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Abstract
Background  Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness 
of treatment sequences in clinical practice.
Objective  Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to 
estimate the effectiveness of treatments for patients with castration-resistant prostate cancer (CRPC) that could then be suit-
ably used in a cost-effectiveness analysis.
Methods  We developed a patient-level simulation model using patient-level data from the Dutch CAPRI registry as input 
parameters. Time to event (TTE) and overall survival (OS) were estimated with multivariate regression models, and type 
of event (i.e., next treatment or death) was estimated with multivariate logistic regression models. To test internal validity, 
TTE and OS from the simulation model were compared with the observed outcomes in the registry.
Results  Although patient characteristics and survival outcomes of the simulated data were comparable to those in the 
observed data (median OS 20.6 vs. 19.8 months, respectively), the disease model was less accurate in estimating differences 
between treatments (median OS simulated vs. observed population: 18.6 vs. 17.9 [abiraterone acetate plus prednisone], 24.0 
vs. 25.0 [enzalutamide], 20.2 vs. 18.7 [docetaxel], and 20.0 vs. 23.8 months [radium-223]).
Conclusions  Overall, the disease model accurately approximated the observed data in the total CRPC population. However, 
the disease model was unable to predict differences in survival between treatments due to unobserved differences. Therefore, 
the model is not suitable for cost-effectiveness analysis of CRPC treatment. Using a combination of RWD and data from 
randomised controlled trials to estimate treatment effectiveness may improve the model.

 *	 Marscha S. Holleman 
	 holleman@eshpm.eur.nl

Extended author information available on the last page of the article

Key Points 

A disease model using real-world data from patients with 
castration-resistant prostate cancer in the Netherlands 
showed comparable patient characteristics and survival 
outcomes between the observed and simulated popula-
tions.

The disease model was unable to predict differences 
between treatment groups due to unobserved differences.

Future research should explore the use of a combination 
of real-world data (to improve generalisability) and data 
from randomised controlled trials (to ensure the internal 
validity) to develop disease models.

1  Introduction

With over 12,000 newly diagnosed patients per year, prostate 
cancer is the most common cancer in men in the Nether-
lands [1]. Metastatic prostate cancer that progresses while 
the patient is receiving androgen-deprivation therapy (either 
alone or in combination with chemotherapy, new androgen-
receptor targeting agents, or palliative radiotherapy [2–4]) is 
considered castration-resistant prostate cancer (CRPC) [5]. 
The median overall survival (OS) of patients with CRPC 
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receiving solely best supportive care is 14 months [6]. Since 
2004, multiple new treatments have become available that 
have improved the OS of these patients [7–15].

There is an increasing interest in real-world data (RWD) 
complementary to that from randomised controlled tri-
als (RCTs). Traditionally, RCTs are designed to show the 
efficacy of treatments in precisely defined groups under 
controlled circumstances. However, patients included in 
RCTs are not a good representation of patients in clinical 
practice. Studies have shown that real-world patients with 
CRPC differ from those in trials because of patient selection 
(i.e., patients in real-world practice are older and have more 
comorbidities) [16, 17]. (Cost-)effectiveness studies based 
on RCT data provide the (cost)effectiveness of a treatment 
for patients in a study setting, which might differ in real-
world patients. Furthermore, information on the full disease 
course is lacking in RCTs as efficacy is estimated during a 
limited time period and often considering only one treat-
ment line. Moreover, RCTs usually evaluate a new treatment 
compared with standard of care (or placebo). If different 
drugs have positive trial results compared with standard of 
care or placebo, direct comparisons between these drugs are 
often lacking. Consequently, the effectiveness of different 
treatment sequences is unknown. Real-world disease mod-
els spanning multiple sequential treatment lines can provide 
insight into the (cost) effectiveness of treatment sequences 
in clinical practice.

Due to extrapolation, combination of data sources, and 
correction for differences between patients, models are 
needed to enable lifetime cost-effectiveness analyses. A 
well-performing model should be able to simulate reality, 
i.e., replicate observed outcomes [18]. Using the same base-
line characteristics, simulated outcomes should be similar 
to observed outcomes. Moreover, relative differences in 
survival outcomes between treatments in the simulated 
data should be similar to the observed differences between 
treatments. In this article, we describe our experiences in 
developing a disease model based on RWD from patients 
with CRPC.

2 � Methods

2.1 � Data and Patients

Data were derived from the Castration-Resistant Prostate 
Cancer (CAPRI) registry, an observational study in the 
Netherlands.[16] In the CAPRI registry, patients newly diag-
nosed with CRPC between 1 January 2010 and 31 December 
2015 from 20 Dutch hospitals were retrospectively included 
and followed until 31 December 2017 (N = 3616). Patients 
treated with docetaxel or androgen-receptor targeting agents 
for metastatic hormone-sensitive prostate cancer were 

excluded from the analysis (N = 16). An estimated 20% of 
all patients with CRPC in the Netherlands is included in the 
study population [16].

For this study, data from patients treated with at least 
one life-prolonging drug (LPD) (i.e., docetaxel, cabazitaxel, 
abiraterone acetate plus prednisone [ABI+P], enzalutamide, 
or radium-223) were included, whereas patients not treated 
with an LPD were excluded. Docetaxel treatment was avail-
able during the entire study period. Cabazitaxel became 
available as a second LPD (LPD2) in the Netherlands from 
2011 onwards, and ABI+P, enzalutamide, and radium-223 
were available as first LPDs (LPD1) from 2014 onwards.

Missing values in the dataset were handled using multiple 
imputations by chained equations.[19] For each treatment 
line, the following patient characteristics were imputed: 
World Health Organisation performance status (WHO PS) 
(or Eastern Cooperative Oncology Group performance sta-
tus), opioid use, prostate-specific antigen (PSA), alkaline 
phosphatase (ALP), haemoglobin, lactate dehydrogenase 
(LDH), bone metastases, and visceral metastases. These 
characteristics were used as both imputed and predictive 
variables. Type of treatment, age, OS, and OS state (alive, 
dead, or lost to follow-up) were only used as predictors for 
multiple imputations.[19] Data after multiple imputation 
were used in the data analysis.

2.2 � Model Type

The CRPC population is heterogeneous, with different 
patient and disease characteristics affecting the course of 
the disease. To be able to simulate individual patients with 
specific characteristics and events during their full disease 
course, patients were simulated using a patient-level dis-
crete-event simulation model with a lifetime time horizon. 
This model type enables the modelling of the course of a 
patient in a natural way by accounting for entities (patients) 
with attributes (patient characteristics) and events.[20]

2.3 � Time to Event

The OS was divided into three time periods (Fig. 1). For 
each patient, we calculated the time from start of LPD1 until 
the first event (TTE1), which could be either start of LPD2 
or death. TTE2 (i.e., time from start of LPD2 to either start 
of LPD3 or death) was determined in a similar way, whereas 
TTE3 was calculated as the time from third LPD (LPD3) to 
death. TTE3 can thus include multiple treatment lines; how-
ever, since only 10% of patients received more than three 
treatment lines, the model only simulated three treatment 
lines. However, as patients could die earlier, not all simu-
lated patients received all three treatment lines, with some 
receiving one or two treatment lines.
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2.4 � Regression Models

Since a lifetime horizon is required for economic evalua-
tions in the Netherlands [21], survival data were extrapolated 
beyond the follow-up period by fitting several parametric 
models (i.e., exponential, Weibull, lognormal, log-logistic, 
generalized gamma, and Gompertz [22]) to the observed sur-
vival data. Log-logistic distribution had the best fit for TTE1, 
TTE2, and TTE3 (Table S1 in the electronic supplemen-
tary material [ESM]). Multivariate regression models were 
built to predict TTE. Based on literature and expert opinion 
[23], the following predictive variables were included to 
predict TTE1, TTE2, and TTE3: type of treatment (doc-
etaxel, cabazitaxel, ABI+P, enzalutamide, or radium-223), 
age (in years), WHO PS (0–1/>1), opioid use (yes/no), PSA 
(in µg/L), ALP (in U/L), haemoglobin (in mmol/L), LDH 
(in U/L), bone metastases (yes/no), and visceral metastases 
(yes/no) (Tables S2–4 in the ESM). As type of event for 
TTE1 and TTE2 could either be next treatment or death, 
multivariate logistic regression models for the probability 
of dying versus switching to the next treatment were used 
to predict each type of event. These multivariate logistic 
regression models included the same predictive variables as 
the TTE regression models (Tables S5 and 6 in the ESM).

2.5 � Model Simulation

Patients from the CAPRI registry were sampled with 
replacement to create a patient population for the simulation 
model. For each simulation, a population of 5000 patients 
was simulated to get stable results. The individual patient 
simulation consisted of several steps (Fig. 1). First, a patient 
with specific patient characteristics (as observed in the reg-
istry) was randomly drawn from the observed data. Second, 
type of treatment was assigned to each individual patient. 
LPD1 was the actual first treatment received in the CAPRI 
registry, whereas LPD2 and LPD3 allocation was based on 
probabilities conditional to the previous treatment as in the 
CAPRI registry (Table S7 in the ESM). Third, TTE1 was 
estimated using the TTE multivariate regression model 
(Table S2 in the ESM). Finally, type of event (i.e., next treat-
ment or death) was estimated using the multivariate logistic 
regression model (Table S5 in the ESM). Second- and/or 
third-line treatment were simulated in a similar way except 
that death was the only possible event for TTE3 (Tables S3, 
S4, S6 in the ESM). Every time a patient started the next 
treatment line, patient characteristics were updated based on 
conditional probabilities depending on the patient character-
istics in the previous line estimated from the CAPRI registry 
(Tables S8 and S9 in the ESM). All analyses were conducted 
using SPSS statistics 25 and R version 3.6.1. Fig. 1   Flow chart of the patient simulation. *Event can be either next 

treatment line or death; **event is death. OS overall survival
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2.6 � Model Validation

A valid model should be able to simulate the observed data 
while using the same baseline characteristics, and simulated 
relative survival differences between treatments should be 
similar to the observed differences between treatments. 
Therefore, internal validation of the model was performed 
by mimicking the real-world patient population (i.e., same 
patient characteristics at start LPD1, same LPD1) in the 
model.

3 � Results

From the CAPRI registry, 1937 of 3600 patients (54%) were 
eligible for analysis (we excluded patients who received 
no treatment [N = 1205] and those who received other 
[experimental] treatment [N = 458]). Most patients were 
treated with docetaxel in the first line (N = 1131), whereas 
407 patients received enzalutamide as LPD1, 373 patients 
received ABI+P, and 26 patients received radium-223. Of 
all patients, 62% (N = 1186) received a second-line and 30% 
a third-line treatment. Patient and disease characteristics of 
the simulated population were comparable to those in the 
observed population after multiple imputation (Table 1).

Overall (including all treatments), this resulted in similar 
survival curves for the simulated and observed data. However, 
the simulation model overestimated OS during the first years 
and underestimated OS in later years (Fig. 2a). TTE1 and 
TTE2 were similar between simulated and observed data in 
the first years; however, the simulation model overestimated 
them in later years (Fig. 2b and Fig. S1 in the ESM) and 
underestimated TTE3 in later years (Fig. S2 in the ESM).

Median TTE1 and type of event (i.e., next treatment or 
death) after LPD1 and LPD2 were similar for the simulated 
and observed populations (Table 2). Simulated median 
TTE2 and TTE3 deviated from the observed data, although 
the differences were small (TTE2: 7.5 vs. 7.1 months; TTE3: 
7.9 vs. 8.2 months). Median OS was 0.8 months longer in 
the simulated than in the observed population (20.6 vs. 19.8 
months).

As missing values were frequent for some patient char-
acteristics (i.e., WHO PS, visceral metastases, opioid use, 
and LDH), simulation of TTE and OS was also performed 
for patients with complete data (N = 411). The character-
istics of these patients are presented in Table S10 in the 
ESM. The simulation model overestimated OS during the 
first years and underestimated it in later years compared 
with the observed estimates (Fig. S3 in the ESM). Simulated 
median TTE1 and TTE3 were comparable to the observed 
results. However, there were differences between simulated 
and observed median TTE2 (7.4 vs. 6.4 months, difference: 

1 month) and OS (20.2 vs. 18.7 months, difference: 1.5 
months) (Table S11 in the ESM).

Differences in median OS stratified by LPD1 between 
simulated and observed data were similar to those in the total 
population (0.8 months) for ABI+P (0.7 months) and enzal-
utamide (1 month). However, simulated median OS deviated 
from the observed outcomes for docetaxel (1.5 months) and 
radium-223 (3.8 months) (Table 3). Plotted TTE1 stratified 
by LPD1 showed that the simulated curve deviated from 
the observed curves, especially for patients receiving doc-
etaxel and enzalutamide (Figs. S8–11). Furthermore, Table 3 
shows that the model was unable to validly replicate the 
differences between type of LPD1. For example, the differ-
ence in median OS between docetaxel and ABI+P was 1.6 
months in the simulated data and 0.8 months in the observed 
data. Docetaxel versus enzalutamide had a simulated differ-
ence in median OS of 3.8 months and an observed difference 
of 6.3 months. In addition, the observed data showed cross-
ing curves for enzalutamide and radium-223 (Fig. 3a), but 
the survival curves of these two treatments were distant from 
each other in the simulated data, so the model was unable 
to replicate the observed differences between treatments in 
a similar way (Fig. 3b).

4 � Discussion

In this study, we developed a full disease model of real-
world patients with CRPC. Internal validation showed simi-
lar TTE in the simulated and observed total CRPC popu-
lations. However, simulated median OS deviated from the 
observed median OS (difference of 0.8 months) as simulated 
OS was overestimated during the first years but underesti-
mated in later years. Model simulation based on only com-
plete cases resulted in a larger overestimation of median OS 
(difference of 1.5 months). This disease model could not 
adequately estimate the differences between treatments, as 
these differences became smaller or larger in the model com-
pared with the observed differences. We consider this to be 
the main limitation of our disease model, since using these 
results for cost-effectiveness analyses would lead to biased 
results. Although we were unable to build a valid model 
for patients with CRPC, we believe that—in the context of 
honesty and transparency—this ‘brilliant failure’ should be 
reported as others may learn from our experiences, which 
can be beneficial for science.

4.1 � Challenges of Using Real‑World Data (RWD) 
in Disease Models

During the development of the disease model, we faced sev-
eral challenges with using RWD. Although RWD provide 
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insight into the effectiveness and safety of treatments in 
daily practice, they have important limitations in a disease 
model. First, in the real world, patients are not randomly 
allocated to a treatment; instead, treatment choices can be 
influenced by patient and disease characteristics, clinician 
experience, or patient preference. It is challenging, maybe 
even impossible, to consider, identify, and measure all con-
founders in treatment decisions [24]. The real-world patient 
population is heterogenous, and the strict conditions for 
randomisation and a controlled setting are not applicable 
to RWD. As a consequence, the observed differences in 
outcomes between two treatment groups may be caused by 
case-mix or other (unmeasured) confounders and not type 
of treatment [22]. Although we tried to control for possible 
confounders by correcting for various patient characteris-
tics that may influence treatment allocation and prognosis, 
this approach is inferior to a randomised design and may 
thus be biased. Simulated TTE and OS of all patients were 
comparable to the observed estimates, which was also true 

for ABI+P or enzalutamide as LPD1. However, survival 
curves of simulated and observed patients with docetaxel 
or radium-223 as LPD1 differed. Since only docetaxel was 
available as LPD1 before 2014, patients received docetaxel 
between 2010 and 2013 regardless of their patient charac-
teristics but might have been eligible for a treatment other 
than docetaxel (e.g., ABI+P or enzalutamide) were other 
treatments available. This might explain the differences in 
survival curves of simulated and observed patients receiving 
docetaxel. Differences in simulated and observed survival 
curves for radium-223 might be due to the small number of 
patients (N = 26). Moreover, one of the main findings of this 
study is the inability of the disease model to validly repli-
cate the differences between treatments, as these differences 
became smaller or larger in the simulated data compared 
with the observed data (e.g., docetaxel vs. ABI+P: simu-
lated difference of 1.6 months and observed difference of 0.8 
months; docetaxel vs. enzalutamide: simulated difference of 
3.8 months and observed difference of 6.3 months). Thus, 

Table 1   Patient and disease 
characteristics of all patients at 
start of first life-prolonging drug

ALP alkaline phosphatase, Hb haemoglobin, IQR interquartile range, LDH lactate dehydrogenase, LPD 
life-prolonging drug, PSA prostate-specific antigen, WHO PS World Health Organization performance sta-
tus

Characteristics Observed patients After multiple imputation Simulated patients
N = 1937 N = 1937 N = 5000

Age (years)
 Mean 73.4 73.4 73.2
 Median (range) 74 (46–99) 74 (46–99) 73 (46–99)

WHO PS, %
 0–1 60 77 78
 > 1 12 23 22
 Missing 28

Bone metastases, %
 Yes 83 91 92
 No 8 9 8
 Missing 9

Visceral metastases, %
 Yes 11 19 20
 No 42 81 80
 Missing 47

Opioid use, %
 Yes 16 30 29
 No 38 70 71
 Missing 46

PSA (µg/L), median (IQR) 99 (41–239) 98 (40–240) 99 (42–235)
 Missing, % 9

ALP (U/L), median (IQR) 139 (91–313) 142 (91–310) 140 (90–309)
 Missing, % 14

LDH (U/L), median (IQR) 231 (192–308) 236 (190–331) 239 (190–344)
 Missing, % 28

Hb (mmol/L), median (IQR) 7.8 (7–8.4) 7.8 (7–8.4) 7.8 (7.1–8.4)
 Missing, % 15
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despite using multivariate regression models to control for 
possible confounders, we could not adequately control for 
all differences between treatments. This might be due to 
unobserved differences between treatments (e.g. patient 
preference) that could not be identified and controlled by 

multivariate regression models. Therefore, the current dis-
ease model is unable to predict differences between treat-
ments. The lack of randomisation and the existence of unob-
served confounders unrelated to different types of treatment 
in observational data is an issue that might also be faced in 

Fig. 2   Survival curves of 
observed and simulated data 
of total population. a Overall 
survival and b time to event 1 
of observed and simulated total 
population. OS overall survival
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other disease models based on RWD. Therefore, the findings 
from and discussion of this study might also be relevant in 
other populations. Alternative methods could have been used 
to model survival and events. Degeling et al. [25] describe 

four different modelling approaches (event-specific distribu-
tion, event-specific probability and distribution, unimodal 
joint distribution and regression model, multimodal joint 
distribution and regression model), which all performed dif-
ferently in a simulation study [25]. According to modelling 
good research practices, estimating the TTE first and defin-
ing the event second is the preferred modelling approach 
[26], and this approach was applied to our disease model. 
Considering the time span of our study, we did not apply 
alternative methods to model survival and events. However, 
this might be interesting for further research. Propensity 
score matching (PSM) is another method that could con-
trol for observed differences in patient characteristics and 
enable comparison of a treatment and a comparator. How-
ever, since PSM can only match on observed characteristics, 
unobserved differences cannot be excluded. Moreover, PSM 
is not feasible for the comparison of more than two treat-
ment options [27, 28]. Since the model could not adequately 
replicate the observed data (i.e., simulated data should be 
similar to the observed data, and simulated relative differ-
ences should be similar to the observed differences between 
treatments), we considered the CRPC model based on only 
RWD to be invalid.

Second, RWD is prone to missing data, particularly when 
the follow-up period is long [29, 30]. In this study, values were 
missing for almost all patient characteristics, varying from 
9% missing values for PSA to 47% for visceral disease state 
(Table 1). This is a disadvantage of retrospective data collec-
tion, which should be considered when designing a disease 
model. Multiple imputation could offer a valid solution for 
missing patient characteristics, provided the missingness of 
data is not related to unobserved variables [29]. We tested the 
disease model including only data from complete cases (i.e., 
without any missing values). Simulated results showed similar 
differences with observed results as when the imputed data of 
all patients was used. Despite dealing with missing values, 
observational data enables the analysis of large amounts of 
data. Differences between simulated and observed data (i.e., 
overestimation and underestimation of the observed data), 
as seen in this study, might be due to the amount of missing 
data. Uncertainty regarding RWD will diminish and survival 
estimations might improve when missing data are minimised. 
Therefore, standardised reporting of data should be improved.

The third challenge with RWD is timeliness of report-
ing results. RWD can be collected from the moment a new 
treatment is approved by healthcare authorities and used in 
clinical practice. To provide insight into long-term effects of 
a certain treatment, the follow-up period should be of suf-
ficient length. At the time results from RWD become avail-
able, treatment practices might already have changed due to 
new developments. RWD results may thus lag behind. In the 
CAPRI registry, first-line treatment with ABI+P, enzaluta-
mide, and radium-223 are underrepresented, since patients 

Table 2   Median time to event (in months) and overall survival in 
observed and simulated population 

Data are presented as median (interquartile range) unless otherwise 
indicated
IQR interquartile range, mo months, TTE time to event

Time to event and 
overall survival

Observed population Simulated population
TTE (mo)
 Median

TTE (mo)
 Median

Type of event 1 (%)
 Next treatment 72 71
 Death 28 29

Type of event 2 (%)
 Next treatment 57 57
 Death 43 43

Median TTE1 9.2 (5.5–14.5) 9.2 (5.4–16.2)
Median TTE2 7.1 (4–12.4) 7.5 (4.4–13)
Median TTE3 8.2 (4.7–14.4) 7.9 (4.6–13.3)
Overall survival 19.8 (10.6–33.5) 20.6 (11.9–33.5)

Table 3   Observed and simulated time to event and overall survival 
stratified by first-line treatment

Data are presented in months as median (interquartile range)
ABI+P abiraterone acetate plus prednisone, DOC docetaxel, ENZ 
enzalutamide, Ra-223 radium-223, TTE time to event

Treatment and TTE Observed population Simulated population

First-line ABI+P
 Median TTE1 11.0 (5.8–20.3) 10.5 (6.6–18.1)
 Median TTE2 7.1 (4.3–10.2) 7.9 (4.6–13.6)
 Median TTE3 7.9 (4.1–22.7) 7.7 (4.7–12.8)
 Overall survival 17.9 (9.1–30.8) 18.6 (10.4–31.8)

First-line ENZ
 Median TTE1 15.5 (8.5–27.8) 14.8 (9.1–24.7)
 Median TTE2 7.3 (5–11.2) 7.9 (4.7–13.6)
 Median TTE3 7.5 (4–10.1) 7.8 (4.7–1.11)
 Overall survival 25.0 (14–61.4) 24.0 (1.56–3.31)

First-line DOC
 Median TTE1 8.2 (5–11.3) 7.5 (4.7–12.5)
 Median TTE2 7.0 (3.8–12.8) 7.4 (4.2–12.8)
 Median TTE3 8.4 (4.8–14.9) 8.4 (4.9–13.9)
 Overall survival 18.7 (10.1–32.8) 20.2 (0.98–2.73)

First-line Ra-223
 Median TTE1 6.9 (4.4–12.2) 7.2 (4.3–12.1)
 Median TTE2 12.8 (7.1–19.3) 8.5 (4.8–14.6)
 Median TTE3 10.2 (4–10.1) 7.9 (4.8–13.4)
 Overall survival 23.8 (10.7 –39.5) 20.0 (11.5–32)
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diagnosed with CRPC between 2010 and 2015 were included 
and ABI+P, enzalutamide, and radium-223 became avail-
able as LPD1 in the Netherlands from 2014 onwards. The 
results of this disease model should thus be regarded against 
the backdrop of the time period in which data were collected 

and might not be representative for current clinical practice. 
Further research with more up-to-date data is recommended.

The update of patient characteristics and treatment alloca-
tion could be regarded as a limitation. In the current model, 
changes in patient characteristics and treatment allocation 

Fig. 3   Survival curves stratified 
by first-line treatment. Survival 
curves stratified by first-line 
treatment of a the observed 
population and b the simulated 
population. ABI abiraterone 
acetate plus prednisone, DOC 
docetaxel, ENZ enzalutamide, 
OS overall survival, RAD 
radium-223
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were only based on the value of the characteristic at the 
start of the previous treatment line or the previous treatment. 
These probabilities did not take other variables into account. 
With the simplified method, we were able to replicate the 
mean patient characteristics of the CAPRI registry; however, 
multivariate regression models, and including other patient 
and disease characteristics, may yield better individual 
replications. Therefore, in future research, we recommend 
that patient characteristics be updated using multivariate 
regression models. Additionally, the same dataset (CAPRI 
registry) was used for the development and validation of 
the disease model, and no other dataset was used for exter-
nal validation of the disease model. Since the model lacked 
internal validation, external validation with an external data-
set was not considered useful.

Moreover, side effects and adverse events of treatments 
were not considered in the disease model. Adverse events 
could be taken into account when calculating quality-
adjusted life-years (QALYs). Survival with treatments 
associated with a higher toxicity level might decrease when 
considering adverse events. On the other hand, costs might 
increase due to adverse event treatments.

4.2 � Potential Opportunities 
with and Recommendations for Using RWD 
in Disease Models

Although the use of RWD in disease models is associated 
with several challenges, it also has benefits. RWD provide 
insight into the use and uptake of new interventions in clini-
cal practice. For example, the CAPRI registry showed that, 
in clinical practice, 40% of the patients who were fit for doc-
etaxel according to the clinical guidelines did not receive 
docetaxel [31]. Furthermore, where results from RCTs often 
lack generalisability to daily practice, RWD show the effec-
tiveness of new treatments in the real world. Patients with 
CRPC in the real world differ from those treated in clini-
cal trials, generally having unfavourable patient and disease 
characteristics (i.e., older, more comorbidities, and worse 
WHO PS). These differences in characteristics may result 
in the observed differences in median OS between trial and 
real-world patients. Previous studies showed a longer OS for 
trial patients than for real-world patients (from CRPC diag-
nosis: 35 vs. 24 months, and from start LPD2: 13.6 vs. 9.6 
months) [16, 17]. Additionally, RWD could provide insight 
into the full disease course comprising sequential treatments. 
In the CAPRI registry, a large range of different treatment 
sequences was observed (26 different sequences with N > 20). 
This information could be used to compare various treatment 
sequences and to estimate which treatment sequence is most 
preferable in terms of effects and costs. Thus, RWD are of 
importance for obtaining insight into the use, uptake, and 
(cost) effectiveness of a (new) treatment in daily practice.

Considering the challenges of and benefits from using 
RWD in disease models, a combination of RWD and data 
from clinical studies in a disease model may offer the best 
of both worlds. RWD could provide insight into the effec-
tiveness and safety of a treatment in daily practice, whereas 
RCT data provides an unbiased estimate of effectiveness of 
treatments. Using both RWD and RCT data might be an 
opportunity to build a well-performing disease model that 
accurately replicates observed data. A well-performing dis-
ease model could be used to estimate cost effectiveness by 
randomly drawing individual patients from the observed 
data, following the patient until death, and assigning QALYs 
and costs to the patient. This could enable the study of costs 
and effects of different treatment sequences, which consists 
of not only a single but multiple treatment lines. Moreover, 
such a disease model could be used to study the impact on 
the costs and effects if patients received another treatment 
sequence. Furthermore, to increase the relevance of results 
from RWD, we recommend the use of up-to-date data. How-
ever, the urge to provide timely and relevant results should 
not diminish sufficient follow-up.

5 � Conclusions

We developed a disease model for patients with CRPC 
using RWD. The overall model accurately replicated the 
observed data but could not replicate observed differ-
ences in outcomes between treatments. As a result, the 
model was considered unable to replicate the differences 
in treatments in the observed data, which is crucial for a 
meaningful cost-effectiveness analysis. Therefore, further 
research should explore the use of a combination of up-to-
date RWD and RCT data in disease models.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s40801-​022-​00294-7.

Declarations 

Funding  This research was funded by Sanofi-Aventis Netherlands B.V., 
Janssen-Cilag B.V., Astellas Pharma B.V., and Bayer B.V. The funding 
organisations had no role in the design and conduct of the study; collec-
tion, management, analysis, interpretation of the data; or preparation, 
review, or approval of the manuscript.

Conflict of interest  Marscha S. Holleman, Simone A. Huygens, 
Maiwenn J. Al, Malou C.P. Kuppen, Hans M. Westgeest, Alfonsus 
C.M. van den Bergh, Andries M. Bergman, Alfonsus J.M. van den Ee-
rtwegh, Mathijs P. Hendriks, Menuhin I. Lampe, Niven Mehra, Rein-
dert J.A. van Moorselaar, Inge M. van Oort, Diederik M. Somford, 
Ronald de Wit, Agnes J. van de Wouw, Winald R. Gerritsen, and Carin 
A. Uyl-de Groot have no conflicts of interest that are directly relevant 
to the content of this article.

Ethics approval  Not applicable



	 M. S. Holleman et al.

Consent to participate  Not applicable

Consent for publication  Not applicable

Availability of data and material  Data and material are not freely avail-
able.

Code availability  Code is available upon request.

Author contributions  MSH, SAH, MJA, and CAU contributed to the 
study conception and design. Material preparation and data collection 
were performed by MCK and HMW. Analysis was performed by MSH 
and SAH. The first draft of the manuscript was written by MSH and all 
authors commented on previous versions of the manuscript. All authors 
read and approved the final manuscript.

Open Access  This article is licensed under a Creative Commons Attri-
bution-NonCommercial 4.0 International License, which permits any 
non-commercial use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other 
third party material in this article are included in the article's Creative 
Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article's Creative Commons 
licence and your intended use is not permitted by statutory regula-
tion or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit 
http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc/4.​0/.

References

	 1.	 Nederlandse Kankerregistratie. In: No title. 2019. https://​www.​
cijfe​rsove​rkank​er.​nl/. Accessed Feb 2019.

	 2.	 Cornford P, van den Bergh RCN, Briers E, Van den Broeck 
T, Cumberbatch MG, De Santis M, Fanti S, Fossati N, Gan-
daglia G, Gillessen S, Grivas N, Grummet J, Henry AM, der 
Kwast THV, Lam TB, Lardas M, Liew M, Mason MD, Moris L, 
Oprea-Lager DE, der Poel HGV, Rouvière O, Schoots IG, Tilki 
D, Wiegel T, Willemse PM, Mottet N. EAU-EANM-ESTRO-
ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 
update: treatment of relapsing and metastatic prostate cancer. 
Eur Urol. 2021;79:263–82.

	 3.	 Nederlandse Vereniging voor Urologie. In: Prostaatcarcinoom. 
2019. https://​www.​oncol​ine.​nl/​index.​php?​pagin​a=/​richt​lijn/​item/​
pagina.​php&​richt​lijn_​id=​980. 2020.

	 4.	 Parker CC, James ND, Brawley CD, Clarke NW, Hoyle AP, Ali A, 
Ritchie AWS, Attard G, Chowdhury S, Cross W, Dearnaley DP, 
Gillessen S, Gilson C, Jones RJ, Langley RE, Malik ZI, Mason 
MD, Matheson D, Millman R, Russell JM, Thalmann GN, Amos 
CL, Alonzi R, Bahl A, Birtle A, Din O, Douis H, Eswar C, Gale 
J, Gannon MR, Jonnada S, Khaksar S, Lester JF, O’Sullivan J, 
Parikh OA, Pedley ID, Pudney DM, Sheehan DJ, Srihari NN, 
Tran ATH, Parmar MKB, Sydes MR. Radiotherapy to the primary 
tumour for newly diagnosed, metastatic prostate cancer (STAM-
PEDE): a randomised controlled phase 3 trial Invalid date. Lancet. 
2018;392:2353–66.

	 5.	 Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, 
van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, 
Mottet N. EAU Guidelines on Prostate Cancer. Part II: Treat-
ment of Advanced, Relapsing, and Castration-Resistant Prostate 

CancerInvalid date. Eur Urol. 2013. https://​doi.​org/​10.​1016/j.​
eururo.​2013.​11.​002.

	 6.	 Kirby M, Hirst C, Crawford ED. Characterising the castration-
resistant prostate cancer population: a systematic review. Int J 
Clin Pract. 2011;65:1180–92.

	 7.	 Petrylak DP, Tangen CM, Hussain MH, Lara PN, Jones JA, Taplin 
ME, Burch PA, Berry D, Moinpour C, Kohli M, Benson MC, 
Small EJ, Raghavan D, Crawford ED. Docetaxel and estramustine 
compared with mitoxantrone and prednisone for advanced refrac-
tory prostate cancer. N Engl J Med. 2004;351:1513–20.

	 8.	 Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, 
Oudard S, Théodore C, James ND, Turesson I, Rosenthal MA, 
Eisenberger MA. Docetaxel plus prednisone or mitoxantrone 
plus prednisone for advanced prostate cancer. N Engl J Med. 
2004;351:1502–12.

	 9.	 de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, 
Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L, Roessner 
M, Gupta S, Sartor AO, TROPIC Investigators. Prednisone plus 
cabazitaxel or mitoxantrone for metastatic castration-resistant 
prostate cancer progressing after docetaxel treatment: a ran-
domised open-label trial. Lancet. 2010;376:1147–54.

	10.	 Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones 
RJ, Staffurth JN, North S, Vogelzang NJ, Saad F, Mainwaring P, 
Harland S, Goodman OB, Sternberg CN, Li JH, Kheoh T, Haqq 
CM, de Bono JS, COU-AA-301 Investigators. Abiraterone acetate 
for treatment of metastatic castration-resistant prostate cancer: 
final overall survival analysis of the COU-AA-301 randomised, 
double-blind, placebo-controlled phase 3 study. Lancet Oncol. 
2012;13:983–92.

	11.	 Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, 
de Wit R, Mulders P, Chi KN, Shore ND, Armstrong AJ, Flaig 
TW, Flechon A, Mainwaring P, Fleming M, Hainsworth JD, Hir-
mand M, Selby B, Seely L, de Bono JS, AFFIRM Investigators. 
Increased survival with enzalutamide in prostate cancer after 
chemotherapy. N Engl J Med. 2012;367:1187–97.

	12.	 Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa 
SD, Chodacki A, Wiechno P, Logue J, Seke M, Widmark A, 
Johannessen DC, Hoskin P, Bottomley D, James ND, Solberg 
A, Syndikus I, Kliment J, Wedel S, Boehmer S, Dall’Oglio 
M, Franzen L, Coleman R, Vogelzang NJ, O’Bryan-Tear CG, 
Staudacher K, Garcia-Vargas J, Shan M, Bruland OS, Sar-
tor O, ALSYMPCA Investigators. Alpha emitter radium-223 
and survival in metastatic prostate cancer. N Engl J Med. 
2013;369:213–23.

	13.	 Ryan CJ, Smith MR, Fizazi K, Saad F, Mulders PF, Sternberg 
CN, Miller K, Logothetis CJ, Shore ND, Small EJ, Carles J, Flaig 
TW, Taplin ME, Higano CS, de Souza P, de Bono JS, Griffin TW, 
De Porre P, Yu MK, Park YC, Li J, Kheoh T, Naini V, Molina A, 
Rathkopf DE, COU-AA-302 Investigators. Abiraterone acetate 
plus prednisone versus placebo plus prednisone in chemother-
apy-naive men with metastatic castration-resistant prostate cancer 
(COU-AA-302): final overall survival analysis of a randomised, 
double-blind, placebo-controlled phase 3 study. Lancet Oncol. 
2015;16:152–60.

	14.	 Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de 
Souza P, Fizazi K, Mainwaring P, Piulats JM, Ng S, Carles J, 
Mulders PF, Basch E, Small EJ, Saad F, Schrijvers D, Van Poppel 
H, Mukherjee SD, Suttmann H, Gerritsen WR, Flaig TW, George 
DJ, Yu EY, Efstathiou E, Pantuck A, Winquist E, Higano CS, Tap-
lin ME, Park Y, Kheoh T, Griffin T, Scher HI, Rathkopf DE, COU-
AA-302 Investigators. Abiraterone in metastatic prostate cancer 
without previous chemotherapy. N Engl J Med. 2013;368:138–48.

	15.	 Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, 
Higano CS, Iversen P, Bhattacharya S, Carles J, Chowdhury S, 
Davis ID, de Bono J, Evans CP, Fizazi K, Joshua AM, Kim C, 
Kimura G, Mainwaring P, Mansbach H, Miller K, Noonberg SB, 



Real-World Data in a CRPC Disease Model

Perabo F, Phung D, Saad F, Scher HI, Taplin M, Venner PM, 
Tombal B, Investigators P. Enzalutamide in metastatic prostate 
cancer before chemotherapy. N Engl J Med. 2014;371:424–33.

	16.	 Westgeest HM, Uyl-de Groot CA, van Moorselaar RJA, de Wit 
R, van den Bergh ACM, Coenen JLLM, Beerlage HP, Hendriks 
MP, Bos MMEM, van den Berg P, van de Wouw AJ, Spermon R, 
Boerma MO, Geenen MM, Tick LW, Polee MB, Bloemendal HJ, 
Cordia I, Peters FPJ, de Vos AI, van den Bosch J, van den Eert-
wegh AJM, Gerritsen WR. Differences in Trial and Real-world 
Populations in the Dutch Castration-resistant Prostate Cancer 
Registry. Eur Urol Focus. 2018;4:694–701.

	17.	 Westgeest HM, Kuppen MCP, van den Eertwegh AJM, de Wit R, 
Coenen JLLM, van den Berg HPP, Mehra N, van Oort IM, Fos-
sion LMCL, Hendriks MP, Bloemendal HJ, van de Luijtgaarden 
ACM, Ten Bokkel HD, van den Bergh ACMF, van den Bosch J, 
Polee MB, Weijl N, Bergman AM, Uyl-de Groot CA, Gerritsen 
WR. Second-line cabazitaxel treatment in castration-resistant 
prostate cancer clinical trials compared to standard of care in 
CAPRI: Observational Study in the Netherlands. Clin Genitourin 
Cancer. 2019;17:e946–56.

	18.	 Blommestein HM, Verelst SG, de Groot S, Huijgens PC, Sonn-
eveld P, Uyl-de Groot CA. A cost-effectiveness analysis of real-
world treatment for elderly patients with multiple myeloma using 
a full disease model. Eur J Haematol. 2016;96:198–208.

	19.	 van Buuren S, Boshuizen HC, Knook DL. Multiple imputation 
of missing blood pressure covariates in survival analysis. Statist 
Med. 1999;18:681–94.

	20.	 Caro JJ. Pharmacoeconomic analyses using discrete event simula-
tion. Pharmacoeconomics. 2005;23:323–32.

	21.	 Zorginstituut Nederland. Richtlijn voor het uitvoeren van econo-
mische evaluaties in de gezondheidszorg2016

	22.	 Kleinbaum D, Klein M. Parametric survival models, chapter 7. 
In: Gail M, Krickberg K, Samet J, Tsiatis A, Wong W, editors. 
Statistics for biology and health Survival analysis. A self-learning 

text. 2nd ed. Springer Science+Business Media, New York; 2005. 
p. 257–329.

	23.	 Halabi S, Lin C, Kelly WK, Fizazi KS, Moul JW, Kaplan EB, 
Morris MJ, Small EJ. Updated prognostic model for predict-
ing overall survival in first-line chemotherapy for patients with 
metastatic castration-resistant prostate cancer. J Clin Oncol. 
2014;32:671–7.

	24.	 Gueyffier F, Cucherat M. The limitations of observation studies for 
decision making regarding drugs efficacy and safety. Therapies. 
2018. https://​doi.​org/​10.​1016/j.​therap.​2018.​11.​001.

	25.	 Degeling K, Koffijberg H, Franken MD, Koopman M, IJzer-
man MJ. Comparing strategies for modeling competing risks in 
discrete-event simulations: a simulation study and illustration in 
colorectal cancer. Med Decis Making. 2018;39:57–73.

	26.	 Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Möller J, ISPOR-
SMDM Modeling Good Research Practices Task Force. Modeling 
using discrete event simulation: a report of the ISPOR-SMDM 
Modeling Good Research Practices Task Force–4. Value Health. 
2012;15:821–7.

	27.	 Rosenbaum PR, Rubin DB. The central role of the propensity 
score in observational studies for causal effects. Biometrika. 
1983;70:41–55.

	28.	 Twisk J, de Vente W. Attrition in longitudinal studies: how to 
deal with missing data. J Clin Epidemiol. 2002. https://​doi.​org/​
10.​1016/​S0895-​4356(01)​00476-0.

	29.	 Perkins NJ, Cole SR, Harel O, Tchetgen Tchetgen E, Sun B, 
Mitchell EM, Schisterman EF. Principled approaches to missing 
data in epidemiologic studies. Am J Epidemiol. 2018;187:568–75.

	30.	 Westgeest H, Kuppen M, Van den Eertwegh A, Gerritsen W, Uyl-
de GC. Guideline Adherence In Docetaxel Treatment Of Castra-
tion Resistant Prostate Cancer (CRPC) Patients In A Real-World 
Population: The Castration Resistant Prostate Cancer Registry 
(CAPRI) In The Netherlands. Value Health. 2017;20:A471–2.

Authors and Affiliations

Marscha S. Holleman1   · Simone A. Huygens2 · Maiwenn J. Al1 · Malou C. P. Kuppen3 · Hans M. Westgeest4 · 
Alfonsus C. M. van den Bergh5 · Andries M. Bergman6 · Alfonsus J. M. van den Eertwegh7 · Mathijs P. Hendriks8 · 
Menuhin I. Lampe9 · Niven Mehra10 · Reindert J. A. van Moorselaar11 · Inge M. van Oort12 · Diederik M. Somford13 · 
Ronald de Wit14 · Agnes J. van de Wouw15 · Winald R. Gerritsen16 · Carin A. Uyl‑de Groot1

1	 Erasmus School of Health Policy and Management, Erasmus 
University Rotterdam, Rotterdam, The Netherlands

2	 Institute for Medical Technology Assessment, Erasmus 
University Rotterdam, Rotterdam, The Netherlands

3	 Department of Radiation Oncology, Maastro, Maastricht, 
The Netherlands

4	 Department of Internal Medicine, Amphia Hospital, Breda, 
The Netherlands

5	 Department of Radiation Oncology, University Medical 
Centre, Groningen, The Netherlands

6	 Division of Internal Medicine (MOD) and Oncogenomics, 
The Netherlands Cancer Institute Antoni van Leeuwenhoek 
Hospital, Amsterdam, The Netherlands

7	 Department of Medical Oncology, Cancer Centre 
Amsterdam, Amsterdam University Medical Centre, VU 
Amsterdam, Amsterdam, The Netherlands

8	 Department of Medical Oncology, Northwest Clinics, 
Alkmaar, The Netherlands

9	 Department of Urology, Medical Centre, Leeuwarden, 
The Netherlands

10	 Department of Medical Oncology, Radboud University 
Medical Centre, Nijmegen, The Netherlands

11	 Department of Urology, VU University Medical Centre, 
Amsterdam, The Netherlands

12	 Department of Urology, Radboud University Medical Centre, 
Nijmegen, The Netherlands

13	 Department of Urology, Canisius-Wilhelmina Hospital, 
Nijmegen, The Netherlands

14	 Department of Medical Oncology, Erasmus Medical Centre, 
Rotterdam, The Netherlands

15	 Department of Medical Oncology, VieCuri Medical Centre, 
Venlo, The Netherlands

16	 Department of Medical Oncology, Radboud University 
Medical Centre, Nijmegen, The Netherlands


