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On Training Traffic Predictors via Broad Learning
Structures: A Benchmark Study

Di Liu™, Simone Baldi

, Senior Member, IEEE, Wenwu Yu

, Senior Member, IEEE,

Jinde Cao"™, Fellow, IEEE, and Wei Huang

Abstract—A fast architecture for real-time (i.e., minute-based)
training of a traffic predictor is studied, based on the so-called
broad learning system (BLS) paradigm. The study uses various
traffic datasets by the California Department of Transportation,
and employs a variety of standard algorithms (LASSO regres-
sion, shallow and deep neural networks, stacked autoencoders,
convolutional, and recurrent neural networks) for comparison
purposes: all algorithms are implemented in MATLAB on the
same computing platform. The study demonstrates a BLS train-
ing process two-three orders of magnitude faster (tens of seconds
against tens-hundreds of thousands of seconds), allowing unprece-
dented real-time capabilities. Additional comparisons with the
extreme learning machine architecture, a learning algorithm
sharing some features with BLS, confirm the fast training of
least-square training as compared to gradient training.

Index Terms—Broad learning system (BLS), least-square meth-
ods, real-time software, real-time training, traffic flow prediction.

I. INTRODUCTION

RAFFIC congestion is becoming a serious problem
due to the increasing traffic volumes and to the chal-
lenges of traffic management [1], [2]. It has been shown that
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precise short-term traffic prediction (15—40-min ahead) can
ease congestion by helping travelers in planning their path
and traffic managers in implementing correct policies [3]-
[6]. Deep learning architectures have emerged as a way to
tackle the multipattern traffic data, such as stacked autoen-
coders (SAEs) with optimized structure [7], [8]; extreme
learning machines (ELMs) with optimized configuration [9],
[10]; neural networks with optimized structure [11]; deep neu-
ral networks (DNNs) augmented with extra features [12] or
vector correction [13]; and deep belief networks combined
with data-fusion [14] or regression layers [15]. The state-
of-the-art essentially highlights the huge efforts needed for
optimizing the deep structure or ad-hoc combining different
learning structures (see also [16]—[18]). In the authors’ experi-
ence [19]-[22], at least two challenges arise. First, optimizing
the configuration of a deep architecture is a cumbersome
task, which requires long trial and errors and high exper-
tise [23]. Second, deep structures must be trained offline using
gradient methods and/or dedicated graphical processing units
(GPUs) [24]: if the generalization capabilities of the prediction
are not satisfactory, the network structure must be reconfigured
and the long training repeated. The combination of these two
challenges prevent effective traffic predictors.

This work is motivated by the need for architectures with
less time-consuming training capabilities. The recent broad
learning system (BLS) framework [25]-[27] seems a promis-
ing one toward this need. Instead of improving prediction by
deepening the structure, BLS extends the structure in width,
allowing training via faster least-square methods [28], [29]. In
this aspect, BLS shares some characteristics with ELMs [30],
[31] which also use least-square methods. The distinguish-
ing feature of BLS are incremental learning algorithms that
do not require complete retraining when the network is
expanded [32], [33]. To go beyond a mere application of
BLS, extensive comparative experiments against state-of-the-
art algorithms (LASSO regression, SAEs, shallow, deep,
convolutional, and recurrent neural networks) are presented,
using various traffic datasets by the California Department
of Transportation (Caltrans), with flow/speed/occupancy data.
The comparisons show that, when all algorithms are imple-
mented in the same MATLAB computing platform, the train-
ing time of BLS is two-three orders of magnitude faster (tens
of seconds instead of tens-hundreds of thousands of seconds),
which paves the way for unprecedented real-time training
capabilities. Such a fast training is achieved without sacri-
ficing the learning performance: the prediction error of BLS

2168-2216 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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is competitive against state-of-the-art algorithms.! Additional
comparisons with the ELM architecture confirm the fast train-
ing of least-square methods as compared to gradient-based
methods.

The remainder of this article is organized as follows.
Section II recalls BLS. Sections III and IV present the traffic
prediction test cases with extensive comparisons. Section V
concludes the work.

II. BACKGROUND ON BROAD LEARNING SYSTEM

Let us give a quick overview of BLS, and refer to [25]
for more details. BLS is constructed upon a random vector
functional-link network structure [34], and comprises feature
nodes and enhancement nodes arranged in a flat network.
Feature nodes are nonlinear transformations of the input data,
while enhancement nodes are nonlinear transformations of the
feature node data. Let X € R *M be the input training data,
Y € RSun*N pe the target training data, with S, the number
of samples, and M, N the input and output dimensions. Let us
define the ith mapped feature node as

Zi=¢i(XW€i+bei)’ i=1,...,n (1)

where ¢; is the activation function, whose weights W, and
bias b, are randomly generated. The set of feature nodes Z" =
[Z1, Z>, ..., Z,] becomes the input to the enhancement nodes.
Let us define the jth enhancement node as

Hj=§(Z'"Wy +by). j=1.2,....m 2

where ¢; is the activation function, whose weights Whj and
bias by, are also randomly generated. The set of enhancement
nodes is H™ = [H, H», ..., H,], and the BLS structure is

Y=1[Zi,....Zy\Hy, ..., Ho )W) = [Z"|H"]W}.  (3)

After defining A" = [Z"|H™], training is obtained via the
pseudoinverse/least-square regression [25], [35]

Wy = )y =[an ar ] @’y @

where A is a positive constant used for regularization. The
resulting one-shot BLS is summarized in Algorithm 1.

Remark 1: Similarly to BLS, ELMs use nodes with ran-
domly generated weights, organized hierarchically, with only
the last layer trained via least-square regression [9], [10].
Actually, one-shot BLS and ELMs can be thought as two vari-
ants of the random vector functional-link network idea [34],
where training via least-square regression was proposed. This
work considers a two-layer implementation of ELM, with the
feature layer and the enhancement layer organized hierarchi-
cally, with only the enhancement layer trained via least-square
regression.

As compared to ELMs, the distinguishing feature of BLS
is to maintain a flat structure, i.e., the feature node and the
enhancement node layers are kept flat and both connected to
the output layer. This helps avoiding complete retraining when
the network is expanded, as explained hereafter.

'Even after tuning all algorithms as best as we could, it is possible that
more extensive tuning leads to better performance than the one we achieved.
However, such tuning would be extremely time-consuming (months), with
several trial-and-error experiments for each algorithm.

Algorithm 1 BLS: One-Shot Training
1: Given. Training data X (k) and target matrix Y(k), k =
L., Suum
2: Feature group.
fori=1,i<n
Randomly initialize W,,, b,,
Compute Z; = ¢;(XWe, + be;)
Obtain the feature mapping group

Zn = [Z11227 7Zl1]

3: Enhancement group.
forj=1,j<m
Randomly initialize Whj, bhj
Compute Hj = §j(Z"Wy; + by)
Obtain the enhancement nodes group

Hm = [HlsH27 »Hm]

4: Take A” = [Z"|H"]
5: One-shot training. Compute weights

W = [(A™MTA™ 450 @AMy

6: Given. Testing data X;(k) and target matrix Y;(k), k =
1, ooy Stoum
7. Feature group.
fori=1,i<n
Complne Zt,i = (pi(XtWe,' + bL’[)
Obtain the feature mapping group
7t =1Zi1.Zios -+ s Ziad

8: Enhancement group.
forj=1,j<m
Compute Hy; = §i(Z Wy, + b))
Obtain the enhancement nodes group

H;n = [Ht,l ) HI,2’ T, Ht,m]

9: Take Ay, = [Z}'|H]"]
10: One-shot testing. Compute estimates

U o am m
Yi =AW,

A. Incremental Broad Learning System

If a given BLS structure cannot provide sufficient prediction
accuracy, the structure is enhanced by expanding the network
in width. There are two main expansion strategies: 1) increase
the number of enhancement nodes and 2) increase the number
of feature nodes. Let us only recall the first one for lack of
space. Let H,, 41 be the enhancement nodes to be added. Then

A:?Jrl = [A:zn|§m+l (ZnWhmH +bhm+l)] = [A?|Hm+l] )

with randomly generated enhancement weights Wy, ., b, .
The incremental BLS can be described as
Y = [A,’;l|Hm+1][W,’;’|W,T+‘]. (6)

Authorized licensed use limited to: University of Groningen. Downloaded on September 15,2022 at 12:07:04 UTC from IEEE Xplore. Restrictions apply.
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Algorithm 2 BLS: Incremental Training With Additional
Enhancement Nodes

Algorithm 3 BLS: Incremental Training With Additional
Feature Nodes

1: One-shot training. Same steps 1-5 as Algorithm 1
2: While the training accuracy is not satisfied do
3: Additional enhancement group.
for ju = 1, jn < mp

Randomly initialize Wy, , by,

Compute Hj, = &;,(Zj, Wiy, + bn;,)

Obtain the additional enhancement nodes group

H"™' = [Hi,Hy, -+, Hp,]

Ay = 1A | Hin1]

+
@aphyt = [0
4: Incremental training. Compute additional weights

e [W,’{' - DBTY}

Am* - DBT]

BTy

5: One-shot testing. Same steps 6-10 as Algorithm 1
6: Additional enhancement group.
for j, =1, jn < my
Compute Hyj, = mt1(Z; Wiy, + bu,)
Obtain the additional enhancement nodes group

1
H'"' =[H, 1\, Hp, -+, Hpmy

7. Take AV = [Z2|HH™, W, = (W W
8: Incremental testing. Compute estimates

$ 1
Yl‘ - AZZ’T Wt,n

The following pseudoinverse is defined as:

+ m\t _ T
(AZ‘“) - [(An) - bB } %
D= (A") " Hus1 ®)
- ct fcso0
~la+D0"D)'BTAm*t ifc=0
C = tns1(Z"Wy,, + b1y, y) —A™D  (10)

which allows only the additional weights W,’["H to be trained

N [W;{l - DBTYi|

The resulting incremental BLS training is summarized in
Algorithm 2. For completeness, Algorithm 3 provides the
incremental BLS training when new feature nodes are added.

Remark 2: As compared to the BLS MATLAB code avail-
able at the creator’s website http://www. fst.umac.mo
/en/staff/pchen.html, we have rearranged the code
from a classifier to a regressor, with a set of linear features to
improve prediction.

III. REAL-WORLD TRAFFIC PREDICTION TEST CASES

The performance measurement system (PeMS) data source
is one of the most popular datasets in the traffic field. The

1: One-shot training. Same steps 1-5 as Algorithm 1
2: While the training accuracy is not satisfied do
3: Additional feature group.
fori,=1,i, <n,
Randomly initialize We,,, be;,
Compute Z;, = ¢;, (XW,,, + be;,)
Obtain the additional feature nodes group

72" = (2,2, -, Za,]

4. Additional enhancement group.
for j, =1, jn < my,
Randomly initialize Wy, , by,
Compute Hj, = &;, (Zj, Wi, + bi;,)
Obtain the additional enhancement nodes group
H"' = [H\, Ha, -, Hy,]
Ay = [AY | Zins | Hyi1]
+ [@m*t —DBT
( AZH_I) — n BT
5: Incremental training. Compute additional weights
. [wm—DBTY
W:ln = |: " BTY

6: One-shot testing. Same steps 6-10 as Algorithm 1
7: Additional feature group.
fori,=1,i, <n,
Compute Z;, = ¢i, X;We,, + be,,)
Obtain the additional feature nodes group

ZMY = (Z1, Zns - Zig,]

8: Additional enhancement group.
for j, =1, jn < me
Compute Hj, = &, (Z;' Wiy, + b))
Obtain the additional enhancement nodes group
H'™ = [Hiy, His -, Hym, ]

9: Take AP = [z |H!M Z Y H Y,
Wi = W W],
10: Incremental testing. Compute estimates

% +1
Yl‘ == AZln Wt,n

dataset is managed and updated by the Caltrans. Data are col-
lected from nearly 40000 detectors across all major freeways
of California. The first dataset under consideration in this work
is consistent with the one in [18]. It contains the flow, speed,
and occupancy rate at 33 different locations in 7405 freeway
(North-bound Interstate 405). The data are aggregated every
five min, resulting in 50000 data samples used for training
(cf. Fig. 1). Three different spatial/temporal predictions are
considered as follows.

1) Predicting the traffic flow/speed/occupancy 15-min

ahead in time, for any of the 33 locations.

Authorized licensed use limited to: University of Groningen. Downloaded on September 15,2022 at 12:07:04 UTC from IEEE Xplore. Restrictions apply.
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Fig. 1. Spatial/temporal traffic data used in this study.

2) Predicting the traffic flow/speed/occupancy 25-min

ahead in time, for any of the 33 locations.

3) Predicting the traffic flow/speed/occupancy 40-min

ahead in time, for any of the 33 locations.

As common in prediction algorithms, data have been nor-
malized between 0 and 1, using the fact that flow has a
maximum of 1300 vehicles per hour, velocity has a maximum
of 90 miles per hour, and occupancy is maximum 100%.

Remark 3: Traffic predictors must be continuously updated,
e.g., in the occurrence of traffic events [12]. As traffic data
are typically collected on a minute base, a real-time traffic
predictor processing data (including training) on a minute base
would be highly desirable.

IV. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS

We compare BLS against standard methods, all imple-
mented in the same platform (Dell Precision workstation,
Intel Xeon 3.2 GHz, 8-GB RAM, and MATLAB R2017b).

All algorithms have been trained according to the MATLAB

documentation?:

1) Shallow BP Neural Network With One Hidden Layer:
We have used two architectures: hidden layer with ten
neurons, and with 25 neurons, abbreviated as BP-10 and
BP-25, respectively.

2) DNN (With More Hidden Layers): We have used two
architectures: three hidden layers with 10, 5, and 2 neu-
rons, and four hidden layers with 10, 10, 10, and 4
neurons, abbreviated as DNN-3 and DNN-4.

2 backpropagation (BP), DDN: www . mathworks.com/help/deeplea
rning/ref/train.html,
LASSO: www.mathworks.com/help/stats/lasso.html,
SAE: www .mathworks.com/help/deeplearning/examples/
train-stacked-autoencoders-for-image-classification.
html,
CNN: www .mathworks.com/help/deeplearning/examples/
train- a-convolutional-neural-network-for-regression.
html, and
LSTM: www .mathworks.com/help/deeplearning/ug/long-
short-term-memory-networks.html.

3) LI-Norm  Regularized  Least-Squares  Regression
(LASSO): LASSO identifies the most representative
features via the L1-Norm regularization, and fits them
using a linear model. We have used the elastic net
method with « = 0.75, with the option to remove
redundant predictors by using tenfold cross-validated
fits.

4) SAE: Its architecture is an NN with multiple layers of
sparse autoencoders in which the outputs of each layer
is wired to the inputs of the successive layer. Training
an SAE requires:

a) training the first autoencoder, i.e., a sparse autoen-
coder on the training data without using the labels;

b) training the second autoencoder using the features
that were generated from the first autoencoder as
the training data for the second autoencoder;

c) training the final softmax layer in a supervised
fashion using labels for the training data;

d) to further improve the performance, BP is per-
formed on the stacked neural network.

We have used two implementations of SAE, one with
first/second autoencoders of hidden size 10/5, and one
with first/second autoencoders of hidden size 15/7,
abbreviated as SAE-1 and SAE-2, respectively.

5) Convolutional Neural Network (CNN): A very stan-
dard deep learning method implementing four main
operations.

a) Convolution (Conv): Sliding a matrix over the data
so as to extract features from the input.

b) Rectified Linear Unit (ReLU): Introducing non-
linearity in the structure to capture nonlinear
relationships.

c) Pooling (Pool): Reducing the dimensionality of
each feature map to retain the most important
information.

d) Fully Connected Layer (FCL): Traditional
multilayer perceptron with softmax activation
function, so as to use the output from con-
volutional and pooling layers as features for
regression.

Two implementations of CNN are adopted: one with
Conv-ReLU-Pool-Conv-ReLU-FCL, and one with
[Conv-ReLU-Pool](2 times)-[Conv-ReLU](2 times)-
FCL. The networks are abbreviated as CNN-1 and
CNN-2.

6) Long Short-Term Memory (LSTM) CNN: A type of
recurrent neural network that can learn long-term depen-
dencies between time steps of sequence data. The
network starts with a sequence input layer followed
by an LSTM layer. The network ends with an FCL.
Two implementations of LSTM are adopted: one with a
LSTM layer of hidden size 25, and a deeper network
with an extra LSTM layer of hidden size 25. The
networks are abbreviated as LSTM-1 and LSTM-2.

To further confirm the benefits of least-square training, we
provide an ELM machine implementation where feature node
layer and the enhancement node layer organized hierarchi-
cally, with only the enhancement layer trained via least-square

Authorized licensed use limited to: University of Groningen. Downloaded on September 15,2022 at 12:07:04 UTC from IEEE Xplore. Restrictions apply.
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COMPARISON RESULTS FOR 15-min AHEAD PREDICTION. IN BOLD ARE THE SMALLEST ERRORS. DISPERSION AROUND THE MEAN ERROR IS
REPORTED IN PERCENTAGE. THE GRAY BOX COMPARES THE TRAINING TIME VERSUS THE SLOWEST AND THE FASTEST BLS AS POWER OF 10

TABLE I

Speed

Occupancy

0.0261 (1 £ 0.18%)
0.0428 (1 == 2.34%)
0.0509 (1 =+ 6.91%)

0.0150 (1 =+ 4.80%)
0.0305 (1 == 10.36%)
0.2426 (1 =+ 15.49%)

0.0457 (1 £+ 1.80%)

(
(
0.0261 (1 £ 1.98%)
(
0.0558 (1 & 2.32%)

0.0150 (1 £ 0.16%)
0.0311 (1 £ 1.36%)

0.0244 (1 =+ 0.54%)
0.0439 (1 =+ 0.53%)
0.0528 (1 = 2.25%)

0.0144 (1 £ 8.01%)
0.0322 (1 & 17.91%)
0.2395 (1 =+ 18.22%)

0.0246 (1 £ 1.74%)
0.0449 (1 =+ 2.55%)
0.0543 (1 =+ 8.65%)

(
(
(
(
0.2505 (1 £ 2.35%)
(
(
(
(

0.0142 (1 £ 0.93%)
0.0309 (1 = 3.38%)
0.2312 (1 £ 1.26%)

0.0243 (1 £ 0.12%)
0.0424 (1 £ 0.18%)
0.0513 (1 = 0.09%)

0.0131 (1 £ 0.07%)
0.0279 (1 4 0.03%)
0.1884 (1 4 0.07%)

0.0242 (1 £ 0.32%)
0.0411 (1 & 0.38%)
0.0497 (1 = 0.09%)

0.0133 (1 +1.70%)

0.1886 (1 £+ 2.23%

0.0243 (1 £ 0.21%)
0.0413 (1 £ 0.29%)

0.0132 (1 £ 0.19%)
0.0282 (1 + 2.25%)
0.1865 (1 = 1.05%)

(
(
(

0.0282 (1 + 1.58%)
( )
(
(

0.0363 (1 £ 8.01%)
0.0525 (1 + 2.87%)
0.0743 (1 £ 2.61%)

0.0188 (1 + 3.15%)
0.0384 (1 +4.01%

0.0307 (1 £ 9.02%)
0.0487 (1 + 3.39%)
0.0685 (1 £+ 3.19%)

)
0.3417 (1 + 7.46%)
0.0183 (1 + 4.06%)
0.0374 (1 % 3.62%

0.0863 (1 £+ 2.70%)
0.1377 (1 £ 1.09%)

(
(
(
(
(
(
(
(
0.0500 (1 % 0.29%)
(
(
(
(
(
(
(
(
0.2307 (1 %+ 0.88%)

)
0.3523 (1 + 7.05%)
)

0.0500 (1 £+ 0.85%

0.0728 (1 + 12.55%)
0.1134 (1 + 7.18%)
0.1939 (1 + 8.19%)

)
0.4231 (14 0.17%)
0.0201 (1 + 9.81%)
0.0411 (1 + 6.24%)

(
(
(
(
(
0.0275 (1 +0.27%
(
(
(
(
0.3534 (1 % 13.76%)

0.0239 (1 +0.14%)
0.0408 (1 + 0.07%)
0.0494 (1 +0.11%)

0.0132 (1 4 0.14%)
0.0275 (1 + 0.07%)
0.1878 (1 4 0.46%)

0.0239 (1 4+ 0.15%)
0.0408 (1 +0.07%

0.0131 (1 +0.14%)
0.0275 (1 + 0.06%)
0.1877 (1 % 0.46%)

)
0.0494 (1 + 0.10%)
0.0239 (1 + 0.25%)
0.0408 (1 =+ 0.15%)
0.0495 (1 + 0.39%)

0.0131 (1 + 0.05%)
0.0275 (1 = 0.09%)
0.1875 (1 4 0.31%)

Training time (s) | Testing error Flow

BP-10 12088 | MAE:  0.0277 (1 + 0.72%)
versus BLS: MSE: 0.0410 (1 +1.36%)
From 10 to 10%* times slower | MAPE:  0.1559 (1 £ 0.77%)
BP-25 33072 | MAE: 0.0277 (1 +£0.92%)
versus BLS: MSE: 0.0410 (1 +1.42%)
From 10%-* to 10%° times slower | MAPE:  0.1661 (1 £ 5.20%)
DNN-3 9387 | MAE: 0.0267 (1 +0.21%)
versus BLS: MSE: 0.0406 (1 +1.61%)
From 10*-® to 10%* times slower | MAPE:  0.1549 (1 £ 3.31%)
DNN-4 13879 | MAE: 0.0266 (1 +5.17%)
versus BLS: MSE: 0.0408 (1 +8.35%)

From 102:% t0 102:6 times slower | MAPE:  0.1688 (1 4 17.19%)
LASSO 14328 | MAE: 0.0257 (1 +£0.11%)
versus BLS: MSE: 0.0366 (1 4+ 0.07%)
From 102:° to 10%% times slower | MAPE:  0.1548 (1 £ 0.17%)
SAE-1 20357 | MAE: 0.0267 (1 4+ 1.09%)
versus BLS: MSE: 0.0382 (1 £ 1.42%)
From 10?2 to 10%® times slower | MAPE:  0.1588 (1 & 1.01%)
SAE-2 34353 | MAE: 0.0267 (1 £ 0.19%)
versus BLS: MSE: 0.0381 (1 4+ 0.05%)
From 1024 to 10%° times slower | MAPE:  0.1604 (1 & 0.05%)
CNN-1 65013 | MAE: 0.0367 (1 +3.61%)
versus BLS: MSE: 0.0473 (1 +2.42%)
From 1027 to 1032 times slower | MAPE:  0.3143 (1 £ 0.77%)
CNN-2 120882 | MAE: 0.0334 (1 £+ 3.65%)
versus BLS: MSE: 0.0435 (1 + 3.50%)
From 10%-° to 10%-® times slower | MAPE:  0.3081 (1 & 0.94%)
LSTM-1 13234 | MAE: 0.0872 (1 +1.82%)
versus BLS: MSE: 0.1062 (1 4+ 2.29%)
From 102:° to 10?6 times slower | MAPE:  0.8740 (1 £ 5.85%)
LSTM-2 53193 | MAE: 0.0410 (1 +6.41%)
versus BLS: MSE: 0.0605 (1 +5.83%)
From 102:% to 1032 times slower | MAPE:  0.2816 (1 & 4.00%)
ELM 27 | MAE:  0.0247 (1 £ 0.10%)
versus BLS: MSE: 0.0356 (1 4+ 0.16%)
Around 10°-! times faster | MAPE:  0.1410 (1 & 0.99%)
BLS- 36 | MAE: 0.0246 (1 £+ 0.09%)
one shot MSE: 0.0355 (1 4+ 0.16%)
MAPE:  0.1409 (1 £+ 0.99%)
BLS- 143 | MAE: 0.0246 (1 £+ 0.13%)
enhan. MSE: 0.0355 (1 +0.03%)
MAPE:  0.1409 (1 4+ 0.36%)
BLS- 126 | MAE:  0.0247 (1 + 0.32%)
enhan. MSE: 0.0357 (1 £+ 0.24%)
feat. MAPE:  0.1426 (1 £+ 0.80%)

0.0241 (1 £ 0.78%)
0.0410 (1 £ 0.39%)
0.0499 (1 + 0.88%)

0.0133 (1 £ 0.44%)
0.0275 (1 £ 0.14%)
0.1928 (1 + 1.10%)
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regression (see Remark 1). Tuning is challenging due to the
long training time: we spent several months tuning the six
algorithms, but a few hours to tune BLS (and ELM), thanks
to their fast training time. We have found that the following
parameter search spaces work well on the PeMS dataset.
1) BLS One-Shot (and Also ELM): 1600 feature nodes,
3200 enhancement nodes.

2) BLS With Incremental Enhancement Nodes (Abbreviated
as BLS Enhanc.): Initially, 1500 feature nodes and 500
enhancement nodes, with three incremental steps where
500 new enhancement nodes are added each step.

3) BLS With Incremental Feature and Enhancement Nodes
(Abbreviated as BLS Enhan.-Feat.): Initially 550 fea-
ture nodes and 1000 enhancement nodes, with three
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TABLE II
COMPARISON RESULTS FOR 25-min AHEAD PREDICTION. IN BOLD ARE THE SMALLEST ERRORS. DISPERSION AROUND THE MEAN ERROR IS
REPORTED IN PERCENTAGE. THE GRAY BOX COMPARES THE TRAINING TIME VERSUS THE SLOWEST AND THE FASTEST BLS AS POWER OF 10

Training time (s) | Testing error Flow Speed Occupancy

BP-10 9369 | MAE:  0.0287 (1+1.35%) _ 0.0306 (1 = 0.96%) 0.0170 (1 £ 0.65%)
G MSE:  0.0423 (1£2.14%)  0.0549 (1+£0.75%)  0.0369 (1 £ 0.59%)
From 10" to 10%-® times slower | MAPE:  0.1780 (1 & 3.89%) 0.0687 (1 +1.00%) 0.2782 (1 4 2.48%)
BP-25 27316 | MAE: 0.0296 (1 &+ 0.59%) 0.0327 (1 £ 0.21%) 0.0175 (1 £ 3.31%)
versus BLS: MSE:  0.0428 (1 +0.18%)  0.0577 (1£0.06%)  0.0362 (1 + 4.24%)
From 102-% to 10%° times slower | MAPE:  0.1841 (1 + 3.74%) 0.0739 (1 £ 2.08%) 0.2725 (1 £ 7.10%)
DNN3 5021 | MAE:  0.0281 (1 =+ 0.43%) 0.0308 (1 =+ 1.02%) 0.0166 (1 = 0.08%)
S U MSE:  0.0411 (140.03%)  0.0568 (1+0.26%)  0.0359 (1 % 0.70%)
From 10*-¢ to 10%-% times slower | MAPE:  0.1713 (1 & 2.82%) 0.0700 (1 +0.16%) 0.2559 (1 4 2.04%)
DNN-4 13356 | MAE:  0.0281 (1+£0.41%)  0.0302 (1 + 0.38%) 0.0169 (1 + 7.23%)
versus BLS: MSE: 0.0416 (1 +0.05%) 0.0567 (1 4+ 0.89%) 0.0371 (1 +8.87%)

From 102:% to 1027 times slower | MAPE:  0.1731 (1 4 4.41%) 0.0704 (1 £ 0.06%) 0.2761 (1 £+ 20.61%)
LASSO 12420 | MAE: 0.0296 (1 +0.01%) 0.0315 (1 +0.01%) 0.0166 (1 +0.11%)
versus BLS: MSE: 0.0413 (1 +0.01%) 0.0546 (1 4 0.04%) 0.0374 (1 +£0.57%)
From 10-° to 10%7 times slower | MAPE:  0.1908 (1 £ 0.10%) 0.0688 (1 4+ 0.02%) 0.2603 (1 +0.25%)
SAE-1 14382 | MAE:  0.0304 (1£0.48%)  0.0301 (1£0.05%)  0.0163 (1 % 0.09%)
versus BLS: MSE: 0.0432 (1 £ 1.65%) 0.0520 (1 4+ 0.50%) 0.0371 (1 £ 1.46%)
From 102 to 1027 times slower | MAPE:  0.1854 (1 + 0.30%) 0.0639 (1+0.10%)  0.2487 (1 = 0.15%)
SAE-2 33785 | MAE: 0.0303 (1 £+ 0.65%) 0.0302 (1 +0.51%) 0.0164 (1 4+ 0.43%)
versus BLS: MSE:  0.0420 (1+1.68%)  0.0522 (1+0.46%)  0.0372 (1 % 0.37%)
From 1024 to 10%* times slower | MAPE:  0.1841 (1 4 0.04%) 0.0643 (1 £+ 0.85%) 0.2491 (1 £ 0.75%)
CNN-1 65013 | MAE:  0.0401 (1+547%)  0.0389 (1 £4.25%)  0.0202 (1 =+ 7.95%)
S MSE:  0.0514 (1£4.19%)  0.0589 (1+0.84%)  0.0422 (1 % 2.04%)

From 102:6 to 10%# times slower | MAPE:  0.3418 (1 £+ 4.11%) 0.0828 (1 +1.20%) 0.3834 (1 4+ 10.68%)
CNN-2 107913 | MAE:  0.0338 (1 £6.10%)  0.0343 (1 + 4.56%) 0.0188 (1 + 7.59%)
i I MSE:  0.0445 (1£4.37%)  0.0574 (1+1.36%)  0.0411 (1 + 2.64%)

From 10%-° to 10%-® times slower | MAPE:  0.3001 (1 & 4.98%) 0.0800 (1 +1.50%) 0.3371 (1 +12.85%)
LSTM-1 23447 | MAE: 0.0379 (1 4+ 0.49%) 0.0556 (1 £ 1.37%) 0.0194 (1 £+ 1.00%)
versus BLS: MSE: 0.0561 (1 4 0.04%) 0.0880 (1 4 0.86%) 0.0403 (1 4+ 0.80%)
From 1022 to 10%-° times slower | MAPE:  0.2601 (1 £ 0.94%) 0.1471 (1 +1.04%) 0.3049 (1 +1.87%)
LSTM-2 66326 | MAE:  0.0456 (1 + 1.54%) 0.0730 (1 =+ 3.41%) 0.0208 (1 =+ 1.84%)
versus BLS: MSE: 0.0651 (1 4+ 0.10%) 0.1135 (1 +1.23%) 0.0422 (1 +1.34%)
From 102:% to 10%# times slower | MAPE:  0.3393 (1 & 1.72%) 0.1935 (1 4+ 2.64%) 0.3554 (1 4+2.03%)
ELM 21 | MAE:  0.0275 (L +0.04%)  0.0301 (1+0.19%)  0.0163 (1 =+ 0.16%)
e AETs, MSE:  0.0392 (1 4 0.19%) 0.0519 (1 + 0.04%) 0.0387 (1 £ 0.16%)
Around 10°! times fasier | MAPE:  0.1646 (14 1.14%)  0.0649 (1 +0.05%)  0.2646 (1 + 0.67%)
BLS- 27 | MAE: 00274 (1 + 0.03%) 0.0300 (1 = 0.19%) 0.0163 (1 = 0.16%)
one shot MSE:  0.0391 (1 + 0.19%) 0.0519 (1 + 0.03%) 0.0387 (1 + 0.17%)
MAPE:  0.1646 (1 + 1.14%) 0.0648 (1 = 0.04%) 0.2646 (1 + 0.68%)
BLS- 147 | MAE:  0.0274 (1 £ 0.03%) 0.0300 (1 = 0.23%) 0.0163 (1 =+ 0.21%)
enhan. MSE:  0.0391 (1 0.18%) 0.0519 (1 + 0.05%) 0.0387 (1 = 0.20%)
MAPE:  0.1646 (1 + 1.40%) 0.0648 (1 +0.13%) 0.2641 (1 +0.81%)
BLS- 125 | MAE:  0.0277 (1£0.59%)  0.0302 (1 +0.38%)  0.0163 (1 +0.11%)
enhan. MSE: 0.0395 (1 4+ 0.39%) 0.0521 (1 +0.23%) 0.0383 (1 +0.26%)
feat. MAPE:  0.1667 (1 & 0.98%) 0.0657 (1 £+ 0.48%) 0.2645 (1 £ 0.63%)

1) Mean Absolute Error (MAE): 1/N vazl lyi — Yil.

2) Mean Square Error (MSE): \/I/N Z?/:l(yi -2
3) Mean  Absolute  Percentage  Error  (MAPE):
1/N YI ) Iy — il /I max{y;, 0.01}].
Where y; denotes the value of a label, and y; is its pre-
dicted value resulting from the algorithm. The max operator
in MAPE is used to avoid division by zero. Another measure

incremental steps where 50 new feature nodes and 500
new enhancement nodes are added each step.

A. Result of Comparisons on First Dataset

The result of the comparisons are in Tables I-IIT (15,
25, 40-min ahead prediction). The prediction performance is
measured in terms of the following.
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TABLE III

COMPARISON RESULTS FOR 40-min AHEAD PREDICTION. IN BOLD ARE THE SMALLEST ERRORS. DISPERSION AROUND THE MEAN ERROR IS

REPORTED IN PERCENTAGE. THE GRAY BOX COMPARES THE TRAINING TIME VERSUS THE SLOWEST AND THE FASTEST BLS AS POWER OF 10

Training time (s) | Testing error Flow Speed Occupancy

BP-10 6896 | MAE: 0.0330 (1 £+ 1.04%) 0.0367 (1 £ 2.14%) 0.0191 (1 £ 4.53%)
versus BLS: MSE: 0.0476 (1 £ 0.73%) 0.0663 (1 £ 1.23%) 0.0394 (1 £ 7.32%)
From 107 to 1023 times slower | MAPE:  0.2316 (1 & 1.30%) 0.0863 (1 £ 2.52%) 0.2988 (1 £+ 0.57%)
BP-25 28415 | MAE: 0.0341 (1 £ 0.05%) 0.0389 (1 £ 1.08%) 0.0204 (1 £1.92%)
versus BLS: MSE: 0.0486 (1 £ 0.45%) 0.0689 (1 £ 1.80%) 0.0409 (1 £ 7.06%)
From 10?3 to 10%° times slower | MAPE:  0.2397 (1 & 0.44%) 0.0885 (1 £ 1.42%) 0.3292 (1 £+ 5.86%)
DNN-3 5905 | MAE: 0.0324 (1 £1.01%) 0.0360 (1 £ 0.69%) 0.0192 (1 £6.13%)
versus BLS: MSE: 0.0472 (1 £ 1.35%) 0.0669 (1 £+ 1.30%) 0.0402 (1 £ 7.30%)

From 10%® to 1022 times slower | MAPE:  0.2146 (1 & 5.53%) 0.0830 (1 £ 2.19%) 0.3340 (1 4 19.44%)
DNN-4 6142 | MAE: 0.0320 (1 £1.41%) 0.0357 (1 £1.33%) 0.0193 (1 £ 2.19%)
versus BLS: MSE: 0.0469 (1 £+ 1.60%) 0.0675 (1 £ 0.83%) 0.0414 (1 £ 1.06%)
From 10%® to 10% times slower | MAPE:  0.2172 (1 & 3.13%) 0.0803 (1 £ 4.73%) 0.3206 (1 £ 1.73%)
LASSO 12855 | MAE: 0.0360 (1 £ 0.05%) 0.0385 (1 £ 0.13%) 0.0197 (1 £ 0.44%)
versus BLS: MSE: 0.0492 (1 £ 0.05%) 0.0651 (1 £+ 0.08%) 0.0402 (1 £0.11%)
From 10%° to 10%-% times slower | MAPE:  0.2537 (1 £ 0.04%) 0.0872 (1 £ 0.05%) 0.3192 (1 £ 0.71%)
SAE-1 14261 | MAE: 0.0364 (1 £1.76%) 0.0347 (1 £+ 0.05%) 0.0186 (1 £0.57%)
versus BLS: MSE: 0.0512 (1 £ 2.17%) 0.0605 (1 £ 0.05%) 0.0394 (1 +0.76%)
From 10%° to 10%° times slower | MAPE:  0.2289 (1 4 0.94%) 0.0777 (1 4+ 0.69%) 0.2907 (1 +1.12%)
SAE-2 32107 | MAE: 0.0364 (1 £ 0.51%) 0.0347 (1 +0.13%) 0.0185 (1 £ 0.76%)
versus BLS: MSE: 0.0511 (1 £ 0.47%) 0.0605 (1 £ 0.55%) 0.0395 (1 £ 1.59%)
From 10%* to 10%° times slower | MAPE:  0.2297 (1 £ 1.40%) 0.0778 (1 £ 0.58%) 0.2912 (1 £ 0.72%)
CNN-1 62874 | MAE: 0.0428 (1 £5.37%) 0.0435 (1 £ 4.20%) 0.0210 (1 £ 5.64%)
versus BLS: MSE: 0.0543 (1 £ 3.84%) 0.0666 (1 £+ 1.67%) 0.0434 (1 £3.07%)
From 102 to 10%3 times slower | MAPE:  0.4126 (1 4 9.24%) 0.0954 (1 £ 0.94%) 0.3873 (1 £+ 1.20%)
CNN-2 108440 | MAE: 0.0368 (1 £ 5.28%) 0.0374 (1 £ 4.95%) 0.0202 (1 £4.27%)
versus BLS: MSE: 0.0488 (1 £ 3.62%) 0.0650 (1 £ 1.39%) 0.0424 (1 £ 2.29%)
From 10%° to 10%° times slower | MAPE:  0.3186 (1 4+ 9.71%) 0.0929 (1 £1.61%) 0.3812 (1 £+ 1.58%)
LSTM-1 21940 | MAE: 0.0431 (1 £1.73%) 0.0565 (1 £ 1.12%) 0.0217 (1 £ 3.62%)
versus BLS: MSE: 0.0610 (1 £+ 1.41%) 0.0895 (1 £ 0.69%) 0.0427 (1 £ 3.15%)
From 1022 to 10%® times slower | MAPE:  0.3275 (1 4 1.16%) 0.1479 (1 £ 0.61%) 0.3559 (1 £ 7.38%)
LSTM-2 60374 | MAE: 0.0512 (1 £1.91%) 0.0735 (1 £ 1.06%) 0.0235 (1 £ 4.52%)
versus BLS: MSE: 0.0706 (1 £+ 1.74%) 0.1150 (1 £0.76%) 0.0445 (1 £ 3.03%)
From 10%® to 10%2 times slower | MAPE:  0.3985 (1 4 1.42%) 0.1966 (1 £ 0.83%) 0.4271 (1 £6.67%)
ELM 29 | MAE: 0.0320 (1 £+ 0.45%) 0.0352 (1 £ 0.16%) 0.0183 (1 £ 0.23%)
versus BLS: MSE: 0.0449 (1 £+ 0.35%) 0.0604 (1 £+ 0.08%) 0.0396 (1 £+ 0.11%)
Around 10%! times faster | MAPE:  0.2013 (1 & 1.62%) 0.0792 (1 £ 0.09%) 0.2994 (1 £ 0.69%)
BLS- 35 | MAE: 0.0319 (1 £ 0.09%) 0.0351 (1 £ 0.29%) 0.0182 (1 +0.11%)
one shot MSE: 0.0447 (1 + 0.33%) 0.0604 (1 £ 0.06%) 0.0396 (1 £0.11%)
MAPE:  0.2005 (1 + 1.59%) 0.0789 (1 £ 0.06%) 0.2955 (1 £ 0.65%)
BLS- 143 | MAE: 0.0319 (1 £ 0.44%) 0.0351 (1 £0.17%) 0.0182 (1 £+ 0.23%)
enhan. MSE: 0.0447 (1 £+ 0.50%) 0.0604 (1 £+ 0.05%) 0.0397 (1 £0.25%)
MAPE:  0.2005 (1 £ 0.42%) 0.0789 (1 £ 0.26%) 0.2955 (1 £ 0.50%)
BLS- 127 | MAE: 0.0322 (1 £ 1.03%) 0.0325 (1 £ 0.62%) 0.0184 (1 £ 0.45%)
enhan. MSE: 0.0452 (1 £0.77%) 0.0606 (1 £ 0.33%) 0.0396 (1 £ 0.13%)
feat. MAPE:  0.2010 (1 +2.11%) 0.0795 (1 £0.72%) 0.2975 (1 £+ 1.20%)

of performance in Tables I-III is the training time, reported in

The training time is related to the depth of the structure:

order of magnitude (power of 10) versus BLS. All results are
averaged over five trials to obtain an average performance.

CNN-2 and CNN-1 are the slowest algorithms, LSTM-2 is
slow due to the double LSTM layer, SAEs require several steps
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TABLE IV

MEAN ERROR IS REPORTED IN PERCENTAGE. THE GRAY BOX COMPARES THE TRAINING TIME
VERSUS THE SLOWEST AND THE FASTEST BLS AS POWER OF 10

Training time (s) | Testing error 15 min. ahead 25 min. ahead 40 min. ahead
BP-10 4797 | MAE: 0.0530 (1 +1.16%) 0.0527 (1 £+ 2.34%) 0.0524 (1 £+ 4.04%)
versus BLS: MSE: 0.0821 (1 4+ 0.81%) 0.0891 (1 £+ 1.25%) 0.0854 (1 £+ 6.84%)
From 102:% to 10%2 times slower | MAPE:  0.0817 (1 £ 1.26%) 0.0829 (1 £ 2.94%) 0.0867 (1 £0.99%)
BP-25 19839 | MAE: 0.0600 (1 4+ 0.14%) 0.0604 (1 4+ 1.02%) 0.0630 (1 +1.73%)
versus BLS: MSE: 0.0912 (1 £+ 0.61%) 0.0921 (1 +1.15%) 0.0942 (1 +5.92%)
From 10%-2 to 10%-® times slower | MAPE:  0.0931 (1 & 0.49%) 0.0926 (1 +1.52%) 0.0990 (1 4 5.48%)
DNN-3 3180 | MAE: 0.0546 (1 £+ 0.86%) 0.0440 (1 £0.71%) 0.0419 (1 £+ 6.00%)
versus BLS: MSE: 0.0853 (1 +1.25%) 0.0857 (1 +1.46%) 0.0805 (1 4+ 8.11%)
From 10%* to 10%-© times slower | MAPE:  0.0911 (1 4 4.74%) 0.0713 (1 +2.46%) 0.0784 (1 + 15.63%)
DNN-4 7596 | MAE: 0.0450 (1 +1.52%) 0.0497 (1 £ 1.61%) 0.0471 (1 +2.06%)
versus BLS: MSE: 0.0792 (1 £+ 2.05%) 0.0889 (1 £ 0.96%) 0.0848 (1 +1.21%)
From 102-® to 10%* times slower | MAPE:  0.0739 (1 & 2.89%) 0.0771 (1 + 3.63%) 0.0792 (1 +1.88%)
LASSO 7931 | MAE: 0.0487 (1 £+ 0.06%) 0.0426 (1 £ 0.12%) 0.0539 (1 £ 0.32%)
versus BLS: MSE: 0.0780 (1 £ 0.06%) 0.0734 (1 +£0.11%) 0.0864 (1 £+ 0.20%)
From 102-® to 10%# times slower | MAPE:  0.0812 (1 & 0.05%) 0.0730 (1 £+ 0.08%) 0.0924 (1 £0.55%)
SAE-1 8410 | MAE: 0.0429 (1 4+ 1.63%) 0.0406 (1 £+ 0.13%) 0.0471 (1 £ 0.49%)
versus BLS: MSE: 0.0718 (1 £+ 1.90%) 0.0715 (1 4+ 0.09%) 0.0798 (1 £ 0.67%)
From 10%® to 10%* times slower | MAPE:  0.0752 (1 & 0.61%) 0.0700 (1 + 0.68%) 0.0822 (1 £+ 1.03%)
SAE-2 11884 | MAE: 0.0438 (1 +0.55%) 0.0403 (1 +0.17%) 0.0476 (1 +£0.70%)
versus BLS: MSE: 0.0731 (1 4+ 0.51%) 0.0708 (1 £ 0.48%) 0.0798 (1 £ 1.74%)
From 10%-% to 1036 times slower | MAPE:  0.0746 (1 & 1.05%) 0.0700 (1 + 0.86%) 0.0834 (1 +0.73%)
CNN-1 15680 | MAE: 0.1030 (1 £ 4.84%) 0.1015 (1 £ 4.46%) 0.1044 (1 £ 5.62%)
versus BLS: MSE: 0.1340 (1 +4.04%) 0.1324 (1 +2.13%) 0.1362 (1 £ 3.55%)
From 10%'! to 10>7 times slower | MAPE:  0.1508 (1 & 7.72%) 0.1486 (1 +1.26%) 0.1566 (1 4 2.84%)
CNN-2 27481 | MAE: 0.1072 (1 £+ 4.56%) 0.1005 (1 £+ 4.38%) 0.1094 (1 £ 5.03%)
versus BLS: MSE: 0.1426 (1 £+ 3.94%) 0.1310 (1 +2.93%) 0.1459 (1 £ 3.06%)
From 10%-® to 10*° times slower | MAPE:  0.1589 (1 & 7.93%) 0.1472 (1 £ 1.99%) 0.1643 (1 +2.34%)
LSTM-1 8616 | MAE:  0.0630 (1 + 1.77%) 0.0546 (1 £ 1.35%) 0.0638 (1 =+ 3.17%)
versus BLS: MSE: 0.0967 (1 £+ 1.52%) 0.0853 (1 £+ 1.14%) 0.0993 (1 £+ 3.05%)
From 102-® to 10%-° times slower | MAPE:  0.1076 (1 & 1.67%) 0.0911 (1 +0.88%) 0.1114 (1 +6.53%)
LSTM-2 17623 | MAE: 0.0587 (1 £+ 1.80%) 0.0563 (1 £+ 1.36%) 0.1012 (1 £+ 4.52%)
versus BLS: MSE: 0.0984 (1 +1.62%) 0.0937 (1 4+ 1.04%) 0.0802 (1 4+ 2.95%)
From 10%! to 10*® times slower | MAPE:  0.1019 (1 £ 1.38%) 0.0965 (1 £+ 1.13%) 0.1019 (1 £ 6.02%)
ELM 3 | MAE: 0.0445 (1 £+ 0.09%) 0.0418 (1 £ 0.30%) 0.0471 (1 £0.11%)
MSE: 0.0688 (1 £ 0.32%) 0.0687 (1 4+ 0.06%) 0.0751 (1 +0.10%)
MAPE:  0.0751 (1 £+ 1.58%) 0.0701 (1 +£0.07%) 0.0813 (1 + 0.65%)
BLS- 3 | MAE: 0.0443 (1 4+ 0.09%) 0.0417 (1 +0.29%) 0.0470 (1 £0.11%)
one shot MSE: 0.0687 (1 4+ 0.33%) 0.0687 (1 4+ 0.06%) 0.0751 (1 +0.11%)
MAPE:  0.0751 (1 &+ 1.59%) 0.0700 (1 £ 0.06%) 0.0811 (1 £+ 0.65%)
BLS- 13 | MAE:  0.0443 (1 + 0.44%) 0.0417 (1 £ 0.17%) 0.0470 (1 =+ 0.23%)
enhan. MSE: 0.0687 (1 + 0.50%) 0.0687 (1 + 0.05%) 0.0751 (1 +0.25%)
MAPE:  0.0751 (1 £ 0.42%) 0.0700 (1 £+ 0.26%) 0.0811 (1 £+ 0.50%)
BLS- 12 | MAE: 0.0448 (1 +1.03%) 0.0419 (1 £ 0.62%) 0.0472 (1 +£0.45%)
enhan. MSE: 0.0690 (1 4+ 0.77%) 0.0688 (1 £+ 0.33%) 0.0751 (1 +0.13%)
feat. MAPE:  0.0753 (1 +£2.11%)  0.0700 (1 % 0.72%) 0.0814 (1 + 1.20%)

for training. The training time for all these algorithms span
from tens of thousands to hundreds of thousands of seconds.
It is prohibitive to deploy and train/retrain such algorithms in
real-time, whereas BLS one-shot takes tens of seconds, more
than three orders of magnitude faster. Remarkably, even when
extra training time is required for the incremental enhancement

and feature nodes, still BLS is around two orders of magni-
tude faster than standard algorithms. The experiments show
that, even with incremental learning, BLS allows minute-based
training features, and paving the way to real-time training.
In practice, the prediction performance of all algorithms
is stochastic due to the random initialization of the weights
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and/or nonconvexity of the optimization. To evaluate stochas-
tic behavior, Tables I-III report the dispersion around the mean
value of the error, based on an approximate Gaussian dis-
tribution with dispersion +30. The dispersion is reported in
percentage for better assessment. The percentages show that,
despite BLS adopts nodes with random weights is performance
is consistent and comparable or better than the other algo-
rithms: this consistency was reported in literature also for
ELMs [36], which also uses nodes with random weights.

Because they belong to the same family of algorithms stem-
ming from random vector functional-link networks [34], let us
compare BLS one-shot with ELM: ELM is a bit faster, while
BLS is a bit more accurate. Both aspects can be explained by
the fact that ELM trains only the last layer. Because less links
have to be trained, the least-square problem of ELM is smaller
than the least-square problem of BLS, and thus training is a bit
faster; at the same time, the missing links lead to slightly worse
performance. ELM and BLS one-shot would give exactly the
same result if ELM is arranged in a flat structure (instead of
hierarchical).

B. Validation on Different Dataset

To confirm the results on a different dataset, we further
tested the algorithms on the California Bay dataset (abbrevi-
ated as BAY-PEMS). Similar to other traffic datasets available
online, such as the Los-Angeles metropolitan dataset and the
Shenzhen taxi dataset [37], [38], the dataset contains only
speed data. However, it is still interesting as data are col-
lected from 325 sections: therefore, the regression problem is
even larger than the one of the first PeMS dataset. The corre-
sponding results are reported in Table IV, respectively. Similar
comments as the first dataset apply to this dataset in terms of
fast training time and competitive prediction accuracy.

Remark 4: In this work, we have used the same parameter
settings for all prediction cases (15, 25, 40 min ahead), result-
ing in a unique network structure for all predictions. Although
it is not mandatory to have the same network structure, this
can have some benefits in terms of computational efficiency,
e.g., implementing the same network while simply switch-
ing the network gains according to the desired prediction,
or distributing computations. Because distributed computing
algorithms strongly depend on the network structure [39], a
common network structure would ease their implementation.

Remark 5: For any learning method (except LASSO) we
have used two different implementations: this is done in order
to show that we have tuned all the algorithms as best as
we could. Increasing sizes or adding extra layers does not
in general improve performance: for example, BP-25 is not
unquestionably better than BP-10, DNN-4 is not unquestion-
ably better than DNN-3 and so on.

V. CONCLUSION

We have investigated a BLS as a fast architecture for traf-
fic prediction. Extensive comparisons have been made with
popular learning algorithms (LASSO, SAEs, shallow, deep,
convolutional, and recurrent neural networks), with all algo-
rithms implemented in the same computing platform. The

training time of BLS is shown to be two-three orders of mag-
nitude faster, i.e., tens of seconds against tens-hundreds of
thousands of seconds.
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