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ABSTRACT
Combiningmathematical andphysical understanding in reasoning is
difficult, and a growing body of research shows that students expe-
rience problems with the combination of physics and mathematics
in reasoning beyond the introductory level. We investigated stu-
dents’ reasoning about boundary conditions (BCs) for the diffusion
equation by conducting exploratory task-based, think-aloud inter-
views with twelve undergraduate students majoring in physics or
mathematics. We identified several difficulties students experienced
while solving the interview task and categorized themusing the con-
ceptual blending framework. This framework states that in reasoning,
people draw from separate input spaces, in this case the mathemat-
ics and the physics input space, to form a blended space, where they
make connections between elements from these spaces. To iden-
tify difficulties, we used open coding techniques. We observed few
difficulties in the physics space. In themathematics space, we identi-
fied several difficulties thatwe clustered in twomaingroups: findings
about themathematical meaning of BCs, and findings about reason-
ing with functions of two variables. Lastly, we identified four ways
in which blending failed. Starting from our findings, we formulate
recommendations for teaching and future research.
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1. Introduction

In physics, we describe the world in mathematical structures. This is true for all levels of
physics, but at an advanced level, the role ofmathematics becomes evenmore important. As
such, proficiency inmathematics is required to understand physical phenomena, and being
able to combine the different fields is a prerequisite to become more proficient in physics.
Understanding an equation in physics is not just connecting the symbols to physical vari-
ables and being able to perform calculations and operations with that equation, but also
being able to connect the mathematical equation to its physical meaning and integrating
the equationwith its implications in the physical world (Redish&Kuo, 2015). This requires
more than the sumofmathematics and physics and has proven to be difficult for students. It
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is therefore not surprising that the relation between mathematics and physics is an active
research area in physics education research (PER) (e.g. Bollen et al., 2016; Karam, 2015;
Redish & Kuo, 2015; Uhden et al., 2012) and plays a prominent role in this study. Identi-
fying and understanding student difficulties with the role of mathematics in physics is an
important part of this research area. Most of the work on student difficulties has focussed
on introductory physics. However, a growing body of research suggests that intermediate
and upper-division students continue to struggle with reasoning and problem solving even
in the advanced physics courses (e.g. Caballero et al., 2015; Ryan et al., 2018). Student dif-
ficulties in upper-division problem solving originate, in part, from the more complicated
math and more sophisticated physics characteristic of upper-division content. However,
difficulties in the upper-division might also relate to the cyclic nature of the physics cur-
riculum, in which some physics topics appear several times in different contexts across
the undergraduate curriculum (Manogue et al., 2001; Zwolak & Manogue, 2015). Ryan
et al. (2018) state that for these recurring topics, difficulties that are not addressed in early
courses can persist, and become worse, when the topic appears again in a more advanced
course.

We study the relation between mathematics and physics in the context of particle diffu-
sion. This is a promising context because the diffusion equation is a good example where
mathematics (a partial differential equation (hereafter PDE)) and physics (the physical
process of diffusion) come together. Specifically, we focus on the mathematical descrip-
tion of boundary conditions (hereafter BCs) for phenomena described by the diffusion
equation. Generally, BCs appear several times throughout the physics and mathematics
undergraduate curriculum (Ryan et al., 2018), which make them interesting for investigat-
ing difficulties as these can persist in other contexts later on in the curriculum. BCs define
the conditions physical quantities must satisfy at the boundary between two regions. They
are particularly critical because they are necessary to reduce general and abstract mathe-
matical expressions to physically meaningful solutions that have descriptive and predictive
powerwithin a particular physical system (Boas, 2006). Therefore, BCs are a powerful topic
to investigate the blending of mathematics and physics.

There is not a lot of research on student reasoning or difficulties in the context of PDEs
in general, and, as far as we know, none in the context of the diffusion equation. Ryan
et al. (2018) recently investigated student difficulties with BCs in the context of electro-
magnetic waves . Their data sources were student responses to traditional exam questions,
conceptual survey questions, and think-aloud interviews. They arranged difficulties in the
four phases that the ACER framework considers to be part of the problem solving pro-
cess: Activation of the tools, Construction of the model, Execution of the mathematics,
and Reflection on the results. Some of the difficulties they reported are the following: not
using appropriate BCs, even when asked explicitly to use BCs; difficulties determining the
correct direction for the wave vectors �k, �E, and/or �B; and more difficulty with checking
limiting behaviour than with unit analysis as a reflection strategy. Even though the topic of
BCs is the same in their and our study, the context of electromagnetic waves differs from
the diffusion context, which means that we expect many differences between their and our
findings.

Wilcox and Pollock (2015) investigated upper-division student difficulties with separa-
tion of variables in the context of the Laplace equation in electrostatics. The main focus
was on applying the separation of variables technique, but part of their investigation dealt
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with BCs. Their findings showed that, in particular in spherical coordinates, some stu-
dents struggled to identify and express the appropriate BCs when they were not explicitly
provided in the problem statement.

Research in the context of ordinary differential equations (ODEs) has shown difficulties
to distinguish ‘amount’- and ‘rate of change of amount’-type thinking when reasoning in
the context of physical processes (Rowland & Jovanoski, 2004). We expect this might also
be a problem for students when reasoning about BCs expressed as a derivative, which we
investigate in this paper.

We report here on a study of student reasoning when mathematically formulating BCs
in the context of the one-dimensional diffusion equation (Section 2). In particular, we
focus on the role of mathematics and physics, and how students blend both fields in their
reasoning while formulating these BCs. To structure our investigation, we use the concep-
tual blending framework (Fauconnier & Turner, 1998) as an analytic lens (Section 3). We
conducted think-aloud interviews with undergraduate students to study their reasoning.
Participants, interview protocol and content are discussed in Section 4. We go over the
data analysis procedure in detail (Section 5) and give an overview of the identified student
difficulties (Section 6). Finally, we discuss our findings and their implications for teaching
(Section 7).

2. Boundary conditions in the context of the diffusion equation

In this section, we briefly review the diffusion equation and the boundary conditions we
focus on. Particle diffusion processes in one dimension are modelled by the following
partial differential equation:

∂u
∂t

(x, t) = α
∂2u
∂x2

(x, t)

for 0< x<L and 0 < t < ∞, with u(x, t) expressing the concentration in terms of posi-
tion and time. α is the diffusion coefficient, which is ameasure of the rate at which particles
can spread in a specific medium. Note that this is the one-dimensional diffusion equation,
which describes an idealised system in which diffusion is only possible in one spatial
dimension x.

In this paper, we focus on a problem (see Figure 2, discussion later in the article) where
this partial differential equation is used to model the particle flow in a one-dimensional
tube of length L. It relates the quantities ∂u

∂t (x, t), the rate of change in concentration with
respect to time, and ∂2u

∂x2 (x, t), the concavity of the concentration distribution u(x, t), which
essentially compares the concentration at one point to the concentration at neighbouring
points (Farlow, 1993).

The initial condition describes the state of the system at the beginning (t = 0). Bound-
ary conditions refer to the conditions physical quantities must satisfy at the boundary of
the system. In this study we focus on boundary conditions of the form ∂u

∂x (x, t) = g(t),
which specify the flux, which in this context is the particle flow, through the bound-
ary. More specifically, we consider a closed tube, so no particles can pass the boundary.
Mathematically, this is described by the following boundary conditions: ∂u

∂x (0, t) = 0 and
∂u
∂x (L, t) = 0.
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3. Analytical framework

To investigate student reasoning when mathematically formulating BCs for a diffusion
process, we use the conceptual blending framework. This framework was originally intro-
duced by Fauconnier and Turner to model how people create new meaning in linguistic
contexts by selectively combining information from previous experiences (Fauconnier
& Turner, 1998, 2003a, 2003b). It has repeatedly been used in PER to model the blend-
ing of physics and mathematics (Bing et al., 2007; Bollen et al., 2016; Hu & Rebello, 2013;
Kuo et al., 2013; Podolefsky & Finkelstein, 2007).

In blending, elements from input spaces are selectively combined into a blended space.
Generally, a mental space, which can be input spaces or the blended space, is composed
of conceptual packets or knowledge elements that tend to be activated together, and has
an organizing frame that specifies the relationships among the elements within the mental
space (Bollen et al., 2016). According to the conceptual blending framework, two or more
input mental spaces that share content or structure can be combined into a new, blended
space. The language of conceptual blending provides a framework for analyzing students’
combination ofmathematics and physics. This framework emphasizes both the emergence
of new relations and the different ways the combination itself can be constructed (Bing
et al., 2007). It is also interesting that there is no hierarchical relation between the different
input spaces. The input spaces (‘mathematics’ and ‘physics’ in the case of this paper) are
considered of equal value, which joins our opinion that mathematics should not be seen as
just a tool to be used in physics, nor physics as merely a context for mathematics.

Figure 1 shows an example of a blending diagram from the work of Hu
and Rebello (2013). They used the conceptual blending framework to make sense of the
ways in which students combined their knowledge from calculus and physics to set up
integrals in a physics context. Students calculated the total resistance of a cylinder with
varying resistivity as a function of position. The authors distinguished three input spaces:
the symbolic space (which refers to the technical role of mathematics), the math notion
space (which refers to the mathematical concepts), and the physics space (which refers
to physical quantities and concepts). Different blends were identified and graphically rep-
resented, all with the same three input spaces, but with different organizing structures.

Figure 1. Example of a blending diagram from the work of Hu and Rebello (2013).
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From the blending diagrams, the authors determined several blending mechanisms and
ranked them from least to most productive. They concluded that the difficulties that stu-
dents experience seem to originate not necessarily from a lack of prerequisite knowledge
of mathematics, but rather from inappropriate blending of the knowledge of mathematics
with their knowledge of physics concepts and the physical scenario at hand.

The conceptual blending framework has also been used in MER. Zandieh et al. (2014)
investigated student reasoning when proving ‘conditional implies conditional’ statements.
Gerson and Walter (2008) used conceptual blending as a lens to illuminate individ-
ual and collective understandings of calculus concepts as they emerge from sustained
mathematical inquiry.

In this paper, we study the role of mathematics, physics, and their combination in stu-
dent reasoning when formulating BCs for diffusion in a one-dimensional tube with closed
ends. We hypothesize that conceptual blending might be an adequate framework and
therefore answer the following research questions:

(1) What reasoning difficulties do we observe when students mathematically formulate
BCs based on a described physical situation?

(2) How can we use the conceptual blending framework to characterize these reasoning
difficulties?

4. Data collection

4.1. Participants

We conducted individual, semi-structured, task-based think-aloud interviews with twelve
undergraduate students to gain insight into the thinking and reasoning mechanisms
behind students’ responses. The students came from two different universities and
were interviewed after they finished a course in which the diffusion equation was
discussed.

Six of the participants were second year undergraduate students majoring in physics
or mathematics at KU Leuven, Belgium. They followed a course on differential equations,
taught in Dutch. The part of the course on PDEs entailed a chapter in which the diffusion
equation was discussed in depth, i.e. the derivation of the diffusion equation, BCs, physical
systems described by this equation and the algorithmic technique of separation of variables
are discussed.

The other six participants were first year undergraduate physics majors at University of
Groningen, the Netherlands. They were interviewed a week after following aMathematical
Physics course, which was taught in English. In this course, the learning goals concerning
PDEs were: being able to apply BCs in complex form, being able to solve PDEs using the
separation of variables technique, and understanding complex physical systems via PDE
analysis.

At both universities, we had access to students’ grades for the respective courses dealing
with PDEs. We aimed for a stratified sampling (Hsieh & Shannon, 2005), with a mixture
of low and high achieving students to ensure heterogeneity in the sample. All participating
students passed their exam. Half of the sample consists of students scoring between 75%
and 100% of the maximum score, the other half between 50% and 75%. Participation to
the research was voluntarily.
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4.2. Interview content

Initially, we designed and conducted broad interviews to explore instances of blending of
mathematics and physics in reasoning about the diffusion equation. There is almost no
literature about student understanding of the diffusion equation. Therefore, we identified
four potentially interesting aspects to investigate this blending, and developed interview
questions related to these aspects:

(1) Conceptual understanding of the diffusion equation: Starting from the PDE (mathe-
matical form), explain the physical meaning of the PDE and its different terms.

(2) Conceptual interpretation of the diffusion process: Starting from a description of a
physical situation combined with a graph representing the concentration profile at
time zero and the PDE and BCs (mathematical form), reason qualitatively (so without
solving the PDE) about the evolution of the concentration over time.

(3) Setting up the mathematical equations: Starting from a description of a physical
situation/process, formulate the mathematical description (PDE, IC and BCs).

(4) Interpreting the solution of the diffusion equation: Starting from a given analytic
solution, describe the particle flow and link it to the physical process.

During the interview, we observed that mathematically formulating the BCs was a topic
where the blending of mathematics and physics showed to be difficult, which made it par-
ticularly interesting for analysis. We therefore focussed on BCs in our analysis and limited
our analysis to these parts of the interview. This is situated in the part of the interview
where students have to set up the mathematical equations for a described physical system
(number 3 in the list above). The interview question which is the focus of the analysis in
this paper is shown in Figure 2.

4.3. Model solution to the interview question

As a reference, in this section we show how the interview question in Figure 2 can be
answered.

The necessary information to answer this question is given in the sentence ‘The left and
right end of the tube are closed so no particles can flow in or out of the tube’. This means
that at both sides of the tube, the particle flow through the boundary is zero. Physically,
particles flow between neighbouring points when the concentration in these points differs.
This concentration difference can mathematically be described by the gradient ∂u

∂x (x, t) of

Figure 2. Interview question which is the focus of the analysis.
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Figure 3. This figure shows a possible sketch of the way the graphical representation of the concentra-
tion distribution changes over time. The black graph shows the initial condition, which is provided in the
problem statement. The two grey graphs show the distribution after some time tn and after a long time
t∞.

the concentration (which is the limit of the difference �u
�x ). As in this problem no parti-

cles can flow through the boundaries, this is mathematically expressed as ∂u
∂x (0, t) = 0 and

∂u
∂x (1, t) = 0.

The question can also be answered using a graphical approach. In the problem state-
ment, we provide a function that describes the initial concentration in each point of the
tube. Figure 3 shows a graph of this distribution. As both ends of the tube are closed, the
distributionwill evolve towards a constant distributionwhere the concentration is the same
in every point of the tube. This is the equilibrium state of the system. If we zoom in onwhat
happens at both ends of the graph, one can argue that the slope with respect to x has to stay
zero over the whole process. Indeed, a non-zero slope would indicate a concentration dif-
ference between neighbouring positions and that would result in a particle flow that wants
to even out that difference. The fact that we know that there is no particle flow through the
boundary must therefore mean that ∂u

∂x (0, t) = 0 and ∂u
∂x (1, t) = 0.

4.4. Interview protocol

Students were interviewed individually for approximately one hour. The participants were
encouraged to ‘think aloud’ as they worked through the tasks. The interviewer was the
first author of the paper, and was not involved in any of the respective courses on PDEs.
We conducted the interviews using a smart pen, which audio recorded the conversations
and kept track of the student’s notes, drawings and calculations. We also video taped the
interview as a backup for the smart pen. The interview questions were written in English
because the course atUniversity of Groningenwas taught in English.However, the students
could respond orally in Dutch if their native language was Dutch (which was the case for
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all participants and the interviewer). The English interview questions were no problem for
the students as they were all used to English text books and English speaking teachers. In
case they did not understand the question, there was always the opportunity to ask the
interviewer for clarification.

At the start of the interview, the interviewer informed the students about the subject
and purpose of the interview. The interviewer also emphasized that she would not give
feedback about the correctness of the student’s responses during the interview. After this
introduction, the student signed an informed consent. Generally, the interviewer tried not
to interfere, except for the prepared follow-up questions, prompts to think out loud, and
requests for further explanation of what the students did and why. After the interview, the
students had the chance to discuss their answers and the aim of the research project in an
informal way. In the rest of the article, we replaced student names by letters to guarantee
anonymity.

5. Data analysis

As a first step, the interviews were transcribed verbatim and drawings, calculations, and
notes from students were added to the transcripts. In the first phase of analysis, we
looked at student reasoning through the lens of the conceptual blending framework.
The unit of analysis here is a reasoning step. Each reasoning step is characterized as
being part of the mathematics (M) space, the physics (P) space or the blended (B)
space.

• Mathematics space: In general, the math space contains all steps of reasoning related
to mathematical knowledge, without any new physical input (i.e. using only physical
input that has already been mentioned before in the solution process). This broadly
entails reasoning withmathematical concepts, functions, graphs, equations, derivatives,
mathematical relations, etc.

• Physics space: Similarly, the physics space contains all steps of reasoning related
to physics knowledge, without any new mathematical input, such as reasoning
with physics concepts (e.g. concentration, particle flow); describing a physical sys-
tem/process/relation in words without a mathematical description; and reasoning with
experimentally known facts or relations between physical quantities or an established
physical principle or law in the domain (e.g. particles flow from high to low concentra-
tion) (Sirnoorkar et al., 2016).

• Blended space: The blended space contains all steps of reasoning that explicitly connect
mathematical concepts/equations/graphs to physical concepts/situations/processes/
quantities (e.g. stating that the particle flux is proportional to ∂u

∂x ).

The first author did the initial analysis (dividing in reasoning steps and categorizing
them in the different spaces), after which two other authors independently checked every
transcript. Where the opinions differed, interpretation and categorization were discussed
until consensus.

During the analysis, it became clear that mathematically formulating the BCs was quite
challenging for the students and most of the reasoning was incorrect or incomplete. We
observed that students experienced many types of difficulties. Therefore, in the second
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phase of analysis, we decided to focus on those parts in the interviews where difficulties
arise. We performed a content analysis (Hsieh & Shannon, 2005) and used open coding
techniques to develop a code book that encompasses the different difficulties students
experienced when formulating the BCs for the question in Figure 2. We structured the
code book around the three categories from the first phase of analysis: difficulties situ-
ated in the mathematics space, the physics space, and the blended space. The code book,
with examples for every type of difficulty that we observed, is presented in the results
section. Because of the small number of participants and the exploratory nature of the
interview, the aim is to give an overview of the observed difficulties without discussing
the frequency of appearance of each difficulty, or linking them to students’ achievement or
curriculum.

6. Results

Overall, all students have some basic understanding related to the task: most students
can explain the meaning of ‘boundary conditions’ and most students connect ‘change’
to ‘derivative’. However, only four out of twelve participating students could formulate
the correct solution for the task: BCs ∂u

∂x (0, t) = 0 and ∂u
∂x (1, t) = 0 (students D, E, F

and G). Even among the students who solved the problem successfully, we observed a
lot of doubt and incompleteness in the reasoning, which often obstructed productive
blending.

In the following sections, we provide an overview of the identified difficulties for the
reasoning in the three mental spaces: physics, mathematics, and blending. We describe
the difficulties, and provide examples of student reasoning and interpretations for every
difficulty.

In the rest of this section, wewill use an abbreviated formof the BCs, like ∂u
∂x = 0, instead

of the complete ∂u
∂x (0, t) = 0 and ∂u

∂x (1, t) = 0. We do this for readability, and because we
observed that none of the students had problems identifying the values of x and t when
formulating the BCs.

6.1. Reasoning in the physics space

Students seem to have few problems with the purely physical aspect of the reasoning. They
generally have a good understanding of what happens in the physical system, which is
illustrated by the following quotes:

Student B: We know that nothing can go this way, those particles bump into the edge of the
tube and cannot go further on to the left, but they can go back to the right.

Student D: The change in concentration ehm, so you have a tube [draws a tube with particles]
with particles that aremoving randomly andhere [draws thicker edges to the tube] they cannot
pass.

We only identified one difficulty in the reasoning in the physics space: pinpointing
the correct physical quantity that is described by the diffusion equation. We distinguish
between two types of confusion: concentration versus number of particles, and heat versus
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temperature (after having changed to heat context). The first example shows a student using
number of particles to formulate the BCs:

Student H: The BCs and hm. . . If we call this just x and one metre is just 1, then you will get
as BCs. . . hmm. . . [writes u] hmmm. . . Well, we will call the number of particles ‘N’ [crosses
u and changes it intoN]. At point zero ehm, for all times, is zero. And at point one, one metre,
also equal to zero [writes the following BCs while talking: N(0, t) = 0 and N(1, t) = 0].

This student defines a new variable N as the number of particles instead of using the
physical quantity of concentration. He uses this new variable to define the (incorrect) BCs.

The second example shows the incorrect use of temperature where it should be heat:

Student G: The tube is closed so no particles can flow in or out of the tube, so that means1
that the flow should always be zero. So yeah, the tube starts at x = 0 and goes on until x = 1.2
[sketches a tube with boundaries 0 and 1] When x is smaller than or equal to zero or bigger
than one, [writes x ≤ 0 and x ≥ 1] Then I think that mathematically. . . yeah. . . there is no
temperature going out of the tube. . . hmmmyeah. . . Yes I would probably describe it as [writes
∂u
∂x = 0], the way I think about it now, it should be zero.

This student jumps from a particle diffusion problem to the statement ‘there is no tem-
perature going out of the tube’ (line 5). He changes context on his own initiative. This
could be interpreted positively because he clearly sees the similarities between heat flow
(discussed in earlier questions in the interview) and particle diffusion. However, as can be
seen in the quote, he does not correctly distinguish between heat and temperature. Diffi-
culties with distinguishing between temperature and heat have been observed many times
before (e.g. Clough & Driver, 1986; Goedhart & Kaper, 2003; Kesidou & Duit, 1993; Linn
& Songer, 1991; Stavy & Berkovitz, 1980).

6.2. Reasoning in themathematics space

We identified several steps of reasoning in themathematics space that are hard for students.
The observed difficulties can be grouped in two main categories: mathematical meaning
of BCs, and reasoning with functions of two variables.

6.2.1. Themathematical meaning of BCs
6.2.1.1. The role of BCs in solving a PDE. When solving a PDE, the general solution is
found, which represents an infinite number of solutions. Next, the BCs (and the initial
condition) are needed to find the particular solution corresponding to a specific physical
situation. Some students do not understand the order of these steps. Student J, for example,
stated:

Student J: Then I think I should solve it [the PDE] and just fill in zero. . . .

The student first wants to obtain the particular solution (without using any BCs) and
then fill in an x-value at the boundary to obtain the BCs from this solution. Because the
student persists this line of reasoning later on in the interview, the interviewer intervenes:

Student J: I would just solve it [the PDE] and then see if I could get something from that,1
but. . .
Interviewer: Yeah, but no, you actually cannot solve it. Because when you want to solve the
equation, you need the BCs at some point to be able to find the solution.
Student J: Hmmm. . .
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Interviewer: So you cannot solve it [PDE] yet, you first need to find the BCs.
Student J: Yeah alright that ehmm. . . I believe you [hesitantly]

The student proposes oncemore to solve the PDE and get the BCs from this (lines 1 and
2). After explicit intervention from the interviewer (lines 3, 4 and 6), saying that the BCs
are critical to find the particular solution, the student eventually agrees hesitantly (line 7),
indicating that he does not really understand the point the interviewer is trying to make.
This indicates that the student does not know that he needs BCs to be able to find the
particular solution for the problem.

6.2.1.2. Strong focus onBCs of the formu = 0. BCs can take different forms.We generally
distinguish (in abbreviated notation): u = g(t) (concentration specified on the boundary),
∂u
∂x + λu = g(t) (concentration of the surrounding medium is specified), and ∂u

∂x = g(t)
(particle flow across the boundary specified) (Farlow, 1993). We observe that the form
u = 0 is very appealing to students in the interview, five of the twelve participating students
chose this as their final answer to the question in Figure 2, instead of the correct ∂u

∂x = 0.
Below, we show an excerpt of a student who is also attracted to this ‘u = 0’ solution, but

he realizes that this cannot be correct.
Student J: So the boundary conditions, what would they be? Because it doesn’t make sense
to1 me that it [the value of the concentration at the boundary] stays at zero. . . but if it doesn’t
stay at zero, then we can’t formulate boundary conditions because then. . . uhm it changes,
unless of course you come up with a function for the boundary conditions but that is uhm a
bit strange

The student seems to think that u = 0 is the only possible form for a BC. However, he
realizes that u = 0 is not suitable in the case at hand (lines 2 and 3). Next, he hesitantly
comes up with the idea to construct a function that gives the values of the solution at the
boundaries (line 4). He did not consider a BC containing a derivative.

Later on in the interview, the student repeats his view on BCs as follows:

I am looking at the solution at that point [points at x = 0], but that is ehm, that is how I think
to understand BCs.

This illustrates how the student is focussed on the idea that the BCs give the solutions
at the boundaries, which can explain his focus on the form u = 0. This idea is not fully
correct. The BCs provide a condition for the solution at the boundary. In the case of a BC
of the form ∂u

∂x = 0, the flow or flux is fixed at zero, but it does not entail the complete
solution at the boundary.

6.2.2. Reasoningwith functions of two variables
A second category of mathematical difficulties relates to reasoning with functions of two
variables.We give an overviewof three different aspectswe observed in the data andpresent
examples for each aspect.

6.2.2.1. Not specifying the variable with respect to which the derivative is taken. Quite
often, students talk about ‘the’ derivative ofu. Asudepends on both position and time, talk-
ing about ‘the’ derivative is not precise. In most cases, from the context in the transcripts it
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seems that students implicitly knowwhich variable they are talking about. However, some-
times this being imprecise becomes problematic, because it might indicate that students do
not realize that there are two different first derivatives for functions with two variables.

An example is observed in the following quote:

Student B: Hmm, the left and the right end of the tube are isolated, that doesn’t mean that
there are no particles, that means. . . Maybe. . . is it that the particles stay constant there? No.
Or is it a derivative? Because nothing comes out.

We see that this student correctly links derivative to change, but he does not specify
the variable with respect to which the derivative is taken. Further on in the interview, the
student continues as follows.

Student B: So if we look at this [draws a tube] we know nothing can go this direction, those
particles bump in to boundary and can’t go left [out of the tube], but they can go right [staying
in the tube]. So that means that the derivative does not have to be zero.

The student is talking about ‘the derivative’, but it is unclear which one he means or
whether he realizes that there are actually two possible derivatives.

6.2.2.2. The difference between ∂u
∂x ,

∂u
∂t and

∂2u
∂x2 . To some students, it seems unclear that

the different possible first and second derivatives all have a different meaning.
Student A chose BCs of the form ∂u

∂t = 0 as his final answer, which is incorrect. At the
end of the interview, the interviewer showed him the correct mathematical description of
the problem ( ∂u

∂x = 0).

Interviewer: Yeah, and here you have the solution to the problem from before and it was1
actually a derivative with respect to x . . .

Student A: Yeah okay. . .
Interviewer: Why would that be correct?
Student A: Hmm. . . I don’t know. . . Hmm I guess it is correct, but I could havemade the same
reasoning for t.

This student acknowledges that he could not explain why it should be a derivative with
respect to x instead of one with respect to t. The fact that he states that he could have
reasoned the same way about a derivative with respect to t (lines 5 and 6), indicates that he
cannot explain the difference in meaning between the two different partial derivatives.

The following excerpt shows another example of this difficulty:

Student L: So I kind of want to write this down: delta t or delta x, that doesn’t really matter1
[writes ∂u

∂t = 0], but why would. . . x and this one? Second derivative?
Interviewer: That is indeed the way you can write something like that down.
Student L: [makes it a second derivative with respect to time]
Interviewer: Hm wait, what have you done now?
Student L: [crosses the t and turns it into an x en writes = ∂u

∂t behind it (which resulted in:
∂2u
∂x2 = 0 = ∂u

∂t ] That, I would say the second derivative with respect to. . . Yeah I can also do it
this way. This one is not really necessary [inaudible].

This student seems to be gambling between different options (lines 1, 2 and 4). The stu-
dent already decided before this excerpt that he needed something that expresses change,
so he turned to derivatives. In this excerpt we see that he mentions derivatives with respect
to t, and x, and also a second derivative with respect to x. In the first line he states that ‘it
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does not really matter’ which derivative he chooses, which indicates he does not see a dif-
ference in meaning between the two partial derivatives. In the last sentence of the excerpt
(lines 6 to 8), the student writes a second derivative with respect to x and set it equal to
zero and also equal to the first derivative with respect to time. Again, the student does
not distinguish in meaning between first and second partial derivatives with respect to
different variables. This last sentence can also be interpreted in the light of the PDE. The
student writes ∂2u

∂x2 = 0 = ∂u
∂t , which has a form similar to that of the diffusion equation:

∂u
∂t (x, t) = α ∂2u

∂x2 (x, t). This could be part of the student’s confusion.

6.2.2.3. Seeing a function of two variables as a function of one variable. When one of
the variables is kept constant, some students reason exclusively in terms of the resulting
function of one variable and forget about the original function of two variables. This results
in (unfairly) thinking that only one of the partial derivativesmakes sense.We identified two
examples of this difficulty in our sample.

In the first one, the student looks at u(x, t) at different values of t. By setting the time
variable equal to a constant value, the student apparently thinks that u is a function of x
only, and no longer of t and uses this as an argument to not take the derivative with respect
to t:

Interviewer: Can you explain why it should not be a derivative with respect to t using the three
sketches you made? [Sketches are u(x) graphs at several times t]
Student A: Well, I’m thinking now, you have graphs in function of x, so it makes much more
sense to take the derivative with respect to x, but yeah.

In the second example, the student plugs x = 0 into u(x, t), which then becomes u(0, t).
From this, the student thinks that x is not a variable anymore, so one cannot take the
derivative with respect to x anymore:

Interviewer: And can you explain to me why it is a derivative with respect to time?
Student C: Ehm, yeah, it would be a bit stupid to take the derivative with respect to x because
there is no x anymore.

From the context of the transcript, we interpret this as the student saying ‘in u(0, t) there
is no x’. She does not seem to realize that BCs, more generally, give a condition for u(x, t)
at position x and that this condition can be stated in terms of the derivative with respect to
x in x = 0. Even if we fill in a numerical value for x (or t), we can still discuss the derivative
with respect to that variable.

6.3. Reasoning in the blended space

In this section, we give an overview of difficulties related tomaking the connection between
mathematical and physical reasoning. We identified four ways in which blending failed.

6.3.1. An incorrect combination of elements from the input spaces
Some students start reasoning about the closed tube in physical terms, but when asked
about the mathematical description, they connect this to a derivative with respect to time.
This indicates that the student has an incorrect idea about the physical meaning of the time
derivative. We discuss two examples.
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In the first excerpt, we observe a student trying to make connections between the
physical situation and a mathematical description:

Student A (turn 1): No, it is different because the derivative will be zero now ehm [writes
∂u/∂t = 0]. Yeah it’s going to be the derivative which is equal to zero, sorry, ehm. . . . I think
it should be like this. . . and it will be the same for x = 1.
Interviewer: Yes, and you say the derivative with respect to time, why to time?
Student A (turn 2): Ehm. . . because the flow does not change. . . yeah no. . . There is no drain of
particles and no particles can flow in, but indeed,maybe that. . . I think it should be a derivative
because ehm yes there is no change. It’s not something constant or so, there is just no change.

Later on in the transcript, he concludes the following:

Interviewer: Yes, but is it a derivative with respect to t or to x? That is the question.
Student A (turn 3): Ehm. . . yes. . . yeah no, it should definitely be t, my initial thought was
correct. [crosses the x in the denominator and changes it to t]. Yeah, cause ehm, over time, no
new particles are flowing in.

We observe that this student shows some understanding of the physical and the mathe-
matical aspect of his reasoning, but makes an incorrect combination of P and M elements.
Concerning the physics space, the student shows some doubt in formulating what a closed
systemmeans (student A turn 2). Concerning themathematics space, the student connects
‘change’ to a derivative in general (student A turn 2).However, in this case the derivative
is referring to a derivative with respect to time and the student has no clear concept of
what he means by ‘no change’. This could be referring to no change in concentration at the
boundaries, or to no particles flowing through the boundaries. The first option is incorrect
in this situation, and the second option is incompatible with the derivative with respect to
time.

We observe a similar reasoning pattern in excerpts from the interview with student E.
At the start of his reasoning, he states:

Student E (turn 1): And then, the left and right end of the tube are isolated, so the derivative
with respect to time is zero there because no particles can flow in or out of the tube.

A bit further on in the interview he concludes:
Interviewer: So why is it a derivative with respect to time? Conclusion?
Student E (turn 2): Well, my conclusion is that you want to describe how the situation evolves
here over time and that you don’t want any change in that. Because you don’t want particles
to be able to flow out.

Again, the student seems to understand the physicalmeaning of a closed system (student
E turns 1 and 2).Mathematically, the student knows that the derivative with respect to time
expresses change over time (student E turn 2).However, in an attempt to blend, he connects
these two elements, which are incompatible.

6.3.2. Conflicts between correct mathematical reasoning and incorrect physical
intuition
Student H solved the problem incorrectly. His final answer were BCs of the formN(0, t) =
0 and N(1, t) = 0 (Note the choice for N being number of particles, as discussed in
section 6.1).

In a follow-up question in the interview, we show the student the analytic solution
and we ask him to reflect on its physical meaning. This question is not the focus of our
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Figure 4. Graphs sketched by student H.

investigation, but while answering this question, the student gets back to the topic of BCs
and reflects onwhat he answered before. At the point of the excerpt, the student has drawn a
graph of u(x) as time approaches infinity, which is the horizontal line with vertical ends at
the boundaries in Figure 4. He added the vertical lines because his choice of BCs deter-
mined that the value should always be kept at zero at the boundaries. However, while
reasoning about the limit behaviour of the analytic solution when time goes to infinity,
he adds the following:

Interviewer: What are you thinking?
Student H: Ehm yeah, what the value at the boundaries is, so if it is zero or if it is u0 when you
fill in x = 0 here [in the limit t → ∞ of the analytic solution]. It doesn’t matter then, because
you just get u0. That does not correspond to the BCs I chose before.

In the last sentence of this excerpt, we observe a conflict between his answer from before
(of the form u(0, t) = 0) and the mathematical limit behaviour of the analytic solution (of
the form u(0,∞) = u0). To stimulate further reasoning, the interviewer asked the student
to draw graphs at intermediate times t, to which the student added the other two graphs in
Figure 4. Afterwards, the student concluded the following:

Interviewer: And youmentioned before that the boundaries should stay at zero. That does not
follow from the analytic solution, but does it makes sense physically that they stay at zero?

Student H: Yeah the BCs. . . but. . . Yeah that is because for all times there is. . .
Interviewer: So what are you saying?
Student H: . . . The BCs are not correct I think.
Interviewer: Why not?
Student H: Well, ehm, no particles can flow out, so then I thought it should just be zero at the
boundaries for all ehm for all times t. But yeah, maybe that nothing can flow out when it is
non-zero, but I would find that illogical.

In this last excerpt, the student acknowledges the conflict between his physics intuition
and the mathematical limit. He thinks that when a tube is closed and no particles can flow
out, that ‘it’ should be equal to zero at the boundaries for all times, which contradicts with
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his mathematical line of reasoning which says it should be u0 at the boundaries (lines 8 to
10). Note that he does not specify the ‘it’ as being concentration or amount of particles. This
student used correct mathematical reasoning about the limiting behaviour of the analytic
solution when t → ∞, but was unable to connect this to a correct and complete physical
interpretation, which resulted in not finding the correct BCs for the problem.

6.3.3. Correct physical and correct mathematical understanding, but difficulties
connecting both
It is possible to have a good understanding of both the physical and mathematical aspects
used in the reasoning, but to have difficulties connecting both. An example of this is
observed in the reasoning of student J.

Because the student failed to formulate an answer, the interviewer decided towrite down
two suggestions: ∂u

∂t = 0 and ∂u
∂x = 0. He asked the student which option is correct and

which is not and why. The following excerpt shows the reasoning of the student about
option ∂u

∂x = 0.

[interviewer writes ∂u
∂x = 0]

Student J: Let’s see. . . so then it stays flat. Yes. So. Wait, what does this mean? What is the
physical meaning of this possible BC?Well, it stays flat. . . hey. . . If I look at this [the graph he
sketched before] I think it should be possible because hmm. . . but that is, does it. . . Yes! It is
possible I think, because it is definitely flat there yes yes, okay, that is it.
Interviewer: Yes, and do you know this just because it is flat?
Student J: Well, because we have such a cosine ehm. . . then it has to be flat at the ends. . . Yes
okay and if I say now. . . So there is stated that the tube is closed at the boundaries, so what
does that mean? No particles can pass the boundary, yes.

When the interviewer suggests ∂u/∂x = 0, student J immediately says ‘then it stays flat’,
which indicated a connection to the mathematical meaning of a derivative being equal to
zero: a horizontal tangent line. Further on, he also reflects on the physical situation stated
in the problem statement. In this excerpt, both the mathematical and physical insights he
mentions are correct, but he does not make the connection between them. Later on in the
interview, the student elaborates on this:

Student J: But ehm, I did not think that this [ ∂u
∂x = 0] would always apply if you know nothing

can ehm escape. And I can’t really. . . well yeah probably after reasoning for a long time Iwould
be able to find out why this always applies, but it’s not something that is immediately clear to
me.

Here, the student admits not seeing the connection between his mathematical and
physical understanding from before, which shows that the blending did not happen.

6.3.4. Unproductive blending
Sometimes, students are actively blending mathematical and physical elements in their
reasoning, but it does not help them in their search for the answer. This can be called
unproductive blending.

Student J, for example, is intensively looking for ways to describe the physical system
mathematically in his search for the BCs.

Student J: So the question is what happens with those BCs. . . Oh yeah if you take the integral,
it should always be u0 . . .
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This student recognizes that the number of particles in the system (u0) is conserved and
links this to the use of an integral. Further on in the interview he continues with this idea:

Student J: Oh! Maybe you can. . . Maybe you can show this [the tube being closed] by giving
that integral. . . But it does not really say something about the boundaries. . . No yeah yeah
okay, that is maybe how I would show that the tube is closed, by taking the integral from zero
to one. . . and you want that to say something about the boundaries. . .

The student is clearly blending throughout this reasoning: he connects the closed tube,
and so conservation of particles, to a constant integral of u(x, t) over x. However, the
blending is not productive to find the answer to the problem.

7. Discussion

The blending of mathematics and physics is a general aim of physics education. We want
students to be able to thinkmathematically about a physical situation and go back and forth
between those worlds. BCs play a key role when describing a physical system mathemati-
cally in terms of a PDE. Therefore, they are a powerful topic to investigate the blending of
mathematics and physics in student reasoning. In this paper, we report on findings from an
interview study in which we asked students to mathematically formulate BCs for a given
physical situation. The results show that this is a hard task for them. We identified a set
of difficulties that can be used as a starting point to design student activities. We demon-
strated the power of the conceptual blending framework to categorize these difficulties in
the mathematics, the physics and the blended space.

In the physics space (see Section 6.1), some students had difficulties formulating the
correct physical quantity that is described by the diffusion equation. We identified confu-
sion between concentration and number of particles. Firstly, it is known from literature
that density or concentration is a difficult concept in general (Smith et al., 1997; Xu
&Clarke, 2012). Secondly, the fact that we are considering diffusion along only one dimen-
sion of the rodmightmake it harder for students. Thirdly, the problem statement itself may
also have played a role (see Figure 2). We called the initial number of particles in the tube
u0, which might have led students to believe that the physical quantity u must stand for
number of particles instead of concentration. Another factor in the problem statement is
that we chose the length of the tube to be one metre, which means that u0 represents both
the number of particles and the value of the overall concentration in the tube. Choosing
a different length in the problem statement may help students to explicitly think about
the difference between concentration and amount of particles. Classic textbooks often use
‘easy’ values in their problems tomake the mathematical calculation easier, but we observe
here that this may not always be the best for the learning process.

With respect to reasoning in the mathematics space (see Section 6.2), we identified sev-
eral aspects of the reasoning process that were difficult for students. We clustered these
aspects in two groups.

The first group contained findings related to the mathematical meaning of BCs. Some
students did not correctly understand the role of BCs in the process of solving a PDE. They
were convinced that the BCs could be found by evaluating the solution of the PDE for the
coordinates of the spatial boundaries of the system. Concerning the form of the BCs, we
opted for ∂u

∂x = 0 in the interview question, which expresses a closed tube where nothing
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can pass through the boundaries. However, almost half of the students were focussed on
BCs of the form ‘u = 0’. The focus on ‘u =’ might originate from thinking that BCs provide
the solution at the boundary, which is not fully correct. BCs provide a condition satisfied
by the system at the boundary. The persistence of the ‘= 0’ might originate from limited
and typical examples in class. In general, many examples in textbooks or classes have BCs
of the form ‘= 0’ because it simplifies the mathematical complexity of the problem. From
this, we may expect difficulties with more general BCs.

The second group contained findings related to different aspects of reasoningwith func-
tions of two variables. Firstly, we observed that some students did not seem to be aware
of the two different possible derivatives. These students would typically talk about ‘the’
derivative, without specifying the variable. This continues in a second difficulty: some stu-
dents could not distinguish between the meaning of different partial derivatives. Thirdly,
we observed thatwhen one of the variables is kept constant, some students think exclusively
in terms of the resulting function of one variable and forget about the original function of
two variables. The two discussed examples can be interpreted as the graphical and symbolic
version of the same difficulty. Graphically, a student struggled with combining multiple
graphs of u(x, t = c) as a representation of a function of two variables. Symbolically, a stu-
dent struggled with the order of operations: the student first plugged in a fixed value for the
variable and then tried to take the derivative with respect to that variable, while it should
be the reversed way. These examples confirm the findings of Thompson et al. (2012). They
developed and assessed curricular materials designed to help address student understand-
ing of the mathematics used in thermodynamics, particularly the mathematics of partial
derivatives and differentials. They found that students have difficulties with what it means
to keep one or more variables fixed while taking the derivative with respect to a different
variable.

To our knowledge, little research has been done on student understanding of func-
tions of two variables. Martinez-Planell et al. (2015), Martinez-Planell et al. (2017) used
APOS theory to investigate undergraduate students’ understanding of concepts related
to directional derivatives, partial derivatives, tangent planes, and their interrelationship.
APOS, which stands for Action, Process, Object and Schema, is a framework for research
and curriculum development in mathematics education (Arnon et al., 2014; Dubinsky
& Mcdonald, 2002). Among other findings, Martinez-Planell et al. observed that some
students did not show flexibility in the use of variables, and they had difficulties deciding
which of the variables are dependent and which are independent.

We categorized reasoning as blended when it explicitly connected a mathematical and a
physical idea or concept.We identified four ways in which blending failed (see Section 6.3).

A first way was when students selected elements in the input spaces but connected them
in the wrong way, which leads to an incorrect blend. In our sample, students often con-
nected the closed tube (physical system) to a partial derivative with respect to time equal to
zero (mathematical description), which is incorrect. In these examples, they fail to explic-
itly translate the derivative with respect to time to its physical meaning. Students generally
made quite correct statements about the physical situation (e.g. the tube is closed, particles
cannot flow in or out), but then they connected these to ∂u

∂t = 0 with limited explanation.
Two factors play a role here. Firstly, the physics space of these students is typically incom-
plete. They are mostly repeating what is already stated in the problem. Deeper physical
understanding, e.g. being aware that the concentration can change at the boundaries, is
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missing. Secondly, the mathematics space is incomplete. They use a partial derivative with
respect to time in their answer and reasoning, but they do not explicitly show conceptual
understanding, e.g. a derivative as change of a variable with respect to another variable, or a
derivative as slope. In conclusion, stimulating more elaborate reasoning may help students
in completing their input spaces, which may result in a better selection of elements for the
blending process.

Secondly, we observed that sometimes students express a correct line of reasoning in
the mathematics space, but experience a cognitive conflict with their incorrect physical
intuition. In the discussed example (see Section 6.3.2), it is interesting that even though the
mathematics clearly showed the incorrectness of his physical answer, the student held on
to his own idea and expressed doubt about the physical consequences of his mathematical
findings.

Thirdly, we showed that it is possible to have a good understanding of both the physical
and the mathematical side of the reasoning separately, but having difficulties connecting
both. This is in linewith earlier findings of Bollen et al. (2016). They established that correct
information in the input spaces does not automatically result in the intended newmeaning
after blending, which shows that student difficulties may sometimes not be due to a lack
of prior knowledge, but may stem from improper blending. In this case, we observe input
spaces containing the necessary elements to theoretically form the desired blend. However,
the blended space is empty because students fail to connect their understanding.

Fourthly, we observed that it is impossible to formulate an answer if students fail to
select the necessary elements in the input spaces for their blend. We showed examples
where students focussed on the global aspect of the closed tube (conservation of num-
ber of particles), instead of the local aspect (particles cannot flow through the boundary).
In general, these are promising examples of blended reasoning; the student is actively com-
bining both his physical and mathematical understanding in search of the solution to the
problem. However, the blending is unproductive because it does not lead to an answer to
the problem.

8. Implications for teaching

In summary, it seems that students are not always prepared to blend physical and mathe-
matical knowledge when reasoning about BCs of physical systems. So, the next question is
‘How can we prepare them in a better way?’

In general, we found that both the physical and mathematical components of the rea-
soning are required for a successful blending in the process of formulating BCs for a
described physical situation. Both the physics and mathematics space separately have to
be sufficiently developed in order to overcome difficulties in the separate input spaces.

It is important that students are aware of the physical quantities represented in themath-
ematical model. Explicitly defining variables can resolve this problem and make students
aware of the physical process connected to themathematicalmodel (Rowland, 2006). In the
process of mathematically modelling a physical situation, instructors should give explicit
attention to the assumptions and abstractions that are made, e.g. the abstraction of the
tube to a one-dimensional system, as these are not always trivial to students (e.g. Crouch
& Haines, 2004).
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Concerning themathematics space, especially the difficulties with functions of two vari-
ables are recurring in our sample. As an instructor, it is important to be aware that the step
from functions depending on one variable to functions depending on two variables is not
trivial for students and probably needs more explicit attention.

Moreover, there should be explicit attention to the connections between the physics and
mathematics spaces in order to form a blend. Formulating questions that cue those connec-
tionsmay help.We recommend to use a variety of BCs in class, both of the forms u(x, t) = c
and ∂u

∂x = c and with c not only equal to zero, in order to broaden students’ experience. It is
important to give explicit attention to the physical interpretations of those BCs and to the
mathematical conceptual understanding of the partial derivative.We observed in the inter-
views that graphs often helped students in understanding and connecting both the physical
and mathematical side of the BCs. Stimulating this graphical reasoning, and using graphs
in teaching this topic may help students in building their understanding.

9. Future research and limitations of the study

This paper is part of a larger project in which we investigate student reasoning with BCs
in the description of processes of diffusion and heat flow, and we intend to design an
intervention targeting this. In this study, we performed a first exploration of student dif-
ficulties with the topic. It is important to acknowledge the limitations in the study design
and implementation described in this article.

The formulation of the interview question could have had an impact on student answers,
which is a limitation that we have to keep inmind while interpreting the results. Firstly, the
question forced students to go from a physical description to a mathematical description.
The physical situation was described in the problem statement, which could partly explain
the low number of difficulties identified in the physics space. Moreover, it is possible that
the direction implied in the question influenced the elements that were activated by the
students, and which aspects of blending were observable. Therefore, we will explore differ-
ent directions in interview problems in follow-up research: from physics to mathematics,
but also vice versa. Secondly, the problem statement itself might have fostered some of the
difficulties. It was not the best choice to use u0 for a number of particles, while u stands for
concentration in the differential equation. Moreover, because of the choice of length of the
tube (one metre), the ‘u0’ in the problem statement could be interpreted both as number
of particles and as overall concentration in the tube. As mentioned in the discussion, these
aspects might have led to more confusion in distinguishing between number of particles
and concentration.

Because of the small sample size, the difficulties listed here are only a first step in inves-
tigating student understanding of BCs. More research should be conducted to come to a
more complete overview.Moreover, because of the small sample size, we could not connect
any conclusions to differences in students’ performance or the university they study at.

In this study, we used the blending framework as an analytical lens to categorize difficul-
ties in the reasoning process of students. However, conceptual blending also has potential
that exceeds categorization. In future research, we aim to extend the use of the blend-
ing framework to visualize the entire reasoning and not only the difficulties in student
reasoning.
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