2ðS2Þ;…;u*T ðST ÞÞ that minimizes long-term average re-
wards is then obtained by iteratively applying backwards dynamic
programming upon this system, where V0(S0) is calculated according
to equation (12) with Vn�1(Sn�1) equal to VT(ST) of the previous
iteration (equaling zero for the first iteration). Convergence to opti-
mality is proven if all values Vn(Sn) change with the same value (i.e.,
the long-run average reward) between iterations [39].
trivially excluded by taking the maximum of xn�1 and 0.



Table 2
AR(1) parameters and standard error.

Model q 4 Std. error

1. Remove both month and weekday effects �0.004 0.89 37.7
2. Remove weekday effects �0.006 0.91 38.3
3. Fit to original data 5.23 0.87 7.7
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5. Numerical analysis

We start our numerical section by introducing a base-case sys-
tem for which we provide a detailed numerical analysis (see Sec-
tion 5.1) and then describe how the price and production processes
are fitted (see Section 5.3). We end the section by examining the
optimal policy for the base-case system while focusing on the dif-
ferences between summer and winter. To provide a comparison for
the viability of the base-case system, we compare the optimal
policy to a system without any hydrogen storage options. A more
extensive sensitivity analysis in which all system parameters
deviate one-by-one is postponed to Section 6.

5.1. Base-case system

The experiments are based on a planned project of a rural village
in the Netherlands inwhich electricity needs are supplied by a solar
park. It comprises a hypothetical solar park with a peak capacity w
of 5 MWp that is connected to a local electricity grid in which the
connection has a maximum load (kc) of 30 MWh per day (which
corresponds to 1.25 MW). Distribution capacities of 2.5 MW are
common in practice for lines that operate at the distribution (local)
level rather than the (national) transmission level. In our experi-
ments, we set a more constrained distribution capacity of 1.25 MW,
to represent the situation inwhich the distribution capacity is more
constrained. We assume the solar park is connected to a 2.1 MW
electrolyzer and a 2.1 MW stack of fuel cells. For both the electro-
lyzer and fuel cell, this translates to a maximum inflow (kþ) and
outflow (k�) to and from storage of 50 MWh per day. Since only
relatively small amounts (up to 16 MWh [5]) can be stored inside a
single pressurized vessel, we assume that hydrogen is stored in a
co-located large-scale storage location with multiple pressurized
vessels (250 bar) with a total capacity of 1000 MWh. Moreover, we
assume a round-trip efficiency a of 0.5. This enables avoiding nu-
merical issues and limits the state space of the Markov Decision
Process. This number is primarily based on the notion that elec-
trolyzer efficiency may reach up to 76% in the future [22], and PEM
electrolyzers which can reach up to 60% when the hydrogen is
sufficiently pure [32]. We assume that the satisfied local demand is
sold to the households through an energy company with a fixed
price of 41.25 per MWh, which is the average of the prices
explained in Section 5.3.

5.2. Capital costs

The capital costs of the base case system consists of the solar
panels, the electrolyzer, fuel cell system, compression stations, a
battery and the hydrogen storage facility.

The 5 MWp installed capacity of solar panels costs 7.5 million
EUR, assuming a capital cost of 1.5 EUR/kW [31]. Electrolyzers cost
90 EUR/kW, a 2.1 MW electrolyzer would cost 189,000 EUR.
Moreover, with capital cost of 360 EUR/kW, a PEM fuel cell system
of 2.1 MW would cost 756,000 [31].

For the hydrogen storage system, we assume the energy is
stored in cylinders at a pressure of 250 bar. The total storage in
cylinders has a total cost of 18.7 million EUR, assuming a price of
627.99 EUR/kg [53]. We assume compression stations are installed
with a sufficient total flow rate of 60 kg/h with a total cost of
600,000 EUR at a cost of 10,000 EUR per kg/hour [53]. Finally, we
assume a lithium-ion battery unit is installed of 40MWh at a cost of
137 EUR/kWh, which amounts to 5.48 million EUR [45].

5.3. Fitting the price, production, and demand process

Day-ahead hourly wholesale electricity prices in euro/MWh in
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the Netherlands between 2015 and 2019 are obtained from ENTSOE
Transparency Platform [12]. These prices are aggregated to daily
prices using the intra-day mean. We assume that the electricity
prices which apply to the storage owner exhibit similar behavior to
wholesale day-ahead electricity prices.

The average daily day-ahead prices exhibited strong autocor-
relation (0.872 for a time lag of 1). Moreover, weekly autocorrela-
tion is observed in which autocorrelation is stronger for weekly
time intervals than for intra-week intervals. For example, the
autocorrelation decreases to 0.773 for lags up to 6 and jumps to
0.815 for lag 7, suggesting that weekday effects are existent. Sea-
sonal effects are not directly apparent from the data.

Inspired by existing approaches in literature (e.g., Ref. [56]), we
test three different AR(1) models of the form Ct ¼ 4 þ qCt�1 þ xt,
where xt ~ N(0, sc), Ct is the predicted value, Ct�1 is the observation
at t � 1, 4 is a constant, and q is the AR term with a time lag of 1.
First, we fit an AR(1) process to the daily electricity prices in which
both monthly and weekday effects are removed from the original
observations. Secondly, we fit an AR(1) process to prices in which
only weekday effects are removed. Thirdly, we fit an AR(1) process
to the original observations. We compare the models by evaluating
the standard error of the estimate in relation to the actual obser-
vations. The month day and weekday effects are removed similarly
as in Ref. [56]. To evaluate the fit of the AR(1) models, the standard

error is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼2ðCt � ĈtÞ2=T
q

, where T is the number of

periods and Ĉt ¼ 4þ qCt�1 þ f 0ðtÞ þ xt is the predicted price in
period t. The seasonality effects of the electricity prices are
described by f0(t) which is defined similarly as in Ref. [56]. For the
models in which monthly and weekday effects are removed from
the observations, the seasonality function incorporates monthly

and weekday effects f 0ðtÞ ¼ g1 þ g2P11
i¼1D

2i
t þ g3P7

j¼1D
3j
t , where g1

is a constant, and g2 and g3 are coefficients of dummy variables D2i
t

and D3j
t related to monthly and weekly effects respectively. These

equal one if day t is in month i or in week j. The coefficients are
estimated using linear regression on the actual daily electricity
prices. For models 1 and 2, the AR(1) process is fitted to the ob-
servations after the seasonality function is subtracted. Because the
standard error of themodel which is fitted to the original data is the
lowest (7.7), as is given in Table 2, it is found to be unnecessary to
include the seasonality function. Since the aggregated data also
shows no consistency in seasonality effects throughout the 4 years,
we do not include month and weekday effects in our AR(1) process.

To model the electricity demand in our base-case system, we
assume that the solar park and hydrogen fuel cells connect directly
to a set of 1500 houses that are responsible for the local electricity
demand. We have obtained data on electricity consumption from
the society of the Dutch Energy Data Exchange (NEDU). The data
represents average electricity consumption levels per 15 min as a
fraction of the total yearly consumption level for 3001 measure-
ments during the years 2016, 2017, and 2018. Since the data is
highly aggregated, the data can be scaled to 1500 households to
represent our base-case system. We assume that one household on
average consumes 2990 kWh in electricity per year [35]. The scaled
daily consumption levels, as used in our base-case system, have a
minimum of 9.9 MWh, a mean of 12.3 MWh, and a maximum of
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16.1 MWh per day.
The data exhibits a strong linear relationship with time inwhich

the average consumption levels follow a V-shape throughout the
year. Accordingly, we split the data into two subsets of observations
and fit a linear regression to each subset. The splitting procedure is
based on minimizing the sum of the standard errors for both
models. According to this procedure, model 1 is based on day
1e199, whereas model 2 is based on day 200e365. It is important
to note that the splitting procedure is not based on seasonality
differences in demand, but on the day that yields the lowest sum of
the standard errors for both models. The fitted models are dis-
played in Table 3. Since the original data is highly aggregated, we
assume the data is normally distributed (i.i.d.) with a daily average
mt and a constant standard deviation s. Since the standard errors are
relatively similar, we chose the highest standard error of both
models (s¼ 0.62) as the standard deviation of electricity demand in
the experiments. The demand process can be written as Dt ~ N(mt,
s).

We assume that the daily solar energy production levels are
stochastic. For each day, hourly solar energy production levels be-
tween 2005 and 2016 have been obtained from PVGIS [40] and
were aggregated to daily amounts. The production levels corre-
spond to an installed capacity of 5 MWp. The original data is
aggregated to daily production levels. For each week, the daily
observations within the week of 11 years were normalized to a
range between 0 and 1 and fitted to a beta distribution to increase
the number of observations. Accordingly, daily solar energy pro-
duction levels are represented by shape parameters for each timer
period at and bt. Hence, Yt ~ B(at, bt). Beta distributions are
commonly used in modeling daily solar energy production levels
[13, 28]. Similar to Boland [6] and Soubdhan et al. [44], we assume
that Yt is independent and identically distributed for each period.
5.4. Optimal policy structure

We solve the MDP associated with the base-case system
employing backward dynamic programming. As our states are
dependent on the day of the year, we consider 50 years. This is done
for numerical certainty, in which this provides the long-term
average reward. The results presented correspond to the optimal
policy of year 0, and can be interpreted as the policy thatmaximizes
long-term average rewards (see, for a similar approach, Byon and
Ding [7]). Implementation is done in Cþþ17 and the MDP is solved
on an Intel Xeon 2.5Ghz processor using 4 threads. In the following,
we discuss the structure of the optimal policy of the base-case
system. The performance of this policy is discussed separately in
Section 5.5.

Fig. 2 shows the optimal policies (i.e., the amount of electricity
to sell to the grid) for a period in the winter (Period 1) and in the
summer (Period 2). For both periods, we present the optimal pol-
icies for the first and third quantile of the net production distri-
bution. On the x-axis, we show the observed electricity price and
the probability of occurrence. On the y-axis, we portray the in-
ventory level of the hydrogen storage facility. In this way, the four
graphs represent a cloudy winter day (top left), a sunny winter day
(top right), a cloudy summer day (bottom left), and a sunny sum-
mer day (bottom right).
Table 3
Linear models on electricity consumption.

Model Intercept Slope s

Day 1e199 15.3 �0.0302 0.62
Day 200e365 1.79 0.0372 0.55
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From Fig. 2, one can observe four different types of actions that
are taken in the optimal policy, in any of the depicted situations.
First, if prices are relatively low, the optimal policy prescribes
buying as much electricity from the grid as possible. Second, if
prices start to increase, it is best to buy or sell the observed net
production. Third, dependent on the actual day of the year, it might
be optimal to not buy or sell electricity from the grid, as long as
enough inventory is on hand. Fourth, if prices are high enough, it is
best to sell as much electricity as possible. We observe that the
action to not interact with the grid (u ¼ 0) takes place for relatively
low prices in the summer and high prices in the winter. In the
summer, “no interaction” is optimal for relatively low price levels
and the net production is then converted to hydrogen. In the
winter, net shortages are fulfilled by converting hydrogen to elec-
tricity, which also avoids interaction with the grid.

To understand how the optimal policy differs throughout the
year, Fig. 3 presents the optimal action as a function of time and the
inventory level for the 25% net production percentile and the two
price levels (ct ¼ 20 and 60). Fig. 4 does the same for the 75% net
production percentile. The action is represented as the resulting
change in inventory level.

We observe that the change in inventory has a period-
dependent threshold. In the summer (the middle part of both
pictures), the inventory at which optimal actions lead to an in-
ventory increase is lower than in the winter, due to oversupply of
electricity in the summer and shortages in winter. The inventory
levels at which these thresholds occur are similar for both low and
high net production levels. Fig. 4 shows that inventory-increasing
actions are also prevalent in summer when prices are low (i.e.,
ct ¼ 20). This indicates the prevalence of seasonal effects in the
optimal policies.

This behavior can be attributed to the following dynamics. Early
in the year, a higher probability exists of encountering future
electricity shortages than later in the year. Therefore, energy is
stored at times of low prices early in the year to enable accumu-
lating sufficient inventory for moments of shortages later in the
year. Furthermore, buying decisions made early in the year facili-
tate the potential to benefit from price differences later in the year.
These dynamics will be explained in more detail in Section 5.5.

5.5. Optimal policy performance

We simulate the optimal policy of the base-case system for a
total of 1,100,000 years, using the first 100,000 years as a warm-up
for the simulation. Fig. 5 illustrates the simulation process. Firstly,
the optimal policy is calculated using the Markov Decision Process
approach described above. Secondly, the model starts a new time
period. The demand, the solar production and price level that ap-
plies to period t is then sampled from the related distribution. This
enables the net production level yt to be calculated. Finally, the
optimal policy u is applied, such that the performance indicators
(see below) can be calculated. When the time horizon is reached,
the model ends.

Key performance indicators are given in Table 4. As a bench-
mark, we also provide the statistics of our base-case system if no
hydrogen storage is available (BM1), and in case the optimal policy
for a yearly average, constant net production (i.e., ignoring seasonal
effects) is applied to our base-case system (BM2). Our key perfor-
mance indicators are mean profits from grid interactions, electro-
lyzer utilization, and the mean percentage of the time in which
congestion occurs at the cable connected to the solar park. Similar
to Ref. [9], we define congestion as the event in which the amount
of electricity sent to or obtained from the distribution grid equals
the distribution capacity to which the supplier or consumer, in this
case, the solar park with storage, is connected. Accordingly, the
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mean percentage of time congestion is measured as the mean
percentage of time in which selling or buying energy equals the
grid distribution capacity. The electrolyzer utilization is given as the
percentage use of its full capacity. We also consider the mean
revenue from selling energy to local demand at a fixed price of
41.25 per MWh, which is based on the average price considered in
our experiments. Finally we calculate the emissions from grid in-
teractions by assuming that every kWh obtained from the grid
leads to 0.42 kg of emissions [8].

From Table 4, we observe that adding storage increases mean
profit per year from �4060.5 to 6378.5. It is also clear that ignoring
seasonality is suboptimal, as the mean profit per year decreases by
3.1% comparing BM2 to the base-case system. The mean electro-
lyzer utilization denotes the amount of electricity converted to
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hydrogen given that the electrolyzer is used. It increases 1.8% when
we ignore seasonality. The mean percentage of time the cable is
used to its full capacity, reflecting situations in which congestion
occurs at the cable towhich the solar park is connected, equals 8.7%
and 8.6% for the base case and when ignoring seasonality (BM2),
respectively. Since demand is always met at a fixed price of 41.25
per MWh, the mean revenue from selling to demand remains
consistent at 185,046.1. Finally, the mean emissions from grid in-
teractions decrease with 2% when no storage is used compared to
the base case system, which can be attributed to reduced buying
and selling. Ignoring seasonality reduces emissions with 0.1%.

We further detail the expected fraction of times over all obser-
vations in which particular actions are taken throughout the year.
In Fig. 6, we detail these actions for a net overage (a) and a net
shortage (b). Note, all the actions (i.e., curves) together in (a) and (b)



Fig. 5. Flow chart of the simulation process.
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sum up to 1.
Given a net shortage, the red points indicate the fraction of

times less than the shortage is bought while the remainder is ob-
tained from storage. The green points indicate that more is bought
than the shortage while the remainder is stored. The blue points
indicate the fraction of times the exact amount of the shortage is
bought. The purple points indicate that more inventory is sold than
the shortage. Given a net overage, the red points indicate the
fraction of times exactly the net overage is sold. The green points
indicate the fraction of times the overage is sold plus additional
inventory. The blue points indicate the part of the overage that is
sold while the remainder is stored. The purple points indicate the
fraction of times the overage is stored and additional inventory is
bought.
Table 4
Summary statistics reference case.

KPI Base-case system

Mean profit per year from grid interactions 6,378.5
Mean electrolyzer utilization (%) 21.9
Mean % time congestion (%) 8.7
Mean revenue from selling to local demand 185,046.1
Mean emissions from grid interactions 534,062.1
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In the case of a net overage for the base-case system, the red
points in Fig. 6 (a) show that policies in which exactly the overages
are sold to the grid are most prevalent. These follow the seasonality
pattern associated with solar electricity production and occur most
frequently at 69% of the time in the summer. Policies in which
additional electricity is sold out of storage are associated with
exploiting price difference possibilities. These are the least com-
mon during overages and are highest in summer occurring 5% of
the time. Selling less than the overage is also not a common
strategy and occurs maximally at 7.7% of the time. This indicates
that storage is not used frequently in cases of overages. This also
suggests that excess net production can at best be sold directly to
the grid to avoid conversion losses when using storage, even at low
prices.

For cases of net shortage in Fig. 6 (b), occurrences in which the
exact shortage is bought from the grid are most prevalent. The blue
points show that the fraction of times the exact amount of the
shortage is bought follows an inverse pattern compared to policies
in which exactly overages are sold during net overages. These are
highest in winter up to 79% and lowest in summer down to 5%.
Other policies are very uncommon for the conducted experiments.

Even though these policies are relatively uncommon, the less
frequent action types that include not simply selling or buying net
production differences, are important for the feasibility of a solar
park in rural, possibly congested, areas. For instance, in The
Netherlands, it is not allowed to install a solar park with a
maximum capacity higher than the distribution capacity, even
peaks only occur on clear summer days. The results presented in
Fig. 6 indicate that using a storage facility will not interact struc-
turally different from a classic solar park without storage, only its
distribution capacity is limited. These are exactly the moments
when the less-frequent actions depicted in Fig. 6 play an important
role to keep the base-case system feasible. This includes the ability
to exploit price differences and to fulfill shortages at times when
prices are high. As can be seen in Table 4, a solar park without a
storage facility (connected to local electricity demand) yields
negative mean profits when demand needs to be solely fulfilled
from the electricity grid.
6. Sensitivity analysis

We further investigate the performance of our system, using the
key performance indicators already presented in Section 4. We first
investigate the impact of changing the distribution capacity (Sec-
tion 6.1) and afterward discuss the impact of the storage capacity
on the performance of the system (Section 6.3). For the distribution
and storage capacity, we also provide insights into the interaction
with the grid, as this is relevant for future solar park owners and
legislators due to its relation to grid congestion issues. We end this
section by concisely showing the impact of changing the electro-
lyzer capacity, conversion efficiency, price mark-up, and production
capacity in Sections 6.4-6.7. In each section, we only vary the
parameter that is being discussed and set the other parameter
values equal to the base-case system.
BM1 (no storage) BM2 (ignoring seasonality)

�4,060.5 6,179.3
e 22.3
e 8.6
185,046.1 185,046.1
523,058.3 533,516.1
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6.1. Distribution capacity

We vary the distribution capacity between 1MWh and 80MWh
per day, which corresponds to 0.04e3.3 MW. In Fig. 7, we see that
themean profit increases for larger distribution capacities, between
4 MWh and 80 MWh per day, because our system becomes less
constrained. Distribution capacities below 4 MWh per day are
infeasible for our parameter settings, due to unmet demand.

Low distribution capacities up to 10 MWh per day lead to
negative profits, which is due to the limited possibility to exploit
price differences as local demand should always be satisfied first.
For increasing distribution capacities, the electrolyzer utilization
increases up to 36.8%. This due to the exploitation of price differ-
ences. If prices are low, electricity is bought from the grid to sell it
again when prices are high. Finally, the percentage of the time the
distribution capacity is fully utilized with congestion at the con-
nected cable approaches 0%, which is expected since the distribu-
tion capacity is then only constraining the system for high net
production overages.

Fig. 8 (b) (bottom) shows the fraction of times in which the
amount of energy bought equals the distribution capacity for
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different levels of distribution capacity. We label this event as
buying-induced congestion that takes place at the connection with
the electricity grid. Fig. 8 (a) (top) shows the fraction of times in
which sold energy equals the distribution capacity, causing selling-
induced congestion.

Fig. 8 shows that relatively low levels of distribution capacity
(e.g., kc ¼ 5) cause a combination of buying-induced and selling-
induced congestion. This is the result of preventing future short-
ages and exploiting price difference opportunities. Both types of
congestion follow a seasonal pattern. Whereas buying-induced
congestion is highest in the winter months, selling-induced
congestion is highest in the summer. This can be attributed to net
production shortages that occur in the winter and net production
overages that occur in the summer. In line with the results in Fig. 6,
this indicates that selling net overages and buying net shortages
from the grid is a preferred action in general.

When the distribution capacity becomes larger (i.e., kc ¼ 10),
more selling-induced congestion occurs since the optimal policy is
less impacted by possible shortages in winter. Consequently, less
energy is stored and more energy is sold to exploit price differ-
ences. Buying-induced congestion simply decreases for higher
0
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distribution capacities as the distribution capacity becomes less-
often the limiting factor when net-shortages occur. When capac-
ity increases even more (i.e., kc ¼ 20, 60), the occurrence of both
types of congestion decreases, as the net-production realizations
can be sold or bought completely from the grid without being
restricted by the distribution capacity. Price differences are
exploited in higher quantities, while fewer congestion events are
observed.

6.2. Capital costs implications

Increasing the distribution capacity from 30 MWh to 60 MWh
per day may require an additional 1.25 MW electricity station of
312.500 EUR [34]. Moreover, this requires expanding the cable ca-
pacities which cost around 40,000 EUR per kilometer of cable [34].
Depending on the length of the required cables, the capital costs
may well exceed 342,500 EUR. For the SPH facility owner,
expanding the distribution capacity of 30 MWh to 60 MWh per day
leads to a mean profit increase of 4170 EUR per year for the facility
owner. This indicates that facility owners benefit from distribution
capacity expansions.

6.3. Storage capacity

While the base case used a storage capacity of 1000 MWh and a
distribution capacity of 1.25 MW (30 MWh per day), we vary the
storage capacity between 100 and 1000 MWh with increments of
100, for three different levels of distribution capacity (10, 40, and
80MWh per day), see Fig. 9. In this way, we investigate how storage
can facilitate congestion reduction when distribution capacity is
constrained. Additionally, it allows us to study how profits are
affected when distribution capacity is sufficient.

Fig. 9 shows negative mean profits which increase at a
marginally decreasing rate with storage capacity for each distri-
bution capacity. For distribution capacity kc ¼ 10 (a), the mean
profits are negative due to the highly constrained distribution
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capacity. Note that storage capacities smaller than 300 MWh are
not displayed in Fig. 9 (a). This is because these capacities result in
systems where it is not possible to always satisfy local demand.
Here, the percentage of unmet demand ranges between 0.005% and
8%, and a penalty for unmet demand is incurred. Electrolyzer uti-
lization levels remain relatively constant (between 6.9% and 7.5%),
and congestion levels are not affected by the storage capacity of
300MWh or higher (themean percentage time congestion remains
between 38.2% and 38.3%). These results indicate that the distri-
bution capacity is too limited across all levels of storage capacities
to enable positive profit levels, more effective use of the electro-
lyzer, and to reduce congestion issues.

Results for kc ¼ 40 and kc ¼ 80 in Fig. 9 (b) and (c) show that
congestion issues are not relevant anymore for our distribution
capacity. Furthermore, increasing storage capacity to kc ¼ 40 leads
to more congestion at the cable connection, due to increasing in-
teractions with the electricity grid. This is in line with the observed
electrolyzer utilization for higher storage capacities.

Concluding, hydrogen storage used to supply electricity does not
lead to profits when distribution capacity is too constrained and the
storage owner aims to maximize profits. While increased levels of
distribution capacity reduce peak utilization and the resulting local
congestion, seasonal storage does not solve local congestion prob-
lems of the grid operator at the connected cable, regardless of the
level of installed distribution capacity. To address this, we advise
that (1) the grid operator increases distribution capacity and (2) the
storage operator should be encouraged to refrain from short-term
trading.

6.4. Electrolyzer capacity

We vary electrolyzer capacities kþ between 2 and 50 MWh per
day. Fig. 10 shows that mean profits increase, at a marginally
decreasing rate, for increasing electrolyzer capacity. Utilization
levels decrease and range between 50% and 29.9% for kþ ¼ 2 to
kþ ¼ 50. Profits are positive when the electrolyzer capacity is at
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Fig. 9. Summary statistics for varying the storage capacity, for distribution capacities
equal to kc ¼ 10 (a), kc ¼ 40 (b) and kc ¼ 80 (c).
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least 6 MWh per day (250 kW). Without considering capital ex-
penditures, this suggests that over dimensioning the electrolyzer
capacity leads to increased profits, even though utilization levels
are reduced. These results suggest that electrolyzer utilization is
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not a good proxy for profitability as large electrolyzer capacities
with a relatively low electrolyzer utilization may lead to more
profits than smaller electrolyzer capacities with a relatively high
electrolyzer utilization. This only applies to operational profits as
capital expenditures are not taken into account.

The mean time in which congestion occurs due to the full uti-
lization of the connected cable increases with higher electrolyzer
capacities (up to 50Mwhper day) and ranges between 0.7 and 8.7%.
This can be attributed to the increased trading with the grid. While
this enables increased profits for the facility owner, it leads to local
congestion for the grid operator. From the perspective of a grid
operator, it is, therefore, more beneficial to install a lower-capacity
electrolyzer that limits congestion problems when the SPH facility
owner aims to maximize profits.

We illustrate the (optimal) actions taken by the facility owner as
a result of different electrolyzer capacities. We portray the two
combinations of electrolyzer capacities in Fig. 11 (kþ ¼ 2, kþ ¼ 10). It
shows the mean fraction of times an action occurs for a net
shortage (a) and a net overage (b). The x-axis indicates the period
(day) and the y-axis indicates the fraction of time a particular action
occurred. The same actions as in Fig. 6 are given.

Given a net shortage and a lowelectrolyzer capacity (i.e., kþ ¼ 2),
the green points in Fig. 11 (a) show that buying the exact amount of
the shortage is most prevalent in winter and least prevalent in
summer. Other actions are almost non-existent. For a high elec-
trolyzer capacity (i.e., kþ ¼ 10), buying more electricity than the
shortage occurs 8% points less frequently on average than for a low
electrolyzer capacity (i.e., kþ ¼ 2).

Given a net overage and a low electrolyzer capacity (i.e., kþ ¼ 2),
the blue points in Fig. 11 (b) show that actions in which part of the
overage is sold and the remainder stored are more prevalent than
for high capacity (i.e., kþ ¼ 2), indicating that storing part of an
overage is mostly needed for low electrolyzer capacities to cover
potential future shortages.

These results indicate that the higher electrolyzer utilization at
low capacity (i.e., kþ ¼ 2) is caused by buying and storing additional
electricity from the grid in times of shortages or storing in times of
overages. The stored energy can be used to cover potential future
shortages during times of high prices. When the capacity is higher
(i.e., kþ ¼ 10), the risk of supplying future potential shortages from
the grid at high prices is reduced, and storing energy is not
beneficial.
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6.5. Conversion efficiency

Fig. 12 shows that mean profits are positively related to con-
version efficiency since storage becomes increasingly beneficial in
both exploiting price differences and covering shortages that do not
need to be bought from the grid. For this reason, electrolyzer uti-
lization is also positively related to conversion efficiency. Moreover,
congestion at the connected cable increases for higher conversion
efficiencies due to a higher frequency of peak loads at the cable
connections. This indicates that technological improvements
related to hydrogen storage which lead to higher efficiencies also
cause increased levels of local congestion at the cable connection.
6.6. Price markup

We vary the price markup that is imposed by the grid operator
and is related to buying electricity from the grid (i.e., cþ) between
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0 and 5. Fig. 13 illustrates that mean profits are negatively related to
the price markup on the buying price. This is expected because
price markups on buying electricity discourage the use of storage to
benefit fromprice differences over time. The electrolyzer utilization
is reduced from 29% to 22% between price markups of 0 and 5.
Reduced grid interaction as a result of higher price markups re-
duces congestion levels as well. This indicates that the electrolyzer
is used less often to buy energy from the grid to benefit from price
differentials. This facilitates the use of storage to prevent conges-
tion. This also indicates that price markups are effective as an in-
strument to the grid operator to reduce congestion levels in which
markups can be raised until using storage is not profitable anymore.
6.7. Production capacity

We vary the production capacities of the solar park (i.e., w)
between 1 and 10 MWp. Fig. 14 indicates that mean profits appear
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to increase linearly with increased production capacities. Up to 4
MWp of the conducted experiments, profits are negative, due to a
high reliance on the grid to cover shortages and the inability to
store energy when prices are low to cover future shortages.
Increased reliance on the grid at low production capacities is re-
flected in the electrolyzer utilization rates, which increase for solar
energy production capacities between 3 and 6 MWp and decrease
for higher capacities. At low production capacities (e.g., w ¼ 1), the
electrolyzer is deployed to store energy that is bought from the grid
to cover future shortages. Congestion at the connected cable in-
creases nearly linearly for production capacities above 6 MWp. This
is attributed to increased overages which are sold to the grid during
summer. This highlights the importance of avoiding the installation
of excess solar park capacity.

7. Conclusion

Increased decentralization of renewable energy sources such as
solar parks leads to grid congestion in rural areas where grid dis-
tribution capacity is limited. At the same time, supplying local
villages in the vicinity of solar parks reduces the need for long-
distance energy transportation through the electricity grid. To
reduce congestion and supply electricity to a local demand of
households, hydrogen storage can be an important flexibility op-
tion to bridge the seasonality gap associated with supply and a local
89
electricity demand when external distribution capacity is limited.
In this paper, we examine the problem of the owner of a solar

parkwith local hydrogen storagewho needs to decide howmuch to
store, sell to or buy from an external electricity grid throughout the
year and can supply energy to local electricity demand by house-
holds. Furthermore, the solar energy production and local elec-
tricity demand are seasonal and there is uncertainty associated
with solar electricity supply, electricity demand, and variable
electricity prices in the external electricity market. We propose a
Markov decision process formulation to the above problem to
optimize the expected profits per year from the perspective of the
facility owner. We detail the optimal policies with regard to the
period in which the actions take place (e.g., summer or winter).
Moreover, we illustrate which actions are taken during overages
and shortages throughout the year. We show how congestion levels
for the grid operator and electrolyzer utilization are affected by
conversion efficiency and strategic decisions such as the distribu-
tion capacity, storage capacity, and production capacity.

It is found that optimal policies are characterized by price
thresholds that separate different types of actions. These include
buying the maximum possible quantity, selling exactly overages or
buying exact shortages, storing overages or obtaining shortages
from storage, or selling the maximum amount possible. When
distribution capacity is unconstrained, storage is not used for large
periods of time. When distribution capacity is constrained, local
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congestion at the cable to which the solar park is connected is
mostly caused by buying-related actions in winter, which are
needed to cover potential future shortages. Under these conditions,
increasing the level of storage capacity does not reduce congestion
levels, because buying actions in winter remain necessary to cover
shortages. For higher levels of distribution capacity, local conges-
tion is mostly caused by selling-related actions of the overages in
the summer. Counter-intuitively, local congestion increases for
increased levels of storage capacity, because this enables increasing
buying-related actions to prevent future shortages and exploiting
price differences.

Mean profits are highly sensitive to the level of electrolyzer
capacity and appear to increase linearly with capacity. Moreover, a
lower electrolyzer utilization as a result of a large capacity is
associated with higher profits than a low electrolyzer capacity with
a higher utilization rate as a result of interacting with the electricity
grid. This indicates that a high utilization rate of the electrolyzer is
not necessarily an indication of increased profits. Hydrogen storage
used to supply electricity does not lead to profits when distribution
capacity is too small. Moreover, storage also does not aid in
reducing local congestion at the connected cable when the asso-
ciated distribution capacity is too small. This is because buying
actions to prevent future shortages and benefit from price differ-
ences cause buying-related congestion at the cable connection.
These actions are not aimed at reducing congestion, but at maxi-
mizing profits. Higher production capacities are associated with
higher profits, even though this also causes higher congestion
levels due to increased selling to the grid at times of abundant
supply or high prices.

While a limited level of storage capacity is needed to cover
shortages and overages when the distribution capacity is insuffi-
cient to handle peak loads of the solar park, a high level of storage
capacity leads to increased local congestion problems for the grid
operator when the SPH facility owner maximizes profits. Accord-
ingly, the role of profit-oriented storage for solar parks as a source
of flexibility to mitigate local congestion is limited, and a grid
operator may need to expand distribution capacity to deal with
this. Hence, we advise the grid operator to 1) establish price
markups on sold electricity, 2) setting limits on the capacity of the
solar park, 3) increase distribution capacity to alleviate local
congestion problems.

The opportunities for future research are numerous and can be
divided into two areas. The first area is centered around extending
the model that we present in this work. For instance, new concepts
arise in which local demand not only consists of electricity but also
of hydrogen and, for example, demand for heat. Additionally, one
could investigate the potential correlation between production and
demand, or physical properties of using hydrogen as an energy
carrier. Other future approaches may be focused on minimizing
congestion instead of maximizing the storage owner's profits.

The other avenue for further research is the transition towards
more strategic models. For instance, one may investigate the
impact of multiple renewable energy systems with co-located
storage facilities in grid-congestion issues. It would be interesting
to research how the location of renewable energy systems in a grid
can be optimized, with the aim of minimizing grid congestion.
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