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ABSTRACT

Introduction: As underlined by the late 2019 outbreak of severe acute respiratory syndrome-corona-
virus-2 (SARS-CoV-2), vaccination remains the cornerstone of global health-care. Although vaccines for
SARS-CoV-2 are being developed at a record-breaking pace, the majority of those that are licensed or
currently registered in clinical trials are formulated as an injectable product, requiring a tightly
regulated cold-chain infrastructure, and primarily inducing systemic immune responses.

Areas covered: Here, we shed light on the status of inhaled vaccines against viral pathogens, providing
background to the role of the mucosal immune system and elucidating what factors determine an
inhalable vaccine’s efficacy. We also discuss whether the development of an inhalable powder vaccine
formulation against SARS-CoV-2 could be feasible. The review was conducted using relevant studies
from PubMed, Web of Science and Google Scholar.

Expert opinion: We believe that the scope of vaccine research should be broadened toward inhalable
dry powder formulations since dry vaccines bear several advantages. Firstly, their dry state can
tremendously increase vaccine stability and shelf-life. Secondly, they can be inhaled using disposable
inhalers, omitting the need for trained health-care personnel and, therefore, facilitating mass-vaccina-
tion campaigns. Thirdly, inhalable vaccines may provide improved protection since they can induce an
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IgA-mediated mucosal immune response.

1. Introduction

Since Edward Jenner’s revolutionary approach to protect 8-
year-old James Phipps from smallpox by injecting him with
pus from a cowpox blister, vaccination is still of utmost impor-
tance in preventing society-disrupting viral infections around
the globe [1]. With an increasing world population, globaliza-
tion and concurrently increasing infrastructural needs as their
primary catalysts, viral infections will continue to emerge, and
most likely increase in incidence rate, as has been recently
underlined by the sudden onset of the COVID-19 pandemic
[2]. Additionally, global warming will likely contribute to an
increased cross-over of endemic viral strains to remote regions
around the world, posing an additional threat to human
health [3,4].

Although needle-based vaccination has been the gold stan-
dard for vaccine administration, it poses several limitations.
Firstly, injectable vaccines are either formulated as unstable
liquids that require cold storage or as lyophilized powders for
reconstitution. Secondly, it requires trained health-care per-
sonnel, which can be a problem specifically in non-industria-
lized countries and remote areas. Thirdly, there is a risk of
needle-stick injuries and needle re-use, increasing the prob-
ability of cross contamination. Fourthly, compliance to needle-
based vaccination may be low because of associated needle-
phobia and pain at the injection site [5], and lastly, vaccination

by injection predominantly induces systemic immune
responses, that are not specifically directed at the pathogen’s
region of infection, such as mucosal sites [6]. Therefore, alter-
native ways of administration are highly desirable.

Over the years, various needle-free administration routes
have been explored [5,7,8]. Of these, inhalation is an interest-
ing way of administration, especially for vaccines against air-
borne transmissible micro-organisms that cause respiratory
tract infections. Because of its large surface area of approxi-
mately 70- 100 m?, its permeable epithelium, and its highly
perfused nature, the respiratory tract mucosa is one of the
most optimal targets for the uptake of biopharmaceuticals [9].
Due to a continuous exposure to foreign materials, the airways
house a variety of antigen-presenting cells (APCs), such as
alveolar macrophages and dendritic cells, which continuously
scan their environment for every antigen that enters the body,
in order to rapidly activate downstream immune responses
[10]. Inhalation of vaccines in principle provides the opportu-
nity to target all regions of the respiratory tract, including the
pulmonary region. The advantage of this is that, in case of
respiratory infections, the vaccine can be delivered directly at
the pathogen’s portal of entry, where it can induce a local
immune response. The benefit of this is underlined by studies
that show accumulation of preexisting virus-specific immune
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Article Highlights

e Inhalation of vaccines is a promising strategy to prevent airborne
infections.

e While COVID-19 has urged the development of novel vaccine concepts,
a significant portion of the formulations used faces logistical chal-
lenges with regard to temperature management.

e Research on inhaled vaccine delivery should be directed more towards
the development of stable dry vaccine formulations since they have
the advantage of increased stability, and hence, can be stored for
prolonged periods without decay under less strict temperature
requirements.

e The implementation of aerosolized vaccines should be seriously con-
sidered as an option to condemn highly infectious viral diseases like
measles, influenza and COVID-19.

e While extensive research has shown the benefits of inhaled vaccines,
the vaccination dogma is still centered around needles.

cells in the lungs and, thus, might be worthwhile to target
directly [11,12]. The feasibility of pulmonary vaccination was
already proven in the sixties and seventies of the past century
by pioneers like Waldman et al. [13-16], Haigh et al. [17,18],
and McCrumb et al. [19,20] who have shown that the inhala-
tion of influenza and measles vaccines resulted in adequate
protection. However, these authors used classical nebulizers
for the administration of liquid vaccine formulations that were
unsuitable for larger vaccination campaigns because of stabi-
lity issues. Around the onset of this century, the inhaled
administration of aerosolized measles vaccine was shown to
be successful in schoolchildren in several studies [21-23].
Furthermore, inhaled vaccines against tuberculosis were
shown to be effective in humans [24,25].

Although the abovementioned studies support the benefits
of respiratory tract administration of vaccines, the administra-
tion of stable dry-powder formulations remains largely unex-
plored. In this review, we will provide a 2021 overview of the
status of inhaled vaccines, specifically against viral pathogens
that infect the respiratory tract, including SARS-CoV-2. Also,
we will elaborate on the hurdles to be overcome for pulmon-
ary administration of stable dry-powder vaccines to become a
successful alternative to the current needle-based vaccination
strategy. The review was conducted using PubMed, Web of
Science, and Google Scholar, with the oldest studies including
seminal works on respiratory tract immunization in the 1960s
of the 20" century. Our search strategy was based on (but not
limited to) the following terms: respiratory viruses and viral
respiratory tract infections, pulmonary vaccination, inhaled
vaccines, respiratory tract immunization, immunoglobulin A,
mucosal-associated lymphoid tissue, (induced) bronchial-
associated lymphoid tissue, dry powder vaccines, and aeroso-
lized vaccines.

2. The mucosal immune system of the respiratory
tract

Mostly, inhaled materials that reach the airways, like dust
particles and other inert substances, are subject to

immunological tolerance, after which they are removed either
by mucociliary clearance or via cough/sneeze reflexes. This
tolerance toward innocuous materials, mediated by regulatory
T-cell subsets, is highly important for maintaining immunolo-
gical homeostasis [26,27]. However, when immune cells
encounter pathogens, recognition of pathogen-associated
molecular patterns (PAMPs, e.g. through toll-like receptors)
or damage-associated molecular patterns (DAMPs, e.g. from
infected cells) drives APCs into taking up the antigen.
Hereafter, dendritic cells usually migrate via afferent lymphatic
vessels to nearby draining lymph nodes, where the antigen is
presented via MHC-Il complexes to naive T- and B-cells.
Besides following the conventional route of antigen presenta-
tion, upon infection of the human respiratory system specia-
lized tissues called inducible bronchus-associated lymphoid
tissue (iBALT) can be formed, consisting of B-cell follicles and
plasma cells, sometimes surrounded by densely packed T-cell
zones and APCs. Here, antigens are efficiently presented to
both naive- and effector T- and B-cells without having to
migrate through the lymphatic system [28-31]. These tertiary
ectopic lymphoid tissue structures, which are induced upon
stimulation with inflammatory stimuli following infection, and
are maintained by follicular dendritic cells [32], are part of a
larger network of interconnected mucosal-associated lym-
phoid tissues (MALT) that can be found alongside various
mucosal sites of the human body [33]. An example of such a
connected mucosal tissue within the respiratory tract is the
constitutive nasal-associated lymphoid tissue (NALT). Together
with secondary lymphoid organs such as the regional lymph
nodes, the adenoids, and the tonsils (the latter making up
Waldeyer's ring), these vascularized tissues take part in the
common mucosal immune system of the respiratory tract,
which is highly important for efficient processing of patho-
genic antigens and for subsequent pathogen neutralization
(Figure 1) [27,28,33]. In studies on influenza-infected mice, it
has been shown that iBALT acts as an important niche for
long-lived antigen-specific memory B-cells, plasma cells and
virus-specific CD8 + T-cells, which can directly act upon sec-
ondary infection, independently of secondary lymphoid
organs [31]. In a later study, it was shown that depletion of
iBALT in mice even led to reduced numbers of serum anti-
bodies with hemagglutinating capacity, indicating an impor-
tant role for locally formed immune tissues in the long-lived
B-cell-driven systemic humoral response [32]. Antigens can
reach MALT either via transcytosis through antigen-delivering
microfold (M)-cells, via environment-scanning dendritic cells,
or, indirectly, via the lymphatic system. Also a role for mucus-
producing goblet cells has been implicated [34].

Besides systemic IgG, an essential effector component of
the mucosal immune system is mediated by dimeric IgA anti-
bodies, which are formed by plasma cells in the sub-epithelial
lamina propria that are differentiated under the influence of
follicular helper-T-cell-(Tgy)-derived and  epithelial tissue-
derived cytokines (e.g. TGF-B, IL-2, IL-5, IL-6, IL-10, and IL-21)
[38,39]. Because we consider the formation of IgA antibodies
next to IgG to be one of the most important measures of an
active mucosal immune system, the cellular arm of immune
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Figure 1. Overview of components involved in the mucosal immune system of the respiratory tract. In green, the localization of primary inductive lymphoid tissue
sites, collectively known as Waldeyer’'s ring. In blue, the lymph nodes, which are important for generating T-cell-dependent systemic lgG-based immune responses.
red, the localization of (inducible) ectopic tissue structures NALT and BALT, important for eliciting follicular helper-T-cell- and B-cell-mediated effector functions,

related to secretory IgA antibodies. Figure reprinted with permission of [40].

defense will not be discussed in detail in this review. For this,
we refer to some previous reviews [39,40]. IgA antibodies at
mucosal tissues are usually dimeric of nature, in contrast to
bone marrow-derived IgA in the blood [27]. An important
aspect of dimeric IgA is that it can bind to specific polymeric
immunoglobulin receptors (plgR) on the basolateral side of
mucosal epithelial cells. After receptor-mediated endocytosis,
these IgA antibodies can cross the epithelial lining by means
of vesicular transport. Upon dissociation from the plgR at the
apical surface of the epithelium, IgA molecules are functiona-
lized with a part of the plgR called the secretory component,
which prevents proteolytic cleavage in the lumen [41]. The
secreted dimeric IgA molecules in complex with the secretory
component are known as secretory IgA (SIgA). In the lumen,

part of the SIgA effector functions are initiated, together with
IgM antibodies contributing to the principle of immune exclu-
sion, which entails all mechanisms that prevent antigens from
passing the respiratory tract epithelium (Figure 2) [42]. Firstly,
SIgA antibodies can cross-link pathogens in the lumen, lead-
ing to sterical hindrance and thereby to a blockage in infec-
tivity. Secondly, they can bind antigens that have already
crossed the epithelial lining into the lamina propria and sub-
sequently expel them via the abovementioned mechanism of
receptor-mediated endocytosis. Thirdly, they can bind anti-
gens inside infected cells and export them via vesicular trans-
port [43]. SIgA antibodies can also activate innate leukocytes
like monocytes, macrophages, and neutrophils, which carry
the IgA receptor FcaR (CD89) [27].
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Figure 2. Production of dimeric IgA antibodies upon the encounter of antigens within mucosal sites such as BALT and NALT. The figure shows the principle of
immune exclusion, where the antibodies function to expel antigens from the lamina propria back into the airway lumen. Besides the production of IgA, a minority of
antibodies produced consists of secretory IgM, which is also dependent on the plgR, as well as IgD antibodies. Figure reprinted with permission of [40].

An important property of the mucosal network is that
antigenic priming at one particular mucosal region may
induce a response at a distinct mucosal region where similar
homing receptors are present as the initial site of infection. For
instance, the microvasculature in the lamina propria near
iBALT and NALT both contain the homing receptor VCAM-1.
Antigenic priming in the nasal or oral mucosae may therefore
also induce mucosal antibodies in distinct mucosal tissues of
the lungs and vice versa. In other words: if an individual gets
infected via the mucosa of the nose, this may also lead to
increased levels of SIgA in the airways. This interplay of dis-
tinct mucosal sites is often named the common mucosal
immune system [44-46].

In conclusion, administration of vaccines to the respiratory
tract mucosa not only induces systemic IgG-mediated and cell-
mediated responses but, more importantly, it opens up the
possibility to induce a strong local immune response, sup-
ported in the foremost place by SIgA antibodies, which are
of utmost importance to the respiratory tract’'s immune
defense [40].

3. Prerequisites to inhalable vaccines

Inhalation is the most efficient way to target the respiratory
tract. In order for an inhaled vaccine to be effective, it should
preferably meet the following characteristics: 1) like any other
vaccine, it would be advantageous if the inhalable vaccine is
stable at ambient temperatures, not requiring a cold-chain
and not requiring sterile water for reconstitution; 2) the vac-
cine should be delivered to the right site in the lungs; 3) the
vaccine should be immunogenically active enough to ensure

sufficient (mucosal) immune cell activation, i.e. it should over-
come the barrier of immunotolerance; 4) the vaccine should
not lead to adverse effects and should not lead to exacerba-
tions of underlying illnesses such as asthma and COPD. Below,
we will discuss several of these parameters which are of
influence on the outcome of the vaccination strategy.

3.1. Advantages of dry vaccine formulations for
inhalation

Inhalable vaccine formulations can roughly be divided into
two categories: liquid formulations and powder-based formu-
lations. In order to ensure effective dispersion of the formula-
tion into an inhalable aerosol, both types of formulations have
their own inhalation devices. Because the wide range of inha-
lation devices and their technological aspects have been
reviewed elsewhere, it will not be discussed here in detail
[47-50].

When considering vaccine stability, dry powder formula-
tions have several advantages over liquid formulations.
Firstly, if properly dried, dry vaccines can be more stable and
may be stored at ambient condition, thereby circumventing
the requirement for a cold - chain. This is highly beneficial for
distribution to warmer climates and developing countries.
Secondly, dry vaccines weigh less than liquid solutions which
favours bulk transportation, and thirdly, dry powder formula-
tions are suitable for use in disposable dry powder inhalers
(DPIs), which prevents re-use, cross-contamination, and moist-
ure-induced degradation, and, enables the delivery of repro-
ducible doses in one or only a few inhalations compared to
liquid formulations [49,50]. To obtain vaccines in the dry state,



there are several drying technologies, e.g.. spray drying,
freeze- drying and spray-freeze drying. However, it is key to
use a drying technique that can yield particles with a defined
size range, suitable for inhalation [47]. In order to protect the
vaccine from the harsh conditions during the drying process
but also during storage, it is of importance to stabilize the
vaccine properly with suitable excipients. This is often done by
incorporating the vaccine in a protective matrix of glass-form-
ing excipients like sugars: a technology that has been applied
for numerous biopharmaceuticals [51-53]. The optimal choice
for stabilizing excipients depends on the type of vaccine (e.g.
WIV, subunit, vector-based) and on the drying conditions.

3.2. Influence of deposition site on efficacy of inhaled
vaccines

Since air-transmissible pathogens infect specific regions along
the respiratory tract, depending on the expression of their
respective attachment receptor, it is important to know
whether inhaled vaccines should reach these particular
regions or not in order to confer immune protection. Key to
their efficacy is that the vaccine formulations should be dis-
persed at a proper aerodynamic size range, suitable to pene-
trate the airways. Aerosols with an aerodynamic size range of
1-5 um are considered to show penetration and deposition in
the lung, whereas smaller particles are merely exhaled.
Particles larger than 5 um are mainly deposited in the throat
or the upper respiratory tract because of inertial impaction
[54,55]. Besides size, other factors, such as, shape, density,
breathing pattern (inhalation flow rate), charge, and hygro-
scopicity may also affect the deposition behaviour of particu-
lates in the lungs [9].

In recent years, a few studies have shown that vaccine
deposition site is of minor relevance to its protective efficacy
against influenza. One of the studies, performed in cotton rats,
showed that both tracheal, as well as pulmonary administra-
tion of whole inactivated virus (WIV) vaccine, led to compar-
able protection upon challenge, as both systemic IgG as well
as mucosal IgA antibodies were being formed [56].
Interestingly though, vaccine formulations that reached the
lungs more effectively, did induce higher IgA titers. Arguably,
this may be an indication for the formation of iBALT-like
structures, which tend to form near bronchial regions.
Supportive of this hypothesis is the fact that, upon pulmonary
administration, vaccine-specific IgA antibodies were also
detected in nasal washes, possibly reflecting trafficking of
antigen-specific IgA-producing B-cells to distinct lymphoid
tissues, and explaining why deposition site seems of minor
relevance to influenza vaccines [56]. These findings are in line
with the hypothesis of the common mucosal immune system.

In a subsequent study by Tomar et al. [57], the effect of
deposition site on vaccine efficacy was assessed for both a
vaccine against influenza A virus, which is an airborne patho-
gen, and for a vaccine against hepatitis B virus, a bloodborne
pathogen [57]. Hereto, mice were vaccinated twice with either
influenza A subunit vaccine, or with hepatitis B surface antigen
(HBsAg). The vaccines were either administered intramuscu-
larly (i.m.) or administered as a powder to both the upper- and
to the lower respiratory tract, with a two-week interval. It was
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found that serum IgG titers were generally lower upon respira-
tory tract administration of the influenza vaccine than upon i.
m. administration, regardless of whether the vaccine was
administered to the upper respiratory tract or to the pulmon-
ary region. While serum IgG titers were also higher upon i.m.
administration of HBsAg than upon pulmonary administration,
there was a significant difference in serum IgG titers between
administration to the lower and the upper respiratory tract.
Although administration to the lower respiratory tract led to
increased IgG titers in the serum, thus comparable to the
results obtained for influenza, no serum IgG titers were
detected at all after administration to the upper respiratory
tract [57]. When broncho-alveolar lavage (BAL) fluid was ana-
lyzed on day 28, IgG titers were again found to be higher
upon i.m. vaccination than upon respiratory tract administra-
tion for both the influenza vaccine and HBsAg. Interestingly,
though, again no IgG levels were detected after upper respira-
tory tract administration of HBsAg.

As a measure of the mucosal immune response, IgA titers
were measured in the BAL fluid of animals vaccinated with the
influenza subunit vaccine. As expected, no IgA antibodies
were detected in the i.m. vaccinated group, while these were
detected at comparable levels in the mice, when the vaccine
was deposited in either the upper- or the lower respiratory
tract. The authors therefore hypothesized that the site of
deposition is of minor relevance for vaccines against airborne
viruses that spread via the respiratory tract, such as influenza,
while it is of relevance for non-airborne pathogens [57]. These
results might relate to the absence of hepatitis B-specific
receptors on the respiratory epithelium. As a consequence,
IgG production probably relies on the uptake of the vaccine
by alveolar dendritic cells and other scanning immune cells,
capable to elicit a quick transit to the nearby lymph nodes.

While the above studies hypothesize that the site of influ-
enza vaccine deposition in the respiratory tract is not relevant,
a study by Minne et al. [58] argued that the deposition site is
in fact relevant; suggesting that deposition to the deep lungs
elicits a higher increase in local antibody titers. It should be
noted, though, that this study did not compare the effect of
deep lung deposition directly with the effect of deposition to
the central airways and the trachea, but rather to the antibody
levels induced by nasal administration [58].

The resemblance in the response between lower respira-
tory tract- and upper respiratory tract administration upon
respiratory viral-infections may be related to a similar capacity
of those regions to induce and to activate specialized lym-
phoid tissue structures like iBALT and NALT, and to stimulate
isotype-switching of B-cells into IgA-producing plasma cells.
For human influenza strains specifically, which mainly target a-
2,6-linked sialic acid receptors expressed on the upper respira-
tory tract epithelium, it can also be hypothesized that the
mucocilliary apparatus causes viral particles initially deposited
to the lower respiratory tract, to eventually reach upper
respiratory tract-associated attachment receptors.

Besides the above studies, which directly assessed the
influence of deposition site, the fact that school children
were successfully vaccinated with inhaled measles vaccine
also supports the observation that for vaccines against air-
borne viruses, lung deposition is of limited relevance [21]. It
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can be assumed that a group of 385 children in the age of 5 to
14 years old shows a highly variable inhalation behaviour. The
observation that despite this fact still 84.6% of the children
showed seroconversion after one month (compared to 78.8%
after subcutaneous injection) shows that also for the measles
vaccine the site of deposition in the lungs is hardly of rele-
vance [21].

From the studies described here, it can be concluded
that the deposition site seems mainly relevant for vaccines
against systemic viral infections (e.g. hepatitis B) to work
optimally. However, vaccines against airborne micro-organ-
isms may be less dependent on the deposition site, prob-
ably owing to regions of interconnected MALT. Since these
tissues are linked through a common mucosal immune
system, B-cell priming in one particular region probably
facilitates homing to distinct regions regardless of the
mucosal site where the infection takes place. Because the
influence of deposition site is an important parameter for
inhaler design, the fact that vaccine deposition site may
not be relevant for respiratory viruses might be of ground-
breaking importance. Therefore, this observation should be
further studied for other respiratory viruses as well, such as
SARS-CoV-2, measles virus, and respiratory syncytial virus.
If additional studies show a similar outcome, the design of
a suitable inhaler for these vaccines may not necessarily
need stringent requirements for achieving whole lung
deposition, which would be highly beneficial.

3.3. Crossing the barrier of immunotolerance

Since the respiratory tract mucosa are continuously exposed to a
plethora of innocuous substances from the outer environment, it
is important to ensure a high degree of immunotolerance.
However, this often comes at the expense of vaccine immuno-
genicity. For instance, a drawback of the use of viral subunits as
vaccines, is that they are usually low in immunogenicity. In con-
trast to WIV and live-attenuated vaccines, subunit vaccines only
consist of viral fragments, and thereafter, they lack the particulate
nature of the intact virion. For this reason, subunit vaccines are
considered not optimal stimulators of pattern recognition recep-
tors, because they lack PAMPs [59]. While inhaled vaccines may
provide an interesting alternative to parenteral vaccination, the
immune response that is to be induced has to be strong enough
to provide a significant benefit. Therefore, inhalable vaccine for-
mulations may benefit from adjuvants. The need for adjuvants
may depend on the intrinsic immunogenicity of the pathogen
itself, but also on the vaccine type. Since the necessity for adju-
vants in inhalable vaccine formulations is not yet fully elucidated,
it would be worthwhile to study its influence on the mucosal
immune response, both concerning local antibody production
and the presence of immune cells, and, to see whether it improves
the protective efficacy of the vaccine. However, not every adjuvant
suitable for i.m. administration may be suitable for inhalation, like
non-soluble alum and oil-based adjuvants. Therefore, potent adju-
vants used along with parenterally administered vaccines should
not be used if they are toxic to the mucosal environment of the
respiratory tract.

As reviewed elsewhere, a range of adjuvants can be used
together with vaccines to initiate or to strengthen the mucosal

immune response upon administration to the respiratory tract
[60-62]. For parenterally administered vaccines that have low
intrinsic immunogenicity, such as subunit-based vaccines and
peptides, it is considered essential to incorporate potent adju-
vants to either stimulate innate immune cells (e.g. pattern
recognition receptors such as toll-like receptors) or to directly
stimulate B-cells and or T-helper-cells in a way to overcome
immunotolerance and to increase IgA production [39]. It has
been shown that influenza subunit vaccines formulated as a
powder, with inulin as stabilizing excipient, were capable to
induce a potent immune response without requiring adju-
vants [63]. However, the study did not perform a challenge
study and seroconversion was measured only systemically.

4, Studies on pulmonary vaccination

The majority of clinical studies on inhaled vaccines has
focussed on liquid formulations. Most of the clinical studies
involved vaccination against measles, with many studies
reporting superior effectivity of (booster) vaccines when admi-
nistered by aerosol, compared to administration via injection.
Also studies on aerosolized influenza vaccines have shown
clinical effectivity (Table 1). Another example of pulmonary
vaccines that have been assessed in human trials is a nebu-
lized virus-like particle vaccine against human papillomavirus
type-16 [64]. An interesting outcome of this study was that in
a small group of participants, immunization by aerosol led to
SIlgA antibodies in the genital secretions of the participants,
potentially reflecting immune cell trafficking to distinct areas
of MALT. However, the patient groups were small and the
nebulizers used in this study probably did not lead to a high
degree of peripheral lung deposition.

While the field of pulmonary vaccination using liquid
aerosols has progressed steadily and has gathered accumu-
lating evidence on the significance for especially aerosolized
measles vaccines [65-68], those vaccines do not take away
the stability and logistical issues that come along with
liquid formulations. Regarding this aspect, dry powder vac-
cines have many advantages. Over the last two decades,
several research groups have successfully managed to cre-
ate dried vaccines, suitable for pulmonary delivery, with
formulations retaining efficacy in vivo (Table 2). Yet, the
amount of clinical studies is still limited. To date, the only
clinical study performing pulmonary administration of dry-
powder vaccines in humans is a study on dry powder
measles vaccination in adult males [69]. The study assessed
the efficacy of an inhaled dry powder measles vaccine,
generated by carbon dioxide-assisted nebulization with a
Bubble Dryer® (CAN-BD), which is a form of supercritical
fluid drying [70]. The vaccine, which had proven its efficacy
in macaques [71], was administered by two devices: the
Puffhaler® (AktivDry LLC) and Solovent™ (Becton, Dickinson
& Company). The formulation was administered to subjects
seropositive for measles antibody, and its efficacy was com-
pared with the currently licensed subcutaneous injection.
Although the formulations did lead to increased antibody
titers, comparable to the standard subcutaneous adminis-
tration, the results were not considered convincing since
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the subjects’ baseline antibody levels were already high.
Therefore, the authors concluded that the study should be
reperformed in seronegative individuals [69]. Although in
this study two devices, the Puffhaler® and Solovent™ were
compared, no data were provided on the deposition beha-
viour of the powder, related lung bioavailability, and pow-
der retention in the inhaler. Therefore, it would be
interesting to know the vaccine particle size upon disper-
sion from the inhaler to assess the amount of vaccine that
reaches the desired target region, and to assess whether the
powder is effectively deagglomerated. In this light, it may
be interesting to use disposable inhalers with known dis-
persion profiles.

5. Trends in inhaled vaccines: inhalation as
administration route for COVID-19 vaccines

5.1. The current status of SARS-CoV-2 vaccine
development

As 2020 and 2021 will be historically remembered for the
COVID-19 pandemic, so will be the record-high pace at
which novel vaccine candidates have been developed
and evaluated [80,81]. While writing this review, two vac-
cines licensed by Pfizer/BioNtech and Moderna have
received approval for use in the U.S [82,83]. as well as in
Europe [84,85]. As a third vaccine the U.S. and Europe have
granted market authorization for the Janssen vaccine and
the AstraZeneca vaccine, respectively. The Janssen vaccine
is currently awaiting marketing authorization in Europe.
Both the Pfizer/BioNtech and the Moderna vaccine are
based on single-stranded mRNA constructs, encoding for
the SARS-CoV-2 spike protein, and have shown highly pro-
mising results with a protective effectivity of about 95%
after two doses. However, a pitfall of both vaccines, which
are liquid formulations, is that they have to be shipped at
low temperatures of —70°C and -20°C, respectively, to
prevent degradation of the constructs [86,87]. The
AstraZeneca vaccine, which has been developed in colla-
boration with the University of Oxford, is an adenoviral-
vector-based vaccine, that carries a DNA construct encod-
ing for the SARS-CoV-2 spike protein [88]. Although its
protective efficacy ranges between 60 and 90% depending
on the dosing regimens, the vaccine is deemed stable for
6-months at refrigerated conditions, which is significantly
more stable than the other vaccines [89-91]. Currently,
AstraZeneca is looking into the option of teaming up
with the Gamaleya Research Institute in Moscow, which
produces the Russian Sputnik-V vaccine [92], as both vac-
cines use an adenoviral vector-based approach. Since the
vaccines use different adenoviral vectors (of chimpanzee
and human origin, respectively), combining both vaccines
in a heterologous prime-boost approach may lead to
synergistic outcomes [93]. The Janssen vaccine is also an
adenoviral vector-based vaccine and has shown efficacy
rates around 67%. The benefit of this vaccine is that it is
a single-dose vaccine and that it can be stored under

refrigerated conditions, which allows for a quicker vaccina-
tion and less strict logistical requirements [94].

5.2. Inhalation of SARS-CoV-2 vaccines

In addition to the mRNA- and vector-based vaccines described
above, the vast majority of vaccine candidates that are cur-
rently being tested in clinical trials will be administered by
injection [95]. Such liquid vaccines require a tightly regulated
cold-chain infrastructure which poses a big challenge for the
future distribution of vaccines across the globe, especially in
remote- and tropical areas. Therefore, the question remains
whether vaccine distribution will be effective enough to
ensure mass-scale vaccination campaigns while minimizing
costs. While pharmaceutical companies hint at producing a
lyophilized version of their vaccine to increase vaccine stabi-
lity, these still have to be reconstituted prior to administration.
Although this partially resolves the stability issues of liquid
formulations, it does not take away the downsides of injection.
A potential solution to this may be found in inhalable dry
powder vaccines.

At this stage, a clinical trial has been planned by Imperial
College London and the University of Oxford to assess the
effectiveness of an inhaled formulation of their viral vector-
based vaccine candidates [96]. The vaccines will be delivered
as anebulized aerosol at three increasing doses to a small
group of healthy volunteers. To assess the potential benefits
of the inhaled formulations compared to their injected coun-
terparts, several samples will be taken, including broncho-
scopy- and nasal samples, in order to screen for mucosal
antibody responses including IgG and IgA. Blood will be
drawn to assess systemic humoral responses and antigen-
specific T-cell responses. Although this study may provide
promising insights into the effectiveness of inhaled SARS-
CoV-2 vaccines, to our best knowledge, no research has yet
been planned towards the development of dried inhalable
SARS-CoV-2 vaccines.

Interestingly, previous research may have opened up the
possibility to make dry-powder COVID-19 vaccines, suitable for
inhalation. In a seminal study by Lam and colleagues [97],
mMRNA was dried successfully by using the commonly used
drying techniques, i.e. spray-drying and spray-freeze-drying.
Reporting a relatively high yield, both techniques can also be
used successfully to create powders that are suitable for pul-
monary administration in vivo. The authors showed that the
constructs, containing luciferase mMRNA in complex with a
novel delivery vector, retained in vivo activity upon adminis-
tration to the lungs of mice. Notably, no short-term inflamma-
tory effects or toxicity were found [97]. This may be an
important step into the stabilization of future mRNA vaccines.
Freeze-drying, a drying technique that is already applied for
numerous pharmaceuticals, is deemed not suitable for inhala-
tion since the powder that is being formed deviates from the
physical prerequisites needed for inhalable powders. Usually,
freeze-dried powders have to undergo a secondary milling
step, which usually results in a heterogeneous mixture of
particles [74]. Another application for pulmonary vaccine



delivery of SARS-CoV-2 vaccines may lie with the administra-
tion of more classical vaccine types like WIV or subunit vac-
cines as (sugar-glass) stabilized powder particles. This
approach has already successfully been tested with influenza
vaccines, as reviewed elsewhere [98]. A significant proportion
of vaccine candidates that are currently evaluated in clinical
trials entails protein subunit vaccines, one of which is licensed
by Sanofi/GSK. Since their vaccine candidate, consisting of an
adjuvanted recombinant spike protein, has been shown not to
work properly in the elderly population, clinical studies have
been suspended to optimize the antigen [99]. We believe that,
in order to optimize immunogenicity, the vaccine may be a
suitable candidate for pulmonary administration, as has been
successfully done with influenza subunit vaccines [57,63,75].
Interestingly, the presence of regions of iBALT has been shown
to prevent SARS-CoV-1 induced lethality in vivo [100]. To our
knowledge, no research has been done regarding the protec-
tive role of iBALT in the clearance of SARS-CoV-2 infections.
We therefore believe it would be of high interest to elucidate
whether the presence of iBALT may have a beneficial effect on
viral clearance and whether it is induced after vaccination.
Future research should assess whether inhalable vaccines
could be developed successfully to aid in the global battle
against the COVID-19 pandemic.

6. Challenges for inhaled vaccines

Although pulmonary vaccination holds promise as an alterna-
tive to parenteral vaccination, there are also some critical
factors that should be addressed. While the mucosal immune
system likely plays a key role in defending the respiratory tract
from pathogenic invasion, exuberant immune responses may
deteriorate the lungs and counter-intuitively result in (anti-
body-dependent) enhancement of respiratory disease. The
idea of an overreacting immune system in COVID-19 patients,
for example, has been confirmed by studies showing that
severe cases correlate with higher IgA titers [101-103] and
are in some cases associated with excessive immune reactions
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leading to cytokine storms [36,37,104]. Therefore, the potential
role of IgA in adverse events such as antibody-dependent
cellular cytotoxicity or antibody-dependent enhancement
should be carefully monitored during the evaluation of
inhaled vaccines. Some studies have implicated that the pre-
sence of iBALT may lead to exacerbated immune responses in
individuals infected with respiratory syncytial virus [30]. This
might indicate that the presence of immunological memory
can induce an over-reacting immune response upon vaccina-
tion. Notwithstanding this, a recent systematic review by
Serazin et al., who investigated the incidence of acute respira-
tory distress syndrome (ARDS) after vaccination, revealed that
no cases of ARDS after vaccination have been reported for any
of the currently licensed vaccines [105]. Together with the lack
of profound adverse events in studies about inhaled vaccina-
tion, we believe that the risks for such severe adverse events is
minimal.

Another challenge toward the successful implementation
of inhaled vaccines is that animal models for essential in vivo
studies often require active administration of the vaccine since
they simply cannot be instructed to perform the required
inhalation manoeuvre. Moreover, commonly used devices for
in vivo pulmonary administration often lead to low overall
yields and poor dispersion and deposition profiles [106-108].
Therefore, the results gathered from in vivo studies using
insufflation or intubation devices may not provide an accurate
representation of the situation in humans. In relation to this,
the efficacy of inhalers can only be assessed in human trials. It
is therefore important that in vivo studies on inhaled vaccina-
tion are as reflective of the human situation as possible.
During the last decades, some studies have tried to improve
in vivo lung deposition of dry-powder vaccines using alterna-
tive administration devices [57,109]. An additional prerequisite
towards in vivo studies is that vaccine candidates should be
critically evaluated in animal models which most closely
resemble humans, both concerning their respiratory tract
anatomy, as well as their immunological response towards
pathogens [9,110].

ID PC
2%

Subcutaneous
11%

2%

Intramuscular
75%

Figure 3. Pie diagram of the 81 currently FDA-licensed vaccines (excluding emergency use authorized vaccines such as SARS-CoV-2 vaccines) [139], divided by

administration route. IN: intranasal; ID: intradermal; PC: percutaneous.
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Another factor that influences the effectiveness of inhaled
vaccines, is the inhalation manoeuvre of the patient [110].
While for airborne infections the deposition site of vaccines
may not be of major relevance, this may be the case for
vaccines against non-airborne infections. In order for a vaccine
to reach the desired target region, the patient should be able
to perform the inhalation manoeuvre correctly, considering a
proper breathing flow rate, a correct hand-breath coordina-
tion, and potentially, being able to hold his or her breath. This
requires a proper instruction of the inhalation manoeuvre. The
inhalation technique may be optimized by the use of valved
holding chambers [111]. This may also ensure that the indivi-
dual receives the correct dose of vaccine. For DPIs, the inhaler
resistance may be used as a tool to optimize the inhalation
profile. On the other hand, DPIs may be less suitable for use in
young children and infants, partly due to the fact that there
have been no valved holding chambers developed for DPIs
yet [47].

7. Conclusion

Of all viral respiratory tract infections, the only vaccines avail-
able for general use are directed against the influenza virus
[39]. Since respiratory tract infections are still a major cause of
morbidity and mortality around the globe, as underlined by
the recent COVID-19 pandemic, we believe more focus should
be put on alternative administration routes that more closely
resemble the natural infection event, can elicit a broader
immune response, and for which the vaccines can easily be
distributed around the globe without large infrastructural dif-
ficulties and high demands for temperature management.
With this in mind, we consider inhalation of stable dry powder
vaccines a promising way of administration. A significant num-
ber of successful clinical studies on nebulized measles and
influenza vaccines have already been undertaken, with con-
vincing results for a majority of the vulnerable population and
a high safety profile compared to the standard parenteral
administration route. These studies have paved the way for
research on other respiratory virus vaccines such as vaccines
for SARS-CoV-2. Moreover, inhalation may also be a vaccina-
tion route worthwhile to consider for blood-borne viral patho-
gens (e.g. hepatitis B) since this might broaden the immune
response toward IgA-mediated humoral responses and may
provide an additional line of defense. To be able to safely
distribute vaccine formulations around the world without los-
ing efficacy, we are convinced stable dry-powder formulations
could provide the next-generation of successful vaccines.

8. Expert opinion

Although vaccine delivery by inhalation may hold great poten-
tial for preventing highly contagious viral infections, the cen-
tral dogma of vaccination is still centred around needle-based
vaccination (Figure 3). While vaccine development has taken a
giant leap forward and global efforts into finding a vaccine for
SARS-CoV-2 have led to a record-high production speed and
subsequent market authorization, the field of respiratory tract
delivery, and mucosal immunization in general, is mostly
ignored. Since the lungs are the primary portal of entry for

numerous viruses, we argue that respiratory tract delivery of
vaccines by means of inhalation deserves way more attention.
Inhalation omits important causes for patient incompliance
such as needle phobia and cannot lead to secondary infec-
tions from contaminated needles. Since inhalable vaccines
provide the capacity to administer relatively high doses
directly at the site of infection, they are very cost-effective.
One of the main concerns for the development of vaccines
suitable for inhalation is that they have to overcome the
barrier of mucosal tolerance. Therefore, the use of adjuvants
should be considered per vaccine to improve vaccine efficacy.

When considering the pulmonary route of vaccine admin-
istration, we believe that research regarding inhaled vaccines
should primarily focus on dry powder formulations. Owing to
their inherent stability, dry formulations provide the opportu-
nity of stockpiling, and thus, they can be transported to
remote tropical regions more efficiently without requiring
cold-chain infrastructure. Also, dry powder formulations can
be administered via patient-friendly disposable inhalers,
thereby minimizing the need for trained health care person-
nel. While there are disposable nebulizers on the market,
many still need an electricity-powered compressor, which
hampers patient-friendliness compared to the pocket-size dis-
posable DPIs (Figure 4). Once the vaccinee is instructed on
how to use the inhaler, inhalable vaccines benefit from the
ease of administration. In this way, self-vaccination is possible
for large fractions of the population with minimal intervention.
This would favour mass-vaccination campaigns.

In addition to the stability advantage of dried vaccine for-
mulations, vaccines against respiratory tract infections, such as
COVID-19, may highly benefit from local administration as
locally administered vaccines induce immune responses that
most closely resemble the natural infection event. In this
regard, components of utmost importance are the mucosal
immune system and virus-specific mucosal antibodies.
Together with systemic IgG titers, the induced SIgA antibody
response, accompanied by induction of specialized regions of
iBALT, may lead to a synergistic response towards subsequent
infections and, therefore, these parameters should be taken
along in future research. Recent work by Sterlin et al. [112]
suggests that IgA antibodies with mucosal homing properties
may dominate the initial humoral response toward intruding
SARS-CoV-2 particles, showing more effective virus neutraliza-
tion compared to IgG antibodies. Although serum antibody
levels waned over time, neutralizing IgA antibody titers were
in some cases detectable for up to 73 days post- onset of
symptoms [112]. Similar results were found by Nussenzweig
and coworkers, who found that SIgA antibodies of the dimeric
form, in contrast to monomeric IgA in the blood, more effec-
tively neutralize SARS-CoV-2 particles, apparently by increased
potency to cross-link viral spike proteins [113]. In addition,
after natural infection, spike protein-specific IgG and IgA anti-
bodies have been shown to persist for up to 8 months post-
onset of symptoms, while memory B-cells likely persist even
longer [114]. These results support the fact that the respiratory
route should be more closely investigated for future vaccina-
tion strategies as this may lead to a broader immune response.
Promising results for mucosal vaccination have already been
reported by Hassan et al. who intranasally administered a
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chimpanzee adenovirus-vectored vaccine carrying a construct
that encodes for the SARS-CoV-2 spike protein. The research-
ers found high levels of neutralizing IgG and IgA antibodies
that led to almost complete protection against SARS-CoV-2 in
both the upper and lower respiratory tract. In contrast, the
intramuscular administered vaccine did not confer sterilizing
immunity and did not produce SARS-CoV-2-specific IgA anti-
bodies. Since comparable levels of serum-neutralizing antibo-
dies were found for both immunization routes, the authors
propose that the mucosal immune response accounted for the
superiority of the intranasal route [115].

Although the effect of SARS-CoV-2 vaccines on long-term
antibody levels remains to be investigated, eventual waning
of antibody titers may be overcome with prime-boost vac-
cine regimens. Next to the classical form of homologous
prime-boosting, by using two doses of the same vaccine,
it may be worthwhile to consider heterologous prime-boost
vaccination strategies. A recent example of an effective
heterologous prime-boost vaccination strategy is the
Russian Sputnik-V vaccine against SARS-CoV-2. The vaccine
combines two different recombinant human adenoviral vec-
tors, rAdV26 and rAdV5, which are administered separately
with a 21-day interval, and has been reported in a phase 3
trial to be almost 92% effective [92]. While this approach is
already highly effective, it may be worthwhile to aim for
different administration routes, combining for example a
parenterally induced systemic immune response with a

pulmonary induced mucosal response. With such an
approach, the developed immune response may be even
broader. This approach has been investigated recently by
Martini et al. who showed that by simultaneously adminis-
tering i.m. and aerosolized influenza vaccine to pigs, a
superior immune response is induced compared to the use
of a single administration route, hinting at a synergistic
effect [116]. Notwithstanding, we believe this strategy
would not be the way to move forward when striving for
needle-free immunization. Moreover, the use of separate
administration routes would be challenging to implement
in areas that already lack proper health - care infrastructure.
Another potential disadvantage of administering booster
doses via the respiratory tract might be that a primed
immune system may cause an increase in local inflamma-
tion upon subsequent booster administration, potentially
inflicting excessive lung damage.

A potential concern for the effective implementation of
inhaled vaccines is that a representative in vivo model is
often lacking [9,110]. While vaccines can be administered
actively via intratracheal intubation devices, no animal can
be instructed to perform the required inhalation maneuver,
let alone, hold its breath. Therefore, preclinical studies should
primarily focus on vaccine efficacy and safety, using animals
that are susceptible to human infections, show resemblance
with human respiratory tract anatomy, and respond in an
immunologically comparable manner [9]. Regarding SARS-
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CoV-2 vaccines, a suitable in vivo model may be found in
minks, which have been repeatedly shown to be susceptible
to SARS-CoV-2 infection and are even capable of transmitting
the virus back to humans [117]. Alternatively, pigs may be a
suitable model, as they closely match humans both with
regard to their immune system as with regard to their respira-
tory tract anatomy. To our knowledge, two studies have
assessed the effect of pulmonary administered viral influenza
vaccines on pigs, using liquid aerosol [116,118]. However,
ethical considerations and high costs make them a less com-
monly used model [119]. Therefore, clinical research should be
regarded as an essential component.

Another factor that may hamper the successful imple-
mentation of inhalable vaccines is that health care officials
might be unaware of the developments in the field. Since
the demand for needle-based vaccines is still high, it may
not be feasible to shift a company’s production strategy
toward inhalable vaccines. Furthermore, since needle-
based vaccination is the worldwide gold standard for vac-
cination, the introduction of other administration routes
may raise safety concerns for those suffering from allergies
or other lung diseases. However, as discussed in this
review, all clinical data on inhaled vaccines to date do
not show profound adverse events following pulmonary
administration of vaccines. Moreover, inhalable drugs are
already widely used to treat and relieve a variety of lung
diseases such as asthma and chronic obstructive pulmon-
ary disease, without serious adverse events [110].

While vaccination strategies are ever-evolving, so are
viruses. Recent reports on the emergence of several
increasingly contagious strains of SARS-CoV-2 emerging
from the UK [120], South - Africa [121] and Brazil [122]
have taught us that the fight against the virus is not over
yet. In the future, particular attention should be paid to
pandemic preparedness, as current pandemic control has
proven to be sub-optimal in many civilized countries.
Although it is of utmost importance to create highly
potent vaccines, it is of equal importance to inform people
about precautionary safety measures, and to overcome
vaccine hesitancy, because prevention will always be bet-
ter than cure.

We expect that in five years from now, devices for
pulmonary administration to animals have been improved,
both with regard to vaccine deposition site and with
regard to the emitted fine-particle fraction. These develop-
ments will be key in order to more accurately administer
dry powder vaccines to small laboratory animals. We also
believe that more research will be needed on the effective
stabilization of complex vaccines like vector-based vac-
cines and mRNA vaccines in order to retain their vaccine
efficacy upon drying. Moreover, as current dry powder-
inhalers often lead to inadequate particle size distribution
profiles, development of effective dry-powder inhalers sui-
table for vaccine inhalation will be an important challenge
for the near future. As results so far have been overall
convincing, we believe that aerosolized vaccines may pro-
vide an additional force in the eradication of the measles
virus.
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