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Abstract
Objectives To determine the value of a deep learning masked (DLM) auto-fixed volume of interest (VOI) segmentation method
as an alternative to manual segmentation for radiomics-based diagnosis of clinically significant (CS) prostate cancer (PCa) on
biparametric magnetic resonance imaging (bpMRI).
Materials andmethods This study included a retrospective multi-center dataset of 524 PCa lesions (of which 204 are CS PCa) on
bpMRI. All lesions were both semi-automatically segmented with a DLM auto-fixed VOI method (averaging < 10 s per lesion)
and manually segmented by an expert uroradiologist (averaging 5 min per lesion). The DLM auto-fixed VOI method uses a
spherical VOI (with its center at the location of the lowest apparent diffusion coefficient of the prostate lesion as indicated with a
single mouse click) from which non-prostate voxels are removed using a deep learning–based prostate segmentation algorithm.
Thirteen different DLM auto-fixed VOI diameters (ranging from 6 to 30 mm) were explored. Extracted radiomics data were split
into training and test sets (4:1 ratio). Performance was assessed with receiver operating characteristic (ROC) analysis.
Results In the test set, the area under the ROC curve (AUCs) of the DLM auto-fixed VOI method with a VOI diameter of 18 mm
(0.76 [95% CI: 0.66–0.85]) was significantly higher (p = 0.0198) than that of the manual segmentation method (0.62 [95% CI:
0.52–0.73]).
Conclusions A DLM auto-fixed VOI segmentation can provide a potentially more accurate radiomics diagnosis of CS PCa than
expert manual segmentation while also reducing expert time investment by more than 97%.
Key Points
• Compared to traditional expert-based segmentation, a deep learning mask (DLM) auto-fixed VOI placement is more accurate
at detecting CS PCa.

• Compared to traditional expert-based segmentation, a DLM auto-fixed VOI placement is faster and can result in a 97% time
reduction.

• Applying deep learning to an auto-fixed VOI radiomics approach can be valuable.
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DLM Deep learning masked
ISUP International Society of Urological Pathology
mpMRI Multiparametric magnetic resonance imaging
PCa Prostate cancer
PI-RADS Prostate imaging-reporting and data system
PSA Prostate-specific antigen
ROC Receiver operating curve
TRUS Transrectal ultrasound
VOI Volume of interest

Introduction

Prostate cancer (PCa) remains the most common cancer
among western males [1]. Multiparametric magnetic reso-
nance imaging (mpMRI) can be useful for the detection of
clinically significant (CS) PCa and its discrimination from
non-significant entities [2]. However, qualitative mpMRI in-
terpretation requires extensive experience [3] and may miss
some significant cancers [2].

Recent studies have shown promising results of
radiomics models for CS PCa diagnosis [4]. The far ma-
jority of the studies on this topic used labor-intensive man-
ual segmentation to extract radiomics features [5].
Moreover, most clinical studies on radiomics used rela-
tively small annotated single-center datasets (n < 300)
[6], which might be related to the time-consuming nature
of manual segmentations. Prostate cancer imaging studies
can have a diverse approach to segmentation. Some do not
require any manual lesion segmentation and instead use or
segment the lesion or different areas (e.g., entire image,
whole gland or prostate zones) with the use of fully auto-
mated deep learning algorithms [7]. Other segmentation
options include semi-automated (combination of manual
and automated) approaches or manual expert-based seg-
mentation [8]. Radiomics mostly involves manual segmen-
tation of a volume of interest (VOI) [5] with the extracted
features giving specific information about the structure
inside the VOI, e.g., the PCa lesion. This allows for the
quantification of tumor phenotypes using imaging bio-
markers which might facilitate the construction of explain-
able AI models. However, manual segmentation is a te-
dious and time-consuming task so a new segmentation
method is required to more rapidly extract radiomics fea-
tures. This will facilitate the execution of larger (multi-
center) studies to improve the diagnostic performance
and generalizability of radiomics models [9–11]. This
might eventually increase the willingness of radiologists
and clinicians to implement an mpMRI–based radiomics
analysis for CS PCA in daily workflows.

In a previous study [12], we showed that radiomics features
extracted from anmpMRI dataset based on a spherical volume
of interest (VOI) placed around the lesion voxel with the

lowest apparent diffusion coefficient (ADC) (“auto-fixed
VOI”) can be a valuable addition to visual assessment in di-
agnosing CS PCa [12]. The auto-fixed VOI can substantially
reduce an expert’s post-processing time because it only re-
quires the selection of the voxel with the visually lowest
ADC value, which can be done in a matter of seconds. Also,
the influence of the radiologist can be reduced if the voxel
with the lowest ADC value is detected quantitatively. With
semi-automated detection, the matrices for texture features
are always centered around the area with the lowest ADC,
consequently normalizing the VOI delineation and feature
calculation. However, the semi-automated sphere place-
ment in the area around the reference point that is indicated
by the expert will occasionally include voxels outside the
prostate, which introduces unwanted information in the
radiomics model (Fig. 1A, B). We propose combining the
auto-fixed VOI method with a deep learning–based seg-
mentation that removes all unwanted voxels from the VOI
that are located outside the prostate (Fig. 1C). Since the
deep learning masked (DLM) auto-fixed VOI is not a pre-
cise delineation of the lesion like a manual segmentation, the
auto-fixed VOI will contain areas with the edge of the lesion
and healthy prostate tissue (i.e., the transition of lesion tissue
to healthy prostate tissue). The edge and healthy tissue infor-
mation could potentially be helpful for radiomics texture and
intensity–based features. Gradient and sharpness of lesion
edges might contain interesting information while the addition
of some healthy tissue allows for minor intensity correction.
We hypothesize that the DLM auto-fixed VOI is faster and
non-inferior to a completely manually segmented VOI in a
bpMRI radiomics model for the diagnosis of CS PCa.

Therefore, the purpose of this study was to determine the
value of a DLM auto-fixed VOI segmentation method as an
alternative to manual segmentation for radiomics-based diag-
nosis of CS PCa on bpMRI.

Materials and methods

Patient data

The patient data for this study (n = 930) consisted of a multi-
center dataset from 9 different medical centers (2 tertiary care
academic institutions, 7 non-academic institutions). All pa-
tients from the 7 non-academic institutions (along with their
MRI, pathological, and all other clinical data) were referred to
the 2 tertiary care academic centers for image-guided biopsy
as part of clinical care. The institutional review board of the 2
tertiary care academic institutions approved this study and
waived the need for informed consent. Detailed description
of settings, scanners, and lesion grading for the 930 patients
in the multi-center dataset can be found in Electronic supple-
mentary material 1.
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Patient characteristics and lesion selection

Lesions from the 930 patients were included if a corresponding
ISUP grade could be established based on available targeted

biopsy (TRUS fusion biopsy, cognitive fusion biopsy, in-bore
MRI targeted) or prostatectomy specimens performed within a
maximum of 6 months after MRI. CS PCa was defined as
International Society of Urological Pathology (ISUP) grade ≥

Fig. 1 AApparent diffusion coefficient map image (3× zoom factor) in a
76-year-old man with a suspicious lesion in the peripheral zone indicated
by the arrow (PI-RADS 4) that proved to be an ISUP grade 2 PCa (based
on MRI-TRUS fusion). B 18-mm auto-fixed VOI placed around the

voxel with the lowest ADC value; due to the location of the lesion, a
large number of voxels outside the prostate are included (red outline). C
Result of auto-fixed VOI combined with deep learning–based segmenta-
tion to remove unwanted voxels outside the prostate

Fig. 2 Patient and lesion selection
flowchart
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2. Lesions were excluded if ISUP grading could only be done
based on non-targeted TRUS biopsy, and when biopsy was
done before MRI. Of the 1151 lesions that were assigned a
PI-RADS score, 524 lesions from 427 patients were eventually
included (Fig. 2). Patient information and details on the biopsy
and grading for the study population can be found in Electronic
supplementary material 2.

DLM auto-fixed VOI: development and optimization

The previously reported auto-fixed VOI method extracts
radiomics features from a bpMRI dataset based on a spherical
VOI placed around the lesion voxel with the lowest ADC [12].
However, this method suffers from the inclusion of voxels
outside the prostate (Fig. 3). To eliminate voxels outside the
prostate, a deep learning algorithm that segments the total pros-
tate was added to limit the auto-fixed VOI to the boundaries of
the prostate. As such, a DLM auto-fixed VOI method for the
extraction of radiomics features was developed. The deep
learning algorithm used the 3D U-Net architecture [13] and
was trained on the open-source multi-site dataset for prostate

MRI segmentation [14] (n = 116). An open-source dataset was
used due to the need for an accurate and tested total prostate
segmentation dataset. The 3D U-Net was trained using
Tensorflow/Keras version 2.2.0 on a 32-GB V100 GPU. The
U-Net was built up of convolutional blocks containing 2 con-
secutive 3D convolution operations with a kernel size of 3 × 3 ×
3, and contained three downsampling and upsampling opera-
tions. Max pooling (3 × 3 × 2) was used to downsample the
image in the contracting pathway of the model, while
upsamplingwas performedwith nearest neighbor interpolation,
also with a kernel size of 3 × 3 × 2. After each lower image
scale, the number of computed filters was doubled, starting at
64 in the initial convolutional block. A maximum of 400
epochs was used with early stopping after 40 epochs if the
validation loss did not improve. Batch size was set to 1 due
to memory restrictions on the GPU. An Adam optimizer [15]
was used with an initial learning rate of 1e−4. No weight decay
was implemented; however, L2 regularization with a factor of
1e−4 was applied to the kernels of each convolutional layer.
The model used T2-weighted images as input which were
resampled to a voxel spacing of 0.5 mm with a slice thickness

Fig. 3 Axial T2-weighted images in a 73-year-old man with a suspicious
lesion in the peripheral zone (PI-RADS 4, mostly based on DWI [third
slice of ADC map containing the lesion attached for reference with a
white cross indicating the single-click voxel with the quantitatively ac-
quired lowest ADC value]) that proved to be an ISUP grade 3 PCa (based
on MRI-TRUS fusion, confirmed by prostatectomy). A T2-weighted

images without any segmentation. B Results of slice-by-slice manual
lesion segmentation by an expert uroradiologist. C Results of 18-mm
auto-fixed VOI lesion segmentation without DLM adjustment. D Deep
learning–based total prostate segmentation. E Results of 18-mm auto-
fixed VOI lesion segmentation with DLM adjustment
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of 3 mm with linear interpolation, and subsequently cropped to
a volume of 135 × 135 × 14. Z-score normalization was applied
to each image, which adjusted each image voxel intensity dis-
tribution to a mean of 0 and standard deviation of 1. Visual
assessment of the prostate segmentations was successful on
10% random sample to validate the correctness of the segmen-
tation of the total prostate (Fig. 4).

The DLM auto-f ixed VOI method al lows the
(uro)radiologist to automatically create a customized VOI by
a single mouse click on the location that visually has the
lowest ADC, a process that generally takes less than 10 s
since the radiologist only has to select the visually lowest
ADC part of the lesion on a single slice. To ensure a con-
sistent selection of the exact voxel with the lowest ADC
(i.e., quantitatively acquiring the voxel with the lowest in-
tensity), automatic hyperbolic VOI centering occurred in
the area around the single mouse click. An algorithm
checked the 3D neighborhood (56-connectivity) of the
mouse click and, if needed, applied automatic repositioning
to the voxel with the lowest ADC value without being af-
fected by single voxel outliers. Due to the relative ease of
visually selecting the area where the lowest ADC voxel
should be located and the following 3D neighborhood
check, a quantitative selection of the correct voxel was
acquired. A sphere is constructed around this voxel and

masked using the total prostate segmentation. A segmenta-
tion quality control was added to ensure that the masking
did not remove the index voxel (lowest ADC finding algo-
rithm) since this voxel is always located inside the lesion
and therefore within the prostate. This quality check was
never triggered confirming the quality of the prostate seg-
mentation algorithm. Figure 3 shows an example of DLM
auto-fixed VOI segmentation. Next, in order to optimize the
size of the fixed diameter of the initial spherical VOI, the
effect of various diameters on the diagnostic performance
of the bpMRI radiomics model was tested. For this purpose,
diameters ranging from 6 to 30 mm with 2-mm increments
were used. The size of these diameters was based on the
previously reported average PCa diameter of 10 mm [16],
and the results of our manual segmentation in the aforemen-
tioned 524 lesions in which the average maximum PCa
diameter proved to be 23 mm.

Manual segmentation

An expert uroradiologist (D.Y., 8 years of experience) manu-
ally segmented all 524 lesions on the axial T2-weighted se-
quence and on the spatially matched axial ADC map accord-
ing to PI-RADS version 2.1 criteria [17]. Using ITK-SNAP
[18], each lesion was segmented on a slice-by-slice basis. The

Fig. 4 Axial T2-weighted images in a 74-year-old man with a suspicious
lesion in the transition zone (PI-RADS 3, mostly based on DWI [third
slice of ADC map containing the lesion attached for reference with a
white cross indicating the single-click voxel with the quantitatively ac-
quired lowest ADC value]) that proved to be non-significant PCa (based
on MRI-TRUS fusion). A T2-weighted images without any

segmentation. B Results of slice-by-slice manual lesion segmentation
by an expert uroradiologist. C Results of 18-mm auto-fixed VOI lesion
segmentation without DLM adjustment. D Deep learning–based total
prostate segmentation. E Results of 18-mm auto-fixed VOI lesion seg-
mentation with DLM adjustment
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total segmentation process was timed to later provide an av-
erage time per segmented lesion. The radiologist was blinded
to all clinical information including pathological results.
Figure 3B shows an example of a manual segmentation.

Radiomics features

Radiomics features were extracted using total VOI–based cal-
culation of the DLM auto-fixed VOIs (with 13 different diam-
eters of the initial spherical VOI) and the manually segmented
VOIs. All sequences included in the bpMRI studies (T2-
weighted, DWI, and ADC) were used for this extraction which
resulted in a total of 14 radiomics datasets based on the same set
of 524 lesions. Each radiomics dataset consisted of 644 differ-
ent features (belonging to 6 different feature groups, 8 for the
manual model) calculated with PyRadiomics v3.0.1 [19]. All
features that were extracted belong to the standard
PyRadiomics set, and their names and descriptions can be
found in the documentation (or website) [19]. The feature
groups consisted of first-order or statistic-based features that
try to distinguish voxel intensity distribution and five texture-
based feature groups: gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), gray-level
size-zone matrix (GLSZM), gray-level dependence matrix
(GLDM), and the neighboring gray-tone difference matrix
(NGTDM) features. Additionally, the manual segmentation–
based model included the features from the shape-based 2D
and shape-based 3DPyRadiomics groups. Distance to neighbor
specification for the texture matrices was kept to one, and no
weighting was applied meaning the averages of separate matri-
ces were returned. Features were calculated in a forced 2D
extraction since no resampling was applied to the multi-center
dataset and 3D calculation is expected to lead to less robust
features due to anisotropic voxels and large differences in the
slice dimension (z-axis) [20]. The use of forced 2D extraction
and a fixed distance to neighbor of one resulted in a texture
feature (GLCM, GLSZM, GLRLM, NGTDM, GLDM) con-
nectivity of eight. Image-based normalization was applied and
gray levels were discretized in fixed bin levels (bin width 30,
resulting in the number of gray-level bins ranging from 30 to
130) [20]. No PyRadiomics image filters were applied due to
previously proven insufficient impact [12].

Bayesian model optimization

Radiomics feature selection was done using multivariate joint
mutual information maximization [21], and relevant features
were fed to an extreme gradient boosting model [22]. Before
optimization and training of the total feature selection and
model pipeline, the datasets were split into training and test
datasets. A 4:1 training to test ratio was used for each of the 14
datasets (13 DLM, 1 manual). The training dataset consisted

of 419 lesions (155 CS PCa, 264 non-CS), and the test dataset
comprised 105 lesions (49 CS PCa, 56 non-CS). The test
dataset was only used once at the end and kept completely
separate from the training dataset. Feature selection and
hyperparameter optimization were performed using
Bayesian optimization which has shown excellent reproduc-
ibility and to be less susceptible to biased results [23]. Using
Optuna [24], an automated hyperparameter optimization
framework, Bayesian optimization was implemented as a
sequential model-based optimization. The Optuna objec-
tive function consisted of a nested randomized five-times-
repeated k-fold split for feature selection followed by a 10-
fold cross validation of the model hyperparameters and the
optimal number of trees. By optimizing the average area
under the precision-recall curve which resulted from the
10-fold model cross validation, Optuna can iterate to
achieve the best set of features and parameters. Use of the
randomized nested split for joint mutual information max-
imization ensured a robust feature selection. The best-
performing sets of parameters (features selected, model
hyperparameters) for each of the 14 training datasets were
then tested on the test dataset.

Statistical analysis

The diagnostic performance metrics of each of the 14 datasets
were evaluated in the test datasets. Multi-reader, multi-case
analysis (iMRMC, version 4.0.1[25]) was performed on the
DLM auto-fixed-based models and the expert manual
segmentation–based model. When estimating p value, vari-
ances, and confidence intervals, iMRMC accounts for vari-
ability and correlations between models and test cases.
Areas under the receiver operating characteristic curve
(AUCs) were calculated for all of the test results, and 95%
confidence intervals (CI) were estimated. Finally, the best-
performing DLM auto-fixed–based models were compared
to the expert manual segmentation–based model.

Results

3D U-Net development

The total training of the 3D U-Net took 3 h. Weighted cate-
gorical cross-entropy was used as a loss function with an
Adam optimizer, a weight of 0.5 to the background class,
and a weight of 1 for the target class. The trained model
reached a Dice score of 0.9683 on a randomly selected,
held-out validation set of a random set of 10% (train: 105/
valid: 11) of the data.
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Expert manual segmentation

The average time spent on a single manual lesion segmen-
tation was approximately 5 min for the total process (i.e.,
segmenting each slice where the lesion occurs). The
radiomics model based on the expert manual segmenta-
tion (booster: gbtree, boosting rounds: 9, max depth: 3,
features: 31) achieved a test AUC of 0.62 (95% CI: 0.52–
0.73). Test sensitivity and specificity of the expert manual
segmentation was 0.84 (95% CI: 0.73–0.94) and 0.45
(95% CI: 0.32–0.57) at an optimized threshold (0.181).
The final model feature list can be found in Electronic
supplementary material 3.

DLM auto-fixed VOI exploration

Figure 5 shows the diagnostic performance of DLM auto-
fixed VOI bpMRI models for CS PCa, according to 13
different diameters of the initial auto-fixed spherical
VOI. The highest scoring model (18-mm diameter,
booster: gbtree, boosting rounds: 17, max depth: 4, fea-
tures: 22) achieved an AUC of 0.76 (95% CI: 0.66–
0.85) which was significantly higher (p = 0.0198) than that
of the manual segmentation model’s AUC of 0.62 (95% CI:
0.52–0.73). The second best scoring model (16-mm diameter)
achieved an AUC of 0.72 (95% CI: 0.62–0.81) which was not
significantly different (p = 0.051) from the AUC of the manual
segmentation model. Corresponding test sensitivity and speci-
ficity for the best model were 0.76 (95% CI: 0.63–0.86) and
0.71 (95% CI: 0.59–0.84) at an optimized threshold (0.385).
Figure 6 shows the ROC curves of the best DLM model and
the expert manual segmentation–based model. The model fea-
ture list for the 18-mm model can be found in Electronic sup-
plementary material 4.

Discussion

This study showed that our DLM auto-fixed VOI method is
substantially faster than a manual-based method and is more
accurate at diagnosing CS PCa. An initial diameter of 18 mm
for the DLM auto-fixed VOI provided the highest diagnostic
performance. Since the newly developed DLM auto-fixed
VOImethod only requires a single mouse click on the location
that visually has the lowest ADC (which can typically be done
within 10 s) and a complete manual segmentation is consid-
erably more laborious (which typically takes approximately 5
min, > 97% increase compared to auto-fixed), the former is far
more attractive to be used in clinical workflows and studies
with larger datasets.

It can be argued that the DLM auto-fixed VOI model
outperformed the complete manual VOI segmentation model,
because the best-performing initial auto-fixed VOI diameter
(18 mm) could be selected among no less than a total of 13
different diameters in the optimization experiment. Therefore,
it can be asserted that this 18-mm diameter only applies to the
current dataset without generalizability to others. However,
because of the use of a large and diverse multi-center dataset
(MRI data from 9 different medical centers, acquired with 8
different MRI systems [both 1.5 T and 3.0 T] from 2 different
vendors, within a time span of 7 years), this argument seems
not valid. Furthermore, only published standardized radiomics
post-processing (image-based normalization and gray-level
discretization) was used, and no elaborate post-processing or
transformations were performed. Interestingly, a previous
study by Wolters et al [16] reported the average PCa lesion
diameter to be 10 mm. However, since lesions are often not
perfectly spherical and may be elongated in a certain direction
(e.g., the lesion shown in Fig. 3), only VOI diameters larger
than 10 mm are expected to contain the necessary, relevant
lesion information. Based on theory and their formulas, tex-

Fig. 5 Deep learning masked
auto-fixed VOI to extract bpMRI
radiomics features for CS PCa:
comparison of the performance of
13 different initial diameters of
the auto-fixed VOI in the test set,
expressed with AUCs and 95%
confidence intervals (error bars)
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ture features should be better at extracting spatial information
from bigger volumes than a small group or single voxels. This
hypothesis is confirmed by the fact that the 6-mm (smallest
diameter) auto-fixed VOI model used only 2 texture features,
while the 18-mm auto-fixed VOI model used 8 texture fea-
tures out of a total of 11 features. However, when the spherical
VOI diameter is increased too much, the non-relevant regular
prostate tissue information starts to impact performance. This
balance (i.e., more than 10 mm, but not too much) is shown in
Fig. 4 where a performance peak exists around a VOI diameter
of 18 mm, and which diminishes for lower and higher diam-
eters. Finally, the prediction that lesion edge information and
healthy tissue might be helpful for radiomics could further
explain the difference between manual and DLM. Although
hard to prove exactly, besides the significantly better score,
the gradient and sharpness of lesion edges combined with
healthy tissue appear to improve PCa radiomics.

Several previous studies attempted to develop an algorithm
for the diagnosis of CS PCa on MRI using radiomics [4, 26].
However, all of these studies used a manual segmentation or an
automatic segmentation originally based on manual segmenta-
tions as input in their radiomics models [4] which still requires
the time-consuming and tedious task of initially manually
segmenting the lesions. The DLM auto-fixed VOI method is
not limited by the availability of manual segmentations and
allows for a faster analysis. To the best of our knowledge, there
are no other studies that applied a deep learning–based semi-
automatic segmentation technique combined with radiomics
modeling for the diagnosis of CS PCa on mpMRI.
Nevertheless, some comparisons can be made with the study
by Brunese et al [27] that aimed to predict PCa Gleason scores
through a deep neural architecture exploiting a set of radiomics
features. While still based on manual segmentations, Burnese
et al [27] did combine a set of radiomics features with a deep
learning approach to predict Gleason scores. Their approach

and specifically the prediction model had a much larger deep
learning component since our model only contained radiomics
features. This might also be reflected in their accuracy which
averaged around 0.97. However, a much more plausible expla-
nation for this relatively high accuracy in Burnese et al’s study
[27] is the low number of patients (n = 62), no hold-out test set,
and the use of accuracy, which is susceptible to label imbal-
ances [28], without reporting the initial label distribution.
Another study with some overlap with the currently proposed
technique was done by Jing-Wen et al [29]. They developed a
semi-automatic segmentation approach based on deep learning
which was then used to calculate radiomics features. Similar to
the present study, their approach led to a major time reduction
when compared to manual segmentation and also managed to
score higher than the manual-based model. However, the study
by Jing-Wen et al [29] involved dual-energy computed tomog-
raphy in gastric cancer, which differs considerably with the
clinical setting of the present study.

The present study had some limitations. First, 320 of the
524 included lesions were non-CS entities which led to a
minor label imbalance. However, this was accounted for by
introducing a weight factor to the Bayesian optimization with
a parameter space around the sum of the non-CS entities di-
vided by the sum of the CS PCa lesions in the training set.
Additionally, the use of AUC under the precision-recall curve
as optimization metric for the Optuna objective function
solves the remaining label imbalance issues. Second, the cur-
rent dataset consisted of lesions in all prostate zones. Since
radiomics features are significantly different in each zone [30],
future more complex radiomics models, which can use the
new segmentation technique as proposed in this current work,
need to be investigated to account for these differences.
Additionally, the optimization of the DLM diameter was per-
formed for the total dataset and not each separate zone. A
small experiment with the test data split for each zone did

Fig. 6 Test set smoothed ROC
curves for the optimal DLM auto-
fixed VOI model (initial 18–mm
VOI diameter) and the model
based on the expert manually
segmented VOI as input
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not show any differences in model performance in each zone.
However, performance could perhaps improve if correctly
optimized. Nonetheless, the deep learning zonal segmentation
required for this optimization is outside of the scope of the
current work.

In conclusion, a DLM auto-fixed VOI segmentation can
provide a potentially more accurate diagnosis of CS PCa than
expert manual segmentation while also reducing expert time
investment by more than 97%.
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