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Abstract
This work introduces and compares approaches for estimating rare-event probabilities
related to the number of edges in the random geometric graph on a Poisson point process. In
the one-dimensional setting, we derive closed-form expressions for a variety of conditional
probabilities related to the number of edges in the random geometric graph and develop
conditional Monte Carlo algorithms for estimating rare-event probabilities on this basis. We
prove rigorously a reduction in variance when compared to the crude Monte Carlo esti-
mators and illustrate the magnitude of the improvements in a simulation study. In higher
dimensions, we use conditional Monte Carlo to remove the fluctuations in the estimator
coming from the randomness in the Poisson number of nodes. Finally, building on concep-
tual insights from large-deviations theory, we illustrate that importance sampling using a
Gibbsian point process can further substantially reduce the estimation variance.

Keywords Rare event · Random geometric graph · Conditional Monte Carlo ·
Strauss process

Mathematics Subject Classification (2010) 60K35 · 60F10 · 82C22

1 Introduction

In this paper, we focus on rare events associated with the number of edges in the Gilbert
graph G(X) on a homogeneous Poisson point process X = {Xi}i≥1 with intensity λ > 0 in
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R
d , for d ≥ 1. Consequently, the nodes of G(X) are the points of X and there is an edge

between Xi,Xj ∈ X if ‖Xi − Xj‖ ≤ 1, where the upper bound 1 is the threshold of the
Gilbert graph and ‖ · ‖ denotes the Euclidean norm. Our goal is to analyze the probability
of the rare event that the number of edges in a bounded sampling window W ⊂ R

d deviates
considerably from its expected value. More succinctly, we ask:

What is the probability that the Gilbert graph has at least twice its expected number of
edges?

What is the probability that the Gilbert graph has at most half its expected number of edges?

These seemingly innocuous questions have an intriguing connection to large deviations
of heavy-tailed sums. Indeed, suppose that {Wi} is an equal-volume partition of W such
that the diameter of each Wi is at most 1. Then, letting Zi := |X ∩ Wi | denote the number
of Poisson points in Wi , the edges entirely inside Wi contribute Zi(Zi − 1)/2 to the total
edge count. Since Zi follows a Poisson distribution, the tail probability P(Zi ≥ n) is of
the order exp(−c n log n) for some constant c > 0. Hence, the tails of Z2

i are of the order
exp(−c

√
n log n/2) and therefore Z2

i does not have exponential moments. This is critical
to note, because it means that the problem at hand is tightly related to large deviations of
heavy-tailed sums, where large deviations typically come from extreme realizations of the
largest summand (Asmussen and Kroese 2006; Blanchet and Glynn 2008; Rojas-Nandayapa
2013).

The analysis and simulations in this paper rely on two methods: conditional Monte Carlo
(MC) and importance sampling; see Chapters 9.4 and 9.7 of Kroese et al. (2013), respec-
tively. Importance sampling techniques have been in use for the analysis of rare events in the
setting of the Erdős–Rényi graph (Bhamidi et al. 2015), which is different from the Gilbert
graph considered here. Other than that, there has been very little literature on the topic. Note
that the same analysis can be extended to Gilbert graphs with the threshold not equal to 1
by modifying the size of the window W and the intensity λ of the Poisson point process.

Seen in a larger context, our work is the first to provide specific simulation-based tools
for the estimation of rare events in the Gilbert graph, which is the simplest example of a
spatial random network. This is of particular relevance when taking into account the cen-
tral place that such networks have in models in materials science and wireless networks
(Baccelli and Błaszczyszyn 2009; Stenzel et al. 2014). When these models form the basis
for applications in security-sensitive contexts, it becomes essential to provide estimates for
rare-event probabilities. Indeed, when introducing a new technology, such as for instance
device-to-device networks, it is not enough to know that the system works well on average.
At the same time, the probabilities for catastrophic events should be estimated sufficiently
precisely such that they can be deemed negligible. A prototypical application scenario based
on measurement data is outlined by Keeler et al. (2018).

We also mention that it would be possible to derive analytical approximations for rare-
event probabilities, for instance by assuming that the quantity of interest is approximately
Poisson or normally distributed. The appeal of such an approach would lie in its simplic-
ity, as it only requires first- and second-moment information. However, in the analytical
approximations, it is difficult to quantify the estimation error, whereas the simulation-based
methods outlined in the present paper are unbiased, and therefore do not suffer from this
weakness, provided the number of simulations is large enough.

The rest of the presentation is organized in three parts. First, in Section 2, we explore
the potential of conditional Monte Carlo in a one-dimensional setting, where we can fre-
quently derive explicit closed-form expressions. Surprisingly, when moving to the far end
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of the upper tails, it is possible to avoid simulation altogether, as we derive a fully analytic
representation. Then, in Section 3, we move to higher dimensions. Here, we apply condi-
tional MC to remove the randomness coming from the random number of nodes. Finally, in
Section 4, we present a further refinement of the conditional MC estimator, by combining it
with importance sampling using a Strauss-type Gibbs process. To ease notation, we hence-
forth identify the Gilbert graph with its edge set, so that |G(X ∩ W)| yields the number of
edges in the Gilbert graph on X ∩ W .

2 Conditional MC in Dimension 1

In this section, we consider the one-dimensional setting. More precisely, we consider a line
segment W = [0, w] as sampling window. In Section 2.1, we describe a specific conditional
MC scheme that leads to estimators for the rare-event probability of the number of edges
being small. In a simulation study in Section 2.2, we show that these new estimators are
substantially better than a crude MC approach.

Then, Section 2.3 discusses rare events corresponding to the number of missing edges,
i.e., the number of point-pairs that are not connected by an edge. The analysis is motivated
from the observation that the Erdős–Rényi graph with edge probability p ∈ [0, 1] exhibits
a striking duality with its complement. Specifically, the missing edges of this graph again
form an Erdős–Rényi graph but now with probability 1 − p. In Section 2.3, we point out
that in the Gilbert graph such a duality is much more involved. We still elucidate how to
compute the probability of observing no missing edges or precisely one missing edge.

In this section, we assume that the points {Xi}i≥1 of the Poisson point process on [0, ∞)

are ordered according to their occurrence; that is, Xi ≤ Xj , whenever i ≤ j .

2.1 Few Edges

Henceforth, let
E≤k := {|G(X ∩ [0, w])| ≤ k}

denote the event that the number of edges in the Gilbert graph on X ∩ [0, w] is at most
k ≥ 0. For fixed k and large w, the probability

p≤k := P(E≤k)

becomes small, and we discuss how to use both the natural ordering on the real half-line
and the independence property of the Poisson point process to derive a refined estimator.

We focus only on the cases k = 0, 1. In principle, the methods could be extended to
cover estimation of probabilities of the form p≤k for k ≥ 2. However, for large values of k

the combinatorial analysis becomes quickly highly involved; see Remark 2 for more details.

2.1.1 No Edges

To begin with, let k = 0. That is, we analyze the probability that all vertices in X ∩ [0, w]
are isolated in the sense that their vertex degree is 0. The key idea for approaching this
probability is to note that E0 := E≤0 occurs if and only if X ∩ [X1, (X1 + 1) ∧ w] = ∅ and
the Gilbert graph restricted to X ∩ [X1 + 1, w] does not contain edges; see Fig. 1. Here, we
adhere to the convention that [a, b] = ∅ if a > b.

According to the Palm theory for one-dimensional Poisson point processes, the process

X(1) := (X − X1) ∩ [1, ∞)

Methodology and Computing in Applied Probability (2022) 24:1367–1383 1369



0 X 1 w

X 1 X 1 + 1 w

Fig. 1 For G(X ∩ [0, w]) = ∅, the blue interval may not contain points of X and the Gilbert graph restricted
to the red interval may not contain edges

again forms a homogeneous Poisson point process, which is independent of X1; see Last
and Penrose (2017, Theorem 7.2). In particular, writing

F1 := σ(X1, X
(1))

for the σ -algebra generated by X1 and X(1) allows for a partial computation of p0 := p≤0
via conditional MC (Kroese et al. 2013, Chapter 9.4). More precisely, when computing
P(E0 |F1) we explicitly throw away the information from the configuration of X inside the
interval [X1, X1 + 1].

Theorem 1 (No edges) Suppose that w ≥ 1. Then,

(1)

Proof First, X1 is isolated if there are no further vertices in the interval [X1, (X1 + 1)∧w].
Moreover, after conditioning on X1, the remaining vertices form a Poisson point process in
[(X1 + 1) ∧ w,w]; see Last and Penrose (2017, Theorem 7.2). Therefore,

as asserted.

In other words, invoking the Rao–Blackwell theorem (Billingsley 1995), Theorem 1 indi-
cates that the right-hand side of identity (1) is an attractive candidate for estimating p0 via
conditional Monte Carlo. The Rao–Blackwell theorem is a powerful tool in situations where
p0 is not available in closed form. Note that elementary properties of the conditional expec-
tation imply that the conditional MC estimator P(E0 |F1) is unbiased and exhibits smaller
variance than the crude MC estimator .

Moreover, the right-hand side of identity (1) features another indicator of an isolation
event. Hence, it becomes highly attractive to refine the estimator further by proceeding
iteratively. To make this precise, we define an increasing sequence X∗

1 ≤ X∗
2 ≤ · · · of

points of X recursively as follows. First, X∗
1 = X1 denotes the left-most point of X. Next,

once X∗
m is available,

X∗
m+1 := inf{Xi ∈ X : Xi ≥ X∗

m + 1}
denotes the first point of X to the right of X∗

m + 1. Then, the event E0 occurs if none of the
intervals [X∗

i , X
∗
i + 1] contains points from X; see Fig. 2.

Methodology and Computing in Applied Probability (2022) 24:1367–13831370



0 X 1 w

0 X 1 = X 1 X 2 X 3 X 4 = X w
∗ ∗ ∗ ∗ ∗

Fig. 2 For G(X ∩ [0, w]) = ∅, the blue intervals may not contain any points

Of particular interest is the last index

I∗ := sup{i ≥ 1 : X∗
i ≤ w},

where X∗
i remains inside [0, w], together with the associated point

X∗ := X∗
I∗ .

If X1 > w, we set I∗ = 0 and X∗ = w. Let

F∗ := σ
(
X∗

1 , X∗
2, . . .

)
,

be the σ -algebra generated by {X∗
i : i ≥ 1}.

Theorem 2 (No edges – iterated) Suppose that w ≥ 1. Then,

P(E0 |F∗) = e−λ((I∗−1)++(w−X∗)∧1) almost surely.

Proof To prove the claim, we first define the shifted process

X(m) := (X − X∗
m) ∩ [1, ∞)

and write
Fm := σ

(
X∗

1, . . . , X∗
m,X(m)

)

for the σ -algebra generated by X∗
1 , . . . , X∗

m and X(m). Observe that F1 ⊇ F2 ⊇ · · · ⊇ F∗.
In particular, by the tower property of conditional expectation,

Hence, it suffices to show that for every m ≥ 0,

(2)
because X(I∗) ∩ [1, w − X∗] = ∅. To achieve this goal, we proceed by induction on m.
For m = 0 and m = 1 we are in the setting of Theorem 1. To pass from m to m + 1, the
induction hypothesis yields that

(3)
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Since X∗
m+1 is the first point of X after X∗

m + 1, by applying Theorem 1 to the Poisson
point process X(m), we obtain

(4)

Combining (3) and (4) yields the assertion.

The conditional MC estimator from Theorem 2 leads to Algorithm 1. Here, Exp(λ) is an
exponential random variable with parameter λ that is independent of everything else.

2.1.2 At Most One Edge

Here, let k = 1; i.e., we propose an estimator for the probability p1 := p≤1 that the Gilbert
graph on X ∩ [0, w] has at most one edge. Let

I+ := inf{i ≥ 2 : Xi − Xi−1 ≤ 1}
be the index of the first point of X whose predecessor is at distance at most 1. Putting
X+ := (X − XI+) ∩ [1, ∞), Fig. 3 illustrates that the event E≤1 is equal to the intersection
of the events {XI++1 ≥ XI+ + 1} and {G(X+ ∩ [1, w − XI+]) = ∅}.

Moreover, we write
F+ := σ(X1, X2, . . . , XI+ , X+)

for the σ -algebra generated by X1, X2, . . . , XI+ and X+.

Theorem 3 (At most one edge) Suppose that w ≥ 1. Then,

(5)

0 X 1 X I + X I + + 1 w

Fig. 3 For |G(X ∩ [0, w])| ≤ 1, the blue interval may not contain any points and the Gilbert graph restricted
to the red interval may not contain edges
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Proof Since the proof is very similar to that of Theorem 1, we only point to the most impor-
tant ideas. Equation 5 obviously holds for XI+ > w. For the case XI+ ≤ w, relying again
on the Palm theory of the one-dimensional Poisson process, we have

as asserted.

Similarly to Section 2.1.2, Theorem 3 yields a conditional MC estimator, which we
describe in Algorithm 2.

Remark 1 (Symmetric window) The methods described above could also be applied for a
Poisson point process in an interval of the form [−w/2, w/2]. Then, in addition to I∗ and
I+, we would need to take into account the corresponding quantities located to the left of
the origin.

Remark 2 (k ≥ 2) The method to handle k = 0, 1 could certainly be extended to larger
k ≥ 2, but the configurational analysis would quickly become very involved. For instance,
for k = 2 we would first need to require that the interval [XI∗−1, XI∗−1 + 1] contains only
the point XI∗ . Next, if XI∗+1 ≤ XI∗ + 1, then there may be no more edges to the right of
XI∗+1. On the other hand, the analysis will be different if XI∗+1 > XI∗ + 1, because then
there can still be one edge in the graph to the right of XI∗+1.

2.2 Simulations

In this section, we illustrate how to estimate the rare-event probabilities p0 and p1 via MC.
After presenting the crude MC estimator, we illustrate how the conditional MC estimators
described in Section 2.1 improve the efficiency drastically. In the simulation study, we esti-
mate p0 and p1 for sampling windows of size w ∈ {5, 7.5, 10} and Poisson intensity λ = 2.

Methodology and Computing in Applied Probability (2022) 24:1367–1383 1373



Table 1 Crude MC estimates for p0 = p≤0 and p≤1 for sampling intervals of size w ∈ {5, 7.5, 10} and
Poisson intensity λ = 2

w pCMC
0 pCMC

≤1

5 4.056 × 10−3 ± 6.36 × 10−5 1.676 × 10−2 ± 1.28 × 10−4

7.5 2.410 × 10−4 ± 1.55 × 10−5 1.354 × 10−4 ± 3.68 × 10−5

10 1.100 × 10−5 ± 3.32 × 10−6 8.500 × 10−5 ± 9.23 × 10−6

Standard deviations reported as ±

Both the crude MC and the conditional MC estimator are computed based on N = 106

samples.
To estimate the rare-event probabilities p≤k using crude MC, we draw iid samples

X(1), . . . , X(N) of the Poisson point process on [0, w] and set

for the proportion of samples leading to a Gilbert graph with at most k edges.
The estimates reported in Table 1 reveal that as the size of the sampling window grows,

the rare-event probabilities decrease rapidly and that the estimators exhibit a high relative
error.

Next, we estimate p≤k for k = 0, 1 with the conditional MC methods described in
Algorithms 1 and 2. If P (1), . . . , P (N) denote the simulation outputs, then we set

pCond
≤k := 1

N

∑

i≤N

P (i).

The corresponding estimates shown in Table 2 highlight that the theoretical improve-
ments over crude MC predicted from Theorems 2 and 3 also manifest themselves in the
simulation study. This is particularly striking in the setting k = 0, where the variance can
be reduced by several orders of magnitude.

2.3 FewMissing Edges

We now focus on computing the rare-event probabilities of having few missing edges. More
precisely, we write

Mw :=
(|X ∩ [0, w]|

2

)
− |G(X ∩ [0, w])|

Table 2 Conditional MC estimates for p0 = p≤0 and p≤1 for sampling intervals of size w ∈ {5, 7.5, 10} and
Poisson intensity λ = 2

w pCond
0 pCond

≤1

5 4.148 × 10−3 ± 1.41 × 10−5 (20.30) 1.670 × 10−2 ± 7.63 × 10−4 (2.8)

7.5 2.244 × 10−4 ± 1.06 × 10−6 (216.3) 1.304 × 10−4 ± 1.87 × 10−5 (3.9)

10 1.296 × 10−5 ± 1.06 × 10−7 (984.9) 9.637 × 10−5 ± 4.56 × 10−6 (4.1)

Variance improvements in comparison to the crude estimator in parentheses
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0 X 1 wX 1 + 1

Fig. 4 For Mw = 0, the red interval may not contain any points

for the number of edges of G(X ∩ [0, w]) that are missing from the complete graph on the
vertices X ∩ [0, w]. We write

p′≤k := P(Mw ≤ k)

for the probability that at most k ≥ 0 edges are missing. Surprisingly, this seemingly more
complicated task is more accessible than the probability of seeing few edges considered in
Section 2.1, as both p′

0 = p′≤0 and p′≤1 are amenable to closed-form expressions.

For p′
0, the key insight is to note that Mw = 0 if and only if X ∩ [X1 + 1, w] = ∅; see

Fig. 4.

Theorem 4 (No missing edges) Suppose that w ≥ 1. Then,

p′
0 = e−λ(w−1) + (w − 1)λe−λ(w−1).

Proof As observed in the above remark, we need to compute P(X ∩ [X1 + 1, w] = ∅).
Hence, invoking the void probability for a Poisson point process,

p′
0 =

∫ ∞

0
λe−λx1P(X ∩ [x1 + 1, w] = ∅) dx1 = e−λ(w−1) +

∫ w−1

0
λe−λx1e−λ(w−1−x1) dx1,

which equals e−λ(w−1) + (w − 1)λe−λ(w−1), as asserted.

Next, we compute the probability of observing at most one missing edge.

Theorem 5 (At most one missing edge) Suppose that w ≥ 2. Then,

p′≤1 = p′
0 + λ2(w − 2)2

2
e−λw + (w − 3/2)λ2e−λ(nw−1).

Proof We decompose p′≤1 as

p′≤1 = p′
0 + P

(
Mw = 1, X ∩ [X1 + 2, w] �= ∅) + P

(
Mw = 1, X ∩ [X1 + 2, w] = ∅)

and compute the second and third probability separately. This corresponds to Case 1 and
Case 2 below. Note that under the event {X ∩ [X1 + 2, w] �= ∅}, we have |X ∩ [0, w]| = 2,
since more points would imply at least two missing edges.

Case 1. (X ∩ (X1, X1 + 2] = ∅ and |X ∩ [X1 + 2, w]| = 1)
Conditioning on X1, the probability of this event becomes

∫ w−2

0
λe−λx1P

(
X ∩ (x1, x1 + 2] = ∅, |X ∩ [x1 + 2, w]| = 1

)
dx1.

Inserting the void probability for the Poisson process, we arrive at

∫ w−2

0
λe−λx1 e−2λλ(w − 2 − x1)e

−λ(w−2−x1)dx1 = λ2e−λw

∫ w−2

0
(w − 2 − x1) dx1 = λ2(w − 2)2

2
e−λw .

Methodology and Computing in Applied Probability (2022) 24:1367–1383 1375



0 X 1 X 1 w

Fig. 5 Configuration where Mw = 1 and X∩[X1+2, w] = ∅. Here, [X1, X
′
1−1] is in red and [X1+1, X1+2]

in blue

It remains to treat the case X ∩ [X1 + 2, w] = ∅. First, note that conditioned on X1 =
x1, the point process X ∩ [x1, w] is Poisson. Thinking of this Poisson point process to be
formally extended to −∞ to the left, we write X′

1 for the first Poisson point to the left of w.
Then, Fig. 5 illustrates that the event {Mw = 1} ∩ {X ∩ [X1 + 2, w] = ∅} is equivalent to
X′

1 ∈ [X1 + 1, X1 + 2] and X ∩ (X1, X
′
1 − 1] = ∅.

For Case 2, we distinguish between the cases X1 ≤ w − 2 and X1 ∈ [w − 2, w − 1].

Case 2a. (X1 ≤ w − 2, X′
1 ∈ [X1 + 1, X1 + 2] and X ∩ (X1, X

′
1 − 1] = ∅) Then, we

compute the desired probability as

∫ w−2

0
λe−λx1

∫ x1+2

x1+1
λe−λ(w−x′

1)
P
(
X ∩ (x1, x

′
1 − 1] = ∅)

dx′
1 dx1 =

∫ w−2

0

∫ x1+2

x1+1
λ2e−λ(w−1) dx′

1 dx1,

which equals (w − 2)λ2e−λ(w−1).

Case 2b. (X1 ∈ [w − 2, w − 1], X′
1 ∈ [X1 + 1, w] and X ∩ (X1, X

′
1 − 1] = ∅) Finally,

∫ w−1

w−2
λe−λx1

∫ w

x1+1
λe−λ(w−x′

1)
P
(
X ∩ (x1, x

′
1 − 1] = ∅)

dx′
1 dx1 =

∫ w−1

w−2

∫ w

x1+1
λ2e−λ(w−1) dx′

1 dx1,

which equals = λ2

2 e−λ(w−1). Assembling the different cases together concludes the proof.

3 Conditional MC in Higher Dimensions

In Section 2, we analyzed rare events related to few edges or few missing edges in a
one-dimensional setting. There, closed-form expressions for conditional probabilities were
derived from the natural ordering of the Poisson points. Now, we proceed to higher dimen-
sions and also consider more general deviations from the mean number of edges. First, we
again illustrate that substantial variance reductions are possible through a surprisingly sim-
ple conditional MC method. Loosely speaking, the Poisson point process consists of 1) an
infinite sequence of random points in the window determining the locations of points and 2)
a Poisson random variable determining the number of points in the sampling window. We
use that after conditioning on the spatial locations, the rare-event probability is available in
closed form. This type of Poisson conditioning is novel in a spatial rare-event estimation
context, but has strong ties to approaches appearing earlier in seemingly unrelated prob-
lems. More precisely, for instance in reliability theory, related conditional MC schemes lead
to spectacular variance reductions (Lomonosov and Shpungin 1999; Vaisman et al. 2015).

The rest of this section is organized as follows. First, Section 3.1 describes how to
estimate the rare event probabilities related to too few and too many edges relative to
their expected number through conditional MC. Then, Section 3.2 presents a simulation
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study illustrating that this estimator can reduce the estimation variance by several orders of
magnitude.

3.1 Conditioning on a Spatial Component

We consider a full-dimensional sampling window W ⊂ R
d and rare events of the form

F<a := {|G(X ∩ W)| < (1 − a)μ} and F>a := {|G(X ∩ W)| > (1 + a)μ},
where μ := E[|G(X ∩ W)|] denotes the mean (i.e., expected) number of edges, which can
be estimated through simulations. Alternatively, if W is so large that edge effects can be
neglected, then the Slivnyak–Mecke formula (Last and Penrose 2017, Theorem 4.4) gives
the approximation μ ≈ 1

2 |W |λ2κd , where κd denotes the volume of the unit ball in R
d .

The key idea for developing a conditional MC scheme is to use the explicit con-
struction of a Poisson point process in a bounded sampling window. More precisely, let
X∞ = {Xn}n≥1 be an iid family of uniform random points in W and K be an independent
Poisson random variable with parameter λ|W |. Then, {Xn}n≤K is a Poisson point process
in W with intensity λ, Last and Penrose (2017, Theorem 3.6).

In conditional MC, we use the fact that the rare-event probabilities can be computed in
closed form after we condition on the locations X∞. More precisely, we let

K<a(X∞) := inf{k ≥ 1 : |G({X1, . . . , Xk} ∩ W)| ≥ (1 − a)μ}
denote the first time where the Gilbert graph on the nodes {X1, . . . , Xk} contains at least
(1 − a)μ edges and refer to Fig. 6 for an illustration.

Similarly, let

K>a(X∞) := sup{k ≥ 1 : |G({X1, . . . , Xk} ∩ W)| ≤ (1 + a)μ}
denote the largest k for which the Gilbert graph on the nodes {X1, . . . , Xk} contains at most
(1 + a)μ edges. Then,

P(F<a) = E[P(F<a | X∞)] = E
[
FPoi(K<a(X∞) − 1)

]
,

P(F>a) = E[P(F>a | X∞)] = E
[
1 − FPoi(K>a(X∞))

]
,

(6)

where FPoi : Z≥0 → [0, 1] denotes the cumulative distribution function of a Poisson random
variable with parameter λ|W |.

r

Fig. 6 Conceptual illustration of K<a

Methodology and Computing in Applied Probability (2022) 24:1367–1383 1377



3.2 Numerical Results

We sample planar homogeneous Poisson point processes XS = {XS
i }i≥1, XM = {XM

i }i≥1
and XL = {XL

i }i≥1 with intensity λ = 2 in windows of size 20 × 20, 25 × 25, and 30 × 30,
respectively. Here, S, M, and L stand for small, medium, and large, respectively.

In Section 1, we mentioned that a major challenge in devising efficient estimators for
rare-event probabilities related to the edge count comes from a qualitatively different tail
behavior: light on the left, heavy on the right. In other words, we expect that in the left
tail, we see changes throughout the sampling window, whereas in the right tail, a singular
particular configuration in a small part of the window is sufficient to induce the rare event.
We recall that the left tail of a random variable Z refers to the probabilities P(Z ≤ r) for
small r and the right tail refers to the probabilities P(Z ≥ r) for large r .

Although on a bounded sampling window, the theoretical difference between the left and
the right tail is subtle, we illustrate in Table 3 that it does become visible when consider-
ing the quantiles Qα and Q1−α for the number of edges if α is small. Here, the empirical
quantiles for 106 samples of the edge counts in a (20×20)-window are shown. For instance
the 1%-quantile is 16.4% lower than the mean, which is a similar deviation as the 18%
exceedance of the 99%-quantile. However, when moving to the 0.01%-quantile, then it
is 25.2% lower than the mean, whereas the corresponding 99.99% quantile exceeds the
mean by 30.0%. These figures are an early indication of the difference in the tails that will
reappear far more pronouncedly in the numerical results concerning the estimation of the
rare-event probabilities P(F<0.2) and P(F>0.2).

In the rest of the section, we estimate the rare-event probabilities

q<0.2 := P(F<0.2) and q>0.2 := P(F>0.2)

corresponding to 20% deviations from the mean. Here, we draw N = 105 samples of X∞.
Then, taking into account the representation (6), we set

pCond
<0.2 := 1

N

∑

i≤N

FPoi
(
K<a(X∞(i)) − 1

)
,

pCond
>0.2 := 1

N

∑

i≤N

(
1 − FPoi

(
K>a(X∞(i))

))
.

The variances of the crude MC estimators are equal to q<0.2(1 − q<0.2).
We report the estimates pCond

<0.2 and pCond
>0.2 in Table 4. First, we see that the exceedance

probabilities pCond
>0.2 are always smaller than the corresponding undershoot probabilities

pCond
<0.2 . This supports the preliminary impression of the difference in the tail behavior hinted

at in Table 3. Moreover, in all examples conditional MC reduces the estimation variance
massively and the efficiency gains become more pronounced the rarer the event.

Table 3 Empirical quantiles for the number of edges in a (20 × 20)-window: absolute values (upper two
rows) and relative deviation from the mean μ (lower two rows)

α 10−2 10−3 10−4

Qα 2012 1892 1800

Q1−α 2841 2999 3130

Qα−μ
μ

−0.164 −0.214 −0.252
Q1−α−μ

μ
0.180 0.246 0.300
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Table 4 Estimates for q<0.2 and q>0.2 based on conditional MC for different window sizes based on N = 105

samples

pCond
<0.2 pCond

>0.2

XS 2.023 × 10−3 ± 6.98 × 10−6 (414.8) 5.118 × 10−3 ± 1.63 × 10−5 (193.7)

XM 1.542 × 10−4 ± 7.05 × 10−7 (3106.4) 6.764 × 10−4 ± 2.77 × 10−6 (878.6)

XL 6.912 × 10−6 ± 4.19 × 10−8 (39, 415.8) 6.242 × 10−5 ± 3.24 × 10−7 (5, 911.1)

Variance improvements in comparison to the crude estimator in parentheses

4 Importance Sampling

The conditional MC estimators constructed in Section 3 take into account that an atypically
large number of Poisson points leads to a Gilbert graph exhibiting considerably more edges
than expected. However, not only the number but also the location of points play a pivotal
role. For instance if the points tend to repel each other, then we would typically observe
fewer edges. Similarly, clustered point patterns should induce more edges.

In order to implement these insights, we resort to the technique of importance sampling
(Kroese et al. 2013, Chapter 9.7). That is, we draw samples from a point process with
distribution Q for which the rare event becomes typical and then correct the estimation
bias by weighting with likelihood ratios. In Sections 4.1 and 4.2 below, we explain how to
implement these steps through configuration-dependent birth-death processes reminiscent
of the Strauss process from spatial statistics (Møller and Waagepetersen 2004). Finally, in
Section 4.3, we illustrate in a simulation study how importance sampling of the spatial
locations reduces the estimation variance further.

4.1 Lower Tails

The key observation is that under the rare event of seeing exceptionally few edges, we
expect a repulsion between points. More precisely, the most likely reason for the rare event
are changes to the configuration of the underlying Poisson point process throughout the
entire sampling window. The large-deviation analysis of Seppäläinen and Yukich (2001)
suggests to perform importance sampling where, instead of considering the distribution P of
the a priori Poisson point process, we draw samples according to a different stationary point
process with distribution Q such that under Q, the original rare event becomes typical and
whose deviation from P, as measured through the Kullback–Leibler divergence h(Q |P), is
minimized. We implement this repulsion by a dependent thinning inspired from the Strauss
process.

Here, we start from a realization of the Gilbert graph on n0 = �λ|W |� iid points
{X1, . . . , Xn0}, and then, we thin out points successively. An independent thinning of
points would give rise to uniformly distributed locations without interactions. In the impor-
tance sampling, we thin instead via a configuration-dependent birth-death process; see e.g.,
Chapter 9.7 of Kroese et al. (2013).

To describe the death mechanism more precisely, we draw inspiration from the Strauss
process and choose the probability pi to remove point Xi proportional to γ deg(Xi ), where
deg(Xi) denotes the degree of Xi in the Gilbert graph and γ > 1 is a parameter of the algo-
rithm. Algorithm 3 shows the pseudo-code leading to the importance sampling estimator
q IS
<a for q<a ; in the algorithm we write |X| for the number of points of X. To understand

Methodology and Computing in Applied Probability (2022) 24:1367–1383 1379



the principle behind Algorithm 3, we briefly expound on the general approach in impor-
tance sampling, and refer the reader to Chapter 9.7 of Kroese et al. (2013) for an in-depth
discussion.

As mentioned above, when thinning out points independently until the number of edges
in the Gilbert graph falls below μ(1−a), we would arrive at the random variable K<a(X∞)

from Section 3. However, thinning out according to a configuration-dependent probability
distorts its distribution towards a probability measure Q that is in general different from the
true distribution P. Still, by construction, Q is absolutely continuous with respect to P, and
we let ρ := dP/dQ be the likelihood ratio. Then, from a conceptual point of view, Algorithm
3 first draws N ≥ 1 iid samples X∞(1), . . . , X∞(N) from the distorted distribution Q with
associated likelihood ratios ρ1, . . . , ρN , and then computes

q IS
<a := 1

N

∑

i≤N

ρiFPoi(K<a(X∞(i)) − 1),

where we recall that FPoi denotes the cumulative distribution function of a Poisson random
variable with parameter λ|W |.

We now explain why the q IS
<a returned by the algorithm is a good approximation for the

probability q<a . The general philosophy is that when performing importance sampling with
a proposal distribution that is close to the conditional distribution under the rare event, we
can be optimistic that importance sampling decreases the estimation variance. For instance,
in Kroese et al. (2013, Section 13.2), it is shown that an unbiased zero-variance estimator
could be obtained if the proposal distribution coincided with the conditional distribution
under the rare event. In our setting, this means that we can expect q IS

<a to be a good approx-
imation for the probability q<a if the proposal density in the importance sampling is close
to the conditional distribution under the event F<a .

To achieve this goal, intuitively, we would like to choose the thinning parameter γ > 1
such that the number of edges in the rare event F<a should match the expected number
of edges under the thinning. To develop a heuristic for this choice, we consider a Strauss
process, where we restrict to the two-dimensional setting to allow for an accessible presenta-
tion. To make the article self-contained, we briefly recall the definition of a Strauss process
from Møller and Waagepetersen (2004). The Strauss process in the observation window W
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is a Gibbs process whose density f (ϕ) with respect to a unit-intensity Poisson point process
on W is given by

f (ϕ) = αβ |ϕ|γ sR(ϕ),

with parameters R > 0 (interaction radius), β > 0 (interaction parameter) and γ ∈ [0, 1)

(interaction strength) where α > 0 is a normalizing constant and sR(ϕ) = #{{x, y} ⊆
ϕ : 0 < |x − y| ≤ R} denotes the number of unordered point pairs in ϕ within a distance at
most R.

Hence, matching the number of edges in the rare event to the expected number of edges
leads to the equation

(1 − a)μ = (λStr)2
∫ 1

0
πrρStr(r)dr, (7)

where λStr > 0 and ρStr : [0, ∞) → [0, ∞) denote the intensity and pair-correlation
function of the Strauss process, respectively (Møller and Waagepetersen 2004). In contrast
to the Poisson setting, neither λStr nor ρStr are available in closed form. Still, both quantities
admit accurate saddle-point approximations λPS > 0 and ρPS : [0, ∞) → [0, ∞) that are
ready to implement in the Strauss case (Baddeley and Nair 2012).

More precisely, λPS is the unique positive solution of the equation

λPSGeλPSG = λG,

where G = (1 − β)π and β = log(γ ), see Baddeley and Nair (2012). Then, recalling that
we work in a planar setting, we put

ρPS(r) := β exp
(
(1 − β)2b(r/2)λPS)

,

where

b(r/2) := 2 cos−1(r/2) − r

√
1 − (r/2)2

denotes the intersection area of two unit disks at distance r . Inserting these approximations
into (7) and solving the resulting implicit equation yields β ≈ log(1.018) and a value of
γ ≈ 1.018.

4.2 Upper Tails

Similar to the lower tails, we can strengthen the estimator by combining conditional MC
with importance sampling on the spatial locations. For the upper tails, it is natural to devise
an importance sampling scheme favoring clustering rather than repulsion. From the point of
view of large deviations, this phenomenon was considered in Chatterjee and Harel (2020).
There, it is shown that all excess edges come from a ball of size 1 containing a highly
dense configuration of Poisson points. More precisely, the method is particularly powerful
in settings where the rare event is the epitome of a condensation phenomenon. That is, a
peculiar behavior of the point process in a small part in the window becomes the most
likely explanation of the rare event. As laid out in Chatterjee and Harel (2020), at least in
the asymptotic regime of large deviations, the rare event of observing too many edges is
governed by the above-described condensation phenomenon.

We propose to take the clustering into account via a birth mechanism favoring the gen-
eration of points in areas that would lead to a large number of additional edges. To ease
implementation, the density of the birth mechanism is discretized and remains constant in
bins of a suitably chosen grid. The density in a bin at position x ∈ W is proportional to γ n(x),
where γ > 1 is a parameter governing the strength of the clustering and n(x) denotes the
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Table 5 Estimates for q<0.2 and q>0.2 based on importance sampling with Strauss-type processes for
different window sizes based on N = 105 samples

q IS
<0.2 q IS

>0.2

XS 2.025 × 10−3 ± 6.22 × 10−6(523.3) 5.125 × 10−3 ± 1.57 × 10−5(207.9)

XM 1.544 × 10−4 ± 6.16 × 10−7(4071.0) 6.744 × 10−4 ± 2.66 × 10−6(951.8)

XL 6.935 × 10−6 ± 3.63 × 10−8(52, 665.8) 6.240 × 10−5 ± 3.09 × 10−7(6, 537.22)

Variance improvements in comparison to the crude estimator in parentheses

number of Poisson points in a suitable neighborhood around x, such as the bin containing x

together with all adjacent bins.
Similar to the lower tails case, a subtle point in this approach pertains choosing the

parameter γ > 1. Unfortunately, an attractive Strauss process is ill-defined in the entire
Euclidean space, so that the saddle-point approximation from Section 4.1 does not apply. In
Section 4.3 below, we therefore rely on a pilot run suggesting γ = 1.01 as a good choice for
further variance reduction. Although in this pilot run, the number of simulations is small,
and estimates of the variance are still volatile, we found that it provides a good indication
for simulations on a larger scale.

Section 3.2 revealed that even with a sample size of N = 105 the conditional MC estima-
tors still exhibit a considerable relative error. Now, we illustrate that importance sampling
may be an appealing option to reduce this error.

Table 5 reports the estimates q IS
<0.2 and q IS

>0.2 for different sizes of the sampling window as
in Section 3.2. In the left tail, we see massive variance improvements when compared to the
crude MC estimator. In the right tail, the gains are substantial, but a little less pronounced.
This matches the intuition that the root of the rare events in the right tails should be a
condensation phenomenon, which goes against the heuristic of changing the point process
homogeneously throughout the window.
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