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Abstract
A botnet is a network of remotely-controlled infected computers that can send spam, spread viruses, or stage denial-of-service
attacks, without the consent of the computer owners. Since the beginning of the 21st century, botnet activities have steadily
increased, becoming one of the major concerns for Internet security. In fact, botnet activities are becoming more and more
difficult to be detected, because they make use of Peer-to-Peer protocols (eMule, Torrent, Frostwire, Vuze, Skype and many
others). To improve the detectability of botnet activities, this paper introduces the idea of association analysis in the field of
data mining, and proposes a system to detect botnets based on the FP-growth (Frequent Pattern Tree) frequent item mining
algorithm. The detection system is composed of three parts: packet collection processing, rule mining, and statistical analysis
of rules. Its characteristic feature is the rule-based classification of different botnet behaviors in a fast and unsupervised
fashion. The effectiveness of the approach is validated in a scenario with 11 Peer-to-Peer host PCs, 42063 Non-Peer-to-Peer
host PCs, and 17 host PCs with three different botnet activities (Storm, Waledac and Zeus). The recognition accuracy of the
proposed architecture is shown to be above 94%. The proposed method is shown to improve the results reported in literature.

Keywords Botnet detection · Internet security · Frequent pattern tree · Data mining

Introduction

With the continuous development of the Internet, the network
has expanded from an interconnection of PCs to a mobile
Internet.With the advent of 5G technology, further expansion
is expected towards the Internet of Things and the Internet of
Everything scenarios [1]. As a result, the amount of informa-
tion exchanged over the Internet has reached unprecedented
levels, but so have the threats and the need for security.

Today, botnets have become one of the major threats to
Internet security [25]. A botnet attack typically occurs as fol-
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lows: attackers invade a large number of hosts and implant
virus programs through various software equipment vulner-
abilities, sending phishing emails, or brute force cracking.
Any host that is infected becomes a member of the botnet,
and falls under the control of the bot virus program. A bot-
net can eventually stage several malicious activities, such
as sending spam, stealing private information, or launching
denial-of-service (DoS) attacks. Because the infected host
is typically referred to as a ‘zombie host’, another popular
name for a botnet is ‘zombie network’.

The first botnet program was SubSeven 2.1 and was cre-
ated in June 1999 (the interested reader can check https://
f-secure.com/v-descs/subseven.shtml). SubSeven 2.1 relied
on the IRC (Internet Relay Chat) protocol to control a large
number of zombie hosts. Since 1999, a large number of bot
virus programs based on the IRCprotocol have appeared, and
examples includeGTBot, Sdbot, etc. [4,6]. Fortunately, IRC-
based botnets can be easily defeated by shutting down and
restarting the IRC server. However, attackers have found new
protocols through which delivering the botnet activities, so
that botnets based on HTTP protocol and P2P (Peer-to-Peer)
protocol have appeared [24,32]. The latter have the most
dangerous characteristics in terms of decentralization and
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strong resilience, since P2P-based botnets cannot be easily
shut down like IRC-based botnets and its activities are more
difficult to detect [26,27]. The emergence of more and more
P2P-based botnet programs poses a great threat to Internet
security [5,20,30]. Dangerous botnet activities are also more
andmore observed in Internet-of-Things (IoT) environments
[9,29] and social Internet-of-Things (IoT) environments [28].

Popular detection methods for P2P-based botnets are
signature-based intrusion detection systems [8], which are
similar to antivirus software and firewalls. However, packet
encryption will invalidate such methods. The authors in [21]
proposed a detection model, named detection by mining
regional periodicity (DMRP), based on capturing the event
time series, mining the hidden periodicity of host behaviors,
and evaluating the mined periodic patterns to identify P2P
bot traffic. The authors of [18] proposed a three-layer filter-
ing botnet detection system, which is responsible for packet
filtering, P2P application packet filtering, and P2P botnet
detection, respectively. High accuracy with low false alarm
rate have been reported by using such periodicity basedmeth-
ods, although the behavior characteristics considered for the
botnet is too simplistic as compared to real-life botnets.

In order to handle the detection of more complex bot-
net activities, methods based on machine learning [2,10–12,
14,16,17,23] have been commonly used. A brief account
for these methods is given hereafter: [16,17] combined a
stream-based method and a session-based method to design
a two-layer structure machine learning classifier that can
distinguish between zombie P2P activities and normal P2P
activities. Note that [16] improves the work of [17]. The
method in [10] clustered the normal and abnormal P2P
behavior; [23] compared, based on existing datasets, five
commonly-used machine learning techniques for online bot-
net detection. The results of the evaluation show that it
is possible to detect effectively botnets during the botnet
Command-and-Control (C&C) phase and before bots launch
their attacks using traffic behaviors only. Based on the char-
acteristics of unlimited network data flow and drift concept,
[12] proposed a multi-layer multi-classifier group detection
system based on the research of single classifier and multi-
classifier to store the optimal K -classifiers. All machine
learning algorithms are faced with similar problems, most
notably, the long training time [11,14]. Another crucial prob-
lem is the need for labeled examples, i.e., each classifier must
be trained for a specific type of botnet, which makes the
classifier in general unable to handle new/unknown botnet
activities for which labelled examples are unavailable [29].

In view of this observation, methods in [7,13,31,32] are
all based on botnet behavior, i.e. they classified botnet behav-
ior based on time intervals without having seen a complete
network flow. There are, however, several challenges which
must be overcome to realize a full implementation of such
behaviour-based detection systems, such as the lack of scal-

ability to huge datasets, and the need for installing individual
detectors on every network device and on any networks with
more than a few hundred nodes.

The advantages andflaws of the differentmethods adopted
in the literature, motivate us towards pursuing a different
approach to the detection of botnet activities. In this paper,we
exploit and tailor the Frequent Pattern Tree to botnet detec-
tion. Frequent Pattern Tree is a data mining method used
for frequent pattern mining (also known as Association Rule
Mining). The purpose of the algorithm is to discover fre-
quent patterns or associations from data sets. Because the
method can automatically detect rules, it does not need to
be trained from specifically labeled botnet activities as in
machine learning approaches. In addition, because the data
set is stored in a tree structure called Frequent Pattern Tree,
frequent items can be found by simply traversing the data
set twice. The tree structure results in higher efficiency and
lower runtime cost as compared to the other data mining
algorithms. For example, it was shown that when the num-
ber of records in the data set is relatively large, the Frequent
Pattern Tree algorithm has a significant advantage over the
Apriori algorithm in terms of speed [15]. Speed and memory
efficiency also makes the Frequent Pattern Tree algorithm
widely used in search engines [3].

Most botnet detection approaches rely on machine learn-
ing algorithms, which have a long training time cost and
are targeted to deal with known (labeled) botnet types. In
the presence on unknown botnet types and large amount of
data, the performance of machine learning methods might
deteriorate seriously. The contribution of this article is the
first introduction of the frequent item mining algorithm Fre-
quent Pattern Tree in the field of botnet detection. The
proposed approach relies on discovering essential character-
istics of scriptability and frequent similarity in the underlying
communication of P2P botnets: therefore, it can cope with
different types of P2P botnets without the need for the differ-
ent types to be labeled. In fact, it is shown via the PeerRush
Dataset [22] that botnet activities can be detected and clas-
sified automatically, without presetting or pre-training for
specific botnet types. Also, the proposed approach can pro-
cess tens of millions of data sets in around half a minute,
which is again shown via the PeerRush Dataset [22] with
tens of millions of data. Extensive experiments show that, as
compared with machine learning methods reported in liter-
ature for the same data set, the proposed methods improves
in terms of efficiency and accuracy.

The remainder of this paper is organized as follows. The
Frequent Pattern Tree data mining algorithm is recalled in
second section. In third section, we introduce the implemen-
tation steps of the proposed detection system. Experimental
results are illustrated in fourth section. Followed by conclu-
sions in last section and evaluation of ideas for future work.
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Algorithm 1 Frequent Pattern Tree: blacknote that an refers
to the n-th element in A, rm refers to the m-th element in R,
listg refers to the g-th element in List
1: Input: Record set R with attributes belongs to attribute set A
2: Output: Rule set containing frequent item pair set
3: {a1,a2,a3,..,an}←Attribute set A
4: {r1,r2,blackr3,..,rm}←Record set R
5: Cai←Count of Attribute ai
6: S←Minimum Support
7: Bai←Conditional Pattern Base of ai
8: C←Item Header List i
9: List={list1,list2,..,listg}←Item Header Table
10: for ri in R do
11: for aj in A do
12: Caj++

13: for ai in A do
14: if Cai<S then
15: discard ai;
16: for ri in R do
17: sort Ai in descending order by Caj (aj ∈ Ai) → new ri;
18: AddRecordIntoFPTree(new ri);
19: for listi in List do
20: Bai = ExtractConditionalPatternBase(listi);
21: Bai = MiningRules(Bai);
22: if Bai is single then
23: continue;
24: else
25: goto 21;

Frequent pattern tree

This section is devoted to giving a background on the Fre-
quent Pattern Tree algorithm. Preliminary notions related to
Frequent Pattern Tree are the following:

• Attribute: is an item which could appear in a record.
For example, all items in a shopping list can be used
as attributes of the shopping record.

• Record: is a collection of multiple attributes.
• Minimum support: is the minimum number of occur-
rences that the considered attributes should have.

• Conditional pattern base: is the set of all prefix paths
ending with the searched element.

Our study used the Frequent Pattern Tree algorithm jar
package provided in the open source machine learning soft-
ware Weka. The process of mining frequent item sets by
Frequent Pattern Tree algorithm can be divided into three
steps (cf. Algorithm 1):

(1) Preprocessing of Data set

(a) Perform the first scan of the data set and count the
number of occurrences of each attribute;

(b) Filter the attribute appearing in the data set according
to the set minimum support degree and remove the

attribute whose number of occurrences is less than
the minimum support;

(c) Perform a second scan of the data set and readjust the
order of attributes in each record from high to low
according to the number of occurrences of attribute.

(2) Build the Frequent Pattern Tree

(a) Traverse all records in the data set, starting from the
root node, add the corresponding nodes according to
the attributes in the records, and add the first occur-
rence and node entries in the entry header table;

(b) If the node with the same attributes already exists, the
count value of the corresponding node is increased.
If it exists in the item header table, linked list node is
added to the necklace table in the item header table.

(3) Mining frequent item sets from Frequent Pattern Tree

(a) Starting from the end of the item header table, for
each frequent item (that is, the attribute that meets
theminimum support), extract the conditional pattern
base from the Frequent Pattern Tree;

(b) Construct the Frequent Pattern Tree with the condi-
tional pattern base of frequent items (the conditional
pattern base at this time is equivalent to the record
items of the data set);

(c) Repeat steps (a) and (b) until only one path is
included.

Methodology

Based on the frequent item set mining algorithm, we propose
a botnet detection system comprising the following three
parts (cf. Fig. 1).

a) Collection and preprocessing of network data packets;
b) Rules mining using Frequent Pattern Tree algorithm

module;
c) Statistical analysis rule set to determine the bot host IP.

Preprocessing of data set

Let us introduce some notions about data processing:

1. pcap: is a common file format for storing network pack-
ets. Collected packets are stored in a pcap filewith a name
like xxx.pcap.

2. arff : is the specified dataset format that Weka software
can read. Below is an example of arff file.

@relation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric

123



764 Complex & Intelligent Systems (2022) 8:761–769

Fig. 1 Scheme of the proposed
methodology

@attribute humidity numeric
@attribute windy {true, false}
@attribute play {yes, no}
@data
rainy,10,20,true,no
sunny,20,14,false,yes
...

The collection of network data packets requires Winpcap
library (on Window platform) or Libpcap library (on Linux
platform). The Winpcap (Libpcap) library integrates rele-
vant function interfaces for sniffing and collecting network
data packets from network adapters (network cards). After
sniffing the data packet, the attributes of the data packet are
extracted and stored into the specified file according to the
arff sparse format specified byWeka. Each network flow cor-
responds to a record. In this work, the pcap packet files are
obtained from the PeerRush [22] dataset (many other pcap
datasets are available online): such datasets comprise normal
and abnormal network traffic data over a few weeks, where
the data have already been preprocessed into a pcap format.
It must be remarked that Processing such pcap file into the
arff sparse format takes around one day for the PeerRush
dataset (which is composed of tens of millions of data). This
amount to less than 0.01s per data: therefore, when process-
ing data online, this processing time will be so fast that can
be neglected.

Mining rules using frequent pattern tree algorithm

The Frequent Pattern Tree algorithm has two important
requirements for the data set: the data set must be in a sparse
format and the attributes in the data set must be discrete. The
processing of the dataset into arff sparse format guarantees
that such requirements are satisfied.

Statistical analysis of Rule set

After mining frequent items through the Frequent Pattern
Tree algorithm, the data set outputs all the rules that meet the
set minimum support. The rule set at this time may contain
all kinds of rules that are combined between all characteristic
attribute items. In this paper, in view of the need to determine
the identity of the host, to ensure that the system can detect
the IP of the zombie host that exists in the local area network,
so the rule set is first filtered. Because the IP address string
format has a special structure, we use regular expression

((25[0 − 5]‖2[0 − 4]d‖((1d{2})‖([1 − 9]?d))).)

{3}(25[0 − 5]‖2[0 − 4]d‖((1d{2})‖([1 − 9]?d)))

to filter out all the rule lines that match the IP address string
format, and record each independent IP address while count-
ing the independent IP addresses. blackRegular expression
is a tool to find strings fitting the pattern set by the user. The
pattern under consideration in this work is a pattern to find
an IP address. The meaning of the regular expression is the
following:

• Standard IP addresses (e.g. 192.162.1.1) must satisfied
the rule that each number is between 0 and 255, i.e. 0 −
255.0− 255.0− 255.0− 255 (for example, 256.1.1.1 is
not an IP address);

• [0−5] indicates one character among0, 1, 2, 3, 4 (similar
for [0-4], [1-9]);

• d represents a one-digit number and dn represents an
n-digit number;

• ‖ represent the logical ‘or’;
• () combines subpatterns into one group;
• ? checks if the char before ? will appear or not: if it
appears, it must only appear once (for example, 12?4
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Algorithm 2 Statistical analysis of rules
1: Input: Rule set mined by Frequent Pattern Tree algorithm
2: Output: Bot IP list
3: Data: arff sparse format dataset D containing records
4: R←Rule set mined by Frequent Pattern Tree algorithm
5: Rf←Rule set filtered by IP address regular expression
6: M=[IP1:C1,IP2:C2,IP3:C3,..]←IP addresses Map with

Count
7: C←The number of related rules to determine whether it is a zombie

host IP
8: BotIP←A list contains bot IP judged by the algorithm
9: for r in R do
10: if r contains IP address then
11: Rf.append(r);
12: M[r.IP]++;
13: if M[r.IP]>C then
14: r.IP is a bot IP address;
15: BotIP.add(r.IP);

includes both 14 and 124, but excludes 1224; [1 − 9]?d
includes both 0 − 9 and 10 − 99).

Also refer to https://www.cuminas.jp/sdk/regularExpression.
html for more details on regular expressions.

When the rule set has been screened and counted, it will
enter the judgment. If the rule count value associated with
a host’s IP address exceeds the threshold C, the host will be
judged as a zombie host, issue a warning and record the IP
address for the network administrator to conduct subsequent
security investigations.

Experiments and evaluation

Dataset description

Our study used the PeerRush Dataset (2018) [22], which is
composed of three data sets (see Fig. 2)

1. Normal P2P application data set (with data collected from
11 P2P hosts);

2. Three P2P zombie virus program data sets (with data
collected from13 hosts infected by Storm, 1 host infected
by Waledac and 3 hosts infected by Zeus);

3. Non-P2P application data set (with data collected from
42,063 hosts).

The first part of the data packet is generated by a local
area network consisting of 11 hosts set up by the PeerRush
team. These 11 hosts run 5 popular P2P applications (eMule,
µ-Torrent, Frostwire, Vuze, Skype). The application adopts
the custom P2P protocol, which ensures the diversification of
the P2P application behavior and the underlying mode of the
data packet. In order to ensure the human-like characteristics
of the data set, the PeerRush team also adopted AutoIt script

software to interact with the P2P application to realize the
operation of downloading files. The second part of the Peer-
Rush Dataset uses 17 hosts infected by representative P2P
botnet virus programs, namely Storm (13 hosts), Waledac
(1 host) and Zeus (3 hosts). The third part of the PeerRush
Dataset is collected in a separate local area network with
42,063 hosts. In this part of the dataset the use of Snort was
combined with existing P2P detection method to filter out
suspicious P2P application traffic.

Results and evaluation

The crucial parameter to be selected for the Frequent Pattern
Tree algorithm is the minimum support S. A too small min-
imum support level will mine many worthless rules, which
wastes unnecessary calculation time, and might also cause
the rule analysis link to become long. On the other hands,
if the minimum support level is set too large, it might avoid
mining some valuable rules. Our study tested different mini-
mum support in the range [0.001: 0.0005: 0.004] (fractional
form): since the total number of examples in the experiment
is 33,862,225, this corresponds to [33,862, 50,793, 67,724,
84,655, 101,586, 118,517, 135,448] count types. The frac-
tional form of minimum support means that the number of
attribute instances in the total number of instances must be
greater than or equal to the minimum support before it is dis-
carded by the algorithm.Weuse regular expression extraction
to experiment with rules related to IP addresses in the mining
rule results. The host is identified by IP address, as shown in
the results of Table 1.

Since there are 17 bot hosts in total, from the data Table 1,
it can be seen that for all values ofminimum support, 100%of
the zombie hosts (13 hosts infected by Storm, 1 host infected
byWaledac and 3 hosts infected by Zeus) are included in the
rule results mined by the Frequent Pattern Tree algorithm.
It must be also noticed that all the related rule number of
each bot IP address are greater than 0, which means that the
method blackincludes all the bot hosts; it is the rule number
that eventually decides whether it is a bot or not.

However, when the minimum support is low (0.001), 267
rules of normal hosts have been mined (false alarms). More
specifically, 14 hosts out of the 11+42,063 hosts are detected
as infected: note that there is a rule related to the Normal
host with the IP of 139.205.84.245, and there are 19 rules
for each of the 14 hosts with 66.154.83. [130–133, 135, 137,
139, 140–142, 145, 147, 150, 152]. blackThe false alarm rate
at this time is 46.875% blackwhen the threshold C is set to
10. If C = 10, any IPwhose related rules is greater than C, will
be considered as a bot IP. As a result, because 19>C the 14
hosts with IP 66.154.83. [130–133, 135, 137, 139, 140–142,
145, 147, 150, 152] are blackconsidered as bots even though
they are actually not.
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Fig. 2 Bot activities scenario

Table 1 Number of detected bot
rules and other performance
measures

Minimum support 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004
/33862 /50793 /67724 /84655 /101586 /118517 /135448

Processing

time (s) 17 17 16 16 16 16 16

Number of IP

Related rules 606 322 306 273 243 228 227

/Total number of rules /868 /460 /431 /394 /364 /348 /347

Activity Number of detected bot rules

Storm

66.154.80.101 20 20 20 15 15 15 15

66.154.80.105 20 20 20 20 15 15 15

66.154.80.111 20 20 20 15 15 15 15

66.154.80.125 20 20 20 15 15 15 15

66.154.83.113 20 20 20 15 15 15 15

66.154.83.107 20 20 20 20 15 15 15

66.154.83.138 32 20 20 15 15 15 15

66.154.83.80 20 20 20 20 15 15 15

66.154.87.39 20 20 20 20 15 15 15

66.154.87.41 20 20 20 20 15 15 15

66.154.87.57 20 20 20 20 15 15 15

66.154.87.58 20 20 15 15 15 15 15

66.154.87.61 20 20 20 15 15 15 15

Zeus

10.0.2.15 16 11 3 3 3 2 2

Waledac

192.168.58.136 17 17 16 15 15 10 10

192.168.58.137 17 17 16 15 15 10 10

192.168.58.150 17 17 16 15 15 11 10

Normal

267 0 0 0 0 0 0
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Table 2 Results with C = 10
and C = 3

Minimum support 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004
/33,862 /50,793 /67,724 /84,655 /101,586 /118,517 /135,448

C = 10

Accuracy (%) 99.967 100 99.997 99.997 99.997 99.997 99.997

Precision (%) 54.839 100 100 100 100 100 100

FPR (%) 0.03 0 0 0 0 0 0

FNR (%) 0 0 5.900 5.900 5.900 5.900 5.900

C = 3

Accuracy (%) 99.967 100 100 100 100 99.997 99.997

Precision (%) 54.839 100 100 100 100 100 100

FPR (%) 0.03 0 0 0 0 0 0

FNR (%) 0 0 0 0 0 5.900 5.900

When blackthe minimum support is greater than 0.001,
no false alarms will occur: it is also worth noticing that the
number of rules needed to characterize a botnet typically
decreases when increasing the minimum support. Except for
the Zeus zombie host with an IP of 10.0.2.15, the number of
rules is greatly reduced, if the minimum support is greater
than blackor equal to 0.0015.

blackTherefore, another parameter that determines the
detection effect of the system is the threshold C of the num-
ber of independent IP-related rules determined to be a zombie
host: when the independent IP-related rule exceeds C, it is
determined as a zombie host. The IP is recorded, and then
the system issues a warning indicating that a suspicious host
is found in the network. We tested C = 10 and C = 3, shown
in Table 2. To quantify the performance more accurately, we
follow the four commonly used standards for measuring the
effectiveness of models in the field of machine learning [19]:

• Accuracy: Proportion of correctly judged results (TP +
TN) / (TP + FN + FP + TN);

• Precision: the proportion of real zombies among all hosts
determined as zombies is TP / (TP + FP);

• False positive rate (FPR): the proportion of normal hosts
mistakenly judged as zombie hosts FP / (FP + TN);

• False alarm rate (FNR): The ratio of zombies hosts
wrongly judged as normal hosts FN / (TP + FN).

The following conclusions can be drawn from the results in
Table 2:

1. When the Frequent Pattern Tree mining algorithm sup-
port level is set too low, it mines worthless rules con-
taining the IP addresses of normal hosts, resulting in
unsatisfactory detection result. Although a zero false
alarm rate is guaranteed and no zombie host is spared,
many normal hosts are also judged as zombie hosts,
resulting in a high false alarm rate (0.4375);

2. The best minimum support is 0.0015, meaning that only
attributes with more than 50,000 are considered by the
algorithm.This gives the ideal state of 100%accuracy and
100% precision, and there are no missing or false alarms.
That is to say, the parameter setting at this time can ensure
a greater degree of separation between the botnet host
and the normal host, and without losing the rules of the
botnet host, as far as possible, limit the occurrence of
normal host worthless rules;

3. When the minimum support is further increased, a low
false negative situation occurs. After analysis, all this
happens because the number of Zeus botnet flow pack-
ets in the overall data set is too small compared to other
Storm andWaledac, so the strictminimum supportmakes
the Zeus botnet IP related rules reduce below the thresh-
old. Therefore, the choice of minimum support is very
important for the detection effect of the detection system
designed in this paper.

When C = 3, the proposed method can recognize 100%
bot IP without any false alarm if the minimum support is
set to 0.0015, 0.002, 0.0025 or 0.003. Our method improves
reported results for the same dataset [16]. This is clarified in
the comparisons of Table 3 for different values of S. When
C = 10, the proposed method has identical results as C = 3
in terms of Accuracy, Precision, FPR and FNR, if the min-
imum support is set to 0.001, 0.0015, 0.0035, 0.004. The
only differences are when the minimum support is set to
0.002, 0.0025, 0.003. In this case C = 10 has same Precision
and FPR, but slightly worse accuracy (99.997 % instead of
100%) and higher FNR (i.e. some zombie hosts are wrongly
judged as normal hosts). Taking this into account, the most
robust minimum support level is 0.0015, because in this case
both C = 3 and C = 10 work perfectly.
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Table 3 Comparative results

Malicious Benign

Decision trees

Precision (%) 95.3 99.7

Recall (%) 93.4 99.8

FPR (%) 0.2 6.6

Random forest

Precision (%) 95.3 99.8

Recall (%) 94.9 99.8

FPR (%) 0.2 5.1

Bayesian network

Precision (%) 91.9 99.5

Recall (%) 88.4 99.7

FPR (%) 0.3 11.6

Proposed (S = 0.0015)

Precision (%) 100 100

Recall (%) 100 100

FPR (%) 0

Proposed (S = 0.002–0.004)

Precision (%) 100 99.997

Recall (%) 94.117 100

FPR (%) 0 5.882

Conclusion and future work

In this paper, the use of frequent item mining to detect
P2P botnets has been investigated. The proposed architecture
has shown promising values of accuracy, and the following
points can be considered to further improve our investiga-
tion. First, the data set used in this article contains only three
common P2P botnets, Storm, Zeus, and Waledac. It is of
interest to consider more botnet activities possibly includ-
ing unknown botnets. Second, when selecting attributes, we
have considered the characteristics of the source IP address
SrcIP, source port number SrcPort, destination port
number DstPort, transmission protocol, and the length of
the first packet, and it is of interest to consider more attributes
(packet number in a flow, bytes in a flow, average packet
length in a flow etc.), since a small number of attributes may
lose some hidden rules not being mined. Third, we have not
considered that the network equipment may change the IP
after offline due to the DHCP protocol. In order to address
this point, it may be necessary to add aMAC address for dual
identity binding in the future.
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