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Abstract
There is growing appreciation for the role of long-term memory in guiding temporal preparation in speeded reaction time
tasks. In experiments with variable foreperiods between a warning stimulus (S1) and a target stimulus (S2), preparation
is affected by foreperiod distributions experienced in the past, long after the distribution has changed. These effects from
memory can shape preparation largely implicitly, outside of participants’ awareness. Recent studies have demonstrated
the associative nature of memory-guided preparation. When distinct S1s predict different foreperiods, they can trigger
differential preparation accordingly. Here, we propose that memory-guided preparation allows for another key feature of
learning: the ability to generalize across acquired associations and apply them to novel situations. Participants completed a
variable foreperiod task where S1 was a unique image of either a face or a scene on each trial. Images of either category
were paired with different distributions with predominantly shorter versus predominantly longer foreperiods. Participants
displayed differential preparation to never-before seen images of either category, without being aware of the predictive
nature of these categories. They continued doing so in a subsequent Transfer phase, after they had been informed that
these contingencies no longer held. A novel rolling regression analysis revealed at a fine timescale how category-guided
preparation gradually developed throughout the task, and that explicit information about these contingencies only briefly
disrupted memory-guided preparation. These results offer new insights into temporal preparation as the product of a largely
implicit process governed by associative learning from past experiences.

Keywords Temporal preparation · Long-term memory · Prediction · Generalization · Time-course analysis

It is a nearly universal fact of life that it is good to
be prepared. Anticipating upcoming stimuli and events
involves a cognitive process that allows us to react faster and
more accurately to them. Optimal preparation involves not
only predicting what action to take, but also when to take it.
The benefits of temporal preparation range from carrying
a pleasant conversation without interrupting our partner, to
being able to avoid catastrophic incidents when navigating
busy streets by car. Like most skills, making well-timed
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actions takes practice to master. The basics might be easy
enough to acquire, but it can take a lifetime of learning to
tell perfectly timed jokes as a successful comedian, or to
obtain the split-second response times of a professional race
car driver.

The neurocognitive underpinnings of temporal prepara-
tion are commonly studied using the ‘foreperiod paradigm’
(Woodrow, 1914; Niemi & Näätänen, 1981). Participants
observe a warning stimulus (S1) which signals an upcoming
target stimulus (S2) after an interval called the foreperiod
(FP; typically in the range of 250–5000ms). Reaction times
(RTs) of responses to the S2 are then used to investigate
when participants are optimally prepared. In experiments
with a variable FP, a typical result is that RTs decrease
for trials with longer FPs, giving rise to a characteristic
downwards-sloping curve that reaches an asymptote for
longer FPs (Niemi & Näätänen, 1981). Interestingly, the
shape of this RT-FP curve is strongly affected by the context
in which trials are presented, demonstrating how prepara-
tion is a flexible process and modulated by past experiences.
For example, participants generally respond rather slowly
on short-FP trials when the FP on the preceding trial was
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longer, leading to a steep RT-FP curve (Los & Heslenfeld,
2005; Los & Agter, 2005; Steinborn & Langner, 2012).
Conversely, if the FP on the preceding trial was short the
RT-FP curve is flatter, with fast responses at all FPs. In sim-
ilar fashion, preparation is modulated by the distribution
of FPs throughout a block: when short FP-trials are most
prevalent, as with an ‘exponential distribution’ (cf. Fig. 1C),
participants respond relatively fast on both short- and long-
FP trials. In blocks with an ‘anti-exponential distribution’,
with primarily longer FPs, responses on rare short-FP trials
tend to be very slow (Joubert & Baumeister, 1970; Zahn &
Rosenthal, 1966; Niemi & Näätänen, 1981).

Influential theories of temporal preparation have pro-
posed that these contextual modulations are a consequence
of participants’ temporal expectations, which are derived
from their knowledge of the current FP distribution (Tril-
lenberg, Verleger, Wascher, Wauschkuhn, & Wessel, 2000;
Vangkilde et al., 2013; Nobre, Correa, & Coull, 2007;
Janssen & Shadlen, 2005; Grabenhorst, Michalareas, Mal-
oney, & Poeppel, 2019). While these theories offer a math-
ematical description of preparation effects, they typically
do not define how the underlying distributions are learned,
maintained, and updated (though see Meindertsma, Kloost-
erman, Engel, Wagenmakers, & Donner, 2018; Visalli,

Capizzi, Ambrosini, Mazzonetto, & Vallesi, 2019, for recent
proposals), nor do they specify how such expectations are
translated into faster or slower responses. The Multiple
Trace Theory of Temporal Preparation (MTP; Los, Kruijne,
& Meeter, 2014; Salet, Kruijne, Van Rijn, Los, & Meeter,
under review) seeks to address these issues by presenting
a process model of temporal preparation at a more mech-
anistic level of abstraction. MTP proposes that preparation
is guided by Hebbian learning between a dynamic neural
representation of time that evolves during the foreperiod
(cf. Howard & Eichenbaum, 2013; Machado 1997; Shankar
& Howard, 2011), and motor processes that govern the inhi-
bition and activation of prepotent responses (cf. Davranche,
Tandonnet, Burle, Meynier, Vidal, & Hasbroucq, 2007;
Duque & Ivry, 2009; Los, 2013; Näätänen, 1971; Narayanan
& Laubach, 2006). These associations are formed on indi-
vidual trials as episodic memory traces. On subsequent
trials, the associative retrieval of these traces affects the
balance of motor activation and inhibition throughout the
foreperiod, which in turn yields faster or slower responses.

MTP can be viewed as an ‘instance theory’ (Logan, 1990;
2002; Schneider & Shiffrin, 1977). A defining assumption
of instance theories is that cognitive performance is
automatically and implicitly modulated by the associations
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Fig. 1 Trial sequence, stimuli, and block design of the experiment. Note. A Trial sequence: after a variable ITI, S1 was presented (200ms),
followed by a variable FP which was terminated by S2. S2 was a circle on the left or right side prompting a left- or right handed response. B
Example S1 stimuli. Unique stimuli were drawn on each trial from a set of faces or scenes. C During the Acquisition phase (6 blocks), images of
either category were paired with an exponential or anti-exponential foreperiod distribution. Subsequently, participants completed a questionnaire
and were informed that this contingency no longer held. During the following Transfer phase (2 blocks), both S1s were paired with the same,
uniform FP distribution
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formed on individual past trials. Instance theories have been
applied to account for findings on reinforcement learning
(Doll et al., 2015; Bornstein, Khaw, Shohamy, & Daw,
2017), temporal reproduction (Taatgen & van Rijn, 2011),
visual attention (Chun & Jiang, 1998; Kruijne & Meeter,
2015; Turk-Browne, Jungé, & Scholl, 2005), stimulus-
response bindings (Henson, Eckstein, Waszak, Frings, &
Horner, 2014; Horner & Henson, 2009; Longman, Milton,
Wills, & Verbruggen, 2018) and task switching (Waszak,
Hommel, & Allport, 2003). MTP adopts this perspective to
account for temporal preparation phenomena.

Conform other instance theories, MTP posits that asso-
ciative long-term memory has a key role in guiding tem-
poral preparation. Two studies have directly investigated
such guidance by associations. In one of these (Cravo,
Rohenkohl, Santos, & Nobre, 2017), participants explicitly
learned to associate different S1s (photographs of scenes)
with either a short or long FP. Behavioral and electrophysi-
ological results indicated that these associations modulated
preparation on future trials with the same S1s. Further-
more, the memory strength of these associations predicted
long-lasting differences in preparatory behavior in subse-
quent blocks. Another study (Los, Nieuwenstein, Bouharab,
Stephens, Meeter, & Kruijne, 2021) highlighted how asso-
ciations may modulate preparation implicitly, outside of
voluntary control. Experiments consisted of two phases: an
‘Acquisition phase’ where two different S1s (e.g., a tone or
flash) were associated with either an exponential or anti-
exponential FP distribution, followed by a ‘Transfer phase’
where FPs were distributed uniformly for either S1 (cf.
Fig. 1C). Results showed that throughout the Acquisition
phase participants adapted preparation to the distribution
predicted by the S1, even though follow-up questionnaires
indicated they had been unaware of the contingency. Criti-
cally, differential preparation persisted far into the Transfer
phase, even though participants were instructed that the con-
tingency no longer held in the upcoming blocks (see Los,
Kruijne, & Meeter, 2017; Mattiesing, Kruijne, Meeter, &
Los, 2017, for similar results).

While both Cravo et al. (2017) and Los et al. (2021)
demonstrate that long-term memory associations can guide
preparation, there are marked differences between these
paradigms in how associations were operationalized. The
results of Cravo et al. (2017) resemble ‘declarative’
memory, as participants seemingly used explicit knowledge
of each S1-FP association. The results of Los et al. (2021),
however, are more akin to ‘procedural’ memory, where
repeated practice with either S1 results in a statistical
‘rule’ guiding preparation without explicit knowledge.
Such differences impede strong conclusions regarding the
exact nature of associations that modulate preparation, and
whether declarative knowledge may be imperative to learn
from unique individual instances.

Here, we aim to further elucidate the nature of the long-
term associations that guide preparation. In particular, we
investigate whether individual memories of unique trials
can give rise to a statistical rule that generalizes to novel
stimuli. To this end, participants were presented with unique
S1-images from one of two categories (faces and scenes).
Participants were not informed that these categories were
associated with an exponential or anti-exponential FP-
distribution during Acquisition. We assessed whether this
association would yield differential preparation to never-
before seen images of either category. Furthermore, we
assessed whether differential preparation would persist into
a Transfer phase where both categories were paired with
uniform FP distributions. Using a novel rolling regression
analysis, we mapped the development of differential
preparation at a fine-grained time scale, and offer new
insights into how these long-term associations interact with
countermanding instructions.

Methods

Data and analysis scripts are available on OSF (https://
osf.io/s7xp6/), alongside supplemental information. The
experiment was not preregistered.

Participants

Participants were recruited through the participant pool
of the Vrije Universiteit Amsterdam, and completed
the experiment in exchange for either course credit or
monetary compensation. The experimental procedure was
approved by the Ethical committee of the Faculty of
Behavioral and Movement Sciences. Participants were
treated in accordance with the guidelines of the Helsinki
declaration, and gave informed consent before participating.
The experiment was completed by 50 participants (power
analysis reported below). One participant was excluded
from further analysis as her mean RT on correct trials was
more than 2.5SD away from that of the sample. Remaining
participants’ accuracies were all higher than the predefined
cut-off value (95%), so no other datasets were discarded.
The final sample included 49 participants (37 female; ages
18–30; Mean age 23.3).

Task and stimuli

Participants were seated in a dimly lit cubicle at 70cm
viewing distance, asserted by a chin rest, from a 22′′ monitor
with 120Hz refresh rate at 1280 x 768 px. The experiment
was designed and run using OpenSesame version 3.3
(Mathôt, Schreij, & Theeuwes, 2012). Participants were
informed that on each trial they would be presented with
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a warning stimulus (a photograph, the S1), which would
be followed by a target stimulus (a black circle, the S2)
presented either on the left or right of the screen. They were
instructed to maintain fixation at the center of the screen,
and to respond as fast as possible to the location of the S2,
by pressing ‘Z’ or ‘M’ on a keyboard for ‘left’ or ‘right’
targets respectively. They were told to be as fast as possible,
while maintaining a high accuracy.

All stimuli except for S1 were black and were presented
on a gray background (Fig. 1A). During the intertrial
interval (ITI, randomly sampled between 750–1500ms), an
open fixation dot (0.55◦ diameter) was presented in the
center of the screen. A trial started with the presentation of
the warning stimulus (S1): a square, color photograph of
a face or a scene (sides of 8.66◦) presented in the center
of the screen for 200ms. What followed was a variable FP
during which only a small fixation dot (0.28◦ diameter)
was presented, followed by the presentation of the target
stimulus (S2). S2 was a filled black circle (1.40◦ diameter)
presented to the left or right of fixation, at 5.22◦ eccentricity.
S2 stayed on screen until the participant responded.

The images of Faces and Scenes that were used as S1s
were taken from two databases. Faces were drawn from the
‘Labeled Faces in the Wild’ database (Huang, Mattar, Berg,
& Learned-Miller, 2008; Huang & Learned-Miller, 2014;
Learned-Miller, Huang, RoyChowdhury, Li, & Hua, 2016).
A subset of this dataset was created, selecting images by
discarding duplicate identities, images with poor quality or
occlusion of the face, and images of well-known people.1

Scene images were selected from the SUN database (Xiao,
Hays, Ehinger, Oliva, & Torralba, 2010), selecting only
images labeled as ‘outdoors’ and discarding images of poor
quality or with prevalent human faces in them. A list of
selected images (515 face-images and 482 scene-images) is
available as online supplemental information on OSF. Each
image was cropped to a square image and scaled to 250
× 250px. For face images, the face-detection functions of
OpenCV were used to center the cropped image on the face.
From the resulting set, a unique image was selected on each
trial to be used as S1.

Design and procedure

The FP on each trial was defined as the stimulus-onset
asynchrony between S1 and S2 and was either 300, 600,
900, or 1200 ms. Each S1 category (faces or scenes) was
associated with a different discrete distribution of FPs
during the Acquisition phase (Fig. 1C). That is, one S1 type
(S1E) was associated with an exponential distribution, with
32, 16, 8 and 4 trials per block for each FP, respectively. The

1A heuristic for familiarity was derived from Google Trends statistics
queried on the name of the image subject.

other S1 type (S1A) was associated with the inverse, anti-
exponential distribution of FPs. The pairing of the two S1
types to the two image categories was fully counterbalanced
across participants (see also Table S1 on OSF). Crucially,
the contingency was only defined at the level of the S1
category: that is, individual S1 images were used only once
throughout the experiment for each participant. The location
of the S2, which defined the response, was fully balanced
across the two S1 types within each block.

The Acquisition phase was followed by a Transfer phase,
during which both S1E and S1A were associated with a
uniform distribution, with 15 trials per FP for each S1 type.
Blocks in either phase thus comprised 120 trials in total,
with randomly intermixed FPs and S1 types. Because the
S1 was unique on each trial, we expected that differential
preparation would take longer to develop than in our earlier
work Los et al. (2021). Therefore we used a relatively
long Acquisition phase of six blocks, followed by a shorter
Transfer phase of two blocks.

We included a brief questionnaire at the end of the
Acquisition phase, to test whether participants might have
developed explicit knowledge of the contingency, and could
have used that to guide differential preparation. To this end,
the experiment was interrupted and participants answered
an open question whether, up to that point, they had been
aware of any regularities in the experiment. Subsequently,
they were asked a multiple-choice (MC) question whether
(1) Faces were more often followed by short FPs and scenes
by long FPs; (2) vice versa; (3) they did not know. Finally,
they were fully informed about the predictive nature of the
image categories that had applied up to that point. This
was done for full disclosure, and to ensure that participants
were all aware of the past contingency regardless of whether
they had noticed it or not. Next, it was stressed that this
contingency would no longer hold in the final two Transfer
blocks, and that short and long FPs would be equally likely
after either S1 type. The list of responses to both questions
is given as Supplemental Table S1 on OSF. After this
‘intervention’, the experiment continued with the Transfer
phase, starting with Block 7.

Statistical analyses

We discarded trials with incorrect responses, as well as trials
with a log RT more than 3SD away from each participants’
mean (trials discarded per participant: M = 0.8%, SD =
1.5%). The primary approach for analyses of the remaining
RTs was hypothesis-driven model comparison using Linear
Mixed effects Models (LMMs; Baayen, Davidson, & Bates,
2008; Baayen & Milin, 2010). We anticipated preparation
to manifest as a downwards sloping RT-FP curve, and
that differential preparation for different S1 types would
manifest as an interaction effect, modulating the slope
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to be steeper with S1A and flatter with S1E (cf. Coull,
Frith, Büchel, & Nobre, 2000; Cravo et al., 2017; Los
et al., 2017, 2021). To this end, our primary analyses
compared models where RT was predicted by FP only
versus a more complex model where S1 type (S1A/S1E)
interacted with FP. All model comparisons were based
on BIC scores converted to estimated Bayes Factors
(BFs, following Wagenmakers, 2007). Wherever we report
evidence for the inclusion of a term, we will report
�BIC > 0 and BF > 1; evidence for exclusion is
expressed as �BIC < 0 and 1/BF > 1.

Following Los et al. (2021), FP was coded as a
continuous linear predictor. This is a simplification of
the typically asymptotic RT-FP curve, but allowed us
to express preparation effects in a single unambiguous
model coefficient. To overcome the typical skew in RT
distributions, models were fit on inverse RT (1/RT ) as the
dependent variable (motivated by the guidelines of Baayen
et al., 2010; Lo & Andrews, 2015). Residuals of models
with this structure gave no indication of any systematic
misfits, suggesting that it accurately captures the RT-
FP curve. In each model, hierarchical variance across
participants in the intercept and the slope of the RT-FP
curve were captured as a random intercept with a correlated
random effects-term for FP. No other random effects were
supported through model comparisons, and were therefore
not considered.

In a first analysis we evaluated the effect of S1 type
interacting with FP, and assessed whether this effect
might have varied across the Acquisition versus the
Transfer phase. As these analyses indicated that S1 type
modulated preparation in both phases, we subsequently
sought to identify how these effects developed throughout
both phases. In earlier work, we did this by analyzing
experimental blocks separately. However, a block-wise
analysis reduces experimental power considerably, and by
treating blocks as independent observations this approach
ignores the temporal structure of trials in the experiment.
Results of block-wise assessments using both analyses of
variance (ANOVAs) and model comparisons are therefore
only presented in the supplemental material (Fig. S1 and
accompanying text; Table S3), for completeness and to
allow for direct comparison with previous experiments. In
the main text, we focus on a more fine-grained time course
analysis that uses rolling regression.

For this rolling regression, a linear model with four β-
coefficients (Intercept, FP, S1 type and their interaction) was
defined on each trial, using data from a 60-trial window
surrounding that trial. By means of a rolling window,
trial-wise estimates of each β-coefficient were obtained,
resulting in four β-time courses for each participant

which expressed how each term developed throughout
the experiment. For each coefficient, we subtracted the
first value as a baseline, leading to a measure of how
each coefficient evolved with respect to the start of the
experiment (�β).

We then subjected these time courses to cluster-based
permutation t-tests (Maris & Oostenveld, 2007), in order
to identify whether behavior significantly changed over
the course of the experiment while correcting for multiple
comparisons in a manner that considers the temporal
structure of the measurements. Clusters were identified as
adjacent time points where a univariate test indicated that
�β significantly (|t (48)| > 2.01) deviated from zero, that
is, differed from the first measure in the time course. The
sum of all t-values in a cluster was used as a test statistic.
A p-value was determined for each cluster by testing the
resulting value against a nonparametric null distribution of
cluster t-values derived from 10,000 random permutations.
Clusters were deemed significant at α = 0.05.

Sample size and power

The effects of differential preparation for different S1
types are expected to gradually grow over the course
of the experiment as participants learn. Therefore, it is
difficult to evaluate statistical power, as it is contingent
both on the unknown magnitude of the overall effect on
preparation, as well as on how quickly this is acquired.
As a heuristic to justify sample sizes, we ran power
simulations using the ‘simr’ package (Brysbaert & Stevens,
2018; Green & MacLeod, 2016) with effect sizes and
variances derived from earlier work (Los et al., 2021,
Experiment 1). We isolated the data from the Transfer phase
from that experiment and fit a full S1 type × FP model
as defined above. Next, we scaled down the coefficients
for the main effect ‘S1 type’ and for the S1 type × FP
interaction effect. Then, we simulated 250 new ‘Transfer
phase’ - results with different combinations of sample sizes
(35–45 participants) and effect size scales (at 15–25% of
the original effect sizes), and determined power as the
proportion of simulations with significant S1 type effects
from likelihood ratio tests.

Results indicated that with effect sizes at 20% of the
original effect, a sample size of 45 participants yields a
97.6% power across the Transfer phase, and 79.2% if blocks
are analyzed separately. Of note, with the same sample size,
an effect size scaled down to 15% yielded a power of 85.2%
across the Transfer phase, but only 48.00% for detecting
effects in individual blocks. We chose to collect data from
50 participants, after which one was excluded due to poor
performance as specified above.
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Results

Questionnaire

For only four participants their response to the open
question suggested they had been aware of the contingency.
In the MC question, these participants correctly identified
the predictive nature of S1. None of our statistical inferences
regarding RT were any different upon excluding these
participants, and therefore their data remained included for
all analyses. Of the remaining 45 participants, 29 (=64%)
answered to the MC question that they did not know which
image category had been paired with short or long FPs.
Remaining responses (20 participants) did not significantly
differ from chance accuracy (13 correct, χ2(1) = 0.95;p =
0.331). Thus, participants were generally unaware of the
contingency.

Preparation across phases

Figure 2 depicts the RT-FP curve, separately for the
different S1 types during the Acquisition and Transfer
phase. While subtle, this curve is flatter for trials paired
with S1E types than S1A types in both phases, indicating
that the categories yielded differential preparation. LMM
comparisons supported this observation: the best model
expressed RT as a function of FP, S1 type and their
interaction, with an additional main effect of Phase.
This model was vastly preferred over a simpler model
omitting ‘S1 type’ and the S1 type × FP interaction
(�BIC = 39.28; BF > 1000). A main effect of
‘Phase’ was supported (�BIC = 419.92; BF > 1000),
with moderate evidence against it interacting with FP
(�BIC = −3.02; 1/BF = 4.52). A three-way interaction
between these predictors was not supported (�BIC =
−15.27; 1/BF > 1000).

Traditional ANOVA analyses generally supported these
conclusions (Table S2 on OSF). All predictors had a
significant main effect (F(1, 48) >= 18.8; p < 0.001).
Counter to the LMM conclusions, the ANOVA also
revealed a significant FP × Phase interaction (F(1, 48) =
18.97; p < 0.001), suggesting that there was a steeper RT-
FP slope during Acquisition than during Transfer. Crucially,
there was evidence for a two-way S1 type × FP interaction
(F(1, 48) = 6.49;p = 0.014), but not for a three way
S1 type × Phase × FP interaction (F(1, 48) = 0.68;p =
0.340).

We conclude that different S1 types led to differential
preparation in both phases. These analyses gave no
indication that this effect was attenuated in the Transfer
phase, suggesting that the biased distributions in the
Acquisition phase gave rise to long-lasting effects on
preparation, persisting after the bias was removed and after
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Fig. 2 Mean response time per foreperiod in each phase. Note.
Separately plotted for trials with different S1 types, during the
Acquisition phase (left) and the Transfer phase (right). In both phases,
the RT-FP curve is steeper for trials preceded by S1A than S1E ,
suggesting differential preparation for different S1 types. Error bars
indicate 95% Cousineau-Morey confidence intervals of within-subject
effects (Cousineau, 2005; Morey, 2008)

participants were made aware that it no longer held. We next
investigate the progression of this effect using the rolling
regression analysis.

Time course of differential preparation

Rolling regression yielded a per-participant time course of
�β for each coefficient, which reveals how preparation
changed since the start of the experiment. Mean time
courses for each coefficient are plotted separately in
Fig. 3. The time course of the Intercept (top row)
shows that participants in general responded gradually
slower throughout Blocks 1–6. This was accompanied
by RT-fluctuations at a faster time-scale: In each block,
participants became slower, then returned to baseline after
each block break. This pattern suggests that participants
might have gotten somewhat fatigued throughout each
block, but that block breaks allowed them to largely
recover to baseline. Furthermore, it suggests that the longer
interruption between the Phases led to a more pronounced
speeding up for the remaining two blocks. The sawtooth-
like pattern was present in all blocks, but yielded only two
significant clusters: one during Block 2 and one during
Block 5.

Importantly, these Intercept-fluctuations were not
reflected in other coefficients. Turning to the FP-coefficient,
it seemed that compared to the start of the experiment,
participants had somewhat steeper RT-FP curves in Blocks
1–4 and shallower curves in Blocks 6 and 7. However, these
fluctuations were marginal, and were not reflected in signif-
icant clusters. Therefore, we conclude that overall temporal
preparation remained largely consistent throughout the
experiment. The main effect of S1 type was also found to
be relatively stable; with respect to its initial value, �β
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displayed a slight increase in this effect, meaning that par-
ticipants responded somewhat faster on S1E trials than on
S1A trials. Although this tendency qualitatively developed
early in the Acquisition phase, it came to expression in only
one significant cluster which coincided with Block 7.

Most notable, however, was the development of the S1
type × FP interaction coefficient. Throughout Blocks 1–
6, this coefficient displayed a gradual increase, reaching

a maximum value during Block 6. This is expressed by
two significant clusters spanning trials in Blocks 4 – 6,
and shows that differential preparation for the two S1
types indeed gradually became more pronounced during
the Acquisition phase. Interestingly, starting with the first
trials of Block 7 immediately following the questionnaire,
a sharp decrease in this coefficient is observed; that is, the
effect almost instantly reverts to baseline level. Likely, this
drop results directly from the information provided after the
questionnaire: participants were informed that the cues had
no predictive value, and may have actively suppressed or
counteracted any associative guidance. However, within the
same block, differential preparation returned to the level it
had before the questionnaire. This was reflected in a third
significant cluster that spanned most of Blocks 7 and 8.

Note that the time course of these effects, including the
duration of the sudden ‘drop’ of the interaction coefficient,
is determined not only by the time course of behavioral
changes, but also affected by the window size chosen for the
rolling regression analysis. This reflects a trade-off between
the temporal resolution and the accuracy of coefficient
estimates. In Fig. S2 on OSF we therefore present results
of analyses with different window sizes (40 and 120 trials).
These generally followed the same pattern as the analyses
presented here. Notably, the results with a shorter window
of 40 trials highlight that the ‘dip’ in the S1 type × FP
time course at the start of the Transfer phase was very short-
lived. The brevity of this effect could therefore explain why
our earlier work, using block-wise analyses, consistently
led us to conclude that this transition between phases had
no noticeable effect on differential preparation (Los et al.,
2021; Los et al., 2017; Mattiesing et al., 2017).

To assess whether this pattern was also present in earlier
experiments using only two S1s instead of unique instances
of two categories, we present an exploratory re-analysis
of three experiments from (Los et al., 2021) using rolling
regression (Fig. S3 on OSF). This concerns two experiments
where S1 pairs gave rise to differential preparation, and one
where the S1 pair did not. The time course of the S1 type ×
FP interaction in these experiments was qualitatively similar
that in Fig. 3. Differential preparation gradually developed
during the Acquisition phase, followed by a ‘dip’ at the
start of the Transfer phase following explicit information.
Following this dip, differential preparation recovered almost
immediately to the level it had at the end of Acquisition,
and subsequently attenuated only minimally throughout the
Transfer phase. Interestingly, a qualitatively similar dip was
found in the experiment where S1s did not yield differential
preparation. This supports an interpretation of this dip as
reflecting a short-lived intentional change in preparation
that is generally independent from the slowmodulations that
engender from associative learning.
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Discussion

Recent research has demonstrated that temporal preparation
is guided by long-lasting associations in memory, either
by relating unique images to specific FPs (Cravo et al.,
2017), or by statistically pairing stimuli with different FP
distributions (Los et al., 2021). The present study illustrates
associative guidance generalizing to novel stimuli: By
pairing unique photographs of faces and scenes with
different FP distributions, we found that participants
adjusted their temporal preparation in response to never-
before seen photographs of either category. In a subsequent
Transfer phase, where the category-FP contingency was
removed, we found that differential preparation to novel
stimuli of either category nevertheless persisted.

Our results suggest that such differential preparation does
not rely on strategic, voluntary control. When asked, partic-
ipants seemed generally unaware of the contingency, even
though image categories triggered differential preparation
according to their associated FP distribution. Furthermore,
participants were still guided by past associations in the
Transfer phase, even though they had been informed that
the category-FP contingency no longer applied (cf. Los
et al., 2021). This aspect contrasts with the work of Cravo
et al. (2017), where participants were explicitly instructed
to learn and utilize the pairing of individual images with
their associated FP. Our findings raise the possibility that
participants in that study might have demonstrated simi-
lar memory-guided preparation even if they would have
been unaware of the image-FP pairings. This possibility is
supported by analogous findings on implicit spatial cue-
ing by individual scenes and search displays (Brockmole &
Henderson, 2006; Chun & Jiang, 1998).

While our results demonstrate that countermanding infor-
mation does not override effects of implicit associations
(cf. Los et al., 2021), our rolling regression analyses
revealed a striking nuance to this claim. That is, differential
preparation was briefly abolished following this information
but was promptly reinstated, a pattern also found in ear-
lier, similar experiments (Fig. S3 on OSF). While we cannot
verify empirically what caused this disruption, this effect
notably manifested in the S1 × FP coefficient while leav-
ing overall preparatory behavior largely unaffected. This
might therefore reflect participants intentionally using the
new information about distributions in the Transfer block, in
a manner that counteracted the effect of instructions. How-
ever, the observation that differential preparation swiftly
recovered suggests that preparation may be ‘by default’
guided by associations. Together with earlier work outside
of the context of preparation, these results outline a complex
interplay between implicit associative guidance and guid-
ance by explicit awareness. For example, research on spatial
attention has put forward the hypothesis that attentional

selection of statistically regular features are imperative for
implicitly learning these regularities (Turk-Browne et al.,
2005; Jiang & Chun, 2001), and associations can thereby
be shaped by explicit control. Recent work on Stimulus-
Response bindings has similarly illustrated how instructions
can shape the nature of categorical associations (Longman
et al., 2018; Longman, Liefooghe, & Verbruggen, 2019;
Waszak, Wenke, & Brass, 2008). Conversely, research on
feature-based attention suggests that instructions are inef-
fective at overriding previously acquired implicit guidance
(Kruijne & Meeter, 2016; Leber & Egeth, 2006), much like
the current results. Taken together, these findings suggest
that instructions can have a formative role in the develop-
ment of new implicit associations, but that once associations
are formed, explicit strategic control is only marginally able
to counteract them (see also Feldmann-Wüstefeld, Uengoer,
& Schubö, 2015).

The main purpose of the rolling regression was to
offer fine-grained insights into how differential preparation
developed during Acquisition and Transfer. The analysis
revealed a gradual development of this effect, peaking at the
end of Acquisition. Of note, this smooth increase reflects
the development of differential preparation collapsed
across participants (see Spaak & Lange 2020, for a
consideration at the individual level). Compared to previous
experiments (Fig. S3 on OSF), associative guidance was
relatively small and took long to acquire, likely due
to the heterogeneity of S1s (cf. Feldmann-Wüstefeld &
Schubö, 2014). Nevertheless, differential preparation was
robust once acquired, persisting well into the Transfer phase
despite the change in underlying FP distributions. In other
experiments, with longer Transfer phases, we similarly
observed that the S1 type × FP interaction barely attenuated
across Transfer blocks.

This fine-grained characterization of the development
and persistence of memory-guided effects can help con-
strain models of temporal preparation. The gradual acqui-
sition of differential preparation and its longevity through-
out the Transfer phase illustrate how temporal preparation
is affected by long-term memory and sluggishly adapts
to changing environmental statistics (see also Crowe &
Kent, 2019; Crowe, Los, Schindler, & Kent, 2021; Los
et al., 2017; Mattiesing et al., 2017; Visalli et al., 2019;
Visalli, Capizzi, Ambrosini, Kopp, & Vallesi, 2021).
Many probability-driven models characterize preparation as
guided by static representations of the current FP distribu-
tion (Janssen & Shadlen, 2005; Grabenhorst et al., 2019;
Trillenberg et al., 2000; Vangkilde et al., 2013), foregoing
the role of memory and learning. Transfer effects like those
in the present study illustrate the need for a flexible basis
for preparation, subject to learning and updating (e.g., de
Jong, Akyürek, & van Rijn, 2021; Meindertsma et al., 2018;
Vissali et al., 2019), just as in MTP (Los et al., 2014).
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Critically, we demonstrated differential preparation
generalized to novel stimuli, an aspect of memory
and learning previously not considered in preparation
studies. Such generalization may be a consequence of
the accumulated contribution of individual stimuli of a
different category, or could result from direct associations
at the category level. Different instance theories offer
mechanistic accounts of how such generalization could arise
(Hintzman, 1986; Schapiro, Turk-Browne, Botvinick, &
Norman, 2017; Kumaran & McClelland, 2012; Altmann,
2017), and based on their similarity to MTP we predicted
similar generalization to arise within the context of the
FP paradigm. In MTP, preparation results from Hebbian
associations between a dynamic representation of time that
is elicited by the S1, and processes of motor activation
and inhibition. Our results may be explained within this
framework by assuming a degree of overlap between the
representations elicited by S1s of the same category. The
ability to generate differentiating predictions with different
S1s would then be defined by the distinctiveness of these
representations. This would fit with the observation that
differential preparation effects were stronger and quicker to
develop with highly distinctive, cross-modal S1 pairs (Los
et al., 2021).

Taken together, these results demonstrate that associa-
tions formed during temporal preparation can yield pre-
dictions for novel stimuli of the same category. Addition-
ally, they provide further evidence that rather than explicit
instructions, it is primarily practice that makes preparation
perfect.
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