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Output Regulation for Load Frequency Control
Amirreza Silani , Michele Cucuzzella , Member, IEEE, Jacquelien M. A. Scherpen , Fellow, IEEE,

and Mohammad Javad Yazdanpanah

Abstract— Most of the existing control schemes for power
systems ensure stability only in the presence of constant loads
and renewable energy sources. Motivated then by the inadequacy
of the existing control strategies for power systems affected by
time-varying loads and renewable energy sources, this article
proposes two control schemes based on the well-known output
regulation control methodology. The first one is designed based
on the classical output regulation theory and addresses the so-
called load frequency control (LFC) problem in the presence
of time-varying uncontrolled power injections. Then, in order
to also minimize the generation costs, we use an approximate
output regulation method that solves numerically only the partial
differential equation of the regulator equation and propose a
controller based on this solution, minimizing an appropriate
penalty function. An extensive case study shows the excellent
performance of the proposed control schemes in realistic and
critical scenarios.

Index Terms— Economic dispatch, load frequency control,
output regulation, power networks.

NOMENCLATURE

Pci Conventional power generation.
Pdi Uncontrolled power injection.
ϕi Voltage angle.
ωi Frequency deviation.
Vi Voltage.
dai and dbi States of the exosystem describing the

uncontrolled power injections.
τpi Moment of inertia.
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τvi Direct axis transient open-circuit constant.
Xdi Direct synchronous reactance.
X �

di Direct synchronous transient reactance.
ψi Damping constant.
B Susceptance.
Ē f i Constant exciter voltage.
Ni Neighboring areas of area i .
τci Turbine time constant.
ξi Speed regulation coefficient.
�i Constant parameter of uncontrolled power

injections.
A Incidence matrix of the power network.
Lcom Laplacian matrix of the communication

network.
ui Control input.

I. INTRODUCTION

IN POWER networks, the supply–demand mismatch
induces frequency deviations from the nominal value, even-

tually leading to fatal stability disruptions [1], [2]. Therefore,
reducing this deviation is of vital importance for the overall
network resilience and reliability, attracting a considerable
amount of research activities on the design and analysis of
the so-called load frequency control (LFC), also known as
automatic generation control (AGC), where a suitable con-
trol scheme continuously changes the generation setpoints
to compensate for supply–demand mismatches, regulating
the frequency to the corresponding nominal value (see, for
instance, [1], [2], and the references therein). Moreover,
besides ensuring the stability of the overall power infrastruc-
ture, in order to solve the so-called economic dispatch prob-
lem [3], modern control schemes aim also at reducing the
operational costs associated with the LFC. In the literature
(see, for instance, [3]–[6], and the references therein), this
control objective is referred to as optimal LFC (OLFC). How-
ever, as a consequence of the increasing share of renewable
energy sources, we are not sure if the existing control systems
are still adequate [7].

A. Literature Review

Traditionally, a power network is subdivided in the so-called
control areas, each of which represents an electric power
system or combination of electric power systems to which
a common LFC scheme is applied [8], [9]. The LFC problem
is usually addressed at each control area by primary and sec-
ondary control schemes. More precisely, the primary control
layer preserves the stability of the power system acting faster

1063-6536 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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than the secondary control layer, which typically provides the
generation setpoints to each control area [3]. Then, in order
to obtain OLFC, a tertiary control layer can be used to reduce
the generation costs in slow timescales. To tackle the same
problem in fast timescales, distributed control schemes are
usually adopted, where the control areas cooperate with each
other [10]. For the latter case, there exist generally two types of
control approaches: consensus-based protocols or primal-dual
algorithms. By using the first approach, all the control areas
that exchange information through a communication network
achieve the same marginal cost, solving the OLFC problem
typically in absence of constraints [11]–[21]. The second
approach performs OLFC by solving an optimization problem
that may potentially include constraints for instance on the
generated or exchanged power [4], [5], [22]–[32]. In the
following, we briefly discuss some of the relevant works in
the literature on the design and analysis of control schemes
achieving LFC and OLFC.

In [33]–[36], different control schemes for solving the
LFC problem in the presence of constant loads are pro-
posed. More precisely, in [33] and [34], distributed PI droop
controllers are designed, while stability conditions for droop
controllers are investigated in [35], where the well-known
port-Hamiltonian framework is used. Based on the sliding
mode control methodology, a decentralized control scheme
is proposed in [36], where, besides frequency regulation,
the power flows among different areas are maintained at their
scheduled values. In [3], [6], [10], [13], [22], and [37]–[40],
different control schemes for solving the OLFC problem in
the presence of constant loads are proposed. More precisely,
a distributed passivity-based control scheme is proposed in [3],
where the voltages are assumed to be constant. A distributed
sliding mode control strategy is proposed in [6], where,
although the robustness property of sliding mode is able to
face time-varying loads, the stability of the desired equi-
librium point is established under the assumption of con-
stant loads only. A hierarchical control scheme is proposed
in [10], while decentralized integral control and distributed
averaging-based integral control schemes are proposed in [13].
In [22], the convergence is proven under the assumptions
of convex cost functions and known power flows, while a
gradient-based approach is proposed in [23]. A linearized
power flow model is adopted in [37], while a primal-dual
approach is proposed in [38], where an aggregator collects
the frequency measurements from all the control areas in
order to compute and broadcast the generation setpoints to
each control area. A real-time bidding mechanism is devel-
oped in [39]. In [40], a distributed sliding mode observer-
based scheme is proposed to estimate the frequency deviation
and perform robust fault reconstruction. In [41], higher
order sliding mode observers are presented to robustly and
dynamically estimate the unmeasured state variables in power
networks.

Before presenting, in Section I-B, the motivations and
contributions of this article, we notice that, in all the above-
mentioned works on LFC and OLFC, theoretical guarantees
are established under the common assumption that loads are
constant.

B. Motivation and Contributions

Nowadays, renewable energy sources and new loads, such
as plug-in electric vehicles, are an integral part of the power
infrastructure. As a consequence, unavoidable uncertainties
are sharply increasing and may put a strain on the system
stability. For this reason, the resilience and reliability of the
power grid may benefit from the design and analysis of control
strategies that theoretically guarantee the system stability in
the presence of time-varying loads and renewable sources.
To do this, an internal model approach is proposed in [20],
where the loads’ behavior is described as the output of a
dynamical exosystem, as it is customary in output regulation
theory [42], [43]. However, in [20], the turbine governor
dynamics are neglected, while it is generally important in
terms of tracking performance to describe the generation side
with a satisfactory level of detail. Moreover, the exosystem
model adopted in [20] to describe the load dynamics is
linear and assumed to be incrementally passive. Recently,
the output regulation methodology has also been applied
in [44] to a different class of power systems (i.e., low-voltage
dc microgrids) to achieve a different control objective (i.e.,
voltage regulation). Different from [20] and [45], we first
design a controller based on the classical output regulation
theory [42] to solve the LFC problem in nonlinear high-
voltage ac power networks for a class of exosystems wider
than the one adopted in [20]. More precisely, in this article,
we describe the behavior of the uncontrolled power injec-
tions, i.e., the difference between the power generated by the
renewable energy sources and the one absorbed by the loads,
by nonlinear exosystems that do not need to be incrementally
passive and are independent of the system parameters. Second,
different from [20] and [45], to also minimize the generation
costs, we use an approximate output regulation method that
solves numerically only the partial differential equation (PDE)
of the regulator equation and propose a controller based on this
solution, achieving an approximate OLFC, where the norm
of the error (i.e., the frequency deviation from the nominal
value and the difference between the actual generated power
and its corresponding optimal value) is upper bounded by
a sufficiently small positive constant, whose influence on
the performance of the controlled system is shown (by an
extensive simulation analysis) to be negligible in practical
applications. Moreover, we provide a novel control design
procedure that provides conditions for the solvability of the
regulator equations, reduces the computational burden for
solving the regulator equations, and guarantees stability also
in the presence of nonlinear time-varying loads and renewable
generation.

The main contributions of this article can be summarized
as follows.

1) The LFC problem for nonlinear power networks is
formulated as a standard output regulation problem,
where the time-varying uncontrolled power injections
are represented by the outputs of nonlinear dynamical
exosystems.

2) We propose a control scheme based on the classical
output regulation theory for solving the conventional
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LFC problem in the presence of time-varying uncon-
trolled power injections while ensuring the stability of
the overall network.

3) We use an approximate output regulation method for
solving an approximate OLFC problem in the presence
of time-varying uncontrolled power injections while
ensuring the stability of the overall network.

This article is organized as follows. The control problem is
formulated in Section II. The controllers based on the clas-
sical output regulation and approximate output regulation are
designed and analyzed in Sections III and IV, respectively. The
simulation results are presented and discussed in Section V,
while, in Section VI, conclusions are gathered.

C. Notations

The set of real numbers is denoted by R. The set of
positive (nonnegative) real numbers is denoted by R>0 (R≥0).
Let 0 denote the vector of all zeros and the null matrix
of suitable dimension(s) and 1 denote the vector containing
all ones. The n × n identity matrix is denoted by In . Let
A ∈ R

n×n be a matrix. In case A is a positive definite
(positive semidefinite) matrix, we write A > �0 (A ≥ �0). Let
det(A) denote the determinant of matrix A and |A| denote
the matrix A with all elements positive. The i th element
of vector x is denoted by xi . A steady-state solution to
system ẋ = f (x) is denoted by x , i.e., 0 = f (x). Let
x ∈ R

n, y ∈ R
m be vectors and W ∈ R

n×n be a positive
semidefinite matrix; then, we define col(x, y) := (x� y�)� ∈
R

n+m and
∥∥x

∥∥
W

:= x�W x ≥ 0. Consider the functions
g : R

n → R
n×m, h : R

n → R
n ; then, the Lie derivative

of h(x) along g(x) is defined as Lgh(x) := (∂h(x)/∂x)g(x)
with (∂h(x)/∂x) = col((∂h1(x)/∂x), . . . , (∂hn(x)/∂x)) and
(∂hi(x)/∂x) = ((∂hi (x)/∂x1), . . . , (∂hi(x)/∂xn)) for i =
1, . . . , n. Given a vector x ∈ R

n , [x] ∈ R
n×n indicates the

diagonal matrix whose diagonal entries are the components
of x and sin(x) := col(sin(x1), . . . , sin(xn)). A continuous
function α : R>0 → R>0 is said to be of class K if it is
nondecreasing and α(0) = 0. The bold symbols indicate the
solutions to a PDE. For notational simplicity, the dependence
of the variables on time t is mostly omitted throughout this
article.

II. PROBLEM FORMULATION

In this section, we introduce the nonlinear power system
model together with the dynamics of the uncontrolled power
injections (i.e., the difference between the power generated
by the renewable energy sources and the one absorbed by
the loads), which are described as the output of a nonlinear
dynamical exosystem. Then, two control objectives are pre-
sented: LFC and approximate OLFC.

A. Power Network Model

In this section, we discuss the model of the considered
power network (see Nomenclature for the description of
the symbols and parameters used throughout this article).
The network topology is represented by an undirected and

connected graph G = (V, E), where V = {1, 2, . . . , n} is
the set of the control areas and E = {1, 2, . . . ,m} is the
set of the transmission lines. Then, let A ∈ R

n×m denote
the corresponding incidence matrix, and let the ends of the
transmission line j be arbitrarily labeled with “+” and “−.”
Then, we have

Ai j =

⎧⎪⎨
⎪⎩

+1, if i is the positive end of j

−1, if i is the negative end of j

0, otherwise.

(1)

Moreover, in analogy with [20] and [21], we assume that
the power network is lossless, and each node represents an
aggregated area of generators and loads. Then, the dynamics
(known as swing dynamics) of node (area) i ∈ V are the
following (see also [3], [6], [20], and [21] for further details):

ϕ̇i = ωi

τpi ω̇i = −ψiωi + Pci + Pdi +
∑
j∈Ni

Vi V j Bi j sin(ϕi − ϕ j)

τvi V̇i = Ē f i − (1 − χdi Bii )Vi

+χdi

∑
j∈Ni

V j Bi j cos(ϕi − ϕ j) (2)

where ϕi , ωi , Vi , Pdi : R≥0 → R, τpi , τvi , ψi , Ē f i , Bii , Bi j ∈
R, and χdi := Xdi − X �

di , with Xdi , X �
di ∈ R, and Pci :

R≥0 → R is the power generated by the i th (equivalent)
synchronous generator and can be expressed as the output of
a first-order dynamical system describing the behavior of the
turbine-governor [3], [6], i.e.,

τci Ṗci = −Pci − ξ−1
i ωi + ui (3)

where ui : R≥0 → R is the control input and τci , ξi ∈ R.
Now, we can write systems (2) and (3) compactly for all

nodes i ∈ V as

θ̇ = A�ω
τpω̇ = −ψω + Pc + Pd − Aϒ(V ) sin(θ)

τv V̇ = −χd E(θ)V + Ē f

τc Ṗc = −Pc − ξ−1ω + u (4)

where ω, V , Pc, Pd , u : R≥0 → R
n , θ : R≥0 → R

m denotes
the vector of the voltage angles differences, i.e., θ := A�ϕ,
τp, τv , ψ, χd , τc, ξ ∈ R

n×n, and Ē f ∈ R
n . Moreover, ϒ :

R
n → R

m×m is defined as ϒ(V ) := diag{ϒ1, ϒ2, . . . , ϒm},
with ϒk := Vi Vj Bi j , where k ∼ {i, j} denotes the line
connecting areas i and j . Furthermore, for any i, j ∈ V ,
the components of E : R

m → R
n×n are defined as follows:

Eii (θ) = 1

χdi
− Bii , i ∈ V

Ei j(θ) = −Bi j cos(θk) = E ji(θ), k ∼ {i, j} ∈ E
Ei j(θ) = 0, otherwise. (5)

Remark 1 (Susceptance and Reactance): According to
Trip et al. [6, Remark 1], we notice that the reactance Xdi

of each generator i ∈ V is in practice generally larger than the
corresponding transient reactance X �

di . Furthermore, the self-
susceptance Bii is negative and satisfies |Bii | > ∑

j∈Ni
|Bi j |.
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Therefore, E(θ) is a strictly diagonally dominant and sym-
metric matrix with positive elements on its diagonal, implying
that E(θ) is positive definite [20].

Now, as it is customary in the power systems literature (see
for instance [3], [6], and [20]), we assign to the conventional
power generation, i.e., the power generated by the synchro-
nous generators, the following strictly convex linear-quadratic
cost function to model the costs of the conventional power
generations1

J (Pc) = P�
c Q Pc + R� Pc + 1�

n (6)

where J : R
n → R, Q ∈ R

n×n, and R,C ∈ R
n . Furthermore,

to permit the design of the control input u in Sections III
and IV, as the first step, we augment system (4) with the
following distributed dynamics [3], [6]:

τδδ̇ = −δ + Pc − ξ−1 QLcom(Qδ + R) (7)

where δ : R≥0 → R
n , τδ ∈ R

n×n, and Lcom ∈ R
n×n is the

Laplacian matrix associated with a communication network,
whose corresponding graph is assumed to be undirected and
connected. More precisely, the term Qδ + R in (7) reflects
the (virtual) marginal cost associated with the conventional
power generation, and Lcom(Qδ+ R) represents the exchange
of such information among the areas of the power network.
In Section III, we will show that (7) plays an important
role in the stability analysis of system (4). More precisely,
in Section III, the state variable δ will be used to design a state-
feedback controller that stabilizes system (4). Then, the gain of
such a controller will be used for the output regulation control
methodology.

B. Exosystem Model

The power associated with the renewable generation and
load demand is in practice time-varying. Renewable generation
depends indeed on several exogenous factors, such as wind
speed and solar radiation for wind and photovoltaic energy,
respectively. Also, the load demand generally depends on
several exogenous factors, such as the weather conditions,
usage patterns, and social aspects [45]. Consequently, the time-
varying behavior of loads and renewable generation sources
can be described by dynamic systems that are independent
of the state of the power network [45]. The class of exosys-
tems that we consider in this article is capable to accurately
describe the real behavior of loads and renewable energy
sources and is often adopted in the literature [20], [44], [46],
[47]. In practice, the parameters of the exosystems can be
identified from historical data [48]–[50], as we will do in
Section V (see Scenario 3). Then, as it is customary in
output regulation control theory [42], [43], we consider the
uncontrolled power injections (i.e., the difference between the
power generated by the renewable energy sources and the one
absorbed by the loads) as exosystems, and the dynamics of the
i th uncontrolled power injection can be expressed as follows2

1In this work, we consider only uncontrollable loads. Thus, we do not
include, in the cost function [see (6)], the cost associated with the load
adjustment.

2The adopted exosystem is a general nonlinear system capable of reproduc-
ing a large class of signals and may potentially also take into account the
presence of storage devices.

(see, for instance, [20], [44], and the references therein):

ḋai = 0

ḋbi = si (dbi)

Pdi = �i

(
dai

dbi

)
(8)

where dai : R≥0 → R and dbi : R≥0 → R
nd are the

states of the exosystem describing the constant and time-
varying components of the uncontrolled power injection i ∈ V ,
respectively, si : R

nd → R
nd is Lipschitz, and �i ∈ R

1×(nd+1).
Then, (8) can be written compactly for all nodes i ∈ V as

ḋ = S(d)

Pd = �d (9)

where d : R≥0 → R
n(nd+1) is defined as d :=

col(da1, db1, . . . , dan, dbn), Pd : R≥0 → R
n , S : R

n(nd+1) →
R

n(nd+1) is defined as S := col(0, s1, . . . , 0, sn), and � :=
blockdiag(�1, . . . , �n) ∈ R

n×n(nd+1). Although we treat the
constant component as an uncertain term [see the first line
in (8)], the estimated time-varying components may differ in
practice from the actual ones. However, the theoretical analysis
in the presence of uncertain exosystems is out of the scope of
this work, and we leave as future research the possibility of
designing a controller based on the robust output regulation
methodology presented in [42, Chapters 6 and 7]. Although
we do not tackle this aspect theoretically, we will show in
simulation (see Section V, Scenario 3) that the controlled
system is input-to-state stable with respect to the possible
mismatch between the actual power injection and the one
generated by the corresponding exosystem.

Remark 2 (Nonlinear Exosystem): Note that the load
demand considered in [20, Corollary 2] is given by the
superposition of three different terms: 1) a constant; 2) a
periodic component that can be compensated optimally;
and 3) a periodic component that cannot be compensated
optimally. The corresponding exosystem is linear, assumed to
be incrementally passive, and depends on some predefined
constant matrices. Differently, the considered exosystem (9)
can be generally nonlinear and does not depend on any
predefined parameter.

C. Control Objectives

In this section, we introduce and discuss the main control
objectives of this work. The first objective concerns the
asymptotic regulation of the frequency deviation to zero, i.e.,

Objective 1 (Load Frequency Control):

lim
t→∞ω(t) = 0n . (10)

Besides improving the stability of the power network by
regulating the frequency deviation to zero, advanced control
strategies additionally aim at reducing the costs associated
with the power generated by the conventional synchronous
generators. In this regard, Trip et al. [6, Lemma 2], [20,
Lemma 3] show that it is possible to achieve zero steady-
state frequency deviation and simultaneously minimize the
total generation cost function (6) when the uncontrolled power
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injection Pd is constant. More precisely, when the uncontrolled
power injection Pd is constant, the optimal value of Pc, which
allows for zero steady-state frequency deviation and minimizes
(at the steady-state) the total generation cost (6), is given by

Popt
c = Q−1

(
1n1�

n (Q
−1 R − Pd)

1�
n Q−11n

− R

)
(11)

which is the solution to the following optimization problem:
min J (Pc)

s.t. 1�
n (ū + Pd) = 0

where J (Pc) is given in (6) (see [6] and [20] for further
details). This leads us to the second objective concerning the
frequency regulation and minimization of the total generation
cost, which is also known in the literature as economic
dispatch or OLFC [6], [20]. More precisely, in [20, Subsec-
tion 6.1], it is shown that economically efficient frequency
regulation can be achieved in the presence of a particular class
of linear time-varying load models (see Remark 2 for more
details on the exosystem model adopted in [20]). However,
the achievement of OLFC in the presence of a wider class of
nonlinear time-varying uncontrolled power injections appears
complex and still challenging. Then, in order to address this
challenging task in Section IV, we introduce now the concept
of approximate OLFC (�−OLFC).

Objective 2 (Approximate Optimal Load Frequency Con-
trol):

lim
t→∞ 
 col

(
ω(t), Pc(t)

) − col
(
0n, Popt

c (t)
)
 ≤ � (12)

with � ∈ R≥0 and Popt
c (t) given by (11).

We notice that, when � = 0, Objective 2 becomes
identical to the classical OLFC objective, i.e.,
limt→∞ col

(
ω(t), Pc(t)

) = col
(
0n, Popt

c (t)
)
.

We assume now that there exists a (suitable) steady-state
solution to the considered augmented power network model
[see (4), (7), and (9)].

Assumption 1 (Steady-State Solution): There exist a con-
stant input ū and a steady-state solution (θ̄ , ω̄, V̄ , P̄c, δ̄, d̄)
to (4), (7), and (9) satisfying

0 = A�ω̄
0 = −ψω̄ + P̄c + �d̄ − Aϒ(V̄ ) sin(θ̄)

0 = −χd E(θ̄ )V̄ + Ē f

0 = −P̄c − ξ−1ω̄ + ū

0 = −δ̄ + P̄c − ξ−1 QLcom(Qδ̄ + R)

0 = S(d̄). (13)

In addition, (13) holds also when ω̄ = 0 and P̄c = Popt
c ,

with Popt
c given by (11).

In Section III, we formulate the LFC problem as a clas-
sical output regulation control problem and design a control
scheme for regulating the frequency in the presence of time-
varying loads and renewable generation sources. To this end,
we will first consider the state-feedback controller presented
in [6], which guarantees the asymptotic stability of system (4)
and (7) with constant uncontrolled power injections. As a

consequence, in analogy with [6] and [20], the following
assumption is required.

Assumption 2 (Steady-State Voltage Angle and Amplitude):
The steady-state voltage V̄ ∈ R

n and the angle difference
θ̄ ∈ R

m satisfy

θ̄l ∈
(
−π

2
,
π

2

)
∀l ∈ E

1

χdi
−Bii +

∑
l∼i, j∈E

Bi j
(
V̄i +V̄ j sin2(θ̄l)

)
V̄i cos(θ̄l)

> 0 ∀i ∈ V . (14)

Note that Assumption 2 is usually verified in practice, i.e.,
the differences in voltage (angles) are small and the line
reactances are greater than the generator reactances [6], [20].

III. OUTPUT REGULATION FOR LOAD

FREQUENCY CONTROL

In this section, we use the output regulation control
methodology introduced in [42] to achieve Objective 1, while
the design of a control algorithm achieving Objective 2 is
addressed in Section IV.

First, let the state variable x : R≥0 → R
m+4n be defined as

x := col(θ, ω, V , Pc, δ), d : R≥0 → R
n(nd+1) be the exosystem

state variable, and u : R≥0 → R
n be the control input. Then,

we can rewrite (4), (7), and (9) as

ẋ = f (x, d)+ g(x, d)u (15a)

ḋ = S(d) (15b)

h(x, d) = ω (15c)

where h(x, d) is the output mapping, g(x, d) :=
col(0m×n, 0n×n, 0n×n, τ

−1
c , 0n×n), and

f (x, d) :=

⎛
⎜⎜⎜⎜⎜⎝

A�ω
τ−1

p

(
− ψω + Pc + �d − Aϒ(V ) sin(θ)

)
τ−1
v (−χd E(θ)V + Ē f )
τ−1

c (−Pc − ξ−1ω)

τ−1
δ (−δ + Pc − ξ−1 QLcom(Qδ + R))

⎞
⎟⎟⎟⎟⎟⎠.

(16)

Now, we compute the relative degree of system (15). Indeed,
in the following, the relative degree of system (15) is useful
to design the controller and simplify the regulator equation.
More precisely, it is used to compute the zero dynamics
of system (15) and, consequently, reduce the order of the
regulator equation, simplifying the output regulation problem.
Let us also define

fa(x, d) := col( f (x, d), S(d))

ga(x, d) := col(g(x, d), 0n(nd+1)×n). (17)

Then, according to [42, Definition 2.47], the relative degree
of the system (15) is computed in the following lemma.

Lemma 1 (Relative Degree of (15)): For each i =
1, . . . , n, the i th output hi of system (15) has relative degree
ri = 2 for all the trajectories (x, d).

Proof: See Appendix A.
Remark 3 (Asymptotic Stability of System (15a) With Con-

stant Power Injections): From [6, Th. 1 and Remark 3],
it follows that, if Assumptions 1 and 2 hold, the state-feedback
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controller u = δ asymptotically stabilizes system (15a) when
the uncontrolled power injections are assumed to be constant,
achieving Objectives 1 and 2. Note that this result is needed
for the solvability of the output regulation problem that we
introduce in Section III-A (see [42, Assumption 3.2] for further
details).

In the following, we briefly recall for the readers’ con-
venience some concepts of the output regulation control
methodology. Then, we design a control scheme achieving
Objective 1 in the presence of time-varying uncontrolled power
injections.

A. Output Regulation Methodology

In analogy with [42, Sec. 3.2], we first define the nonlinear
output regulation problem for system (15) as follows.

Problem 1 (Output Regulation): Let Assumptions 1 and 2
hold and the initial condition

(
x(0), d(0)

)
of system (15)

be sufficiently close to the equilibrium point (x̄, d̄) satisfy-
ing (13). Then, design a state feedback controller

u(t) = k
(
x(t), d(t)

)
(18)

such that the closed-loop system [see (15) and (18)] has the
following properties.

Property 1: The trajectories col
(
x(t), d(t)

)
of the

closed-loop system exist and are bounded for all t ≥ 0.
Property 2: The trajectories col

(
x(t), d(t)

)
of the

closed-loop system satisfy limt→∞ h(x, d) = 0n , achiev-
ing Objective 1.

We say that the (local) nonlinear output regulation problem
(see Problem 1) is solvable if there exists a controller such
that the closed-loop system satisfies Properties 1 and 2. Now,
in analogy with [42, Assumption 3.1�], we introduce the
following assumption on the exosystem (15b).

Assumption 3 (Stability of the Exosystem (15b)): The
equilibrium d̄ of the exosystem (15b) is Lyapunov stable,
and there exists an open neighborhood D of d = d̄, where
every point is Poisson stable in the sense described in
[42, Remark 3.2].

Note that the above assumption is the only assumption on
the exosystem (15b), concerning the stability of its equilibrium
point. Indeed, the stability of the exosystem, which implies the
boundedness of the disturbances, is a standard assumption in
several control methodologies since it is very hard to propose
a control scheme guaranteeing the stability of the closed-
loop system with unbounded disturbances. Also, the above
assumption is required for establishing the necessary condition
for the solvability of Problem 1, which is established in the
following theorem.

Theorem 1 (Solvability and Regulator Equation): Let
Assumptions 1–3 hold, then Problem 1 is solvable if and
only if there exist smooth functions x(d) and u(d) defined
for d ∈ D such that

∂x(d)
∂d

S(d) = f (x(d), d)+ g(x(d), d)u(d) (19a)

0n = h(x(d), d). (19b)

Proof: See3 [42, Th. 3.8].

3Note that, by virtue of Remark 3, we do not need [42, Assumption 3.2].

The PDE (19a) together with the algebraic equation (19b)
is called regulator equation, and from Theorem 1, it follows
that the solvability of the regulator equation (19) is the key
condition for the solvability of Problem 1.

B. Controller Design

In this section, a novel control scheme is designed for
solving Problem 1 and, consequently, achieving Objective 1 in
the presence of time-varying uncontrolled power injections.
More precisely, we first analyze the zero dynamics of sys-
tem (15) in order to make the regulator equation (19) simpler.
Then, inspired by the output regulation control theory [42],
we present the proposed control scheme.

First, let x(d) in (19) be partitioned as x(d) :=
col(xa(d), xb(d)), with xa(d) := col

(
θ(d),ω(d)

)
and

xb(d) := col
(
V (d), Pc(d), δ(d)

)
. Then, consider the follow-

ing PDE:
∂xb(d)

∂d
S(d) = �

(
xb(d), d

)
(20)

with

�
(
xb(d), d

)

:=
⎛
⎝ τ−1

v

( − χd E
(
xb(d)

)
V (d)+ Ē f

)
τ−1

c

( − Pc(d)+ u∗
e(x(d), d)

)
τ−1
δ

( − δ(d)+ Pc(d)− ξ−1 QLcom
(
Qδ(d)+ R

))
⎞
⎠

(21)

where u∗
e(x(d), d) will be defined in the following theorem.

Note that, in (21), we have replaced E
(
θ(d)

)
by E

(
xb(d)

)
.

This follows from recalling that, for each i = 1, . . . , n, the i th
output hi of system (15) has relative degree equal to 2 (see
Lemma 1). Then, by considering the output and its first-
time derivative being identically zero, ω(d) and θ(d) can be
expressed as the solutions to

0n = ω(d)

0n = −Pc(d)+ �d − Aϒ(
V (d)

)
sin

(
θ(d)

)
(22)

respectively.
In the following theorem, we propose a controller solving

Problem 1.
Theorem 2 (Output Regulation-Based Controller): Let

Assumptions 1–3 hold, and suppose that there exists a solution
to (20) for d ∈ D. Consider system (15) in the closed loop
with

u = u∗
e

(
x(d), d

) + Kx
(
x − x(d)

)
(23)

where

u∗
e

(
x(d), d

)
:= −τcτ

−1
v A[sin(θ(d))]ϒ(V (d))|A|[V(d)]−1

×
(
χd E

(
θ(d)

)
V (d)− Ē f

)
+ Pc(d)− τc�S(d). (24)

θ(d) is the solution to (22) and Kx :=(
0n×m 0n×n 0n×n 0n×n In

)
. Then, the trajectories of the

closed-loop system [see (15) and (23)] starting sufficiently
close to (θ̄, 0, V̄ , P̄c, δ̄, d̄) are bounded and converge to the
set where the frequency deviation is equal to zero, achieving
Objective 1.
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Proof: See Appendix B.
We notice that, in Theorem 2, the controller (23) is designed

based on the solution to (20), which we have provisionally
assumed to exist. Now, we discuss in the following the
condition for the solvability of the regulator equation (19),
implying the solvability also of (20).

Remark 4 (Existence of Solution to the Regulator Equa-
tion (19)): The condition for the solvability of the regulator
equation (19), implying the solvability also of (20), follows
from [42, Corollary 3.27], i.e., the solution to (19) exists if all
the eigenvalues of the matrix

A := ∂�(xb, d)

∂xb

∣∣∣∣
(x,d)=(x̄ ,d̄)

(25)

have nonzero real parts. Furthermore, in Proposition 2
Appendix B, we provide simpler conditions for the solvability
of (19). Indeed, instead of checking all the eigenvalues of the
matrix A given in (25), we show that it is sufficient to verify
some conditions only on some minors of this matrix.

Remark 5 (Comparison With [20]): Note that, in this work,
we consider a class of exosystems describing the dynamics of
both the load demand and renewable generation wider than
the one considered in [20] (see Remark 2 for more details
about the exosystem model). However, although the dimension
of our controller is lower than the one in [20], it may be
generally more complex. Indeed, the higher complexity seems
to be necessary to deal with the nonlinearity of the considered
exosystem. We also note that Trip et al. [20] achieve OLFC
only for a particular class of exosystems, while the achieve-
ment of OLFC in the presence of a wider class of nonlinear
time-varying uncontrolled power injections appears complex
and still challenging.

In order to perform also costs minimization besides fre-
quency regulation, we address in Section IV the approximate
OLFC (�−OLFC) problem (see Objective 2). More precisely,
we propose a control algorithm based on an approximate
output regulation method, which uses the solution to a PDE
that is solved numerically.

IV. APPROXIMATE OPTIMAL LOAD FREQUENCY CONTROL

In Section III, following the classical output regulation
control methodology, we have designed the controller (23)
achieving Objective 1. In this section, in order to achieve
Objective 2, we use an approximate output regulation method
that solves numerically only the PDE part of the reg-
ulator equation and propose a controller based on this
solution.

Consider (15a), (15b), and the following output:
q(x) = col

(
ω, Pc

)
. (26)

The reference signal is defined as q ref := col
(
0n, Popt

c
)
,

where the optimal power generation value Popt
c given by (11) is

time-varying since the uncontrolled power injection Pd is time-
varying as well. Therefore, the tracking error can be defined
as

e(t) := q(x(t))− q ref(d(t)). (27)

Now, as in Section III, we first define the nonlinear output
regulation problem for system (15a), (15b), and (27) as
follows:

Problem 2 (Approximate Output Regulation): Let the ini-
tial condition

(
x(0), d(0)

)
of system (15a), (15b), and (27)

be sufficiently close to the equilibrium point (x̄, d̄) satisfy-
ing (13). Then, design a state feedback controller

u(t) = k
(
x(t), d(t)

)
(28)

such that the closed-loop system (15a), (15b), (27), and (28)
has the following properties:

Property 3: The trajectories col
(
x(t), d(t)

)
of the

closed-loop system exist and are bounded for all t ≥ 0.
Property 4: The trajectories col

(
x(t), d(t)

)
of the

closed-loop system satisfy limt→∞ 
e(t)
 ≤ �, for
sufficiently small � ∈ R≥0, achieving Objective 2.

Then, from Theorem 1, the regulator equation (19) for
system (15a), (15b), and (27) becomes

∂x
∂d

S(d) = f (x(d), d)+ g(x(d), d)u(d) (29a)

02n = q(x(d))− q ref(d) (29b)

and the solvability of (29) implies the solvability of Problem 2.
In the remaining of this section, we compute the solution

to (29a) numerically and present an algorithm that uses the
solution to (29a) to solve Problem 2 via the minimization of a
penalty function (also called performance measure) depending
on the tracking error (27). Note that a similar problem, i.e.,
the design of a controller based on the output regulation theory
ensuring that the penalty function is arbitrarily close to its
infimum, has been studied in [51, Problems 4 and 5], and it is
referred to as suboptimal output regulation. Before introducing
the algorithm, we note that the existence of a solution to (29a)
corresponds to the stability of the equilibrium point x of (15a)
with constant exogenous inputs d such that (x, d) satisfies (13)
(see [52, Th. 4] and the center manifold theorem [42, Th. 2.25]
for more details). Since, by virtue of Remark 3, the state-
feedback controller u = Kx x makes the closed-loop system
asymptotically stable, then the solution to (29a) exists.

Now, similar to [52, Th. 5], in the following proposition,
a penalty function is introduced, and the relationship between
this penalty function and the tracking error (27) is investigated,
showing how the numerical solutions to the PDE (29a) can
be used for designing a controller satisfying (29b) when t
approaches infinity, solving Problem 2.

Proposition 1 (Approximate Output Regulation-Based Con-
troller): Let the compact set � � 0 and �̄0, �̄1 ∈ R≥0 exist such
that, for all �̄ ∈ [�̄0, �̄1] and d ∈ �, there exist sufficiently
smooth functions x �̄ (d) and u�̄ (d) satisfying

I
(
u�̄ (d)

) :=
∫
�

∥∥q(x�̄ (v))−q ref(v)
∥∥2

dv1, . . . , dvn(nd+1) = �̄

(30)

where
(
x �̄ (d), u�̄ (d)

)
represents the solution to (29a). If the

control input is designed as

u = u�̄ (d)+ Kx(x − x�̄ (d)) (31)
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Algorithm 1 Approximate Output Regulation

where Kx is as in (23), then there exist α, β, c ∈ R>0 such
that


e(t)
 ≤ αe−ct + β�̄ ∀�̄ ∈ [�̄0, �̄1] (32)

where e(t) is given by (27).
Proof: See [52, Th. 5].

Then, based on Proposition 1, we use Algorithm 1
(see [52, Algorithm 1] for more details) to solve Problem 2,
achieving Objective 2. We refer the reader to [52, Sec. 4]
for the details about the convergence proof of Algorithm 1.
Basically, Algorithm 1 seeks to find iteratively a controller
through solving (29a) numerically. Since both the frequency
regulation and costs minimization are taken into account in
the penalty function (30), the obtained controller achieves
Objective 2 with accuracy � := β�̄.

Remark 6 (Approximation Error): Note that the approxi-
mation error �̄ in Proposition 1 may be due to the numerical
inaccuracy of the solution

(
x �̄ (d), u�̄ (d)

)
to (29a) or the

algebraic part (29b) for unsolvable regulator equations (29)
[52, Remark 6]. Furthermore, if Algorithm 1 finds an approx-
imated solution to (29), i.e., �̄ > 0, then the controller (31)
achieves �−OLFC (Objective 2). Otherwise, if Algorithm 1
finds an exact solution to (29), i.e., �̄ = 0, then the con-
troller (31) achieves OLFC. We also note that, to achieve
a high accuracy, it is sufficient to choose �̄ sufficiently
small. Then, we show via an extensive simulation analysis
in Section V that the influence of such an error on the
performance of the controlled system is negligible in practical
applications.

Remark 7 (Conditions for Solvability of Problem 2):
Notably, the approximate output regulation control approach
presented in Proposition 1 does not require the solvability
conditions provided in Proposition 2 Appendix B. Indeed,
Algorithm 1 uses only the solution to (29a) to obtain a
controller solving Problem 2, while the classical output
regulation control approach presented in Theorem 2 needs
the solution to the regulator equation (29).

Remark 8 (Comparison With [53]): A constructive appr-
oach for solving a linear-convex optimal steady-state problem

Fig. 1. Scheme of the considered power network partitioned into four areas,
where the solid and dashed lines represent the physical and communication
networks, respectively.

with constant exogenous disturbances and parametric uncer-
tainty is proposed in [53], which includes the OLFC problem
as an application. Although this method solves the OLFC
problem, the dynamics of the power network are assumed
to be linear. Furthermore, the voltage and turbine-governor
dynamics are neglected, and the exogenous disturbances (i.e.,
the uncontrolled power injections) are assumed to be con-
stant. Differently, in this section, we have proposed a control
approach for nonlinear power networks, achieving approxi-
mate optimal LFC (Objective 2) in the presence of time-
varying uncontrolled power injections.

Remark 9 (Properties of the Controllers (23) and (31)):
Note that the proposed control schemes (23) and (31) together
with the augmented dynamics (7) are fully distributed and
require some information about the network parameters
and the exosystems, which can be determined in practice
from data analysis and engineering understanding. Moreover,
the PDE (20) or (29) is solved only once, and the knowledge
of δi requires only local information and information from
the neighboring areas, making the proposed control schemes
scalable and independent of the network size. Also, a sensor
for the conventional generation is required at each node
to measure the generated power Pc in order to implement
the proposed control schemes (23) and (31). Furthermore,
the theoretical results that we have established in Sections III
and IV include the case that the parameters of the swing
equations (2) and (3) and the exosystems dynamics (8) are
different from one area to another.

V. SIMULATION RESULTS

In this section, an extensive simulation analysis shows the
excellent performance of the proposed control schemes in
three realistic and critical scenarios. More precisely, we con-
sider a power network partitioned into four control areas (see,
for instance, [55] on how the IEEE New England 39-bus sys-
tem can be represented by a network consisting of four areas),
which are interconnected as represented in Fig. 1. We assume
that each control area includes an equivalent synchronous
generator, renewable generations, and loads. We provide all
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TABLE I

SYSTEM PARAMETERS

Fig. 2. Scenario 1. Frequency deviation: (a) classical output regu-
lation control approach and (b) approximate output regulation control
approach.

the system parameters in Table I, where the nominal fre-
quency and power base are chosen equal to 120π rad/s and
1000 MVA, respectively. Also, in Algorithm 1, we choose
�̄ = 1 × 10−7.

A. Scenario 1: Standard Operating Conditions

For describing the behavior of the renewable generation
source i ∈ V , we use the dynamical nonlinear model presented
in [45], i.e.,

żw0i = 0

żw1i = zw2i

(
κ0i ln

(
zw2i

) − κ0i hi + s2
0i

2

)

żw2i = −zw1i

(
κ0i ln

(
zw1i

) − κ0i hi + s2
0i

2

)

Pwi = zw0i + zw1i (33)

where zw0 i , , zw1 i , zw2 i : R≥0 → R are the state variables
and κ0 i , s0 i , hi ∈ R are constant parameters that have been
identified in [45]. Moreover, similar to [20], we describe the

Fig. 3. Scenario 1. Power error: (a) classical output regulation control
approach and (b) approximate output regulation control approach.

Fig. 4. Scenario 1. Voltage: (a) classical output regulation control approach
and (b) approximate output regulation control approach.

behavior of the load i ∈ V by the following dynamical
exosystem:

żl
0i = 0

żl
1i = 2π

15
zl

2i

żl
2i = −2π

15
zl

1i

Pli = zl
0i + zl

1i (34)

where zl
0 i , zl

1 i , zl
2 i : R≥0 → R are the state variables.

Note that both systems (33) and (34) belong to the class
of exosystems we consider in (9), satisfying Assumption 3.
Hence, the uncontrolled power injection i ∈ V is defined as
Pdi := Pwi − Pli .

The system is initially at a steady state with constant
uncontrolled power injections. Then, at the initial time instant
t = 0 s, the power generated by the renewable sources and
absorbed by the loads is given by (33) and (34), respectively.
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Fig. 5. Scenario 1 with initial conditions not sufficiently close to the
desired equilibrium. Frequency deviation: (a) classical output regulation
control approach; (b) approximate output regulation control approach; and
(c) linearization method.

Fig. 2 shows the frequency deviations when the classical [see
Fig. 2(a)] and approximate [see Fig. 2(b)] output regulation
control approaches are applied, respectively. We can notice
that the frequency deviations converge to zero in both cases.
In addition, let Pe := Pc − Popt

c denote the error between
the actual generated power and its corresponding optimal
value given by (11). These errors are shown in Fig. 3 when
the classical [see Fig. 3(a)] and approximate [see Fig. 3(b)]
output regulation control approaches are applied, respectively.
Although these errors are bounded in both cases, it is evi-
dent that the approximate output regulation control approach
achieves Objective 2. Moreover, as discussed in Remark 6,
we notice that, by choosing �̄ sufficiently small (�̄ = 10−7),
the approximate output regulation control approach achieves,
in practice, OLFC. Indeed, by inspecting the time evolution of
the norm of the error defined in (27), it appears that its value
becomes smaller than 1 × 10−3 at t = 16 s and smaller than
1 × 10−6 at t = 100 s, implying that Objective 2 is achieved
with � = 1 × 10−6 (the plot is not reported due to space
limitation). It is then clear that such an error is, in practice,
definitely negligible when affecting the frequency deviation
or power error. Also, we have tested the approximate output
regulation control approach in the presence of constant power
injections and by selecting �̄ equal to zero, achieving OLFC
(the plot is not reported due to space limitation). Moreover,
we can observe from Fig. 4 that also the voltages are stable.
Finally, we can conclude that both the control approaches
show good performance and guarantee stability. In addition,
the approximate output regulation control approach achieves,
in practice, OLFC. Consider now the case in which the initial
conditions of the frequency deviations are not sufficiently
close to zero, i.e., ω(0) = col(0.05, 0.02, 0.09, 0.11). We can
observe from Fig. 5(a) and (b) that, by applying the proposed
controllers, the frequency deviation at each node converges
to zero. On the contrary, we can observe from Fig. 5(c) that,
by applying a controller based on the output regulation theory
and using for the design the linearization of the considered

Fig. 6. Scenario 1. Frequency deviation: controller proposed in [20].

Fig. 7. Scenario 2. Frequency deviation: (a) classical output regulation control
approach and (b) approximate output regulation control approach.

nonlinear system around the desired equilibrium, the frequency
deviations do not converge to zero. Finally, we also compare
our controller with the one proposed in [20], which is designed
to deal with linear exosystem models only. We can clearly
observe from Fig. 6 that the controller in [20] is not capable
of achieving frequency regulation due to the nonlinearity of
the exosystem (33).

B. Scenario 2: Measurement Noise

We consider Scenario 1 adding white noises to the mea-
surement of the generated power Pc. We can observe from
Fig. 7 that both the proposed control approaches regulate
the frequency deviations to zero, preserving the stability
of the overall network. Also, we can observe from Fig. 8
that the power errors in the approximate output regula-
tion control approach converge to zero (achieving in prac-
tice OLFC) and, in the classical output regulation control
approach, remain stable. Furthermore, we can notice from
Fig. 9 that the voltages in both control methods are stable as
well.
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Fig. 8. Scenario 2. Power error: (a) classical output regulation control
approach and (b) approximate output regulation control approach.

Fig. 9. Scenario 2. Voltage: (a) classical output regulation control approach
and (b) approximate output regulation control approach.

C. Scenario 3: Real Data for Uncontrolled Power Injections

The system is initially at a steady state with constant
uncontrolled power injections. Then, at the time instant t =
0 s, we let the uncontrolled power injections vary according to
the real values obtained from the dataset4 [56] (where we use
the data of four different areas in the United States, i.e., CAL,
CAR, CENT, and FLA for Areas 1, 2, 3, and 4, respectively,
on August 29, 2020), while the controller uses the information
of suitable exosystems, which we have tuned in order to let
them generate uncontrolled power injection trajectories that
significantly differ from the real ones (see Fig. 10). We do this
on purpose to test the robustness properties of the proposed
control schemes with respect to unavoidable mismatches in

4Note that the dataset [56] provides hourly load and renewable generation
data. However, given the fast dynamics of our system, it does not make sense
to show simulations of 24 h. Since the real uncontrolled power injection profile
looks like a sinusoidal signal, we have then reproduced the same signal (in
terms of amplitude) with a higher frequency.

Fig. 10. Scenario 3. Comparison between the absolute value of the real power
injections in [56] and the ones produced by the considered exosystems.

Fig. 11. Scenario 3. Frequency deviation: (a) classical output regulation
control approach and (b) approximate output regulation control approach.

practice between the actual uncontrolled power injections and
the ones generated by the corresponding exosystems. Specifi-
cally, we design exosystems that produce the following load:
Pl = 10.6 sin(0.06t+0.88)+10.19 sin(0.064t+3.95)+0.0375
for Area 1, Pl = 0.6 sin(0.03t+1.3)+0.17 sin(0.13t+4)+0.05
for Area 2, Pl = 0.8 sin(0.016t + 1.75) + 0.22 sin(0.134t +
3.28) + 0.0375 for Area 3, Pl = 0.95 sin(0.01t + 0.7) +
0.1 sin(0.209t + 2.5) + 0.0125 for Area 4, and the follow-
ing renewable generation: Pw = 0.1 sin(0.006t + 1.1) +
0.05 sin(0.1t + 1.3)+ 0.05 for all the areas. Thus, the exosys-
tem (8) can be expressed as

ḋa
yi = 0

ḋb
yi =

⎛
⎜⎜⎜⎝

0 −ωαyi 0 0

ωαyi 0 0 0

0 0 0 −ωβyi

0 0 ω
β
yi 0

⎞
⎟⎟⎟⎠db

yi

Pyi = �yi col
(
da

yi , db
yi

)
(35)
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Fig. 12. Scenario 3. Power error: (a) classical output regulation control
approach and (b) approximate output regulation control approach.

Fig. 13. Scenario 3. Voltage: (a) classical output regulation control approach
and (b) approximate output regulation control approach.

where da
yi : R≥0 → R and db

yi : R≥0 → R
4 are the

states of the exosystem, and ωαyi and ω
β
yi are equal to the

frequency of the sinusoidal terms in Pl and Pw . Moreover,
the elements of the matrix �yi can be obtained from the
amplitude and phase of the sinusoidal terms in Pl and Pw ,
where y denotes l or w in the case of load demand or renew-
able generation, respectively. Note that system (35) belongs
to the class of exosystems that we consider in (9). We can
observe from Fig. 11 that, despite the mismatch between the
actual uncontrolled power injections and the ones generated
by the corresponding exosystems, the frequency deviation at
each node converges to zero in both classical and approximate
output regulation methods, showing that the controlled system
is ISS with respect to such a mismatch. We can also observe
from Fig. 12 that, also in this scenario, the approximate out-
put regulation control approach achieves, in practice, OLFC.
Moreover, Fig. 13 clearly shows that the voltages are stable as
well.

VI. CONCLUSION

In this article, we have used the output regulation theory
for the design and analysis of control schemes for nonlinear
power networks affected by time-varying renewable energy
sources and loads. More precisely, based on the classical
output regulation theory, we have proposed a controller that
provably regulates the frequency deviation to zero even in
the presence of time-varying uncontrolled power injections.
Then, besides merely controlling the frequency deviation,
we have proposed a controller that additionally reduces the
generation costs. Future research includes the modeling of
the uncontrolled power injections as stochastic differential
equations and the use of the Ito calculus framework to tackle
the problem of OLFC in power networks.

APPENDIX

In this appendix, we present the proofs of Lemma 1,
Theorem 2, and Proposition 1.

A. Proof of Lemma 1

Proof: We use the definition of relative degree given in
[42, Definition 2.47]. Then, we have

Lga h = (
0n×m In 0n×n 0n×n 0n×n 0n×n(nd+1)

)
ga

= 0n×n

L fa h = (
0n×m In 0n×n 0n×n 0n×n 0n×n(nd+1)

)
fa

= τ−1
p

(
− ψω + Pc + �d − Aϒ(V ) sin(θ)

)
Lga L fa h = τ−1

p τ−1
c (36)

implying that the relative degree for each control area is equal
to 2.

B. Proof of Theorem 2

Proof: By virtue of [42, Th. 3.26], we first compute the
following matrix:

Ge(x, d) =
(

h(x, d)
L fa h(x, d)

)
. (37)

Then, we notice that the solution to Ge(x, d) = 02n for
system (15) can be obtained as follows:

0n = ω∗

0n = Pc + �d − Aϒ(V ) sin(θ∗) (38)

where ω∗ = 0n and θ∗ denote the solutions to (38). Thus,
there exist the partition xa := col(θ, ω), xb := col(V , Pc, δ)
and a sufficiently smooth function

ζ(xb, d) :=
(
θ∗
0n

)
(39)

such that Ge(x, d)|xa=ζ(xb ,d) = 02n . Recalling that, for each
i = 1, . . . , n, the i th output hi of system (15) has relative
degree equal to 2 (see Lemma 1), we compute the equivalent
control input ue(x, d) by posing the second-time derivate of
the output mapping (15c) equal to zero, i.e.,

L2
fa

h(x, d)+ Lga L fa h(x, d)ue(x, d) = 0n (40)
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obtaining the following expression:

ue(x, d) = −(
τ−1

p τ−1
c

)−1
Da(x, d)

= τcAϒ(V )[cos(θ)]A�ω − τcτ
−1
p ψ2ω

+ τcτ
−1
p ψ

(
Pc + �d − Aϒ(V ) sin(θ)

)
− τcτ

−1
v A[sin(θ)]ϒ(V )|A|[V ]−1

×
(
χd E(θ)V − Ē f

)
+ Pc + ξ−1ω − τc�S(d).

(41)

Now, let u∗
e(x, d) := ue(x, d)|xa=ζ(xb ,d). By replacing ω and

θ in (41) with ω∗ and θ∗ given in (38), we obtain

u∗
e(x, d) = ue(x, d)|xa=ζ(xb ,d)

= −τcτ
−1
v A[sin(θ)]ϒ(V )|A|[V ]−1

×
(
χd E(θ∗)V − Ē f

)
+ Pc − τc�S(d). (42)

Then, the zero dynamics of (15) are given by

τv V̇ = −χd E(θ∗)V + Ē f

τc Ṗc = −Pc + u∗
e(x, d)

τδδ̇ = −δ + Pc − ξ−1 QLcom(Qδ + R)

ḋ = S(d) (43)

which can be rewritten as

ẋ b = �(xb(d), d)

ḋ = S(d) (44)

where �(xb(d), d) is given by (21). Now, we replace xb in (44)
with the solution xb(d) to (20) and define θ(d) := θ∗(xb(d)).
Thus, according to [42, Th. 3.26], the solution to the regulator
equation (19) can be expressed as follows:

x(d) =
⎛
⎝ θ(d)

0n

xb(d)

⎞
⎠

u(d) = u∗
e(x(d), d) (45)

where u∗
e

(
x(d), d

)
is given by (24). Hence, following The-

orem 1, Problem 1 is solvable. Then, the state feedback
controller (23) guarantees that the trajectories of the closed-
loop system (4), (7), (9), and (23) starting sufficiently close
to (θ̄, 0n, V̄ , P̄c, δ̄, d̄) are bounded and converge to the set
where the frequency deviation is equal to zero, achieving
Objective 1.

In the proof of Theorem 2, we have provisionally assumed
that the solution to (20) exists. In the following proposition,
the condition for the solvability of the regulator equation (19),
implying the solvability of (20), is investigated.

Proposition 2 (Existence of Solution to the Regulator Equa-
tion (19)): The solution to regulator equation (19) exists if A11

has no zero real part eigenvalue and for all ρ ∈ R

det
(
A22 − jρIn − A21(A11 − jρIn)

−1 A12
) �= 0 (46)

where

A11 = −∂
(
τ−1
v χd E(θ∗(xb(d)))V

)
∂V

∣∣∣
(x,d)=(x̄ ,d̄)

A12 = −∂
(
τ−1
v χd E(θ∗(xb(d)))V

)
∂Pc

∣∣∣
(x,d)=(x̄ ,d̄)

A21 = τ−1
c

∂u∗
e(x, d)

∂V

∣∣∣
(x,d)=(x̄ ,d̄)

A22 = −τ−1
c + τ−1

c

∂u∗
e(x, d)

∂Pc

∣∣∣
(x,d)=(x̄ ,d̄)

A33 = −τ−1
δ

(
In + ξ−1 QLcom Q

)
. (47)

θ∗(xb(d)) is the solution to (38), u∗
e(x, d) is given by (42),

and (x̄, d̄) satisfies (13).
Proof: We have discussed in Remark 4 that the solution

to the regulator equation (19) exists if all the eigenvalues of
the matrix

A := ∂�(xb, d)

∂xb

∣∣∣
(x,d)=(x̄ ,d̄)

=
⎛
⎝ A11 A12 0

A21 A22 0
0 τ−1

δ A33

⎞
⎠ (48)

have nonzero real part, where Ai j , i, j = 1, 2, 3 are defined
in (47). Now, let λ denote the eigenvalues of matrix A. Then,
by using the Schur complement of the block A33 − λIn of the
matrix A − λI3n , the eigenvalues of A satisfy

det
(

A − λI3n
) = det

(
A33 − λIn

)
· det

(
A11 − λIn A12

A21 A22 − λIn

)
︸ ︷︷ ︸

:= Ã

= det
(
A33 − λIn

) · det
(

A11 − λIn
)

· det
(

A22 − λIn − A21(A11 − λIn)
−1 A12

)
= 0 (49)

where the second equality is obtained by using again the
Schur complement of the block A11 − λIn of the matrix Ã.
We notice that the matrices ξ and Q are positive definite
matrices, and Lcom is a positive semidefinite matrix. Therefore,
A33 is a negative definite matrix. Also, by virtue of the
assumptions in the proposition statement, A11 has no zero
real part eigenvalues, and (46) holds for all ρ ∈ R. Then, all
the eigenvalues of A have nonzero real parts. Consequently,
according to [42, Corollary 3.27], the solution to the regulator
equation (19) exists.
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