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ABSTRACT
Current knowledge about the respiratory microbiome is mainly based on 16S ribosomal RNA gene 
sequencing. Newer sequencing approaches, such as metatranscriptomics, offer the technical ability 
to measure the viable microbiome response to environmental conditions such as smoking as well 
as to explore its functional role by investigating host-microbiome interactions. However, knowledge 
about its feasibility in respiratory microbiome research, especially in lung biopsies, is still very 
limited. RNA sequencing was performed in bronchial biopsies from clinically stable smokers (n = 5) 
and ex-smokers (n = 6) with COPD not using (inhaled) steroids. The Trinity assembler was used to 
assemble non-human reads in order to allow unbiased taxonomical and microbial transcriptional 
analyses. Subsequently, host-microbiome interactions were analyzed based on associations with 
host transcriptomic data. Ultra-low levels of microbial mass (0.009%) were identified in the RNA-seq 
data. Overall, no differences were identified in microbiome diversity or transcriptional profiles of 
microbial communities or individual microbes between COPD smokers and ex-smokers in the initial 
test dataset as well as a larger replication dataset. We identified an upregulated host gene set, 
related to the simultaneous presence of Bradyrhizobium, Roseomonas, Brevibacterium.spp., which 
were related to PERK-mediated unfolded protein response (UPR) and expression of the 
microRNA-155-5p. Our results show that metatranscriptomic profiling in bronchial biopsy samples 
from stable COPD patients yields ultra-low levels of microbial mass. Further, this study illustrates 
the potential of using transcriptional profiling of the host and microbiome to gain more insight 
into their interaction in the airways.

TRIAL REGISTRATION: ClinicalTrials.gov Identifiers: NCT00158847

ABBREVIATIONS: COPD: Chronic Obstructive Pulmonary Diseases; FDR: False discovery rate; GLUCOLD: 
Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease; LRT: Lower 
respiratory tract; PCA: Principal component analysis; rRNA: ribosomal RNA

Introduction

The airway microbiome is altered in patients with moderate 
to severe Chronic Obstructive Pulmonary Diseases (COPD), 
compared to healthy controls, and associations between 
changes in the airway microbiome and development of COPD 
have been proposed [1–4]. Ramsheh and colleagues have 
recently shown that with increasing severity of COPD, the 

airway microbiomes changes in concert with downregulation 
of genes involved in epithelial defense and increased expres-
sion of Il-17 and TNF inflammatory pathways [5].

Current knowledge about the respiratory microbiomes as 
well as the influence of smoke-exposure is still mainly based 
on 16S ribosomal RNA (rRNA) gene sequencing, focusing 
on the bacterial microbiome. So far, no significant differ-
ences have been found in lower respiratory tract (LRT) 
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samples between nonsmokers and smokers [2,3]. 16S rRNA 
gene sequencing provides limited insight into the charac-
teristics of the microbiome. Important limitations include 
the inability to distinguish between live and dead microbes 
or to detect viruses, fungi, and other eukaryotic organisms.

Applying newer sequencing techniques, such as meta-
transcriptomics, offers the technical ability to overcome these 
limitations. It enables us to assess broad microbial tran-
scriptional signatures, which cannot be found solely at the 
DNA level. They allow us to evaluate the viable microbiome 
and to explore shifts in microbiome activity caused by envi-
ronmental factors, such as smoking. Further, simultaneous 
transcriptomic profiling of host and microbiota can be of 
help to elucidate its role played in airway health and chronic 
pulmonary disease pathology [6,7].

Knowledge about the feasibility of applying metatran-
scriptomic sequencing in COPD lung samples for microbi-
ome analyses is still very limited. Ren and colleagues have 
shown in bronchoalveolar lavage (BAL) samples that tran-
scriptionally active microbial profiles were associated with 
bacterial load and Th17 immune response [8]. To our best 
knowledge, no study has analyzed the microbiome in bron-
chial biopsy specimens from COPD subjects, using meta-
transcriptomic sequencing.

This study aims to identify a biological signature of the 
viable microbiome in bronchial biopsies from smokers and 
ex-smokers with stable COPD, using an unbiased metatran-
scriptomic approach. We aimed to compare the bronchial 
microbiome depending on smoking status as well as to study 
host-microbiome interactions.

Methods

Study design and subjects

Baseline RNA-seq expression was studied in bronchial biop-
sies from 11 COPD subjects. Two negative samples were 
sequenced in the same batch to assess the influence of the 
reagent contamination in our samples. The COPD subjects 
participated in the Groningen Leiden Universities and 
Corticosteroids in Obstructive Lung Disease (GLUCOLD) 
study (registered at ClinicalTrials.gov with identifier number 
NCT00158847) [9]. In addition, expression profiles of iden-
tified microbial contigs were reevaluated in a previous 
RNA-seq GLUCOLD dataset consisting of 56 COPD subjects 
(38 smokers; 18 ex-smokers), which was initially not 
sequenced together with negative control samples.

Methods and patient characteristics have been previously 
described [9]. In short, all subjects had irreversible airflow 
limitation and at least one of the following symptoms: 
chronic cough, chronic sputum production, or dyspnea on 
exertion. All subjects were current or ex-smokers (≥ 1 year) 
with at least 10 pack-years of smoking. Exclusion criteria 
were asthma and the use of oral corticosteroids during the 
last three months and maintenance treatment with inhaled 
or oral steroids during the last six months. All patients 
were in a stable clinical condition. This study was per-
formed in a subset of the GLUCOLD study. All study 

protocols were approved by the medical ethics committees 
of the Leiden University Medical Center and the Groningen 
University Medical Center, and all patients gave their writ-
ten informed consent.

Sample collection and processing

The sample collection has been described previously [9]. 
Briefly, samples were obtained by fiberoptic bronchoscopy, 
which was performed using a standardized protocol as 
described previously [10,11]. Subjects were asked to refrain 
from smoking on the day of the bronchoscopy. Bronchial 
biopsies were randomly taken from (sub) segmental carinae 
in the right or left lower lobe of the lung, whereby one part 
was immediately snap-frozen and stored at −80  C for later 
sequencing analyses. Subsequent sample processing, RNA 
sequencing, quality control, and normalization are fully 
described in the online supplementary material of this 
manuscript.

Sequence assembly, mapping, and contamination 
assessment

Sequence assembly, mapping, and contamination assessment 
are fully described in the supplementary online material of 
this manuscript. In short, the de novo assembly program 
Trinity was applied to assemble the unmapped reads [12]. 
This program allows a reconstruction of a full-length tran-
scriptome without a genome reference from RNA-seq data 
by generating de novo transcriptome contigs. Principal com-
ponent analysis (PCA) was conducted, based on GMPR 
(geometric means of pairwise ratios) normalized microbial 
contigs, to visualize variation differences of microbial expres-
sion data between bronchial biopsy and negative control 
samples.

Statistics

Microbial contigs were normalized using the GMPR nor-
malization method for zero-inflated sequencing data, such 
as microbiome data [13]. The richness and alpha-diversity 
indices (Shannon, Simpson, and inverse Simpson) were cal-
culated, based on normalized microbial contigs between 
COPD smokers and ex-smokers, using the Bioconductor 
package “vegan” [14]. Richness and diversity indices, as well 
as microbiome communities at the phylum-level, were com-
pared between COPD smokers and ex-smokers, by 
Mann-Whitney U-tests. Individual microbial contigs were 
analyzed for differential expression between COPD smokers 
and ex-smokers, using Bioconductor package DESeq2 [15]. 
We corrected for age and maintained a false discovery rate 
(FDR) below 0.05 to control for multiple testing [16].

To determine host-microbial-specific interactions, micro-
bial contigs were compared to bronchial inflammatory cell 
counts (CD3, CD4, CD8 T cells; plasma cells, macrophages, 
eosinophil cells, neutrophil cells) and lung function 
(post-bronchodilator FEV1%; postbronchodilator FEV1/IVC), 
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using Spearman correlation testing, while maintaining a FDR 
below 0.05. Further, we aimed to investigate associations 
between host gene expression profiles and RNA abundance 
from microbial contigs. Therefore, microbial contigs were 
compared to host gene expression profiles per subject, using 
the quasi-likelihood F-test in edgeR package [17]. The model 
was adjusted for smoking status and age. We maintained a 
false discovery rate (FDR) below 0.05 to control for multiple 
testing [16]. Subsequently, the top 50 significant host genes 
were analyzed for biological and functional profiling in the 
web-based toolset g:profiler [18]. Besides, the top 50 asso-
ciated host genes were surveyed for overlap across the dif-
ferent microbes to assess a uniform host-microbiome 
interaction. All statistical analyses were performed with the 
R statistical software v. 3.6.1.

Results

Participant characteristics

Table 1 summarizes the baseline characteristics of 5 smokers 
and 6 ex-smokers with COPD in GLUCOLD, who had biop-
sies with RNA of sufficient quality for analysis. History of 
smoking, post-bronchodilator FEV1 (% predicted), FEV1/
IVC, and inflammatory cell counts from bronchial biopsies 
did not show significant differences between groups.

Bronchial microbiome compositions between COPD 
smokers and ex-smokers

In total, 6,284,287 RNA counts per participant were gener-
ated by RNA-seq of the bronchial biopsies. About 99% of 
the obtained RNA-seq reads mapped to the human genome 
(Supplemental Figure S2). The remaining 1% unmapped 
reads were assembled to contigs, using the Trinity assembler. 
In total 242,312 contigs were generated. Our analysis iden-
tified that 92.9% of contig counts belonged to human, 0.1% 
to fungus, 1% to other micro-eukaryotic, 5.6% to bacteria, 
and 0.4% to plants genetic material. For further analysis, 
we removed contigs mapping to human or plant genetic 
data. In total, 1219 microbial contigs were identified and 

taxonomically classified. The principal component analysis 
(PCA) based on normalized microbial expression data 
showed a clear separation between bronchial biopsy and 
negative control samples (Supplemental Figure S3). About 
94.30% of the microbial expression data were identified as 
likely contaminants (i.e. contaminant microbiota during 
library preparation) and removed from further analysis. 69 
microbial contigs were identified after contamination assess-
ment with an average of 541 microbial RNA counts per 
participant, which represented 0.009% of all generated RNA 
counts by RNA-seq. In total, 94.06% of these contigs counts 
belonged to bacteria and 5.94% to other eukaryota (supple-
mental Figure S4). Viral or fungal contigs were not detected 
in this cleaned data set. At the phylum level, the most 
relatively abundant phyla were Proteobacteria (24.95%), 
Verrucomicrobia (21.08%), and Bacteroidetes (18.78%). At 
the genus level, the most relatively abundant bacterial genera 
were Methylacidiphilum (21.95%), Flavobacterium (12.44%), 
and Staphylococcus (6.03%), whereas Philasterides (33.54%) 
was the most abundant genera belonging to other eukary-
otes. Next, we compared the bronchial microbiome compo-
sition between COPD smokers and COPD ex-smokers at 
the phylum-level (Figure 1). Predominantly expressed micro-
bial contigs belonged to the phyla Proteobacteria (COPD 
smokers: 25.5%; COPD ex-smokers: 24.5%), Verrucomicrobia 
(COPD smokers: 24.2%; COPD ex-smokers: 19.0%), 
Bacteroidetes (COPD smokers: 19.5%; COPD ex-smokers: 
18.3%). No significant differences were found between 
COPD smokers and ex-smokers concerning RNA abundance 
of the identified phyla (p-value >0.05) (Figure 1C).

Pie chart of expression percentages of phyla in A) COPD 
smokers; B) COPD ex-smokers. C) Comparison of phyla 
RNA abundance (GMPR normalized counts) between smoker 
and ex-smoker with COPD, using Mann–Whitney U-tests; 
IQR = Interquartile range: 25th–75th percentile.

Richness and diversity

No significant differences were identified between COPD 
smokers and ex-smokers, regarding richness and 
alpha-diversity indices (Shannon, Simpson, and inverse 

Table 1.  Participant characteristics.

COPD smokers 
(n = 5)

COPD ex-smokers 
(n = 6) p-value

Age years 61 (58-72) 59 (57-61) 0.46
Sex, (M/F, n) 5/0 6/0 NA
BMI (kg/m2) 25.6 (24.4-27.8) 24.9 (22.4-28.7) 0.93
Smoking (pack-years) 41.5 (40.9-49.3) 43.5 (37.9-49.5) 1
Postbronchodilator FEV1 

(% predicted)
71.9 (69.8-73.2) 61.4 (50.8-70.1) 0.18

Postbronchodilator FEV1/IVC 52.2 (52.1-54.6) 47.2 (41.4-51.2) 0.43
CD3 T cells 109 (76-153) 143 (111.6-169.9) 0.18
CD4 T cells 39 (27-42.5) 80.5 (60.9-118.5) 0.08
CD8 T cells 23.5 (11.5-29.5) 29.0 (15.88-43.63) 0.66
Plasma cells 7 (4-8.5) 14 (8.8-18-9) 0.08
Macrophages 5.5 (4.5-12.5) 23.5 (12.6-34.4) 0.05
Eosinophil cells 0.5 (0-1) 1.5 (1-2.8) 0.14
Neutrophil cells 3 (2.5-5) 7.5 (3.8-10.5) 0.1

Data are presented as median (Interquartile range: 25th-75th percentile); FEV1=Forced expiratory volume in one second; IVC = Inspiratory vital capacity; Inflammatory 
cell counts are presented as median cell number/0.1 mm2; P-values reflect differences between COPD smokers and COPD ex-smokers, based on Mann–Whitney 
U- testing.
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Simpson), based on the expression data of the 69 identified 
microbial contigs (supplementary figure S5).

Microbial transcriptional profile analysis

Transcriptional profiles of the 69 microbial contigs were 
compared between COPD smokers and ex-smokers, based 
on differential RNA abundance. No differences between 
COPD smokers and ex-smokers were identified (FDR >0.05) 
(supplementary Table S1). In addition, expression profiles 
of these microbial contigs were reevaluated in a previous 
larger RNA-seq GLUCOLD dataset consisting of 56 COPD 
subjects (38 smokers; 18 ex-smokers) (patient characteristics 
are described in supplementary Table S3). 47 out of 69 
microbial contigs were identified in this dataset. Again, no 
differences were found between COPD smokers and 
ex-smokers (FDR >0.05) (supplementary Table S4).

Host-microbiome interactions

To determine host-microbiome interactions, transcriptional 
profiles of 69 microbial contigs were compared to bronchial 
inflammatory cell counts, and lung function parameters. No 
significant correlations were identified while maintaining an 
FDR of 0.05 (supplemental Table S2). Further, we deter-
mined microbial-specific host pathways by comparing micro-
bial contig expression to host gene expression per subject. 
The top 50 significant associated host genes per microbial 
contig (FDR < 0.05) were biologically and functionally pro-
filed (supplemental Table S3). Upregulated host gene sets 
were only identified for three microbial contigs. These con-
tigs belonged to the genera Bradyrhizobium sp. (590 

associated host genes), Breivibacterium sp. (402 associated 
host genes), and Roseomonas sp. (1089 associated host genes) 
and included various gene ontology cellular components and 
biological pathways.

Downregulated host genes were identified for the same 
three microbial contigs. Various biological and functional 
profiles were identified for Brevibacterium sp. (119 associated 
host genes), including anatomical structure morphogenesis, 
system development, and axon guidance. No biological and 
functional profiles were identified for downregulated host 
genes, that were associated with Bradyrhizobium and 
Roseomonas spp.

Further, the overlap of up-and downregulated host gene 
sets were surveyed across the different microbes to evaluate 
the presence of uniform host-microbiome interactions. 
Therefore, overlaps between the top 50 host genes, associated 
with Bradyrhizobium sp, Breivibacterium sp., and Roseomonas 
sp., were tested and further biological and functional profiled 
(Table 2). Across the upregulated host gene sets, we iden-
tified eight overlapping genes, including CXCL8, TMEM33, 
LYPLA1, CYB5R4, NAMPT, GOLT1B, LIN7C, FAM91A1. 
Profiling of these genes revealed biological and functional 
profiles related to PERK-mediated unfolded protein response 
(CXCL8, TMEM33) and miR-155-5p (CXCL8, TMEM33, 
LYPLA1, NAMPT, GOLT1B, LIN7C, FAM91A1). Across the 
downregulated host gene sets, no overlap was identified.

Discussion

This study aimed to investigate the bronchial microbiome 
at RNA-level in clinically stable COPD patients and to study 
host-microbiome interactions. To our knowledge, this is the 

Figure 1.  Phyla composition of the bronchial microbiome.
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first study that investigated the viable microbiome in bron-
chial biopsy specimens from COPD subjects, using an unbi-
ased metatranscriptomic approach. Our results indicate that 
RNA-sequencing of bronchial biopsy specimens in stable 
COPD patients yields ultra-low levels of microbial biomass, 
considering that only 0.009% of all generated RNA-seq data 
could be determined as microbiota. Furthermore, our results 
highlight the importance of including negative controls when 
assessing the lung microbiome at the RNA-level, as 94.30% 
of the identified microbial expression were identified as 
likely contaminants during library preparation. Overall, this 
is in line with previous studies, which showed that the lower 
respiratory tract (LRT) harbors low microbiome biomass, 
also in stable COPD patients [19,20]. Our findings indicate 
that current- compared to ex-smoking in COPD patients is 
associated with no differences in bronchial microbiome 
diversity or transcriptional profiles of microbial communities 
at phylum-level as well as individual microbes. Since most 
of the microbial expression data belonged to bacteria, these 
results are in line with previous studies, which also found 
no differences in the lung bacterial microbiome between 
healthy nonsmokers and smokers [2,3]. Importantly, we can-
not draw any conclusions regarding differences of the virome 
or mycobiome, since no viral contigs were detected and the 
identified fungal contigs were removed after contamination 
assessment.

Surprisingly, in our study, we identified Bacillariophyta 
and Philasterides sp. as the most abundant non-bacterial 
phylum and genus, respectively, which requires careful inter-
pretation. Bacillariophyta are unicellular eukaryotic organ-
isms, belonging to the group of diatom and Philasterides 
sp. is a protozoan and marine-known organism [21,22]. No 
previous microbiome study has reported the presence of 
such organisms in the lungs. It could be speculated that its 
presence was missed due to different sequencing and map-
ping methods. Nevertheless, the possibility of false-positive 
signals must be considered as well, suggesting that the 
microbial background noise remains high in bronchial biop-
sies using transcriptomic profiling, despite rigorous contam-
ination assessment. This raises the question of whether other 
lung specimens with a more balanced ratio of microbiota 
to host cells, such as bronchial wash, BAL, or sputum sam-
ples, might be more suitable to analyze the viable microbi-
ome, using transcriptomic profiling [23].

Further, we identified host-microbiome interactions for 
only three out of 69 microbial contigs. The three microbial 
contigs belonged to the genera Bradyrhizobium, Roseomonas, 
and Brevibacterium. Bradyrhizobium sp. is a Gram-negative 
bacterium, which has been identified in BAL samples from 
corticosteroid-sensitive asthma patients as well as patients 
with lung cancer [24,25]. In our study, we found various 
upregulated host-Bradyrhizobium-specific profiles, including 
integrin alpha_V-beta_6 complex, which is a glycoprotein 
involved in wound healing and the pathogenesis of diseases 
including fibrosis and cancer [26]. Roseomonas sp. is a 
Gram-negative bacterium and its presence in the lungs has 
been described in one case report, based on a sputum sam-
ple, causing a secondary bacterial infection in a patient with 
pulmonary tuberculosis [27]. In our study, we found incon-
clusive upregulated host Roseomonas-specific profiles, such 
as transport or organic substance transport. Brevibacterium 
sp. is a Gram-positive bacterium, which colonizes the skin 
[28]. Although it has been identified in oropharyngeal swabs 
from asthma and COPD patients, this organism has not 
been described in any other lung microbiome study, yet 
[29]. In our study, we found inconclusive up-and downreg-
ulated host Brevibacterium-specific profiles, including cyto-
plasm, system development, and axon guidance.

Interestingly, we identified upregulated uniform 
host-microbiome interactions, related to the simultaneous 
presence of Bradyrhizobium, Roseomonas, Brevibacterium.spp., 
including PERK-mediated unfolded protein response (UPR) 
and miR-155-5p. The UPR is a cellular pathway that is 
activated upon endoplasmic reticulum (ER) stress resulting 
from e.g. accumulation of misfolded proteins and is aimed 
at restoring homeostasis [30,31]. The UPR can be triggered 
by numerous endogenous and exogenous conditions, includ-
ing pathogen or smoking exposure, and is known to be 
involved in regulating immune responses, also in pulmonary 
pathology [30,32]. Therefore, our results suggest that either 
the presence of these microbes is associated with this type 
of host cellular stress responses or that the UPR is a pre-
requisite allowing the presence of these microbial species. 
Importantly, no causality can be derived from the identified 
associations between host and microbial transcriptional pro-
files. miR-155-5p is a noncoding microRNA and a gene 
regulator in immune system function [33]. It has been 
shown that smoke-induced pulmonary inflammation is atten-
uated in miR-155- deficient mice, highlighting its potential 
role in the pathogenesis of COPD [34]. Therefore, it can 
be speculated that the presence of Bradyrhizobium, 
Roseomonas, Brevibacterium. spp in bronchial airways might 
be involved in this pathway. Importantly, no causal conclu-
sions can be drawn due to the cross-sectional study design.

Although we identified plausible uniform host-microbiome 
interactions concerning these bacteria, future studies are 
needed to confirm these findings as well as their presence 
in the lungs. These bacteria have been described in previous 
reagent contamination studies and remain suspicious as 
being false negative signals, despite rigorous contamination 
assessment in our study [35–37].

There are several limitations related to our study as well 
as future recommendations. We aimed to obtain a biological 

Table 2. U niform host-microbiome interactions related to the simultaneous 
presence of Bradyrhizobium sp, Breivibacterium sp., and Roseomonas sp. 
contigs.

Overlapping genes 
(based on top 50 genes) Biological and functional profiles (p < 0.05)

Upregulated 
CXCL8 
TMEM33 
LYPLA1 
CYB5R4 
NAMPT 
GOLT1B 
LIN7C 
FAM91A1

•	 PERK-mediated unfolded protein 
response (source: GO: BP)

•	 miR-155-5p (source: MIRNA)

Downregulated 
No overlap

GO:BP = gene ontology biological process; MIRNA = miRTarBase.
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signature of the microbiome using an RNA-seq dataset, which 
was initially intended to investigate host gene expression 
profiles. Therefore, a non-microbiome-specific RNA prepara-
tion kit was used during sample processing. Since we iden-
tified only ultra-low levels of microbial biomass, future studies 
should consider using microbiome-enrichment RNA prepa-
ration kits to increase microbial signals. In addition, we would 
suggest subdividing collected samples for distinct microbiome 
and host RNA extraction and processing to optimize host 
and microbiome analyses. Further, future studies should con-
sider to include positive controls, next to negative controls, 
to optimize further sample-to-sample normalization of the 
microbiome as well as to evaluate the limit of detection and 
the efficiency of library preparation [37].

Furthermore, microbiome differences were assessed in 
bronchial biopsies based on a relatively small number of 
COPD smokers and ex-smokers. Here, it is important to 
realize that different airway sampling methods are likely to 
provide divergent insight into smoking effects on the micro-
biome, as these are consistent with the niche-specificity of 
the airway tract [38]. Besides, our study did not include 
never-smokers, which does not allow concluding general 
smoking effects on the microbiome, but only on smoking 
status. Further, our study failed to evaluate RNA signals 
from viruses. It can be speculated that viral signals were 
missed due to our rigorous sequence mapping approach or 
due to the ultra-low levels of microbial biomass in bronchial 
biopsies. Nevertheless, airway DNA- and RNA-based viruses 
are of particular interest in airway microbiome research 
and require further scientific attention concerning their 
detection by metagenomic and -transcriptomic sequencing. 
Future studies need to consider that their identification by 
metagenomic/-transcriptomic approaches require optimized 
strategies since the choice of sequencing platforms dictates 
the quality of viral transcriptome profiling [39,40].

Conclusion

In conclusion, our results show that metatranscriptomic 
profiling in bronchial biopsy samples from stable COPD 
patients yields ultra-low levels of microbial mass. Further, 
this study illustrates the potential of using transcriptional 
profiling of the host and microbiome to gain more insight 
into their interaction in the airways.
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