
 

 

 University of Groningen

Glycaemia dynamics in gestational diabetes mellitus
Valero, Paola; Salas, Rodrigo; Pardo, Fabián; Cornejo, Marcelo; Fuentes, Gonzalo; Vega,
Sofía; Grismaldo, Adriana; Hillebrands, Jan-Luuk; van der Beek, Eline M; van Goor, Harry
Published in:
Biochimica et Biophysica Acta-General Subjects

DOI:
10.1016/j.bbagen.2022.130134

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Valero, P., Salas, R., Pardo, F., Cornejo, M., Fuentes, G., Vega, S., Grismaldo, A., Hillebrands, J-L., van
der Beek, E. M., van Goor, H., & Sobrevia, L. (2022). Glycaemia dynamics in gestational diabetes mellitus.
Biochimica et Biophysica Acta-General Subjects, 1866(7), [130134].
https://doi.org/10.1016/j.bbagen.2022.130134

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://doi.org/10.1016/j.bbagen.2022.130134
https://research.rug.nl/en/publications/e8715ba3-7239-4c94-b979-ab5af4476114
https://doi.org/10.1016/j.bbagen.2022.130134


BBA - General Subjects 1866 (2022) 130134

Available online 27 March 2022
0304-4165/© 2022 Elsevier B.V. All rights reserved.

Glycaemia dynamics in gestational diabetes mellitus 

Paola Valero a,b,*, Rodrigo Salas c,d, Fabián Pardo a,e, Marcelo Cornejo a,b,f,m, 
Gonzalo Fuentes a,b,m, Sofía Vega a,g, Adriana Grismaldo a,h, Jan-Luuk Hillebrands m, 
Eline M. van der Beek i,j, Harry van Goor m, Luis Sobrevia a,g,k,l,m,n,* 

a Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, 
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A B S T R A C T   

Pregnant women may develop gestational diabetes mellitus (GDM), a disease of pregnancy characterised by 
maternal and fetal hyperglycaemia with hazardous consequences to the mother, the fetus, and the newborn. 
Maternal hyperglycaemia in GDM results in fetoplacental endothelial dysfunction. GDM-harmful effects result 
from chronic and short periods of hyperglycaemia. Thus, it is determinant to keep glycaemia within physiological 
ranges avoiding short but repetitive periods of hyper or hypoglycaemia. The variation of glycaemia over time is 
defined as ‘glycaemia dynamics’. The latter concept regards with a variety of mechanisms and environmental 
conditions leading to blood glucose handling. In this review we summarized the different metrics for glycaemia 
dynamics derived from quantitative, plane distribution, amplitude, score values, variability estimation, and time 
series analysis. The potential application of the derived metrics from self-monitoring of blood glucose (SMBG) 
and continuous glucose monitoring (CGM) in the potential alterations of pregnancy outcome in GDM are 
discussed.   

1. Introduction 

A healthy human pregnancy is a physiological process characterised 
by the growing fetus’s high demand for nutrients, including oxygen. 
Several factors are involved in keeping a favourable intrauterine envi-
ronment for successful fetal growth and development [1–6]. Among 
many other factors, keeping the plasma level of D-glucose in a 

physiological range (~4.5–5 mmol/L) is critical. The mother and fetus’ 
metabolism depend on the ability of cells to sense the extracellular level 
of D-glucose, modulating the expression and activity of membrane 
transporters and enzymes involved in the metabolism of this hexose. 
Unfortunately, a considerable number of pregnant women show D- 
glucose intolerance —a metabolic condition resulting in hyper-
glycaemia— and a deficient regulation of all body cells metabolism by 
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insulin [3,4,7]. 
Pregnant women who show any degree of glucose intolerance 

detected for the first time in pregnancy by the end of the second 
trimester or after are diagnosed with gestational diabetes mellitus 
(GDM) [8]. Therefore, patients with GDM likely developed glucose 
intolerance already several weeks before detection. Patients with GDM 
show hyperglycaemia which subsequently leads to hyperinsulinemia 
and insulin resistance. It is conceived that maternal hyperglycaemia 
results in fetal hyperglycaemia and hyperinsulinemia [3,4,9,10], and a 
state of insulin resistance [3,4,7,11–13]. It is also reported that GDM 
associates with alterations in the fetoplacental vasculature supporting 
the notion that D-glucose intolerance already starts earlier in pregnancy 
These alterations are associated with endothelial dysfunction 
([3,4,6,7,14]. However, since achieving normal glycaemia in the mother 
following GDM diagnosis does not result in restoring the GDM- 
associated fetoplacental vascular dysfunction, other factors than 
plasma or the interstitial D-glucose concentration may be involved 
[6,7,14]. 

Patients diagnosed with GDM are, in general, included in a group of 
women irrespective of their nutritional status and metabolic conditions 
[7]. Yet, obesity is a pandemic also affecting women of childbearing age 
[15–19], driving a higher prevalence of pre-pregnancy maternal obesity. 
Pre-pregnancy maternal obesity is a risk factor for developing GDM 
[1–4,7,9,10]. Therefore, women with GDM should be considered in-
dividuals with a pre-pregnancy status that could determine the impact of 
this disease of pregnancy in the mother and fetus differently. Based on 
the maternal pre-pregnancy body mass index (BMI), at least three 
distinct groups of women with GDM are differentiated, viz, women with 
normal pre-pregnancy weight (BMI 18.5–24.9 kg/m2, referred to as 
classical GDM or GDM lean), pre-pregnancy overweight (BMI 25–29.9 
kg/m2) or pre-pregnancy obesity (BMI ≥30 kg/m2, referred to as 
gestational diabesity [7,19–21]. 

A correlation between obesity and type 2 diabetes mellitus (T2DM) is 
reported [22–24] while the exact mechanisms behind obesity influ-
encing the development of T2DM are still unclear. The metabolic con-
dition of patients with T2DM and obesity was referred to as diabesity 
[22,23,25]. Patients with diabesity show a higher risk of developing 
cardiovascular disease and vascular dysfunction [22]. On the other 
hand, pregnant women with pre-pregnancy obesity that develop GDM 
are referred to as having gestational diabesity [7,19–21]. Patients under 
the subgroups GDM lean, GDM with pre-pregnancy overweight (GDM 
overweight), and gestational diabesity differ in their metabolic condi-
tion and in the aetiology of the alterations seen in their capacity to 
regulate the glycaemia [7]. 

GDM associates with variations of maternal glycaemia, showing 
different patterns over the time. The glycaemia increases after a glucose 
load (usually 75 g glucose) in women with GDM reaching higher levels 
than expected for women without alterations in glucose handling. 
However, a change in glycaemic status in GDM patients may refer to a 
higher than expected plasma glucose response to a glucose load as well 
as altered kinetics of increase and restoration of this hexose concentra-
tion after minutes or hours to physiological levels. Therefore, glycaemia 
variation along a time scale (over a repeated 24 h cycle for several days) 
is also a factor that should be considered in the characterization of a 
pregnant women at risk of GDM. 

The variations of blood glucose concentrations due to changes in 
glucose metabolism over time in different tissues has been defined as 
‘glycaemia dynamics’ [26]. Glycemia dynamics include the time that 
glycemia takes to reach values in a normal range, the time that glycemia 
remains in a hyperglycaemic state after feeding episodes, the flow pat-
terns that appear over time [27], and the fluctuations and variability 
concerning time [28]. Different parameters are used to evaluate gly-
caemia dynamics according to the type of analysis used, viz, quantita-
tive, plane distribution, amplitude, score values, variability estimation, 
and time series analysis. 

The whole set of variations in the glycaemia, i.e. not only the value at 

1 or 2 h after a glucose load, might represent a pattern of glycaemia 
dynamics that may be different in women with GDM compared with 
pregnant women with a normal pregnancy. As GDM associates with 
fetoplacental vascular dysfunction [6,7], glycaemia dynamics may 
contribute to the development of vascular dysfunction, both in the 
mother and fetus. The glycaemia dynamics may, however, show 
different patterns in women with gestational diabesity compared with 
GDM lean or GDM overweight. 

Several monitoring schemes have been developed to estimate the 
changes over time in the capillary blood glucose levels for a better 
metabolic control of patients with diabetes mellitus. Despite presenting 
a delay compared with a single capillary blood glucose determination, 
continuous blood glucose monitoring (CGM) has become broadly used. 
CGM approach measures the interstitial fluid glucose concentration 
showing recordings almost identical to glycaemia values (with CGM 
recordings adequately calibrated) for stable glucose levels (rates of 
change of glucose level < 1–2 mg/dL/min) [29] with a lag time of ~10 
min regarding a change in the glucose of the blood change [29,30]. 

This review summarizes observations on the pattern and variations 
in the interstitial fluid glucose dynamics from data collected by a CGM 
approach in patients with diabetes mellitus emphasising what is known 
in women with diagnosis of GDM. A potential general interpretation of 
the different metrics derived from data collected by CGM is provided, 
and the correlation of these metrics with endothelial dysfunction and 
pregnancy outcomes are discussed. 

2. Glycaemia dynamics and metrics of glucose monitoring in 
GDM 

The glycaemia varies within physiological ranges and also regularly 
during the day related to moments of food intake and periods of fasting 
as wells as periods of physical activity and stress in healthy subjects 
allowing the supply of D-glucose to tissues as required for energy gen-
eration. Patients with diabetes mellitus show fluctuations in their gly-
caemia, which are different from the fluctuations seen in healthy 
subjects. In pregnant women, the general recommended procedure is to 
run an oral glucose tolerance test (OGTT) to decide whether they show 
glycaemia within the expected range for a normal, non-diabetic preg-
nancy (hereafter referred to as normal pregnancy) [8]. In the one-step 
strategy for OGTT after a 75 g glucose load the glycaemia in women 
with normal pregnancies are to meet <92 mg/dL (5.1 mmol/L) fasting, 
<180 mg/dL (10 mmol/L) 1 h post-load, and < 153 mg/dL (8.5 mmol/ 
L) 2 h post-load [8]. When any value is met or exceeded, women are 
diagnosed with GDM following recommendations from The Interna-
tional Association of the Diabetes and Pregnancy Study Groups 
(IADPSG) [31] and the American Diabetes Association [8]. 

During pregnancy, glycemia changes because of placental hormone 
release affecting insulin sensitivity. The inability of women with GDM to 
regulate their blood glucose levels results in hyperglycaemia. This 
abnormal metabolic condition significantly affects the fetus, which may 
increase the risk of metabolic disorders in infants, children, and adults. 
Pregnant women with GDM with poor or uncontrolled glycaemia fluc-
tuations reach higher than recommended glycaemia values after a meal. 
These women may show basal as well as postprandial excess glycaemia, 
which may take longer to return to baseline. Higher basal glycaemia 
may result in a long-lasting exposure of the fetus to excess glucose, while 
postprandial excess glycaemia results in peaks of fetal glucose exposure. 
We expect basal and postprandial excess glycaemia’s effects on fetal 
metabolism to be different since the dynamics of the exposure to 
hyperglycaemia are different both in duration as well as absolute levels. 
Thus, the fluctuations in maternal glycaemia configure repeated win-
dows of exposure of the fetus, which could selectively alter its meta-
bolism. In addition, changes in glycaemia dynamics in patients with 
GDM, including GDM lean, GDM overweight, and gestational diabesity 
differ, but have not been studied in much detail so far. 

Several reports show that endothelial dysfunction is a consequence 
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of hyperglycaemia in subjects with diabetes mellitus. Interestingly, pa-
tients with diabetes mellitus with normal glycaemia and HbA1c < 6% (in 
Diabetes Control and Complications Trial (DCCT) units) or < 42.1 
mmol/mol (in International Federation of Clinical Chemistry (IFCC) 
units) (see https://www.diabetes.co.uk/hba1c-units-converter.html) 
due to therapeutic control also show endothelial dysfunction [14,32]. 
The endothelial dysfunction may therefore result from a high variability 
of the glycaemia dynamics, which correlates with the severity and 
duration of hyperglycaemia and hypoglycaemia events [33]. Several 
studies suggest that not only hyperglycaemia but also the alterations in 
the glycaemia dynamics relate to the development of pathologies asso-
ciated with diabetes mellitus more than hyperglycaemia itself [34]. To 
date, glycaemia variability has been shown to be positively related to the 
risk of retinopathy and all-cause mortality in patients with T2DM [35] 
and cardiovascular autonomic neuropathy in patients with T1DM [36]. 

CGM approach is considered a valuable method for predicting 
hyperglycaemia and hypoglycaemia events [34]. A proper capillary 
glycaemia monitoring result from at least five measurements a day, and 
when the patient does it, it is referred to as self-monitoring of blood 
glucose (SMBG). However, with the development of new technologies 
enabling automated and more continuous estimations of glycemia, the 
SMBG approach for capillary glycaemia has been replaced by CGM 
approach for estimation of glycaemia based on the measurements of 
interstitial fluid glucose concentration [34,37]. 

CGM can facilitate patient’s education and glycaemia monitoring 
[38]. With the development of continuous measurement instruments 
and sensors, large volumes of data are collected (Fig. 1). The analysis of 
this huge amount of data has great potential to improve the under-
standing of interstitial fluid glucose and glycaemia dynamics [39]. 
Indeed, different approaches are used to analyse glycaemia dynamics 
based either in SMBG or CGM recordings [37,40,41]. 

2.1. Joint data analysis 

The collected data of the plasma glucose concentrations available for 
a patient over a specific period may be subjected to joint data analysis to 
obtain different metrics indicative of specific characteristics of the gly-
caemia dynamics. The joint data analysis metrics include the sample 
mean (X), standard deviation (SD), coefficient of variation (CV or %CV 
when expressed as percentage), interquartile range (IQR), mean of daily 
differences (MODD), and time in range (TIR or %TIR when expressed as 
a percentage) (Table 1). These metrics are used to picture the status of 
the variations of glycaemia and efficiency of the therapeutic protocols 
applied in patients with diabetes mellitus. 

The X refers to the average of the total number of glycaemia mea-
surements performed in a defined period (usually 24 h) and is the most 
used parameter in the clinic [34] (Fig. 2A). In general, it is reported that 
a pregnant woman with normoglycaemia shows X ~95 mg/dL with ~99 
and ~ 90 mg/dL for diurnal and nocturnal glycaemia, respectively [42]. 
It is considered that the closer a X value is to a defined threshold for 
glycaemia (usually ~92 mg/dL glucose) [8], the more stable is the 
glycaemia. A more stable glycaemia is for instance indicative of a proper 
control of the health status of a patient with diabetes mellitus. The X 
metric by itself is of low value and requires counting with the SD value. 
The SD metric shows the absolute dispersion of the glycaemia values 
compared with the X values. It is considered that the higher the SD 
value, the more unstable is the glycaemia and therefore the severity of 
the disease in patients with diabetes mellitus. However, SD value is 
highly dependent on extreme (higher and lower) and isolated values in a 
group of glycaemia measurements [37]. Thus, X and SD metrics may be 
useful for visualising the changes in glycaemia; however, these metrics 
are restricted to be single values that do not reflect the panorama in 
variability glycaemia in patients. Thus, the X and SD are not the best 
metrics to describe glycaemia dynamics in healthy subjects and in pa-
tients with diabetes mellitus. 

Estimating the variability in glycaemic values has gained ground 
compared with the determination of X and SD [34,43]. The CV corre-
sponds to the variation of the SD for glycaemia values relative to the X 
value. The CV is expressed as percentage (%CV) and is used to estimate 
the effectiveness of diabetes management. Since the CV value derives 
from the SD, they are also highly affected by extreme and isolated 
values. As an example of the applicability of CV was reported in adult 
subjects showing a 24 h X ~105 mg/dL with SD ~ 21 mg/dL and a %CV 
20, which was considered to show a good glycaemic control in these 
subjects [44]. Furthermore, these subjects showed lower values of SD 
(~18 mg/dL, i.e. ~14% reduction) and %CV (~17, i.e. ~15% reduc-
tion) during the night but maintained an unaltered X (~106 mg/dL) 
compared with values for the whole 24 h period [44]. Interestingly, 
patients with T2DM show higher values of 24 h X (~128 mg/dL) and SD 
(~25 mg/dL) but similar %CV (~20) compared to healthy subjects [45]. 
Thus, patients with T2DM are affected by higher glycaemia that seems to 
be with low variability for a defined period. However, these patients 
showed greater hardening of the aorta, likely due to endothelial 
dysfunction [45]. It is suggested that alterations in a combination of 
parameters, v.g. X + SD + %CV, more than each parameter individually 

Fig. 1. Records of interstitial fluid glucose measured by continuous 
glucose monitoring approach. Interstitial fluid glucose concentration was 
determined in a 58-year-old healthy man using the continuous glucose moni-
toring (CGM) approach (FreeStyle Libre 14 day Flash Glucose Monitoring 
System, Abbot, CA, USA) for 12 days. The records shown are only as a graphical 
example (not for medical analysis). A. Twelve records of 24 h each are repre-
sented into a scale for one day. Each record shows the variations for night 
period (Sleep, 8½ h) and day period (Awake, 15½ h) including the moments of 
breakfast, lunch, and dinner. B. Mean and standard deviation for each time 
recorded for 12 days from data in A. 
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may result in increased vascular function abnormalities. 
A metric less affected by extreme and isolated values than %CV is the 

IQR [34]. IQR is the 50% of the total measurements of glycaemia located 
between 25 and 75% of the complete set of values (Fig. 2B). A higher 
IQR means higher variability of glycaemia values and, therefore, a 
deficient regulation of glycaemia in patients with diabetes mellitus. In 
women with normal pregnancies, an IQR ~ 23 mg/dL was reported 
[46]. Also, IQR values are helpful when compared with other metabolic 
conditions. To date, pregnant women with GDM treated with a 
controlled diet showed IQR ~ 27 mg/dL while women with GDM under 
insulin therapy showed IQR ~ 35 mg/dL. Furthermore, the IQR in 
women with pre-pregnancy diabetes mellitus was ~50 mg/dL [46]. 
Thus, IQR metric may serve as an intragroup (i.e. same pathology) or 
intergroup (i.e. different pathologies) comparison. 

Broader ranges of glycaemia measurements considered in patients 
with diabetes mellitus within a fixed period of 24 h are estimated by the 
MODD [43,47,48]. MODD shows the absolute mean glycaemia at the 
same time of the day in two consecutive days and reflects day to day 
variations in glycaemia (Fig. 3). A higher MODD is indicative of a 
potentially unstable regulation of glycaemia and, therefore, an indica-
tion to improve the management of diabetes mellitus. However, MODD 
is of limited use since it assumes that the patient is continuously 

experiencing a stable, reproducible pattern of meals, physical activity, 
and medications on successive days [37]. MODD may be different ac-
cording to the time of the day when measured or even it can be different 
when two consecutive determinations of this metric are done in the 
same individual. 

A stronger association of the regulation of glycaemia and manage-
ment of diabetes mellitus is given by the %TIR. This metric stands for the 
percentage of a total period of time with glycaemia values within a 
predefined range (high and low glycaemia) [49,50] (Fig. 4A). This 
metric has been used to implement and sharpen an effective therapeutic 
protocol for treating patients with diabetes mellitus. The %TIR helps to 
determine cut-off points, thus facilitating an effective therapeutic 
decision-making for patients. Interestingly, it was shown that in preg-
nant women with T1DM and T2DM, an increase by 5% of the time in 
range (v.g. 70–140 mg/dL, %TIR 5) was associated with clinical benefits 
even when the recommended %TIR were 43–56 [49]. The %TIR rec-
ommended in patients with T1DM and T2DM is at least 70%, with a time 
below target <4% and time above target <25% [49,51]. Unfortunately, 
a consensus on this metric has yet to be reached for women with GDM 
[49] and no further information is reported for possible differences 
between women with GDM lean, GDM overweight, or gestational dia-
besity [6,7]. 

Table 1 
Joint data analysis metrics for glycaemia dynamics.  

Metric Formula Definition General interpretation References 

Sample mean (X) X =

∑n
i=1Xi

n 
Arithmetic mean of a group of glucose 
concentration measurements. 

The closer to a defined threshold for glucose 
concentration, the more stable is the 
glycaemia. 

[52,125,126] 

Xi Single observation in a group of 
glucose concentration 
measurements 

n Total number of glucose 
concentration measurements 

Standard 
deviation (SD) SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Xi − X)2

n − 1

√ Absolute values of dispersion of the glucose 
concentration measurements compared with 
the X. 

The greater SD of the group of glucose 
concentration measurements, the more 
unstable is the diabetes. This metric is highly 
sensible to extreme and isolated values. 

[37] 

Xi Single observation in a group of 
glucose concentration 
measurements 

X Sample mean 
n Total number of glucose 

concentration measurements 
Coefficient of 

variation (CV) 
CV =

SD
X 

Normalization of the SD of the group of 
glucose concentration measurements against 
the X. 

Higher CV indicates high variability meaning 
that glucose concentration is unstable. This 
metric is highly sensible to extreme and 
isolated values. 

[34,43] 

SD Standard deviation 
X Sample mean 

Percentage of 
coefficient of 
variation (%CV) 

%CV =

(
SD
X

)

• 100% 
Normalization of the SD of the group of 
glucose concentration measurements given as 
percentage of the X. 

%CV >36 indicates high variability meaning 
that glucose concentration is unstable and 
diabetes management may be out of control. 
This metric is highly sensible to extreme and 
isolated values. 

[34,43] 

SD Standard deviation 
X Sample mean 

Interquartile range 
(IQR) 

IQR = Q3 − Q1 The difference of between Q3 and Q1 when 
ordered from the lowest to the highest 
measurements. 

Higher IQR implies greater variability 
meaning that glucose concentration is 
unstable. This metric is more stable than CV 
and %CV to extreme and isolated values. 

[34] 
Q1 1st quartile for glucose 

concentration corresponding to the 
25% of measurements 

Q3 3rd quartile for glucose 
concentration corresponding to the 
75% of measurements 

Mean of daily 
differences 
(MODD) 

MODD =

∑T
t=1 |Xt − Xt− 1|

T 
Average of the absolute values of the 
differences between glucose concentrations 
measured in two consecutive days at the same 
time (i.e. inter-day variations) in a window of 
T days. 

Shows the mean behavior of the inter-day 
glucose variability. The greater the MODD 
value, the more unstable diabetes. 

[43,47,48] 

Xt Glucose concentration 
measurement at time t in each day 

Xt- 

1 

Glucose concentration 
measurement at time t measured 
24 h before the given day 

t Time t in each day 
T Number of days 

Time in range (% 
TIR) 

%TIR =
τ
T
• 100% The absolute time that glucose concentration 

values are within a defined target range given 
as percentage of the T (usually 24 h). 

Establishes the range of glucose concentration 
cutoff points (higher and lower) for an 
effective therapeutic decision-making for the 
treatment of patients with diabetes 

[49,50] 
τ Period that glucose concentration 

values are within a defined 
recommended interval of glucose 
concentrations (target range) 

T Total time of the evaluation period  
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2.2. Plane distribution analysis 

The metrics for the analysis of the distribution of glucose measure-
ments in the plane, i.e. the Cartesian coordinate plane or graph, are 
summarized in Table 2. The frequency distribution (Fi) addresses the 
proportion of the measured glucose concentrations within a specific 
predefined range. This metric is the basis for the metric %TIR. Although 
the Fi provides more information than %TIR, it is considered a complex 
metric to interpret in the clinic [47–49]. The metric supplying more 
information on glycaemia dynamics in patients is the ambulatory 
glucose profile (AGP) (Fig. 1). AGP is a graph type metric only possible 
when CGM is applied [34]. The AGP shows a combined 2-weeks result of 
glycaemia dynamics and a daily overview in graphs. Also, AGP gives 
information on whether glycaemia management needs to be changed 
[52]. Under the international consensus for the use of CGM, the rec-
ommended approach for displaying continuous data of glycaemia is AGP 
[53]. 

The metric area under the curve (AUC) (Fig. 4B) is used to describe 
glycaemia dynamics in postprandial periods allowing the analysis of cut- 
off points in OGTT. Its clinical utility is limited to the diagnosis of dia-
betes compared with the study of the glycaemia dynamics or 

management of the disease [54]. However, when implemented, AUC 
values measured for 24 h provide useful information on the glycaemia in 
terms of its dynamics to compare between women with a normal preg-
nancy or with GDM [46]. 

Fig. 2. Mean, standard deviation, and interquartile in the interstitial fluid 
glucose measured by continuous glucose monitoring approach. Interstitial 
fluid glucose concentration was determined in a 58-year-old healthy man using 
the continuous glucose monitoring (CGM) approach (FreeStyle Libre 14 day 
Flash Glucose Monitoring System, Abbot, CA, USA) for 12 days. Twelve records 
of 24 h each are represented into a scale for one day. The records shown are 
only as a graphical example (not for medical analysis). A. Mean (X) and stan-
dard deviation (SD) values with plus SD and minus SD (SD limits) are repre-
sented. The maximal (Over SD) and minimum (Lower SD) values for SD are 
indicated. The X value was 98 mg/dL glucose and SD limits ±14 mg/dL glucose 
in this example. B. Graphical representation of the interquartile (IQR) for gly-
caemia between 75 and 25% of the SD limits shown in A. Values show the 
individual IQR values detected at four different times in 24 h. B, breakfast; L, 
lunch; D, dinner. 

Fig. 3. Variable results for mean of daily differences in the interstitial 
fluid glucose. Interstitial fluid glucose concentration was determined in a 58- 
year-old healthy man using the continuous glucose monitoring (CGM) approach 
(FreeStyle Libre 14 day Flash Glucose Monitoring System, Abbot, CA, USA) for 
4 consecutive days. The records shown are only as a graphical example (not for 
medical analysis). A. Interstitial glycaemia records for the first two days (Days 1 
and 2) where glucose concentration was obtained at the same time at days 1 and 
2 at 06:00 am (1), 12:00 (noon) (2), and 18:00 (3). B. Records for Days 3 and 4 
as in A. C. Mean of daily differences (MODD) calculated from A and B at 06:00 
am (1), 12:00 (noon) (2), and 18:00 (3). MODD corresponded to half of the 
difference between days 1 and 2 or days 3 and 4 (see Table 1). The indicated 
cut-off (MODD 2) was arbitrary, and it is shown only as example to highlight the 
variability of MODD depending on the time of the day considered for the 
analysis. B, breakfast; L, lunch; D, dinner. 
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2.3. Amplitude, distribution, and frequency analysis 

Other approaches used to estimate glycaemia dynamics is the anal-
ysis of amplitude and distribution of frequencies (Table 3). The mean 
amplitude of glucose excursion (MAGE) is one of the first metrics 
described in patients using the SMBG approach. MAGE allows calcu-
lating the amplitude of glycaemia excursions (increased or decreased 
values) in 24 h [37] (Fig. 4C). MAGE may be interpreted as how high (or 
intense) the hyperglycaemia is at a specific stage in the patient. MAGE 
metrics depends on the SD and is therefore subject to error since the SD 
varies over time [55]. In a relative recent study aimed to determine the 
reference values for CGM metrics in a group of 60 healthy subjects 
(including 70% women and 30% men) a MAGE of ~47 mg/dL during the 
day in 24 h recording was reported [44]. These patients also showed a 
lower MAGE (~39 mg/dL) during the night period, suggesting that the 
intensity of glycaemia and its potential harm consequences in these 
subjects is lower (~17% in this case) during the night. 

Another approach used to estimate glycaemia dynamics includes the 
analysis of amplitude and distribution of frequencies (Table 3). One of 
these approaches is the metric distance traveled (DT), which captures 
the number of determinations, i.e. frequency, and the 24 h oscillations of 
glucose concentrations [56]. However, it is conceptually hard to un-
derstand the relevance for clinical practice, and therefore, of little use. In 
the analysis of a continuous monitoring reading in 11 patients (9 females 
and 2 males) with T1DM on insulin therapy, the DT ranged from 1496 to 
3064 mg/dL resulting in a difference of 1568 mg/dL with a 2.05 fold 
increase from the lower glycaemia value. In comparison, MAGE ranges 
from 145 to 157 mg/dL giving a difference of 12 mg/dL with to 1.1 fold 
increase from the lower glycaemia value [40]. These findings reflect 
more variability in the DT metric (1.9 fold higher) than that reported by 
MAGE metric for the same patient. 

2.4. Glucose score values 

Due to the complexity of the data obtained with CGM, score values 
have been developed to classify the risk of patients with diabetes mel-
litus to develop this disease’s associated complications. Table 4 de-
scribes the most used approaches for glucose score values. The low blood 
glucose index (LBGI) and high blood glucose index (HBGI) are helpful 
metrics for the estimation of the quality of glycaemic control [37]. In 
patients with T1DM or T2DM, LBGI < 2.5 or < 4.5, or HBGI > 5.0 or >
9.0 correspond to low or high risk of severe hypoglycaemia and 
hyperglycaemia, respectively [57,58]. In the absence of a standard 
measure to analyse the CGM-derived data and given the large number of 
metrics available, the use of the %CV together with LBGI and HBGI has 
been proposed in clinical practice [59]. It is reported that women with 
GDM show HBGI values ~2 fold higher than women with normal 
pregnancies in the second trimester of pregnancy [60]. Interestingly, 
this value for HBGI metric was shown to associate with altered newborn 
weight index in these pregnancies. Thus, exposure of the fetus to a high 
glycaemia variability is a determinant factor of fetal overgrowth. 

The metric referred to as average daily risk range (ADRR) includes 
LBGI and HBGI values [47,48,61]. This metric shows the risk for gly-
caemia variability (ADRR < 20 is low risk, 20–40 is moderate risk, and 
> 40 is high risk) and is sensitive to hypoglycaemia excursions. Children 
with T1DM showed higher susceptibility to hypoglycaemia excursions 
making the ADRR a valuable metric for these patients [62]. 

The glycaemia risk assessment diabetes equation (GRADE) summa-
rizes the degree of risk associated with a determined glucose profile 
[63]. Interestingly, this metric is not used in clinical practice. However, 
GRADE has enormous potential in figuring out the relationship between 
glycaemia dynamics and maternal-fetal pathologies. GRADE gives gly-
cemia data providing a single value which defines the assessed clinical 
risk to which a patient is exposed. That is, it can provide weighted risk 
contributions from hypoglycaemia, euglycaemia, and hyperglycaemia 
and this can be related to the development of maternal-fetal pathologies 

Fig. 4. Time in range, area under the curve, and mean amplitude of 
glucose excursion in the interstitial fluid glucose. Interstitial fluid glucose 
concentration was determined in a 58-year-old healthy man using the contin-
uous glucose monitoring (CGM) approach (FreeStyle Libre 14 day Flash Glucose 
Monitoring System, Abbot, CA, USA) for 24 h. The records shown are only as a 
graphical example (not for medical analysis). A. Time in range (%TIR) for 
interstitial fluid glucose concentration showing areas of within (Within range) 
or, in this example, over (Out of range) a preestablished range (lower and higher 
concentrations). B. Area under the curve (AUC) derived for preestablished pe-
riods of 4 h (datched areas) from breakfast (B), lunch (L), or dinner (D) based on 
records as in A. Corresponding AUC values may be used for internal comparison 
(i.e. AUC for B versus L or D, and others) and to compare with another con-
dition (v.g. exercise, medication, disease). C. Interstitial fluid glucose concen-
tration used to estimate mean amplitude of glucose excursion (MAGE). The 
mean value (X = 112 mg/dL, green line) and standard deviation (SD ± 26 mg/ 
dL, light blue dotted lines) for the 24 h record of glucose concentration is shown 
and used as reference to calculate MAGE at three different times. Red arrows 
show the peak of interstitial fluid glucose concentration related to the X value 
in an excursion from the indicated nadirs to peaks (orange areas). B, breakfast; 
L, lunch; D, dinner. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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[63]. The Q-score is useful in scanning continuous glucose monitoring 
profiles. It is developed to classify patients into at least five categories of 
metabolic control, viz, Q-score < 4 is considered very good, 4–5.9 is 
good, 6–8.4 is satisfactory, 8.5–11.9 is fair, and ≥ 12 is poor [64]. Thus, 
Q-score allows detecting those patients with diabetes mellitus that may 
require changes in the applied therapeutic action. Q-score is also useful 
when showing parameters associated with a type of therapeutic protocol 
that could be modified for optimizing patient-tailored therapies. 

2.5. Variability estimation analysis 

Based on the CGM data, several metrics have also been developed 
allowing the analysis of the glycaemia variability (Table 5). The way to 
apply the methods for estimation of variability are possible using CGM 
data and bioinformatics, so the use in the clinic is limited [47,48,53]. 
The mean absolute glucose (MAG) gives the absolute change in glucose 
concentration per unit of time. MAG is useful to estimate postprandial 

glycaemia changes depending on the selected time points but shows a 
poor correlation with %CV and SD for the differences in glycaemia [37]. 
Another metric, the continuous overall net glycaemia action (CONGA), 
allows estimating inter-daily variability, and high values indicate higher 
variation in glycaemia [65]. One aspect to have in mind when esti-
mating CONGA metrics is that it assumes that the patients continuously 
experience a stable and reproducible pattern of meals, exercise, and 
medication [37]. It is reported that CONGA estimation in pregnant 
women with T1DM showed a correlation with a tendency to a higher 
neonate’s ponderal index in the second trimester of pregnancy [60]. 

On the other hand, the metric glucose variability percentage (GVP) is 
highly related to MAG and DT but it is not often used in the clinic [37]. 
However, GVP captures the amplitude and frequency of the glycaemia 
oscillations [56]. The analysis of this metric in patients with T1DM using 
a bi-hormonal closed-loop system showed that SD and MAGE values 
were lower, but GVP values were higher, supporting this metric as a 
potential approach to estimate the variations of glycaemia in these 

Table 2 
Analysis of distribution in the plane for glycaemia dynamics.  

Metrics Formula Definition General interpretation References 

Frequency 
distribution 
(Fi) 

Fi =
ni

N 
Glucose concentrations sorted by 
designated categories and plotted on a 
frequency histogram 

Allows visualization of the values of 
the most frequent observations 
together with the dispersion of the 
records in an interval 

[125,126] 
ni Total of number of glucose concentration 

measurements in the i-th interval 
N Total number of glucose concentration 

measurements 
Ambulatory 

glucose 
profile (AGP) 

X̃q(i) = median [u(i) , v(i) ,w(i) ]

u(i) = median
{

Xq(i −

1) ,
[
3 • Xq(i − 1) − Xq(i − 2)

]

2
, Xq(i)

}

v(i) = median [Xq(i − 1),Xq(i),Xq(i + 1)] 
w(i) =

median
{

Xq(i + 1) ,
[
3 • Xq(i + 1) − Xq(i + 2)

]

2
, Xq(i)

}

It is a composite graph represented by 
three smoothed time series, obtained at 
the 25th, 50th, and 75th percentile of 
glucose concentration values of the day 
(Y-axis) versus time (X-axis). 

This metric may facilitate systematic 
interpretation of data of glucose 
concentration monitoring the overall 
level of glycaemia control in terms of X 
(Table 1), the %CV (Table 1) related to 
IQR (Table 1), and the time of day 
showing the greatest hypoglycemia or 
hyperglycemia. 

[127] 

X̃q(i) The smoothed glucose concentration values at the 
25th, 50th, and 75th percentile 

Xq(i) The 25th, 50th, and 75th percentile glucose 
concentration values (q = 0.25, 0.50, 0.75) 

Area under the 
curve (AUC) AUC =

∑N
i=1

(Xi + Xi− 1)

2
(ti − ti− 1)

It is the area under the curve of the 
observed glucose concentrations 
estimated by trapezoidal rule. 

It is the measurement of postprandial 
glucose concentration. AUC quantifies 
the level of response to the feeding 
load. 

[128,129] 

N Total number of glucose concentration 
measurements 

Xi i-th measurement of the glucose concentration at 
time ti 

Xi-1 i-th measurement of the glucose concentration at 
time ti− 1 

ti i-th time ti associated with the Xi measurement 
ti-1 i-th time ti− 1 associated with the Xi-1 measurement  

Table 3 
Amplitude and distribution of frequencies metrics for glycaemia dynamics.  

Metrics Formula Definition General interpretation References 

Mean amplitude 
of glucose 
excursion 
(MAGE) 

MAGE =
∑ λ • I(λi > v)

K 
Arithmetic mean of adjacent 
(sequential) amplitudes whose 
magnitudes are higher than one 
standard deviation from the mean in 24 
h. 

Gives information about the normal or 
pathological levels of glucose 
concentration and allows 
characterization of glycaemia instability. 

[41,43,58,130] 

I 
(λ > v) 

Indicator function where it is 1 if λ is 
greater than one standard deviation of 
the glucose concentration in a 24 h 
period, and 0 otherwise 

λ Amplitude between the mean and peak 
of glycaemia (nadir-peak or peak-nadir) 

v One standard deviation of the mean 
glucose concentration in 24 h 

K Number of events such that λ > v 
Distance traveled 

(DT) 
DT =

∑N
i=1 |(Xi − Xi− 1)| It is the sum of the absolute differences 

in glucose levels from successive 
measurements over a day. 

Quantifies the total change in glucose 
concentration over a period of time. 
The greater DT value the greater the 
variability. 

[40,56] 
Xi Daily glucose concentration 

measurements at time i 
Xi-1 Daily glucose concentration 

measurements at time i-1 
N Number of observations or data points  
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patients [37,56]. The mean absolute relative difference (MARD) is 
another metric referring the average of error values to a known refer-
ence value of glucose concentration (Table 5). MARD value figures out 
the accuracy of CGM sensors measuring interstitial blood glucose levels 
compared to a series of reference samples from SMBG data. A low value 
(expressed in percentage) of MARD stands for better sensor perfor-
mance. A MARD of 10% has been reported to represent the level of 
precision required for the safe use of CGM devices [66]. 

2.6. Analysis of time series 

Different approaches in the literature, such as Fourier, detrended 
fluctuation analysis (DFA), Periodogram, SampEn, and multiscale sample 
entropy (MSE) analysis use time series for the analysis of the glycaemia 
dynamics (Table 6). The Periodogram studies frequency oscillations and 
helps to understand the intricate regulation of glycaemia by, for 
example, insulin and the glycaemia dynamics in patients with diabetes 
mellitus; however, its clinical utility is limited due to the difficulty of 
interpreting the results [67]. The DFA metric estimates the degree of 
correlation within the recorded signal, i.e. glucose concentrations, 
analyzing the divergence between the time series and their linear 
regression in the studied time window [68,69]. It is proposed that this 

type of analysis makes possible to estimate the loss of complexity in the 
glycaemia dynamics due to dysregulated glucose homeostasis from 
where other methods have been developed, including SampEn [37]. 
Complexity analysis such as SampEn helps understand the fine regula-
tion of glycaemia between subjects without or with diabetes mellitus. 
However, this type of analysis is more useful in research than in the 
clinic due to its complex interpretation in terms of diabetic pathology. 

The multiscale sample entropy (MSE) metric is an index representing 
the glycaemia complexity during a defined period [70]. The scale factor 
for MSE analysis is arbitrary, so the complexity index varies between 
different reports. The MSE index is inversely correlated with changes in 
the glycaemia. The most widely used scale factor is up to 7 and low 
values for MSE indicate good control of the disease. More significant 
changes in MSE for glycaemia have been reported to increase the risk of 
developing macrovascular and microvascular pathologies characteristic 
of diabetes mellitus and suggest the degree of a dysfunctional glycaemia 
regulation among patients who have similar glycaemic control [28,37]. 

The Fourier analysis allows the extraction of characteristics of the 
glycaemia dynamics in a time series. It has helped to identify poor 
control of diabetes mellitus, therefore predicting the development of 
associated conditions such as endothelial dysfunction [71]. Fourier’s 
derived lower energy of total variability is detected in patients with a 

Table 4 
Metrics for the analysis of glycaemic dynamics using scores of glucose values.  

Metrics Formula Definition General interpretation References 

Low blood glucose 
index (LBGI) 

LBGI =
1
N

∑N
i=1

rl(Xi)
Non-linear transformation of the blood glucose 
concentration scale that apply symmetry to the 
subject’s glycemia distribution. 

High values indicate higher or 
longer hypoglycaemia events. [131] 

rl(Xi) = 22.77 • f(Xi)2 if f(Xi) < 0, and 0 otherwise 
where f(Xi) = ln (Xi)1.084 − 5.381 for blood glucose 
readings in mg/dL 
N Number of glucose concentration 

measurements within a day 
rl Risk of hypoglycaemia 

High blood glucose 
index (HBGI) 

HBGI =
1
N

∑N
i=1

rh(Xi)
Non-linear transformations of the blood glucose 
concentration scale that apply symmetry to the 
subject’s glycaemic distribution. 

High values indicate higher or 
longer hyperglycaemic events. [131] 

rh(Xi) = 22.77 • f(Xi)2 if f(Xi) > 0, and 0 otherwise 
where f(Xi) = ln (Xi)1.084 − 5.381 for blood glucose 
readings in mg/dL 
N Number of glucose concentration 

measurements within a day 
rh Risk of hyperglycaemia 

Average daily risk 
range (ADRR) 

ADRR =
1
D

∑D
d=1

LRd + HRd Risk assessment of the total blood glucose variation 
in a risk space in a day defined as the average sum 
of HBGI for maximum glucose and LBGI for 
minimum glucose. 

A value of 11.5 is sign of 
severe risk. [48,131] 

LRd = max (rl(X1), …, rl(XN)) and HRd = max (rh 
(X1), …, rh(XN)) for blood glucose readings X1, … 
XN taken within a day #d, d = 1, …, D 
N Number of glucose concentration 

measurements within a day 
D Total number of days 
d Specific day between 1 and D 
Xi i-th measurement of glycaemia 
XN N-th measurement of glycaemia 

Glycaemic risk 
assessment 
diabetes equation 
(GRADE) 

GRADE = 425 • [log10(log10(Xi • 18) + 0.16)]2 Summarizes the risk associated with a glucose 
profile. 

Highly correlated with %TIR 
(see Table 1). 

[48,63] 
Xi i-th measurement of glycaemia in mg/dL 

Q-Score (Q-score) 
Qscore = 8+

X − 7.8
1.7

+
Range − 7.5

2.9
+

tG(〈3.9) − 0.6
2.9

+

tG>8.9 − 6.2
5.7

+
MODD − 1.8

0.9 

Based on a factor analysis using Z-score combined 
with the average Range, time in hyperglycaemia, 
time in hypoglycaemia, and MODD (see Table 1). 

Characterizes glycaemia 
recorded data in categories 
and quality of glycaemia. 
<4 Very good (glycaemia 
completely within the target 
range) 
4-5.9 Good (80-100% within 
the target range) 
6.0-8.4 Satisfactory (partially 
outside the range with 20-50% 
in target range) 
8.5-11.9 Fair (often outside 
the range with 50-80% outside 
target range) 
≥12.0 Poor (>80% outside the 
range) 

[132] 

Range refers to <3.9, >3.9 to <8.9, and >8.9 mmol/ 
L glucose as hypoglycaemia, euglycaemia, and 
hyperglycaemia, respectively 
tG 

(<3.9) 

Time in glycaemia <3.9 mmol/L 

tG>8.9 Time in glycemia >8.9 mmol/L 
X Sample mean (see Table 1) 
MODD Mean of daily differences (see Table 1)  
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longer time from diagnosis of T1DM. These patients are considered as a 
population with a greater probability of comorbidity by developing 
pathologies associated with diabetes mellitus [71–73]. Despite the bet-
ter information on glycaemia dynamics, the Fourier series analyses is not 
especially useful in the clinic since their interpretation requires complex 
bioinformatic analysis. However, it is helpful in research to develop new 
metrics or scores that consider oscillations, frequencies, and glycaemia 
variability resulting in tools that may be more practical for making 
medical decisions. 

3. Glycaemia dynamics in diabetes mellitus 

3.1. GDM 

Despite the significant advances made in the analysis of CGM data, 
there are few reports associating interstitial fluid glucose and glycaemia 

dynamics with endothelial dysfunction in pregnant women that develop 
GDM. It has been reported that women with GDM have more extended 
periods of hyperglycaemia compared with non-pregnant, healthy 
women showing changes in glycaemia [74]. Thus, GDM may not only 
associate with a higher value of hyperglycaemia but also with an 
extended period in this abnormal condition when compared with non- 
pregnant women with normoglycaemia. It is reported that ~23% of 
women with GDM showed the lowest glycaemia value between 
midnight (i.e. 00:01 am) and 03:00 am, while ~43% of the patients 
showed the highest glycaemia value between 06:00–10:00 am [75]. 
Thus, hyperglycaemia events in patients with GDM occurring early in 
the morning may be a factor affecting the pregnant woman and fetus 
health. 

Data obtained with the CGM approach in women with GDM revealed 
a more extensive time above the recommended glycaemia range after 
lunch, and positive correlation with the probability of macrosomia and 

Table 5 
Metrics for the analysis of glycaemic dynamics using variability estimation.  

Metrics Formula Definition General interpretation References 

Mean absolute 
relative 
deviation 
(MARD) 

MARD =
1
N

∑N
i=1

|CGMi − SMBGi|

SMBGi
• 100% 

Percentage of the average of individual 
absolute relative errors for a reference 
value of glucose concentration. 

It refers to whether a particular reading 
value of glucose concentration is high or 
low compared to a reference value. A 
percentage higher than 10% implies a 
significant difference compared to the 
reference value estimated by data from 
SMBG approach. 

[133,134] 

CGM Continuous glucose 
monitoring data 

SMBG Self-monitoring of blood 
glucose data 

N Number of glucose 
concentration measurements 

i i-th number of glucose 
concentration measurements 

Continuous overall 
net glycaemic 
action (CONGA) 

CONGA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ti

t=t1 (Dt − D)2

k* − 1

√ Shows the standard deviation of the 
differences between values in a current 
observation and another value measured in 
a certain quantity of earlier hours. It is 
referred as to the intra-day glycaemic 
variation. 

High values show greater glycaemic 
variation meaning that diabetes 
management is out of control and glucose 
concentration is unstable. 

[43,65] 

Dt = Xt − Xt− m 

D =

∑tk*
t=t1 Dt

k* 

k* Number of glucose 
concentration measurements 
to which there is a 
measurement 60 min before 

Dt Difference between 
glycaemia at time t and t 
minus m hours ago 

Glucose variability 
percentage 
(GVP) 

GVP =

(
L
T0

− 1
)

• 100% 
Calculate the length of the time trace of a 
continuous glucose monitoring data set 
divided by the duration time in evaluation. 
It is expressed as a percentage. 

Allows the detection of rapid oscillation 
frequency of glucose measurements. [56] 

L =
∑N

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ΔX2
i + ΔT2

i

√

T0 =
∑N

i=1ΔTi 

L Length of the line 
representing the change of 
glucose concentration 

T0 Length of the line 
representing the time 
duration of the glucose 
concentration measurement 

ΔXi =
Xi − Xi− 1 

Difference of blood glucose 
concentrations 

ΔTi = Ti − Ti− 1 Difference of time in the 
blood glucose concentration 
measurements 

i i-th number of glycaemia 
measurements 

N Number of glucose 
concentration measurements 

Mean absolute 
glucose change 
per unit of time 
(MAG) 

MAG =
∑N

i=1
|ΔXi|
ΔTi 

It is the sum of all absolute glycaemic 
changes relative to the time period over 
which the measurement was done. 

This metric depends on the units of 
measurement for a time span and is poorly 
correlated with SD (see Table 1) and MAGE 
(see Table 3) 

[135,136] 

ΔXi =
Xi − Xi− 1 

Difference of blood glucose 
concentrations 

ΔTi = Ti − Ti− 1 Difference of time in the 
blood glucose concentration 
measurements 

i i-th number of glycaemia 
measurements 

N Number of glucose 
concentration measurements  
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Table 6 
Computational methods for the analysis of glycemic dynamics.  

Method Formula Definition General interpretation References 

Detrended fluctuation 
analysis (DFA) f(n) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
k=1

[
y(k) − yn(k)

]2
√ This approach quantifies the long-term 

correlations of non-stationary time series 
and assesses the fluctuations of glucose 
concentration in the daily life in adult 
subjects without or with diagnose of 
diabetes mellitus. DFA also allows the study 
of the initial phases of a dysfunctional 
glucose metabolism. 

Allows the detection of long-range 
correlations embedded in a seemingly 
nonstationary time series and avoids the 
spurious detection of apparent long- 
range correlations that are an artifact of 
non-stationarity. It has been used to 
predict the development of diabetes 
mellitus in patients at risk and to 
estimate insulin resistance in subjects 
without or with diagnose of diabetes 
mellitus. 

[68,69] 

y(k) =
∑k

i=1 [Bi − B]
N Number of boxes of an equal 

length of which the time series is 
divided. A least-squares line is fit 
to data representing the trend in 
that box 

f(n) Calculated value for each box of 
the time series 

Bi The i-th interbeat interval 
B Average interbeat interval 
K Count of interbeats 
i The i-th interbeat 
y(k) Integrated interbeat interval time 

series 
yn(k) Estimated trend of y(k) 

Entropy sample 
(SampEn) SampEn = − log

[Bm+1(r)
Bm(r)

] This method is designed to characterize the 
level of irregularity, complexity, chance, 
and predictability found in time series. It is a 
derivative multiscale entropy used to study 
the complexity of glucose dynamics in 
patients with diabetes mellitus. 

This method allows to distinguish 
between classes or groups of subjects, 
under different conditions in terms of 
record length, artifacts and border 
effects, i.e. classify subjects who have 
had more or less time with the disease 

[137] 

Bm(r) =
1

N − m
∑N− m

i=1
Bim(r)

N Length of a time series x where 
x = {x1,x2,x3,⋯, xN} 

m Length of the subsequence 
xi = {xi+1,xi+2,⋯, xi+m− 1} of the 
time series of glucose 
concentration 

r Threshold of the maximum 
permitted distance 

Bi Number of times that the 
difference between two 
subsequence exceeds the 
threshold r 

Bi
m(r) Average of the number of times 

that the difference is higher than 
the threshold r at different 
interval times 

Bi
m+1(r) Average of the number of times 

that the difference is higher than 
the threshold r at different 
interval times of length m and 
m+1, respectively 

Multiscale sample 
entropy (MSE) 

y(τ)j =
1
τ

∑jτ
i=(j− 1)τ+1

xi 
This method is a statistical approximation of 
the time series analysis of continuous 
glucose monitoring, based on the 
complexity of the measurements and the 
SampEn. It is a derivation of a set of time 
series made from the glucose signal at 
different time scales using the coarse grain 
technique. SampEn values are calculated for 
each time series and are plotted with the 
corresponding scale factor to obtain a MSE 
index being the sum of the scale over the 
range of 1 to 7. 

This approach has the potential to assess 
how treatment modalities can modify 
the dynamics of glucose variability 
because it generates a quality score to 
the dynamic measures of glucose time 
series. In this score, low values on the 
MSE scale indicate glycemia with high 
variability. 

[132] 
τ The scale factor and 1 < j < N/τ 
N/τ Length of the resulting coarse 

grained time series yj 

yj The coarse-grained time series 
obtained with a moving average 
window of the original time series 

xi The original time series of glucose 
measurements 

j Index of the j-th subsequence of 
the time series 

Fourier analysis 
(Fourier) 

F(t) = m+
∑

i
{
Cicos

(
2π i

t
24

)
+ Si sin

(
2π i

t
24

)}
The method computes approximation of the 
signal using the Fourier series of the 
continuous glucose monitoring data. It is a 
linear combination that has as constant the 
AUC (see Table 2) over 24 h (AUC/24) and 
several harmonic curves where each 
component of the curve oscillates at a 
regular integral number of cycles in 24 h. 

It can be used in relation to any clinical 
outcome whether related to average 
glycemic exposure precipitous glucose 
decreases, low glucose values, or 
perhaps for oxidative stress, particularly 
high glucose values 

[71,72,73] 

m =
AUC
24 

F(t) The approximation using Fourier 
series 

Ci Amplitude coefficients related to 
the cosine harmonic cycles 

Si Amplitude coefficients related to 
the sine harmonic cycles 

i The i-th harmonic cycle 
t Time of the glucose measurement 
24 The period in hours considered 

assuming that every day is 
repeated 

m The amplitude media of the signal 
AUC Area under the curve 

Analysis of diurnal 
variation using the S

(
k

NT

)

=

⃒
⃒
⃒
⃒
∑

n
xN[n] • e

− i2π
kn
N

⃒
⃒
⃒
⃒

2 This approach consists of building a best-fit 
curve using repeated periodogram 
calculations. The periodogram is an 

This method detects the circadian 
variation. The acrophased and nardis are 
the times of occurrence of maxima and 

[138] 

(continued on next page) 
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being large for gestational age [76]. These findings suggest a lower %TIR 
as a consequence of the disease. Interestingly, and as example of the 
utility of CGM data, almost ~23% of women with GDM were detected to 
be in need of insulin administration to normalise their glycaemia after 
meals. Interestingly, the number of patients using the CGM approach 
that needed insulin therapy was like that of patients requiring insulin 
under the SMBG approach [77]. However, CGM showed higher sensi-
bility than SMBG at early pregnancy (26 weeks of gestation) since the 
proportion of women needing insulin therapy was ~2.3 fold higher 
under CGM (~28%) compared with SMBG (~12%) approaches [77]. 
There was no correlation between insulin requirement and the X, SD, 
MAGE, and MODD metrics for glycaemia dynamics in the latter study. 
Thus, these metrics are to be taken with caution in patients with GDM 
when recorded in early pregnancy. 

MAGE metric in a group of Chinese patients with GDM was consid-
ered an independent risk factor for preeclampsia [77]. The association 
between changes in glycaemia and preeclampsia suggests that altered 

glycaemia dynamics might result in harming the fetoplacental vascular 
function leading to preeclampsia. Also, women with GDM under insulin 
therapy monitored for 72 h by the CGM approach showed higher vari-
ability in glycaemia than patients treated with diet modifications or 
women with normal pregnancies [78]. The latter study showed that 
even when women had X ~90 mg/dL glucose, the time in hypo-
glycaemia (~370 min) and hyperglycaemia (~394 min) were higher 
than in patients with diet-controlled GDM [78]. Unfortunately, since 
time series analysis was not performed to the data obtained from these 
patients the modelling the glycaemia dynamics is unavailable. Alto-
gether these findings add to evidence suggesting that altered glycaemia 
dynamics associate with adverse pregnancy outcomes (Fig. 5). 

Women with GDM subjected to insulin therapy showed a higher time 
in hyperglycaemia by ~2.5 fold overnight (00:00 am to 06:00 am) and 
~ 2.3 fold daytime (06:00 am to 12:00 pm) compared with women with 
this disease that were not treated with insulin [79]. Unfortunately, the 
reasons for these changes were not addressed in the latter study. Yet, 

Table 6 (continued ) 

Method Formula Definition General interpretation References 

periodogram method 
(Periodogram) 

estimate of the spectral density of a signal. It 
is used to detect and estimate the possible 
significant periodic components in the CGM 
readings. 

minima in the best-fit curve. These 
calculations provide a global definition 
of the temporal relationship between 
glucose concentration and insulin 
oscillations. The equation indicates 
whether the rises and falls in plasma 
levels tend to occur simultaneously or 
whether changes in one of the variables 
tend to precede or follow the other. 

k It is an integer and corresponds to 
the harmonic component 

i The complex number 
̅̅̅̅̅̅̅
− 1

√

xN A periodic signal 
N Number of total samples by period 
T The period 
n The count of samples 
π π number 

Algorithms for pulse 
identifications 
(ULTRA) 

Step 1: data input. The series of hormonal 
values are entered. 

This approach is used for the analysis of the 
ultradian fluctuations of plasma glucose and 
insulin concentrations. The method 
computes the pulse identification that 
eliminates all peaks of glucose 
concentration for which either the 
increment or the decrement does not exceed 
a certain threshold. Pulse increment is 
defined as the difference between the level 
at the peak and the level at the preceding 
trough. Pulse duration is defined as the time 
interval separating the preceding and 
following troughs. 

This method gives information of the 
oscillations and frequencies of glucose 
and/o insulin concentrations in relation 
to time. The method indicates whether 
the rises and falls in plasma glucose 
concentration tend to occur 
simultaneously or whether changes in 
one of the variables tend to precede or 
follow the other variable. 

[67] 

Step 2: data preparation. Missing data are 
interpolated linearly. 
Step 3: elimination of nonsignificant changes. 
All changes in glucose concentration that do 
not meet the criteria for significance are 
eliminated, resulting in a clean profile. 
Step 4: calculation of pulse characteristics. For 
each pulse, the ascending portion, the 
descending portion, the total duration, the 
absolute and relative increment, the absolute 
and relative decrement, and the apparent half- 
life are calculated. 
Step 5: calculation of statistics for pulse 
parameters. The mean, standard deviation, 
and median of the pulse parameters obtained 
in step 4 are calculated for the set of pulses 
detected.  

Fig. 5. Summary of the potential associations between glycaemia dynamics and pregnancy outcome in gestational diabetes mellitus. A decrease (↓) or 
increase (↑) in the indicated glycaemia dynamics metrics result in increased or decreased development of the indicated conditions. %TIR, time in range; MAGE, mean 
amplitude of glucose excursion; X, mean; SD, standard deviation; LBG, low blood glucose index; HBGI, high blood glucose index; LGA, large for gestational age. 
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patients under insulin therapy showed higher BMI at 12 and 28 weeks of 
gestation (~30 and ~ 32 kg/m2, respectively) compared with women 
without insulin therapy (~25 and ~ 28 kg/m2, respectively) [79], 
suggesting additional impact of pre-pregnancy BMI on the needs of a 
particular treatment in these patients. Thus, lower %TIR in patients with 
GDM under insulin therapy may result from a joint action of insulin 
administration and higher pregnancy BMI. Unfortunately, a role for 
supraphysiological gestational weight gain in response to insulin ther-
apy was not addressed in these studies. 

Interestingly, patients with GDM subjected to insulin therapy show 
normoglycaemia because the efficient regulation of plasma glucose 
concentration by insulin. However, several alterations in the function of 
the placental vascular endothelial function and placental vascular 
reactivity are still present in these patients [80]. Furthermore, pre- 
pregnancy maternal obesity and overweight may also drive malfunc-
tion of the fetoplacental unit even after achieving normoglycaemia 
following insulin therapy [81]. Gestational diabesity is a metabolic 
condition that might result in a different behavior of glycaemia regu-
lation compared with GDM lean [7,19,20]. Consequently, it seems 
necessary that women with GDM lean, GDM overweight, and gestational 
diabesity are evaluated separately for estimation of glycaemia dy-
namics. The latter is a consideration that is not limited to patients using 
the CGM approach only, since women with gestational diabesity under 
insulin therapy showed hyperglycaemia at fasting (>100 mg/dL) and 
post-breakfast (>200 mg/dL) when using the SMBG approach [79]. 

Pregnant women with T1DM who used insulin pump and were in the 
24th week of gestation showed ~7% more time in hyperglycaemia ep-
isodes during the night (00:00 am to 06:00 am) compared with ~2% 
during the day (06:01 am to 12:00 pm) [82]. Interestingly, a subgroup of 
women for the latter study that received insulin injection showed no 
changes in the %TIR overnight but ~2% more time of hyperglycaemia 
during the day. These findings may reflect differential insulin respon-
siveness of the body to regulate glycaemia but may also result from the 
different administration routes of insulin at early gestation [82]. 
Furthermore, women using the insulin pump showed a poor pregnancy 
outcome associated with higher incidence of neonatal hypoglycaemia 
and higher neonatal intensive care admissions than women under daily 
insulin injections [82,83]. These findings suggest differences in tempo-
ral glucose concentration parameters in these patients, which may have 
been undetectable by CGM [81]. 

3.2. T1DM and T2DM 

Even when patients with diabetes mellitus may show glycaemia and 
glycosylated haemoglobin A1c (HbA1c) levels within the expected 
normal ranges, some studies report endothelial dysfunction in these 
patients [32]. The latter may result from altered glycaemia dynamics as 
a more relevant factor than a single glycaemia determination in a fix 
period or measurement of HbA1c level which reflects the average 
plasma glucose concentration over the previous 2–3 months. At present, 
several metrics derived from the CGM approach have been related to 
endothelial dysfunction in patients with T1DM and T2DM [84,85]. 
Interestingly, glycaemia dynamics are not only useful in patients with 
diabetes mellitus but may also reflect the metabolic state of normal, 
without diabetes subjects. To date, it was reported that subjects without 
diabetes mellitus showed increased MAGE and altered endothelial 
function. These patients were at risk factor for cardiovascular events and 
coronary plaque vulnerability [86]. It is also reported that SD and MAGE 
are better correlated than CONGA-1 (continuous overall net glycaemic 
action measured at 1 h period) and MODD metrics with coronary plaque 
vulnerability and risk of coronary artery disease in normal subjects, 
individuals with impaired glucose tolerance, and in patients with a 
diagnosis of diabetes mellitus [87]. 

Patients with T2DM also show enhanced MAGE, MODD and incre-
mental AUC below 70 mg/dL [41]. These alterations in the glucose 
fluctuations were negatively associated with the flow and endothelium- 

dependent dilation of the brachial artery and positively related to C- 
reactive protein and insulin resistance. Also, patients with T2DM 
showing high X but low %CV for glycaemia had flow-mediated dilation 
and carotid intima-media thickness similar to subjects with low X but 
high %CV [88]. The results in the latter study suggest that the variation 
of the glycemia is critical in affecting the endothelial function con-
firming earlier reports in these patients [89]. Even more, a higher SD, 
MAGE, and %TIR correlates with vascular endothelial dysfunction in 
T2DM patients [90]. Other studies have concluded that altered glycae-
mia dynamics with a high %CV may have a higher impact leading to 
endothelial dysfunction than hyperglycaemia. Interestingly, patients 
with T2DM with SD of 1.4 mmol/L (~25.2 mg/dL glucose), %CV of 19.9, 
and low %TIR (~94) show a more significant hardening of the aorta 
suggestive of greater endothelial dysfunction [45]. The latter is an 
observation that could be useful in the interpretation of the potential 
deleterious effect of maternal hyperglycaemia in pregnancy on fetal 
vascular function. In GDM pregnancies, factor(s) other than only the 
maternal hyperglycaemia may result in alterations in the fetoplacental 
endothelial function since the glycaemia of the mother and newborn are 
within normal ranges at delivery [12,80]. One of these factors may be a 
large glycaemia variability during pregnancy rather than only an 
increased concentration of the glucose of the blood. 

4. Oxidative stress and glycaemia dynamics in diabetes mellitus 

Oxidative stress results from the loss of balance between a proox-
idant and antioxidant state of the cells favouring the production of 
reactive oxygen species (ROS) and a decrease in antioxidant mecha-
nisms [91]. In patients with diabetes mellitus, the oxidative stress is 
intensified by hyperglycaemia, and more specifically, a recurrent 
intermittent rather than sustained hyperglycaemia [92]. The latter is a 
phenomenon that could respond to changes in serum glucose within a 
single day [93]. The potential relationship between the changes in 
glycaemia and increased oxidative stress has been shown in vitro assays 
and experimental models of GDM, T1DM, and T2DM. Most studies 
report the combined effects of hyperglycaemia and hypoglycaemia 
peaks and their consequences associated with endothelial dysfunction 
and cardiovascular damage [94,95]. 

Human umbilical vein endothelial cells (HUVECs) isolated from 
normal pregnancies and cultured for 14 days in the presence of D-glucose 
concentrations fluctuating between 5 and 20 mmol/L increased the 
sensitivity to apoptosis compared to cells exposed to normal D-glucose 
(5 mmol/L) or continuous high D-glucose (20 mmol/L) [93]. Indeed, 
exposure of HUVECs to intermittent normal and high D-glucose resulted 
in higher expression and activity of protein kinase C (PKC), higher 
amount of nitrotyrosine and 8-hydroxy-2′ -deoxyguanosine (8-OHdg, a 
marker of oxidative stress) [96] and higher expression of p67 phox, p47 
phox, and p22 phox NAD(P)H oxidase subunits [97]. These findings 
suggest a role of oxidative stress in HUVECs apoptosis due to fluctua-
tions in the extracellular D-glucose concentration. The role of superoxide 
dismutase mimetics and mitochondrial respiration are approaches that 
have also been assayed in HUVECs exposed to intermittent extracellular 
high D-glucose. The intermittent normal/high D-glucose–associated in-
crease in the level of nitrotyrosine and 8-OHdg, decreased the expression 
and activity of B-cell lymphoma 2 (Bcl-2, involved in regulation of cell 
death), and increased caspase-3 expression and activity in these cells 
was related to ROS overproduction by the mitochondria [98]. 

Oxidative stress is implicated in the pathogenesis and progression of 
GDM [6,99,100]. Rapid glucose fluctuations resulting in hypoglycaemia 
and hyperglycaemia spikes in a 24 h cycle is positively correlated with 
markers of oxidative stress and inflammatory cytokines in patients with 
GDM [60,100]. These alterations associate with decreased endothelial 
cell function as well as adverse pregnancy outcomes [101]. Even when 
the glucose concentration changes during pregnancy have been moni-
tored throughout the day by CGM [77,102], only few studies 
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investigated an association of glycaemia and interstitial fluid glucose 
concentration recordings and oxidative stress in GDM. 

Evaluation of the day-to-day glycaemia by MODD and MAGE in 
pregnant women with GDM showed higher MAGE compared with 
pregnant women with normal pregnancies [103]. In these patients, 
higher MAGE correlated with lower β-cell function, reduced early-phase 
insulin secretion, and insulin resistance [103]. Although the levels of 
oxidative stress markers were not measured it was suggested that 
oxidative stress might be higher, paralleling a higher MAGE supporting 
the possibility that this metric may help assess the risk of diabetes 
mellitus-associated complications. 

Studies performed in not pregnant women with T1DM show con-
trasting results. The evaluation of the effects of long-term glycaemia 
fluctuations on microvascular complications in a cohort of the Diabetes 
Control and Complications Trial (DCCT) showed no association between 
the risk of retinopathy and nephropathy and glycaemia dynamic met-
rics, X, SD, and MAGE [104]. The latter is intriguing since retinopathy 
and nephropathy are diabetes mellitus-derived complications related to 
increased oxidative stress status. Yet, there was no correlation between 
increased oxidative stress estimated by measuring 15(S)-8-isoPGF2α 
concentration in urine with MODD, MAGE, and CONGA [105]. 

Patients with T2DM also show increased production of free radicals, 
a phenomenon related to hyperglycaemia, insulin resistance, and 
hyperinsulinemia [106]. Moreover, the association between glycaemic 
variability and oxidative stress has been studied in these patients 
[107,108]. In this context, patients with T2DM exposed to oscillations of 
glucose concentration between 5 and 15 mmol/L (every 6 h for 24 h) 
associated with more harmful effects than exposure to a constant gly-
caemia of either 10 or 15 mmol/L (24 h). The results showed reduced 
flow-mediated dilation, indicative of a higher degree of endothelial 
dysfunction, and increased nitrotyrosine and free 8-isoPGF2α in plasma, 
indicative of higher oxidative stress when oscillating glycaemia was 
applied in these patients [89]. It is also reported that increased levels of 
nitrotyrosine and free 8-isoPGF2α correlate with MAGE in these patients 
[109]. However, metrics for glycaemia dynamics in T2DM not always 
associate with the degree of oxidative stress since lack of association 
between MAGE and MODD and oxidative stress estimated as 8-isoPGF2α 
in the urine is also reported in patients with this disease [110]. 

Other studies show that MAGE correlated with the development of 
coronary artery disease in patients with T2DM who underwent coronary 
angiography and felt chest pain [111]. It is reported that a history of 
GDM associates with higher risk of overall and specific cardiovascular 
diseases [112]. On the other hand, patients that develop GDM with 
subsequent progression to T2DM were linked with increased risk of 
cardiovascular diseases [113]. Knowing that cardiovascular disease re-
lates to hyperglycaemia-increased oxidative stress and that oxidative 
stress is worsened and accelerated by variations in glycaemia dynamics 
[107,108], disorders of the regulation of plasma glucose concentrations 
may associate with coronary artery disease in patients with T2DM. 
However, MAGE was not correlated with coronary artery disease, 
myocardial infarction, cerebral stroke, peripheral artery disease, reti-
nopathy, nephropathy, and peripheral neuropathy in a group of 99 pa-
tients with this disease [114]. In the latter study, the patients were 
subjected to seven measurements of plasma glucose concentration from 
capillary blood measured 10 min before and 90 min after breakfast, 
lunch, and dinner, and at 03:00 am. The lack of correlation seen in 
MAGE metrics following a fixed number of glycaemia determinations at 
specific times with less frequency may not stand for what the CGM data 
may support for MAGE (and other metrics) calculations. 

5. Association of glycaemia dynamics with perinatal outcome 

Women with GDM having proper integral management of their 
glycaemia, especially when managed via diet and lifestyle modifica-
tions, show a low risk of preeclampsia and primary caesarean delivery, 

lower offspring birth weight, inadequate gestational weight gain, or 
incidence of gestational diabesity [7,77,115]. The effectiveness of CGM 
to reach proper maintenance of maternal glycaemia in accepted ranges 
and pregnancy outcomes has been scarcely studied (Fig. 5). In a pro-
spective cohort study including 150 Chinese women with GDM [77] 
subjected to CGM for 72 h, along with MAGE, SD, X, and MOOD, the 
maternal outcomes preeclampsia, caesarean delivery, and composite 
neonatal outcomes were analysed. Interestingly, patients under CGM 
showed lower MAGE, SD, and X paralleled by lower risk of preeclampsia 
and primary caesarean delivery compared with women without the 
CGM approach, indicating also behavioral changes perhaps having a 
placebo effect due to the close monitoring or the results of more effective 
treatment adaptations. A lower incidence of preeclampsia was also re-
ported in a group of 139 women with GDM that correlated with CGM- 
derived metrics [116]. Thus, CGM and antenatal care of women with 
GDM result in improved approaches to reduce the potential effects of a 
disrupted glycaemia dynamics in these patients leading to a better 
pregnancy outcome [77]. 

Some studies show that CGM metrics in women with GDM not 
necessarily associate with favourable outcomes, including unaltered 
caesarean sections rate [117–119], preeclampsia, pregnancy-induced 
hypertension, and maternal lacerations [118]. It has been proposed 
that a strict glycaemic control by CGM may not improve fetal outcome 
compared to SMBG (referred by the authors as a ‘liberal glycaemia 
control’) [120]. Furthermore, fetal outcomes are not different in women 
using CGM compared with the SMBG approach. However, lower MAGE, 
SD, and X for glycaemia dynamics associated with lower mean neonate 
birth weight in patients with GDM under CGM approach than patients 
without this approach [77]. Therefore, CGM may leads to better treat-
ment adjustments to patients with GDM than the SMBG approach in 
terms of improving maternal and fetal outcomes [121]. 

CGM could also help pregnant women with pre-pregnancy T1DM 
since these patients showed higher %TIR than pregnant women without 
this disease [83]. The latter study also showed that neonates to these 
patients exhibit a lower incidence of large for gestational age, fewer 
episodes of neonatal hypoglycaemia, a reduced stay of 24 h or more in 
neonatal intensive care, and a lower number of days requiring a hospital 
stay. Thus, lower exposure to maternal and subsequent fetal hyper-
glycaemia is beneficial for better maternal and neonatal outcomes in 
women with pre-pregnancy diabetes. 

One study reported that high fasting plasma glucose in women with 
GDM associated with higher carotid intima-media thickness and carotid- 
femoral pulse wave velocity in their 6-years old children [122]. More-
over, children between 4 and 7-years old born to women with normal 
pregnancies with increased HbA1c level in pregnancy showed altered 
glycaemia homeostasis, high fasting glucose, and reduced insulin 
sensitivity [123]. The Hyperglycaemia and Adverse Pregnancy Outcome 
(HAPO) follow-up Study which included 4160 children aged 10–14 
years [124] showed that the offspring to GDM when the mothers were 
untreated for this disease were insulin resistant with limited β-cell 
compensation compared with offspring of mothers without GDM. Thus, 
an adequate glycaemia dynamic is necessary also for a healthy child, and 
perhaps in the young and adulthood. 

6. Final remarks 

A clear description of the glycaemia dynamic is crucial and deter-
minant in diseases where glucose handling is altered such as in women 
with GDM and patients with T1DM and T2DM. According to what is 
known about the characteristics of the changes in glycaemia in these 
patients, the protocols for treating them are adapted to their particular 
conditions. GDM is a disease associated with maternal hyperglycaemia 
that end in fetal hyperglycaemia [3,4]. This disease of pregnancy is 
harmful for the mother, fetus, and newborn, and has postnatal conse-
quences such as increased risk of GDM, T2DM, obesity, and 
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hypertension in young and adulthood [4,6,7]. Unfortunately, few re-
ports address the consequences of an altered glycaemia dynamics on the 
newborns to GDM. 

Monitoring of glycaemia gives an estimate of the changes over time 
in the blood glucose levels in patients with GDM, T1DM and T2DM. The 
CGM gives an extensive range of interstitial fluid glucose concentrations 
considered a close index of glycaemia values [29]. In addition, CGM is 
considered an approach useful for predicting hyperglycaemia and 
hypoglycaemia events in patients with diabetes mellitus. The predictive 
potential of this approach is based on the several parameters that can be 
derived from a record trace from short (24 h) or longer (several days) 
periods, including joint data analysis, plane distribution analysis, 
amplitude, score values, variability estimation, and time series (see 
Tables 1-6). A summary of the most used analysis derived from CGM and 
their correlation with related diseases (GDM, T1DM, T2DM, oxidative 
stress, perinatal outcome, and cardiovascular complications) is given in 
Table 7. CGM approach in patients with GDM is more sensitive than self- 
monitoring blood glucose and predictive of insulin requirement in these 
patients as well as for macrosomia and large for gestational age fetus 

when reduced %TIR. Other studies proposed that MAGE is a metric that 
could be useful for prediction of other diseases of human pregnancy, 
such as preeclampsia (Fig. 5). 

CGM may also unveil mechanisms associated with the effectiveness 
of insulin therapy on the regulation of glucose concentration in the 
blood in women with GDM. It has been proposed that insulin therapy 
along with reducing the plasma glucose concentration in women with 
GDM to values in a physiological range during pregnancy and at delivery 
may also alter the metabolism of the mother, placenta, and fetus. Thus, 
insulin therapy in women with GDM may result in higher risk of hy-
pertensive disorder of pregnancy and supraphysiological gestational 
weight gain in the mother, impaired placental insulin signalling, and 
higher mother-to-fetus D-glucose transfer, higher endothelial L-arginine/ 
NO signalling, and reduced birth weight [6,7,12,80]. Insulin therapy is 
also associated with higher risk of developing non-communicable adult 
diseases including hypertension, obesity, T2DM, and GDM. Whether 
specific metrics associated with glycaemia dynamics are useful in pre-
dicting the alterations caused by insulin therapy in the mother, fetus, 
and newborn, is not yet reported. Women with GDM are usually 

Table 7 
Correlation of most used CGM metrics with functional alterations in patients with diabetes mellitus.  

Metric Advantages Disadvantages Disease Correlation Alteration or observation References 

X Most commonly used 
Helpful in comparing between patients 
Useful for monitoring patient’s disease 
progress 
Easy to calculate 

It is highly perturbed by outlier values 
Outlier values are also referred to as High or Low, 
creating ambiguity in the calculation of this 
parameter 

T2DM Negative Flow-mediated dilation 
[88] 

T2DM Positive Carotid intima-media 
thickness 

[88] 

GDM Positive Mean birth weight [77] 

SD Most common metric to evaluate 
glycaemic variability 
Easy to calculate 

Metric highly perturbed by outlier values 
Users may not know how this metric is calculated 
Users may be unclear on the meaning of this metric 

T2DM Positive Coronary plaque 
vulnerability 

[87] 

T2DM Positive Risk of coronary artery 
disease 

[87] 

T2DM Positive Vascular endothelial 
dysfunction 

[90] 

GDM Positive Mean neonate birth 
weight 

[77] 

%TIR Simple to measure  
Highly sensitive to clinical interventions 

Subjected to the arbitrariness of the target range 
selected by the treating professional 
The selected range may not be optimal to consider in 
analyzing the glycaemia variations in a patient 

T2DM Negative Vascular endothelial 
dysfunction 

[90] 

T1DM Negative Risk of LGA in 2nd and 3rd 

trimester of pregnancy 
[139] 

T1DM Positive Macrosomia 
Shoulder dystocia 
Neonatal hypoglycaemia 
NICU admission >24 h 

[139] 

MAGE Useful to describe major glycaemia 
fluctuations in postprandial peaks 
Directly proportional to and highly 
correlated with SD giving an estimation 
of glycaemia variability 

Statistically is less efficient to estimate glycaemia 
variability than SD 
A peak in this metric defines excursion amplitude 
exceeding an arbitrary level of 1 SD 
Uncertain which value of SD must be used when 
calculating MAGE with SD variations in a multiday or 
multiweek glucose time series 

T2DM Positive Coronary plaque 
vulnerability 

[87] 

T2DM Positive Risk of coronary artery 
disease 

[87] 

T2DM Positive Level of C reactive protein [41] 
T2DM Positive Insulin resistance [111] 
T2DM Negative Endothelium-dependent 

dilation of brachial artery 
[41] 

T2DM Positive Levels of nitrotyrosine and 
8-iso-PGF2α 

[109] 

T2DM Positive Vascular endothelial 
dysfunction 

[90] 

GDM Negative Pancreas β-cell function [103] 
GDM Negative Early-phase insulin 

secretion 
[103] 

GDM Positive Mean neonate birth 
weight 

[77] 

MODD Proportional to SD 
High correlation with SD 
Easy to calculate 

Defined by two values of glycaemia in consecutive 
days 
Assume that the patient had similar meals, activities, 
and therapy on both days of measurement 

T2DM Positive Coronary plaque 
vulnerability 

[87] 

T2DM Positive Risk of coronary artery 
disease 

[87] 

T2DM Positive Level of C reactive protein [41] 
T2DM Negative Endothelium-dependent 

dilation of brachial artery 
[41] 

T2DM Positive Insulin resistance [41] 

X, sample mean; SD, standard deviation; %TIR, time in range; MAGE, mean amplitude of glucose excursion; MODD, mean of daily differences; T2DM, type 2 diabetes 
mellitus; GDM, gestational diabetes mellitus; LGA, large-for-gestational age; NICU, neonatal intensive care unit; 8-iso-PGF2α, 15(S)-8-iso-prostaglandin-F2alpha. For 
general information about advantages and disadvantages see [48] and [138].  
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considered as a general group despite the pre-pregnancy maternal BMI 
(i.e. normal weight, overweight, obese). The consensus is to apply a 
common therapy to these three groups of women with GDM, including a 
change in the lifestyle, controlled healthy diet, exercise, oral adminis-
tration of hypoglycaemic agents, or insulin therapy. However, women 
with gestational diabesity are a group of patients carrying metabolic 
alterations that are different from lean and perhaps overweight women 
that develop GDM [6,7,19–21,77,115]. Therefore, it would be crucial to 
have a clearer and specific set of metrics derived from glycaemia dy-
namics in women with GDM lean, GDM overweight, and gestational 
diabesity. Unfortunately, there is no information addressing the 
different metrics for glycaemia dynamics derived from the CGM 
approach in pregnant women separated by pre-pregnancy BMI. In an 
early study, CGM was applied to a pool of women with GDM treated with 
diet and insulin, showing pre-pregnancy BMI in the range of overweight 
and obesity (BMI 30.1 ± 5.1 kg/m2) [78]. The metrics derived from the 
data collected from these patients (X for 24-h glycaemia, mean glucose 
level during the night, AUC, and TIR) were unaltered compared with 
women with GDM under diet or those referred to as having normal 
pregnancies. Unfortunately, the groups used for this comparison 
included women with pre-pregnancy BMI 25.0 ± 5.61 kg/m2, i.e. a mix 
of normal weight plus overweight, and 27.2 ± 6.31 kg/m2, i.e. a mix of 
overweight plus obese, respectively. Thus, whether the lack of differ-
ences in CGM metrics described in this study was because including in 
the same group women with GDM with pre-pregnancy overweight and 
obesity is unclear. Thus, the potential importance of separating the study 
groups as per their pre-pregnancy BMIs or adiposity is critical regarding 
the interpretation of glycaemia dynamics as a tool for a better charac-
terization of patients. Furthermore, along with GDM lean and gesta-
tional diabesity, the intermedium group of women with pre-pregnancy 
overweight are still in the shadows about the specific alterations that 
GDM may cause for the mother, the fetus, newborn, and the health of the 
young and adulthood. 

Glycaemia dynamics are a useful tool as a potential predictor set of 
metrics for complications of pregnancy including GDM and pre-
eclampsia. Indeed, the predictive value of glycaemia dynamics metrics 
might be different for at least these two diseases of pregnancy. We hy-
pothesize that a better understanding of glycaemia dynamics as earlier 
as possible in pregnancy, and even before getting pregnant, will allow a 
better therapeutic control of the pregnant women with diagnose of GDM 
(Fig. 6). The early identification of a metric or a mix of metrics derived 

from glycaemia dynamics pattern in pregnant women may help to 
reduce an adverse pregnancy outcome. We also emphasize the need for 
having a clearly defined pattern of glycaemia dynamics in pregnant 
women with pre-pregnancy normal weight, overweight or obesity 
before the diagnosis of GDM. A screening of the several metrics derived 
from the CGM approach (see Tables 1-6) will allow configuring pre-
vention measures for the development of GDM and other diseases of 
pregnancy. Also, further and decided deep analysis of the glycaemia 
dynamics metrics in pregnant women with and without earlier records 
of GDM or preeclampsia is needed. A detailed analysis may help patients 
care and protect the health of the growing fetus, the newborn, and young 
and adulthood. 
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