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Abstract

Networks of mass flows describe the basic structure of ecosystems as food webs, and

of economyas input–output tables.Matter leaving a node in these networks can return

to it immediately as part of a reciprocal flow, or completing a longer, multi-node cycle.

Previous research comparing cycling of matter in ecosystems and economy was lim-

ited by relying on unweighted or few networks. Overcoming this limitation, we study

mass cycling in large datasets of weighted real-world networks: 169 mostly aquatic

food webs and 155 economic networks. We quantify cycling as the portion of all flows

that is due to cycles, known as the Finn Cycling Index (FCI). We find no correlation

between FCI and the largest eigenvalues of unweighted adjacency matrices used as

a cycling proxy in the past. Unweighted networks ignore the actual flow values that in

reality can differ by even 10 orders ofmagnitude. FCI can be decomposed into a sumof

contributions of individual nodes. This enables us to quantify how organisms recycling

dead organic matter dominate mass cycling in weighted food webs. FCI of food webs

has a geometric mean of 5%. We observe lower average mass cycling in the economic

networks. The global production network had an FCI of 3.7% in 2011. Cycling in eco-

nomic networks (input–output tables and trade relationships) and food webs strongly

correlates with reciprocity. Encouraging reciprocity could enhance cycling in the econ-

omy by acting locally, without the need to perfectly know its global structure.

KEYWORDS

cycling, economic networks, foodwebs, industrial ecology, network analysis, reciprocity

1 INTRODUCTION

Goods and services move between companies and consumers in an economy. Biomass flows between groups of organisms in ecosystems (Hannon,

1973) arise mostly from feeding relationships, and are thus known in ecology as food webs. The flows of mass in both systems define their funda-

mental, physical structure (Leontief, 1991). Mathematically, they constitute weighted digraphs (directed networks). Themass flows are encoded as

weights of links between vertices (nodes) that represent aggregated industries in economic input–output tables or groups of species in ecological

food webs (Nebbia, 2000).
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Here, we aim to address key questions regarding cycling in weighted ecological and economic networks. How much of the matter flowing in

these systems is due to cycling? How much is directly returned in reciprocal flows, compared to longer cycles? Are there any characteristic pat-

terns of mass cycling in these systems? Cycling in real systems is determined by their quantitative, weighted networks. We show that the largest

eigenvalues of unweighted adjacency matrices used even in the recent literature (Morris et al., 2021) do not correlate with the actual cycling in

weighted networks.We also take a glimpse into networks’ internal composition, highlighting how nodes contribute to overall cycling in foodwebs.

Amass foodweb has a strongly hierarchical structure, with several very distinct groups of nodes. As carbonmakes upmost of themass of organic

matter (biomass), its flow is equivalent to the flow of mass in the network. For a particular ecosystem of the size of, for example, a bay, there are

two relevant large pools of accessible carbon—the atmosphere and dead organicmatter. The atmosphere acts as an external pool of carbon dioxide,

which is practically unlimited at the spatial scale of such an ecosystem, aswell as over time frames of years. Some organisms, such as phytoplankton,

algae, plants, and some bacteria, can assimilate carbon dioxide from the atmosphere. Thus, they are called primary producers and are biomass

sources in the system. Dead organic matter is the second, spatially restricted pool of carbon. It is modeled as a part of the food web and referred to

as detritus. All the other nodes are consumers, that feed on primary producers, detritus, or other consumers.

Foodweb flows arise in several distinct processes. Consumption is the basicmass transfer between nodes. The undigested food and dead bodies

become detritus. Every living organism respires carbon back into the atmosphere. Some organisms migrate across the ecosystem boundary. Spe-

cialized organisms—bacteria, fungi, and invertebrates—recycle dead organicmatter (Mooreet al., 2004; Szyrmer&Ulanowicz, 1987) and are known

as detritivores. They enable the otherwise lost matter to go back to higher-order consumers, decisively impacting the overall cycling of biomass in

an ecosystem. Thismicrobial loop (Azamet al., 1983) is particularly important in aquatic ecosystems, utilizing a large fraction of primary production.

Further cycles can exist among higher-order consumers, for example, organisms hunting juvenile forms of their predators. In short, a biomass food

web is a constant flow of carbon assimilated by primary producers to higher consumers and back into the atmosphere, with an extra part of the flow

retained by the virtue of cycling (Patten, 1986).

Ecology (Fath and Patten, 1999) and economics (De Wit et al., 2018; Haas et al., 2015; Katz-Gerro & López Sintas, 2019; Lenzen et al., 2012)

have broadly studied the cycling of mass and energy in networks relevant to each field. We quantify cycling with an index proposed by J. T. Finn to

estimate the share of cycled matter in the total flow in food webs (Finn, 1976). The Finn Cycling Index (FCI) has been extensively applied in studies

of foodwebs (Christian & Thomas, 2003; Fath et al., 2013; Patten &Higashi, 1995; Higashi et al., 1993; Patten andHigashi, 1984; Ulanowicz, 1983)

and socio-economic systems in mass (Alvarez et al., 2014; Fang et al., 2014; Panyam et al., 2019) and monetary units (Picciolo et al., 2017). Its

success in capturing all cyclic flows was validated by direct simulations (Kazanci et al., 2009).

The network structure of industrial exchange is particularly relevant to the recent discussion surrounding circular economy. The circular economy

aims tomake production processes more sustainable (Ghisellini et al., 2016;Webster, 2017) by enhancing reuse, recycling, and process integration

within andacross value chains (Doustmohammadi andBabazadeh, 2020). This conceptwas first envisaged in the1990s, in thedomainof sustainable

resource and waste management (Pearce & Turner, 1990; Schwarz & Steininger, 1997). More recently, it was also mentioned in another field in

connection with designing Product Service Systems (Tukker, 2015), in which companies provide services rather thanmaterial goods.

Both food webs and economic networks consist of nodes internally processing and exchanging matter with each other (Hannon, 1973; Leontief,

1991). This sharedbasic nature inspired research intohowbiomimicry in systemdesign could improvehumansystems.Natural selectionhas already

led to efficiency and robustness improvements of ecosystems beyond what our short history could achieve in human economy. A universal scaling

detected in foodwebs also sparked the idea that they should be regarded as efficient transport networks (Garlaschelli et al., 2003). Mature ecosys-

temswere recognized for achieving a high degree of internal recycling of energy andmaterial. Elements cycle through the biosphere over pathways

that can be tight and local (for phosphorus in natural ecosystems) and sometimes broad and global (for carbon in the whole Earth system) (Palmeri

et al., 2014). Eugene P. Odum suggestedmimicking natural ecosystems as a way to improve human systems (Odum, 1969).

Researchers studied how to improve cycling by mimicking food webs in the context of thermodynamic power cycles (Layton et al., 2012), indus-

trial parks (Layton et al., 2016b), recycling networks (Layton et al., 2016a; Schwarz and Steininger, 1997), and the whole economy in view of the

limits to growth (Jørgensen et al., 2015). A low number of links was shown as a potential threat to higher cycling (Lay, 2017). These studies were

limited by looking only at unweighted networks, in which weights equal 0 or 1, or by relying on just a few networks. Weighted food webs have sig-

nificantly different properties from their unweighted simplifications (Scotti et al., 2007). For example, food web flows can span up to 10 orders of

magnitude (Okey et al., 2006).We directly compare FCI with the largest eigenvalue of unweighted interaction matrix, called cyclicity (Layton et al.,

2012; Layton et al., 2016b; Lay, 2017;Morris et al., 2021) and pathway proliferation (Borrett et al., 2007).

The reciprocity is defined as the fraction of the flow exchanged between two nodes traveling in both directions. Reciprocal and cyclic paths are

common in ecological and economic networks. They are related to important features, such as bilateral trade, mutualism, and cooperation (Bat-

tiston et al., 2016; Squartini & Garlaschelli, 2011). They depend considerably on the link density (Ruzzenenti et al., 2010; Squartini & Garlaschelli,

2012; Squartini et al., 2013). A more connected network, arguably, increases both the probability of reciprocal links and circular flows. The two-

step interactions quantified by the reciprocity were found to differ significantly between weighted and unweighted versions of the same network

(Scotti et al., 2007).

In this study, we describe how topology and cycles relate in economy and ecology. We assess the FCI and other relevant network metrics, such

as reciprocity, clustering, connectance, cyclicity, on 169 food webs and 155 economic networks. The primary innovative aspects of our study are:
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(1) comparing weighted economic and ecological networks with respect to cycling and reciprocity; (2) investigating the relationship of FCI with a

portfolio of well-known network metrics; and (3) providing an assessment of the level of cycling (FCI) on the largest sample of ecological and eco-

nomic networks to date. In theMethods section we describe the reciprocity, cycling, and clustering measures we use. The Results section presents

the distributions of FCI values in our datasets, and how network cycling in foodwebs arises from their specific internal composition.We outline the

limitations of the available data and our approach in Discussion, giving a summary and an outlook in Conclusions.

2 METHODS AND DATA

2.1 Data

All systems analyzed in this article are represented as weighted and directed networks (digraphs). Nodes (vertices) in food webs represent groups

of species connected by flows of biomass (Supplementary Figure 1, in Supporting Information S1). The currency of the flow is the total wet or dry

weight ormass of carbon (constitutingmost of themass of the organicmatter). The dataset ofweighted foodwebs has been compiled fromEcopath

with Ecosimmodels (Christensen andPauly, 1992) that are collected in Ecobase (Colléter et al., 2013). The Supplementary Information (S1) contains

the list of all used networks and their references.

Economic networks under study portray flows ofmatter ormoney between sectors of national economies. The economic dataset contains three

categories of networks: (1) input–output tables in monetary (IO) or physical units (PIOT); (2) trade tables in units of monetary value, mass, and

embodied CO2 emissions (the amount of CO2 directly and indirectly emitted to produce traded goods); and (3) multi-regional input–output matri-

ces (MRIO) connecting IO tables fromdifferent regions/countries. In the three types of networks, nodes represent, respectively: sectors/industries;

countries/regions; and the dyads country industry. In economic networks, self-loops typically account for most of the cycling, but are difficult to

comparewith foodwebs, where self-loops aremarginal, if not absent; this is why FCI without self-loops has been additionally computed. A descrip-

tion of the sources and criteria used in the construction of the networks is reported in the Supplementary Information (S2).

Whilemonetary data are generally reported and have undergone littlemanipulation (typically for harmonizing reporting procedures), mass data

are the result of either analytical work or econometric conversion (Gaulier andZignago, 2010).Monetary data aremore reliable thanmass data, but

provide a fundamentally different framework. While mass is partially depleted through production (waste material), value never declines. On the

contrary, value accumulates throughout stages of production (value chains). Hence, comparing mass andmonetary flows, we highlight the contrast

between those two aspects of economic exchange.

2.2 Methods

Weapplymeasuresquantifying reciprocity, cycling, and clustering inweighteddirectednetworks (digraphs) fromecologyandeconomics.Anetwork

consists ofN nodes that here represent species, industries, countries, or regions. Node i receives a flow Fij from node j. Thematrix F consists of real,

positive entries. If summation range is not explicitly specified below, it is assumed to run from 1 toN.

A node can also exchangematter with the outside environment. In foodwebs, ecologists distinguish between themass taken from the outside of

the modelled ecosystem as imports, the respiration of living organisms exiting into the atmosphere, and other exports outside the ecosystem (e.g.,

due to fishing). These quantities are explicitly present in the data as node properties. In economic networks, the information about the exchange

with the environment is frequentlymissing or incomplete.Weadd the flow into or out of the systemcalculated as the flowneeded tobalance system

flows around each node.

The amount of matter leaving a node i, Ti, is given by

Ti =
N∑
j=1

Fji + Oi, (1)

whereOi is the flow leaving the system from node i. A probability that a unit of massmoves from node i to node j in one step is given by a respective

entry of anN × N transitionmatrixG

Gji = Fji∕Ti. (2)

A sum of powers ofG expresses the transition probability from i to j in at most S steps (Norris, 1998; Bharucha-Reid, 2012):

U(S) = (u(S)ij )1≤i,j≤N =

S∑
q=0

Gq = I + G1 +⋯GS. (3)
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We introduce the cycling index of a vertex as the probability of flow passing through a node i to return statistically (directly or indirectly) to it

within S steps, formally:

𝛾
(S)
i =

u(S)ii − 1

u(S)ii

. (4)

The mass of 𝛾(S)i Ti passes through a node i and returns to it within S steps. The (global) Cycling Index (CI) of the network (i.e., the fraction of total

throughflow that returns, directly or indirectly, to a starting node) within S steps is given by:

CI(s) =

∑
i 𝛾

(S)
i Ti∑
j Tj

. (5)

SinceG is a sub-stochastic matrix, its power series converges for S→∞ (Solow, 1952):

U(∞) = (I − G)−1. (6)

The FCI (Finn, 1976) accounts for mass returning over all possible paths of all possible lengths, that is, for S = ∞,

FCI =

∑
i 𝛾

(∞)
i Ti∑
j Tj

. (7)

FCI takes values between 0 and 1. The lower limit is achieved when no flow starting at any node comes back to the same node at any path

length (there are no directed cycles). The upper limit represents a systemwhere all flows come back to the starting node. In the further text we also

compare the few-step cycling CI(2),CI(3),CI(4) with the FCI.

The simplest type of cycling is a reciprocal exchange of mass between two nodes. The network reciprocity r (Squartini et al., 2013) measures the

fraction of such overlapping bilateral flows among all flows:

r =

∑
i
∑

jmin[Fij, Fji]∑
k
∑

k Fkl
. (8)

If all flows are perfectly reciprocated, then r = 1. If there are no nodes connected by flows in both directions, r = 0.

We evaluate theweighted clustering coefficient averaged over all the nodes of the network (Fagiolo, 2007) for all possible triplets:

cctoti =

∑
j≠i

∑
k≠j,i(F

1∕3
ij + F1∕3ji )(F1∕3jk + F1∕3kj )(F1∕3ki + F1∕3ik )

2[ktoti (ktoti − 1) − 2k↔i ]
. (9)

For cyclic motifs (directed paths):

cccyci =

∑
j≠i

∑
k≠j,i(FijFjkFki)

1∕3

kini k
out
i − k↔i

, (10)

where the in-degree kini and out-degree kouti count the incoming and outgoing flows. The reciprocal degree k↔i is the number of bidirectional

connections.

Simpler networkmeasures rely just on the unweighted interactionmatrixA. The interactionmatrix canbeobtainedby replacing non-zero entries

with 1 in the flowmatrix F. The connectance (Yodzis, 1980) is the fraction of possible flows that are non-zero:

ci =

∑
j≠i Aij

N2
. (11)

Cyclicity, or the Perron–Frobenius eigenvalue is the largest real eigenvalue 𝜆max of A. It has also been called pathway proliferation (Borrett et al.,

2007). It was expected to mark the strength of cycling. For comparison, we also compute the Perron–Frobenius eigenvalue of the transition proba-

bility matrixG.
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TABLE 1 Two-step Cycling Index (Equation 5), Finn Cycling Index (Equation 7), reciprocity (rw), and connectance (c) of economic networks and
foodwebs inmass andmonetary units.We calculated FCI for theWorld Trade in CO2 without self-loops which disproportionately distort the
measure, andmarked it with ∗. We use abbreviationsMRIO forMulti-Regional Input–Output, and PIOT for Physical Input–Output Table

Year Networks Nodes CI(2) FCI rw c

Mass Flows

Foodwebs 169 7−125 0.063 0.091± 0.085 0.22 0.28

EXIOBASE (world) 2011 1 5424 0.035 0.037 0.02 0.17

EXIOBASE (countries) 2011 42 113 0.061 0.071± 0.058 0.01 0.32

PIOT, various 1990, 2015 4 12−16 0.12 0.13± 0.021 0.06 0.4

World Trade (BACI) 1998–2015 1 203 0.03 0.05± 0.004 0.36 0.53

World Trade (EORA), CO2 2000–2016 1 42 0.034∗ 0.06∗ ± 0.01 0.02 0.99

China EIO 2012 1 900 0.21 0.26 0.25 0.8

ChinaMRIO, CO2 2012 30 30 0.24 0.32± 0.09 0.28 0.9

Monetary Flows

World Trade 1998–2015 1 208 0.06 0.19± 0.03 0.7 0.5

WIOD, world 2000–2014 1 2408 0.14 0.17± 0.01 0.32 0.1

WIOD, countries 1995−2011 43 34 0.02 0.09± 0.65 0.25 0.8

US IO 1947−2016 1 42/66 0.15 0.27± 0.001 0.27 0.8

UK IO 1998–2015 1 97 0.12 0.20± 0.01 0.36 0.7

China IO 1992−2012 1 45 0.21 0.29± 0.003 0.25 0.89

ItalyMRIO 2014 20 37 0.19 0.23± 0.05 0.27 –

The properties of nodes in food webs are heavily influenced by their trophic level. Trophic level counts intermediate nodes between a given

consumer and resources entering the system. The trophic level (Odum andHeald, 1975) of a node i is defined as:

⎧⎪⎨⎪⎩
1

1 +
∑n

j=1
Fij∑n

k=1 Fik
𝜏j

(12)

3 RESULTS

Mass cycling in aquatic foodwebs has a very broad and skewed distribution that reflects the diversity of these networks. Their number of nodes and

connectance vary greatly, from 7 to 125 nodes and from 11% to 53% (Table 1). The share of mass cycled in food webs takes values between 0.3%

and 33%. Themajority of networks display FCI lower than 6%. Its distribution is closer to lognormal than to normal. Thus, we choose the geometric

mean of 5.1% (Figure 4) to quantify the “typical” extent of cycling in foodwebs.

Much of the biomass cycling can be attributed to reciprocal flows. Reciprocity ranges from 0.7% to 56% with a geometric mean of 16%. At the

network level, reciprocity is a very good predictor of biomass cycling, as can be seen in Figure 1. This clear power law relationship is estimated with

ordinary least squares regression as

FCI ∝ r1.209±0.040. (13)

The correlation between reciprocity and FCI is very strong, with the fit R2 equal to 0.85.

The nature of cycling in food webs becomes visible in the way individual nodes contribute to the sum that is the network FCI. The differing

distributions of FCI values of various groups of nodes are presented in Figure 2. Especially, the cycling of nodes at trophic levels higher than two can

bewell fit by a lognormal distribution, with chi-square an order of magnitude below other standard distributions. Lognormality would indicate that

node-level FCI values could originate as products of many independent random positive variables.

We observe that the recycling of dead organic matter (detritus) completely dominates cycling in food webs. The detrital FCI values with the

geometricmean of 1.7 × 10−3 are typically two orders ofmagnitude above consumers at the second trophic level (geometricmean 9.4 × 10−6), and
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F IGURE 1 A histogram of values of reciprocity and FCI of all analyzed foodwebs. Color indicates the number of networks that fell into bins
defined by reciprocity and FCI intervals (Underlying data are available in the FoodWebs tab of Supporting Information S3)

F IGURE 2 The network FCI value is a sum ofmore easily interpretable contributions of individual nodes. Left: a histogram of contributions to
FCI among all foodweb nodes. The nodes are divided into subgroups: primary producers (green, striped), detritus (red), consumers at the second
trophic level (yellow), and consumers at higher trophic levels (blue). Right: reciprocity and FCI contributions of all nodes at trophic level two and
higher. Color denotes the trophic level (Underlying data are available in Supporting Information S4)

five orders of magnitude above consumers at higher trophic levels (geometric mean 2.2 × 10−8). The strong hierarchy of cycling values is explained

by the fact that organisms feeding on detritus, such as fungi and bacteria, can recycle and feed a significant fraction of primary production back into

the system (Azam et al., 1983; Patten, 1986).

Reciprocity strongly influences FCI at node level in roughly two ways, depending on the trophic level. High reciprocity nodes at the second

trophic level have FCI values clustered around a central power law trend, as visible in the right panel of Figure 2. At lower reciprocity (less than

10−2) a second statistically significant trend becomes visible. For given reciprocity, the FCI of nodes at higher trophic levels is higher than those

at the second trophic level, and follows a less steep power law. At the second trophic level, the direct exchange with one of the possibly numerous

detrital nodes dominates the cycling. At higher trophic levels though, multiple indirect pathways to detrital nodes become available.

We observe that cyclicity, an alternative measure of cycling, fails to predict FCI values. We compare the values of cyclicity, (pathway prolifera-

tion) 𝜆max(A), and FCI for the food web dataset. The lack of any significant relationship is clear in Figure 3 and quantified by Spearman correlation

coefficient of about −1%. On the other hand, the largest eigenvalue of the transition matrix G (Equation 2) can roughly predict FCI values. Much

of the information about cycling is already encoded in this eigenvalue. The neglect of the actual values of flows makes such prediction impossible

for cyclicity.

Reciprocity and FCI in food webs are closely related, by Equation 13. This relationship can be explained by the predominance of two-step cycles

in FCI (Figure 4). They are topologically akin to reciprocity, involving pairwisemutual flows.

The cycling of all economic networks is normally distributed (see SM3), differently from food webs. In economic networks, the cycling of money

is an order of magnitude larger than the cycling of resources. Of the 32 Gt of matter processed in the world by 5424 nodes (country industry), with

17% connectance in 2011, only 3.7%were cyclical flows (EXIOBASE dataset, see SM2).
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F IGURE 3 Cyclicity (pathway proliferation) does not correlate withmass cycling once flow values are accounted for. Left: values of the largest
eigenvalue of unweighted interactionmatrix A and FCI for each foodweb. Right: values of the largest eigenvalue of weighted transitionmatrixG
and FCI for each foodweb (Underlying data are available in Supporting Information S4)

F IGURE 4 Contribution of paths of different length to FCI in 169 foodwebs. The S-step cycling index CIS captures the fraction of flow
returning to the same nodewithin S steps, see Equation 5). The subsequent curves indicate CI2 (orange), CI3 (red), CI4 (purple), and the total FCI
(gray). The inset displays an analogous FCI breakdown for the world trade network (WTW, inmass units), between the years 1998 and 2015
(Underlying data are available in Supporting Information S3: FoodWebs,WTW-WD)

Mass cycling as described by FCI gives a lower estimate of global recycling thanmeasures used in previous studies. These set the global recycling

level to 6%, for a total processedmass of 62Gt in 2010 (Haas et al., 2015), 9% in 2017 for a total of 92Gt (DeWit et al., 2018) and8.6% in 20191. FCI

reflects the cycling of matter passing through all nodes. The Global Circularity Metric of (DeWit et al., 2018) looks only at the total system inputs

and outputs and estimates them based on different sources than used here. Other major differences with our study concern the aggregation level

of data (and the attribution of byproducts), the analytical framework, the inclusion of regenerative flows, and the methods used for assessing the

reused inputs (Mayer et al., 2019). In our analysis mass flows are homogeneously considered and sectors with hybrid accounting (mixingmonetary,

energy, and mass units, see SM2) are excluded. These differences make a direct comparison difficult and show that the uncertainty of a recycling

estimate can be large. A systematic and comprehensive review of the diverse approaches is a question that demands further investigation.

We assess mass cycling within individual countries by splitting the EXIOBASE global exchange network into subnetworks and studying them

separately. The average mass cycling of 42 countries in 2011 was 0.071, but only 2.6 × 10−3 when self-loops were omitted. The corresponding

monetary exchange had FCI of 0.26, but 0.08 without self-loops. The large impact of self-loops shows the importance of cycling within each indus-

try sector aggregating manifold companies into one node. The mass cycling has a significantly wider range, from 2.6 × 10−3 in Cyprus to 0.25 in

Luxembourg. Monetary cycling varies from 0.027 in Hungary to 0.15 in Indonesia. Generally, high-income countries have a higher level of mass FCI

compared to low- or medium-income countries (see Figure 5).

The level of cycling for individual countries is an order of magnitude higher compared to the global economy. Cycling differs also by two orders

of magnitude among countries. This reflects differences in the structure or the national economies, and their embedding in the global production

network. Highly interconnected and globalized value chains are expected to lower the FCI of an individual country, but more research is needed.

1 https://www.circularity-gap.world/2020
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F IGURE 5 Mass cycling (FCI) in 43 countries and their GDP per capita in 2011, as portrayed by EXIOBASE. They are comparedwith the FCI of
the whole world economy in 2011 (blue line) and the geometric mean of foodweb FCI (green line). Bubble size and color reflect themonetary
cycling of countries (Underlying data are available in Supporting Information S3: EXIOBASE_WIOD)

Countries differ not only by values of FCI, but also in the way their cycling changes over time. The FCI of the United States has decreased over

time, whereas that of China and the United Kingdom has increased, similarly to that of the World MRIO (WIOD, World Input–Output Tables, see

SM3).

The world trade network exchanged 13 billion tonnes of matter in 2011, 19% of all the matter processed that year. Between 1998 and 2015 an

average of 4.7% consisted of matter that left and returned to the same country in the form of a whole or intermediate product. Several countries

evenhaveFCI that is higher than themajority of foodwebs. The four physical input–output tables (PIOT) considered exhibit a level of cycling around

10%. However, these systems differ by their scale and the type of mass that was quantified.

The level of mass FCI seems to be unrelated to both the level of income of the country or the level of FCI in monetary units (see

Figure 5); nevertheless, as a general, almost ubiquitous rule, mass cycling is one order of magnitude smaller than monetary cycling in IO,

MRIO, and trade networks. It indicates that, while mass is dissipated throughout production chains, value is accrued. Two-thirds of the cycled

mass in food webs, on average around 69%, is cycled among two compartments (two-step cycling or CI(2)). In socio-economic networks, the share

of CI(2) ranges from 42% of the UK IO up to an average of 78% of EXIOBASE MRIO matrices and roughly 30% for the world trade network

(Figure 4).

Cycling correlates much stronger with reciprocity than with connectance or clustering coefficient. The relevant Spearman correlation coeffi-

cients are shown in Figure 6. The only exceptions are the IO tables of the United States and the United Kingdom. This hints at the important dif-

ference between country-wide and global economies. The higher the reciprocity, the higher the cycling in all the considered network sets except

WIOD, that represents world monetary flows from 2000 to 2014. The FCI values of these flows were steadily increasing over time, despite falling

reciprocity. Reciprocity directly contributes to the two-step cycling index CI(2). Yet, even the difference between FCI and CI(2) correlates strongly

with the reciprocity.

Correlations between cycling and connectance highlight the differences among the studied networks. They are strongly positive in worldmone-

tary exchange (WIOD), but strongly negative in the monetaryWorld Trade; moderately positive in food webs, but insignificant in EXIOBASE world

mass exchanges.

The similarly strong and positive relationships between cycling and reciprocity in economic networks and food webs hint at a possible universal

law connecting topology andmass dissipation.

4 DISCUSSION

The generality of cycling and reciprocity patterns observed in food webs and economic networks relies on the availability and the reliability of

empirical data. The 169 food webs considered account for a great diversity of mostly aquatic ecosystems around the globe. The most common

continental shelves are followed by open ocean, upwellings, bays/fjords, and coastal lagoons. The main reason the aquatic ecosystems are greatly

overrepresented could be their significance in fishery management (Pauly et al., 1998) and the historical collapse of fisheries (Frank et al., 2005).

Furthermore, many of the foodwebsmodel managed areas, such as fisheries, already significantly impacted by humans. It has been noted that their

important properties, such as biomass distribution, might differ from pristine ecosystems (McCauley et al., 2018).
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F IGURE 6 Spearman correlation coefficients between cycling and other structural indicators. Rows correspond to sets of networks and
columns to pairs of indicators for which the correlation has been computed. c stands for connectance (11), r for reciprocity (8), and cc for the
weighted clustering coefficient (9). Rows and columnswere ordered according to similarity with clustering shown through dendrograms above and
on the left of the heatmap (Underlying data are available in Supporting Information S3)

Cycling in economic networks can be studied at various levels of aggregation. Here, we focused on themacroeconomic perspective, relevant for

the circular economy concept. The global scale is also the most appropriate for cycling studies, as current supply chains are strictly intercontinen-

tal (Picciolo et al., 2017).

We showed the advantage of FCI over unweighted cycling measures. The network FCI is also a sum of contributions of individual nodes. By

decomposing FCI we observed how cycling originates at the node level and quantified the underlying cycling structure in foodwebs. This cannot be

achieved with alternative cyclingmeasures, such as the largest eigenvalue of the adjacencymatrix (Borrett et al., 2007).

Another alternative, the storage-based cycling index (Ma and Kazanci, 2014) takes into account stock values of mass in nodes. In published

food webs though, the estimates of detrital biomass are frequently unavailable. Moreover, the reported stock values may not be causally con-

nected with cycling in the current ecosystem. Many of the food webs in the dataset describe areas with significant human impacts. These

impacts are recent compared to the timescales at which organic matter accumulates in wetlands or at the sea bottom. Thus, the sampled

detrital biomass might have originated in an ecosystem differing from the modeled one. The flows, however, fully belong to the current

ecosystem.

Studies ofwell-resolved empirical systems can give the best guidance in improving cycling, but themodelers’ assumptions also impact the realism

of conclusions. Both the biosphere and the human economy vary in time, and are far from equilibrium. Foodwebs are approximate static pictures of

populations of organisms. Therefore, no biomass accumulates in any of the nodes: the incoming and outgoing flows balance each other. This balance

condition sets them apart from, for example, monetary input–output tables.

The exact currency of flows studied also gives rise to several limitations of cycling studies. In economy, when flows represent the total mass, no

distinction is made about the type of flow, that is, the nature of the material. Therefore, one ton of outgoing flow of iron can return in the form of

one ton of plastic. This limitation becomes clearer when goods with composite materials are considered. Our economic cycling estimates are upper
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bounds on the present recycling of resources, representing an average over separate resource categories/elements. On the contrary, FCI in food

webs is a good indicator of the level of mass cycling. Wet and dry weight food webs are essentially just carbon networks, as carbon provides the

most of the weight of any organic compound.

A simultaneous study of how the most relevant elements flow through a system could explain its level of cycling. In food webs, the populations

grow to a size limited by the scarcest element and carrying capacity constraints. Nitrogen and phosphorus play such a limiting role in most aquatic

ecosystems. Their relative scarcity in bodymassmakes carbon and total mass networks in our study characterized by lower FCI values than known

from nitrogen and phosphorus networks (Scharler et al., 2016).

Various elements can impose differing limits on recycling. We have quantified the importance of specialized organisms recycling dead organic

matter in foodwebs. Bacteria and fungi requiredmillions of years to evolve abilities to breakdownotherwise indigestible chemical compounds, such

as lignin (Floudas et al., 2012). The difficulty of recycling different elements in human economy is also unequal (Brunner, 2013). Such technological

challenges limit the improvements possible bymanipulating the network structure alone.

A possible improvement of mass cycling could originate locally, through enhanced reciprocity. We observed a strong empirical correlation

between reciprocity and cycling. Its deeper, causal explanation is beyond the scope of the present analysis. Higher reciprocity might be inhibited

by geographical, political, or economic factors, among which the most plausible is the structure of the economy. The correlation by itself does not

guarantee that enhancing reciprocity alone in anexisting system is a feasible procedure to achieve anarbitrarily high cycling. In particular, it depends

on how the exchanging dyads are coupled to the rest of the network.

Can we use FCI as a metric to assess the level of circularity in economy? It should certainly not be replaced by any unweighted simplifications,

but certain caveats remain. Our analysis only accounts for flows arising frommonetary transactions. This includes, for example, the waste disposal

industry and production processes that rely on other sectors instead of extracting resources directly from the environment. However, it excludes

any reuse andmaterial-saving processes by firms or consumers that could result in an increase in the FCI.

Further research could explore the impact of system boundaries on cycling. The identification of flows crossing the systemboundary in an indus-

trial network significantly affects calculations. For example, if world trade accounts for 20% of all mass processed globally, as much as 80% of this

mass crosses the system boundary.

5 CONCLUSIONS

Implementing nature’s lesson (Jørgensen et al., 2015; Schwarz and Steininger, 1997) by observing ecological complexity to draw conclusions for the

humans’ sake might not be possible in the oversimplified sense of recycling everything (Ayres, 2004). Nonetheless, nature, differently from human

made systems, refined its processes and structures for million of years. It accomplished a better strategy, as shown by our results, to sustain cycles

of matter.

A circular economy requires vast improvements in the efficiency of production chains. It means a global sustainable-oriented interdependence

of sectors/countries. Locally, a circular design of process and products is needed. Data-based studies of mass cycling in networks benefit this goal.

We have described mass cycling through FCI that highlights how nodes contribute to the network cycling. We have shown that studies of cycling

in unweighted networks fail to predict the actual portion of all flows that is due to cycles. This explains differences between these two indicators

noted in the recent literature (Morris et al., 2021). Sound inferences require relying onweighted indicators, such as FCI.

Our results show a strong correlation of FCI with reciprocity in real-world weighted networks, observed for the datasets of 169 weighted food

webs as well as 155 economic networks. We have additionally quantified to which extent organisms recycling dead organic matter dominate mass

cycling in weighted food webs. We have noted that in food webs reciprocity and FCI are related through a power law. Socio-economic networks

on average lag far behind food webs in mass recycling and would thus benefit from a redesign that considers biomimicry and other evolutionary

approaches. Differently from food webs, the relationship between reciprocity and FCI is ubiquitous and more evenly distributed among nodes of

economic networks. Even the difference between FCI and CI(2) correlates strongly with the reciprocity. It shows that the impact of reciprocity on

cycling stretches beyond the direct two-step cycles.

In addition to recycling waste and minimizing pollution, policies could promote reciprocity and collaboration among network’s compartments,

such as economic partners, subsidiaries, or countries. This can be local and incremental and does not require a global knowledge of the system. Such

a strategy is simpler than designing an optimized network in a top-down process.
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