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Abstract: Wheel slip activity detection is crucial in railway maintenance, as it can contribute to avoiding 

wheel damage but also track deteriorations leading to significant maintenance costs, trains delays, as well 

as the risk of accidents. Wheel slip activity is characterised by lower adhesion between track and wheel, 

especially in braking conditions, locking the wheels. It is complex to model or predict, being influenced by 

a multitude of factors including ambient conditions, global vehicle load, track and axle quality, leaves and 

objects present on the rail, steep incline, oxidation of the rails, and braking forces applied to the wheels. 

This paper presents a combined wavelet and tuned Long-Short Term Memory (LSTM) approach for the 

detection of wheel slip from time series data collected from real-world trains. Results provide evidence of 

superior performance over methods such as decision trees and random forests, naïve Bayes, k-nearest 

neighbours, logistic regression, and support vector machines.   

 

Keywords: Streaming analytics; railway diagnostics, rime series classification, train wheel slip detection. 

1. INTRODUCTION 

One significant problem encountered in railway maintenance 

arises as a result of wheel slip activity. Often characterised by 

lower adhesion between the track and the wheel, specially 

during hard braking conditions, such slip can severely affect 

the railway infrastructure. The direct effects of wheel slip 

activities on the infrastructure are the track surface and the 

train wheels damage. Hence, damage can induce a significant 

maintenance cost, cause train delays, and increase the risk of 

accident as high severity defects can lead to trains going off-

tracks. Additionally, wheel slip activity can initiate or 

accelerate incipient crack growth on the rails and the 

surrounding assets, and generate further vibration to the train 

body, generating noise also leading to passenger discomfort.   

Early detection is crucial not only to address these issues but 

also to increase the associated assets' lifetime (Krummenacher 

et al., 2018). Wheel slip is particularly complex to model or 

predict as it is influenced by a multitude of factors including 

ambient conditions, global vehicle load, track and axle quality, 

leaves and objects present on the rail, steep incline, oxidation 

of the rails, and braking forces applied to the wheels. In 

general, two main types of wheel slip can be observed: 

• The friction between the track and the wheel is so low that 

the wheel slides without moving the vehicle; the slipping 

axle speed shows short periods of fast acceleration (Garnham 

& Davis, 2009).  

• During braking or acceleration, the wheels have transient 

periods of slippage. The slipping axles often lock in short 

periods, showing brief periods of fast speed drops in axle 

speed profiles. An example is shown in Figure 1 where the 

train moved between two stops. Two phases can be observed. 

The acceleration phase, where axle speeds increase to 

roughly a maximum speed of 55 miles per hour (mph) whilst 

the brake pressure is zero. This is followed by a deceleration 

phase, where short braking events are applied to the axles. 

Wheel slip activity can be seen between the time window 

[60-100] on both front and back axles. 

 

Figure 1 Wheel slip activity in axle speed profile. 

The main contribution of the present study is the development 

of a suitable methodology for automatic wheel slip activity 

detection for the second type of slip. It applies a combination 

of univariate axle speed analysis using a wavelet approach and 

long short-term memory neural networks (LSTM) (Hochreiter 

& Schmidhuber, 1997). The proposed method is able to 

accurately distinguish between normal and wheel slip 

conditions using the trained model and operational 

measurement data. The analysis is conducted using diesel 

multiple unit (DMU) trains data as shown in Figure 2. 
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Figure 2 DMU train powered axles investigated. 

Each train is comprised of three carriages (marked with 64, 72, 

and 65). The leading carriages have their front axles powered 

(axles 1, 2, 11, and 12) and the middle one has the 6 and 7 

axles powered. When braking, brakes pressures are applied to 

the powered axles of all the carriages. The studied wheel slip 

activity occurs mainly in the powered axles. The results of the 

application of the methodology are compared to other classical 

methods using real world train operational data sets. 

The paper is structured as follows. Section 2 discusses related 

work, placing this study in the context of the broader literature 

in the field. Section 3 focuses on the proposed methodological 

approach, followed by details on the comparative evaluation 

methods. Section 4 presents results obtained with developed 

and compared methods and a discussion and recommendation 

on the obtained results. Section 5 is the conclusion.  

2. RELATED WORK 

2.1 Wheel slip and the wheel – track interface 

Understanding the wheel-rail contact (Enblom, 2009) is an 

important step to understand wheel slip behaviour. During 

acceleration, there is an increase in the rotating force applied 

on the vehicle axles. The level of friction (rolling resistance) 

between the wheel and the rail is less than the amount of force 

generated by the increased torque, which often results in over-

rotation, also known as wheel slip activity. This wheel slip 

activity causes damage to both the track and the wheels. 

Another type of wheel behaviour that can occur under braking 

conditions is under-rotation. It is different from the 

aforementioned wheel slip, as the force being applied by the 

brakes is a resistance force. Specifically, the brake pad is 

pressing against the wheel and is opposed to the turning force 

from the torque under traction. If the amount of force applied 

via the brakes exceeds the resistive force of the wheel on the 

track (also including other variables such as vehicle weight and 

train speed), then the wheel will under-rotate. This lock-up 

causes a flat spot on the wheels. A flat spot is a serious incident 

for a train wheel as the slapping effect causes significant 

damage to the wheel as well as the track. 

2.2 Wheel slip activity modelling  

Wheel slip activity has been broadly studied through wheel-

rail adhesion condition analysis. For example, substance 

contaminants (oil, snow, grease, water, leaves, wear, oxides, 

ballasts, and dust), present on the wheel-rail interfaces, 

significantly influence the adhesion coefficients that represent 

longitudinal and normal force ratio (Iwnicki, 2006),(Bosso et 

al., 2019). These adhesion coefficients need to be in line with 

defined safety standards. For this reason, manufacturers build 

assets, such as braking systems, wheels, and rails, that undergo 

various tests in different degradation conditions, in order to 

ensure that the equipment meets such standards (UIC, 2005), 

and (Barna, 2011). The off-line analysis is often model-driven, 

where vehicle dynamics such as braking distance, vehicle 

velocity range, wheel lock limit or slide limit, and compressed 

air pressure (Barna, 2011), are modelled. Additional analysis 

on improving adhesion through studying the effects of 

contaminants has been been repoted (Lewis & Olofsson, 2009) 

(Garnham & Davis, 2009). Limitations of the investigated 

model-driven methods are their implementation challenges on 

real-world applications, as assumptions such as constant 

vehicle mass, speed, and friction coefficients are not realistic. 

Moreover, models may include many parameters, which add 

supplementary difficulty in estimating them. In contrast, the 

tackled wheel slip activity problems are likely to show patterns 

in speed profiles. Therefore, there is a need to investigate the 

development of more data-driven approaches for wheel slip 

detection, especially methods that are able to take integrate 

short the short past information for the detection.  

3. METHODOLOGY 

The signals selected to drive the detection are axle speeds and 

brake pressure measurements. The proposed data processing 

methodology is shown in Figure 3.  

 

Figure 3 Methodology workflow 

It includes a workflow that: (a) performs data alignment, to 

ensure appropriate time alignment of data derived from 

separate measurement sensor; (b) data filter to reduce signal 

noise and focus the analysis on signal aspects that are more 

likely to convey useful information; (c) data segmentation, to 
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derive time series segments enabling the analysis to focus on 

each identified segment, thus offering better contextual basis 

for the processing; (d) feature extraction and data labelling 

before applied further signal processing and modelling to 

prepare for the machine learning task; (e) the modelling and 

machine learning task; (f) combination of modelling for 

ensemble learning; and (g) performance evaluation. Expert 

knowledge is applied to check the validity of data labelling and 

performance evaluation. Each step is described in the 

following sections. 

3.1 Data cleaning, time Alignment, and filtering 

Axle speeds, braking pressure, braking types, and GPS 

coordinate and speeds,  data are collected at a frequency of 20 

Hz on different carriages of urban trains operating under 

different conditions and geographical locations. This offers 

sufficient sampling and resolution to observe the targeted 

wheel slip phenomena without missing out on relevant 

slippage events.Figure 2 shows the axles enumerated from 1 to 

12 with axles 1, 2, 6, 7, 11, and 12 being the powered axles. 

Data attributes comprise GPS location, axle speed, the 

mechanical and electrodynamic brake pressures applied for 

each axle, and the leading vehicle information. Additional 

computed attributes are added in the investigation. These 

attributes are longitudinal and latitudinal acceleration, 

calculated from GPS coordinates; acceleration, derived from 

axle speeds; and brake levels regarding both emergency brakes 

and regular brakes.  

As the data come from different sensors in different locations 

on the train, desynchronisation and time lag is often observed. 

In order to derive data directly usable for modelling and 

machine learning, data alignment needs to be established. The 

first level of alignment is made by synchronising the GPS time 

recorded with the train axles sensors time. Subsequently, a 

second level time alignment is made by applying Dynamic 

Time Wrapping (DTW) (Keogh & Ratanamahatana, 2005) 

with the L2-norm in the axle speeds, to derive a high level of 

time alignment in the stream data sequences.  

In the filtering process, noise and disturbances on the braking 

and speed signals are reduced using low-pass filtering, and 

specifically exponential moving average techniques with a 

window of five time-steps, representing 0.25 seconds, an 

appropriate time granularity given the nature of the process.  

3.2 Data Segmentation, Feature Extraction and Labelling 

In the segmentation step, data are broken into events 

representing significant points in time during journeys. A 

journey represents the starting of a train from a station to its 

stop at the next station. To achieve an appropriate 

segmentation, two variables are taken into account. The first 

variable is axle speeds that drop to zero for a minimum period 

of two minutes. While other event duration might be set 

resulting in different event recordings, the value was set after 

discussing with domain experts, indicating that it is typically 

events that exceed such duration that is likely to initiate or 

contribute to evolving damage. The second variable is the 

release of the doors (unlock, opening, or closing). Combining 

these two variables, a heuristic rule such as “if the doors open 

and the stopping period is longer than two minutes, then it is 

at a station” can be used to segment the data. To be more 

accurate, train station GPS coordinates are used to compute the 

distance between the train position and the closest station. This 

distance should be lower than an empirically-set threshold of 

approximately 200 meters for the situation to qualify as the 

train being at a station. Such rules of thumb are basic examples 

of how contextualizing data rather than blind data-driven 

processing should be sought whenever possible. 

For the univariate speed analysis, slope angle features are 

extracted from the axle speed profiles by computing an angular 

function 𝜑𝜑(𝑡𝑡) : 

𝜑𝜑(𝑡𝑡) = tan−1 𝑌𝑌𝑡𝑡+𝑘𝑘 − 𝑌𝑌𝑡𝑡
𝑋𝑋𝑡𝑡+𝑘𝑘 − 𝑋𝑋𝑡𝑡

 (1) 

 

where 𝑡𝑡𝑡𝑡𝑡𝑡−1 represents the inverse tangent function, 𝑌𝑌𝑡𝑡 

represents the speed at the time t, and 𝑋𝑋𝑡𝑡 represents the time. 

Considering quantization error and noise, the 𝑘𝑘 value has been 

set to 5 instead of 1, representing a time variation of 0.25 

seconds. The data involved in this work was labelled as normal 

and faulty behaviour by industry experts and this is relevant to 

incorporating expert knowledge in Figure 3. 

3.3 Univariate Wavelet Analysis 

In  Figure 1, the axle speed profile indicates that wheel slip 

activities are present during the deceleration phase. Wheel 

slips represent a fast transition between normal to slip 

conditions for short time periods. A natural method to 

investigate fast transition changes is through wavelet analysis. 

A basic function 𝜓𝜓 is a wavelet, also known as a mother 

wavelet if it satisfies the admissibility condition:  

∫ |�̃�𝛹(𝑤𝑤)|
|𝑤𝑤| ⅆ𝑤𝑤

+∞

−∞

< ∞ (2) 

where �̃�𝛹 is the Fourier transform of 𝜓𝜓. This implies that the 

wavelet should integrate to zero. Many wavelets have been 

proposed over time, for example, Haar, Daubechies, Gaussian, 

and Morlet wavelets(Misiti et al., 2006). They differ from each 

other by their vanishing moments, which give different local 

regularities. The Morlet wavelet is used in the context of the 

present work, as it was seen to relate well with how human 

visión operates (Daugman, 1985). The scaling (dilatation) of 

the wavelet   with a factor α is defined as follows: 

𝜓𝜓𝑡𝑡(𝑡𝑡) = 1
𝛼𝛼 𝜓𝜓 (𝑡𝑡

𝛼𝛼) (3) 

 

The wavelet transforms of a signal 𝑆𝑆 is denoted by 𝐶𝐶 and for 

finite energy, at the scale (dilation) 𝛼𝛼 at time 𝑡𝑡 is defined by: 

C(𝛼𝛼, 𝑡𝑡) = S(t) ∗ 𝜓𝜓𝛼𝛼(𝑡𝑡)  (4) 

where * is the convolution operation. The coefficients 𝐶𝐶(𝛼𝛼, 𝑡𝑡) 

measure the variations of the signal 𝑆𝑆 at the dilatation 𝛼𝛼. From 

a qualitative point of view, large 𝐶𝐶(𝛼𝛼, 𝑡𝑡) values indicate 

irregularity of the signal 𝑆𝑆 around the position t at the 
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dilatation 𝛼𝛼. Conversely, small values of the coefficients 

indicate signal regularity. 

3.4 Multivariate LSTM analysis 

Traditional feed-forward neural networks are unable to take 

into consideration previous output predictions. This may be a 

major issue in most time series classification problems, as time 

series data points (also called observations) often have short or 

long term dependencies. Recurrent neural networks 

(Lukoševičius & Jaeger, 2009) tackle this issue in sequential 

learning problems with a feedback loop between the neural 

network layers. However, recurrent neural networks show 

deficiencies known as exploding and vanishing gradient 

problems (Pascanu et al., 2012) in long term dependency 

learning. Long Short-Term Memory (LSTM) networks were 

introduced to address exploding or vanishing challenges where 

gradients grow to infinite or quickly decay to zero (Hochreiter 

& Schmidhuber, 1997). Additional notions of “cell” and 

“gate” that allow gradient update selections were added to the 

classical neural networks to build LSTM networks (Hochreiter 

& Schmidhuber, 1997). One of the main justification for the 

application of the LSTM method in wheel slip activity 

detection is that there is often a time lag between the cause of 

the wheel slip (hard braking, track condition) and the output 

observations. In addition, a wheel slip can cause severe 

damage leading to intermittent faults. Therefore, it is both very 

short term and longer term phenomena that may influence the 

modelled outcome. Moreover, LSTM networks are able to 

handle multivariate attributes with complex non-linear 

relationships, which is also in line with the present problem 

context. 

3.5 Ensemble learning 

Ensemble learning with voting or boosting methods produce 

stronger learners out of weaker ones (Drucker et al., 1994). A 

straightforward ensemble learning method is used for wheel 

slip activity recognition. Wavelet analysis is combined with 

LSTM methods with a voting method for efficient detection. 

Because wavelet analysis detects the activity when there is a 

fast change in shape curvatures, earlier detection is not 

possible. Therefore, when the LSTM detects wheel slip 

activity, the wavelet analysis is used as confirmation of this 

within the next two seconds post-detection. 

3.6 Evaluation Methods 

Established classification performance metrics are employed 

in this study. Specifically, four performance metrics are used 

to assess the classification approaches, namely precision, 

recall, the F1-score, and the area under the curve (AUC). The 

precision metric measures the percentage of matching the 

annotation accuracy, whereas the recall metric measures the 

percentage of annotated changes to be the true one. The F1-

score is the test accuracy metric representing the accuracy of 

all identified cases. The AUC indicator measures the method’s 

ability to separate normal and faulty conditions, and the AUC 

measurement is used in the present context since data are 

imbalanced. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃) =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃  x100 (5) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑎𝑎𝑅𝑅𝑅𝑅 (𝑅𝑅) =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑐𝑐𝑃𝑃𝑁𝑁𝑃𝑃 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 x100 (6) 

𝑜𝑜1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐹𝐹1) =  2 𝑃𝑃. 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (7) 

3.7 Experiments 

Experiments were carried out using real world data provided 

through an industrial partner, displayed in Figure 4, Figure 5, 

and Figure 6. It consists of 12,000,000 observations 

representing six months of the urban train operations and 26 

attributes, including the axle speed used for the wavelet 

analysis. Table 1 presents the parameters empirically set for 

each method. The data has been divided into training, testing, 

and validation sets; 60% of the data has been used for training, 

20% for testing, and 20% for the validation sets. The LSTM 

network is implemented using Keras and Tensorflow libraries.  

Table 1. Learning experiment details 

 Parameters 

Data 

Number of observations: 12,000,000 

Training: 7,200,000 

Testing: 2,400,000 

Validation: 2,400,000 

Number of attributes: 27 

Wavelet+LSTM 

Mother wavelet: Morlet 

Input signals: axle speeds  

Hidden neurons per layer: 50, 90,60 

Activation: reLu, sigmoid, sigmoid 

Solver: m-adam 

Adam regularisation parameter: 0.05 

Decision trees 

Minimum number of instance leave: 50 

Maximal tree depth: 1000 

Minimum subset split: 80 

K-NN 

Number of neighbours: 50 

Metric: Mahalanobis  

Weight: Uniform weight 

Naive Bayes                 - 

Logistic regression Regularisation: Ridge (L2-norm) 

SVM 

Cost: 1.00 

Kernel: Radial Basis Function (RBF) 

Numerical tolerance: 0.0010 

Random forest 

Number of trees: 80 

Maximal tree depth: 1000 

Minimum subset split: 70 

4. RESULTS AND DISCUSSION 

In the wavelet analysis, an example of the computed 𝜑𝜑(𝑐𝑐) is 

shown in Figure 4. A fast transition to slip mode shows a sharp 

increase and decrease of the 𝜑𝜑 values. The scalogram of the 

convolution of 𝜑𝜑 with the Morlet wavelet is shown in  Figure 

5. The normalised 𝐶𝐶(𝛼𝛼, 𝑐𝑐) values, the scale, and the time are 

highlighted in this figure. It can be seen that high normalised 

𝐶𝐶(𝛼𝛼, 𝑐𝑐) values, marked in yellow, show irregularities in the 

speed signal, which represent wheel slip activities. Wavelet 

analysis shows efficient detection when wheel slip activity 

occurs during the speed deceleration phase. However, when it 

occurs during the acceleration phase, the speed profile may not 

be significantly affected. Figure 6 shows an example of this 

case. The LSTM method compensates for this deficiency 

through the learning of the multivariate attributes. An 
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dilatation 𝛼𝛼. Conversely, small values of the coefficients 

indicate signal regularity. 

3.4 Multivariate LSTM analysis 

Traditional feed-forward neural networks are unable to take 

into consideration previous output predictions. This may be a 

major issue in most time series classification problems, as time 

series data points (also called observations) often have short or 

long term dependencies. Recurrent neural networks 

(Lukoševičius & Jaeger, 2009) tackle this issue in sequential 

learning problems with a feedback loop between the neural 

network layers. However, recurrent neural networks show 

deficiencies known as exploding and vanishing gradient 

problems (Pascanu et al., 2012) in long term dependency 

learning. Long Short-Term Memory (LSTM) networks were 

introduced to address exploding or vanishing challenges where 

gradients grow to infinite or quickly decay to zero (Hochreiter 

& Schmidhuber, 1997). Additional notions of “cell” and 

“gate” that allow gradient update selections were added to the 

classical neural networks to build LSTM networks (Hochreiter 

& Schmidhuber, 1997). One of the main justification for the 

application of the LSTM method in wheel slip activity 

detection is that there is often a time lag between the cause of 

the wheel slip (hard braking, track condition) and the output 

observations. In addition, a wheel slip can cause severe 

damage leading to intermittent faults. Therefore, it is both very 

short term and longer term phenomena that may influence the 

modelled outcome. Moreover, LSTM networks are able to 

handle multivariate attributes with complex non-linear 

relationships, which is also in line with the present problem 

context. 

3.5 Ensemble learning 

Ensemble learning with voting or boosting methods produce 

stronger learners out of weaker ones (Drucker et al., 1994). A 

straightforward ensemble learning method is used for wheel 

slip activity recognition. Wavelet analysis is combined with 

LSTM methods with a voting method for efficient detection. 

Because wavelet analysis detects the activity when there is a 

fast change in shape curvatures, earlier detection is not 

possible. Therefore, when the LSTM detects wheel slip 

activity, the wavelet analysis is used as confirmation of this 

within the next two seconds post-detection. 

3.6 Evaluation Methods 

Established classification performance metrics are employed 

in this study. Specifically, four performance metrics are used 

to assess the classification approaches, namely precision, 

recall, the F1-score, and the area under the curve (AUC). The 

precision metric measures the percentage of matching the 

annotation accuracy, whereas the recall metric measures the 

percentage of annotated changes to be the true one. The F1-

score is the test accuracy metric representing the accuracy of 

all identified cases. The AUC indicator measures the method’s 

ability to separate normal and faulty conditions, and the AUC 

measurement is used in the present context since data are 

imbalanced. 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃  x100 (5) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑎𝑎𝑅𝑅𝑅𝑅 (𝑅𝑅) =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑐𝑐𝑃𝑃𝑁𝑁𝑃𝑃 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 x100 (6) 

𝑜𝑜1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐹𝐹1) =  2 𝑃𝑃. 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (7) 

3.7 Experiments 

Experiments were carried out using real world data provided 

through an industrial partner, displayed in Figure 4, Figure 5, 

and Figure 6. It consists of 12,000,000 observations 

representing six months of the urban train operations and 26 

attributes, including the axle speed used for the wavelet 

analysis. Table 1 presents the parameters empirically set for 

each method. The data has been divided into training, testing, 

and validation sets; 60% of the data has been used for training, 

20% for testing, and 20% for the validation sets. The LSTM 

network is implemented using Keras and Tensorflow libraries.  

Table 1. Learning experiment details 

 Parameters 

Data 

Number of observations: 12,000,000 

Training: 7,200,000 

Testing: 2,400,000 

Validation: 2,400,000 

Number of attributes: 27 

Wavelet+LSTM 

Mother wavelet: Morlet 

Input signals: axle speeds  

Hidden neurons per layer: 50, 90,60 

Activation: reLu, sigmoid, sigmoid 

Solver: m-adam 

Adam regularisation parameter: 0.05 

Decision trees 

Minimum number of instance leave: 50 

Maximal tree depth: 1000 

Minimum subset split: 80 

K-NN 

Number of neighbours: 50 

Metric: Mahalanobis  

Weight: Uniform weight 

Naive Bayes                 - 

Logistic regression Regularisation: Ridge (L2-norm) 

SVM 

Cost: 1.00 

Kernel: Radial Basis Function (RBF) 

Numerical tolerance: 0.0010 

Random forest 

Number of trees: 80 

Maximal tree depth: 1000 

Minimum subset split: 70 

4. RESULTS AND DISCUSSION 

In the wavelet analysis, an example of the computed 𝜑𝜑(𝑐𝑐) is 

shown in Figure 4. A fast transition to slip mode shows a sharp 

increase and decrease of the 𝜑𝜑 values. The scalogram of the 

convolution of 𝜑𝜑 with the Morlet wavelet is shown in  Figure 

5. The normalised 𝐶𝐶(𝛼𝛼, 𝑐𝑐) values, the scale, and the time are 

highlighted in this figure. It can be seen that high normalised 

𝐶𝐶(𝛼𝛼, 𝑐𝑐) values, marked in yellow, show irregularities in the 

speed signal, which represent wheel slip activities. Wavelet 

analysis shows efficient detection when wheel slip activity 

occurs during the speed deceleration phase. However, when it 

occurs during the acceleration phase, the speed profile may not 

be significantly affected. Figure 6 shows an example of this 

case. The LSTM method compensates for this deficiency 

through the learning of the multivariate attributes. An 

interesting observation of the LSTM result is that the method 

is able to detect wheel slip conditions several seconds before 

the slipping event starts. This is related to the causal 

relationship between the braking pressure and the resulting 

slip. Such timely detection can allow, for example, automatic 

activation controllers to soft release the brakes or inject more 

sand to reduce the slip activity. 

 

Figure 4 Angle value computed from the axles speed. 

 

Figure 5 Scalogram of the wavelet. 

 

Figure 6 Wheel slip activity during an acceleration phase. 

Table 2 shows the investigated methods of performance during 

the validation phase. The colour represents a visualisation of 

the performance for each metric, with green indicating better 

performance. Multiple classification methods were applied to 

this effect, including Decision trees, k-Nearest Neighbours (k-

NN), Naïve Bayes, Logistic regression, SVM, and Random 

Forest, on top of the proposed joint Wavelet and LSTM 

approach of this paper. The Random Forest method shows the 

lowest performance in comparison to the remaining classifiers. 

It is followed by the Decision Tree and k-NN methods, which 

show similar F1 accuracy. Whilst the F1 score is higher (94% 

and 92% respectively), the AUC shows a low-performance 

score (50%). This is linked to the fact that the data are 

imbalanced and therefore the classifiers are unable to separate 

the classes very well. Naïve Bayes, Logistic regression, and 

SVM methods show the AUC’s best performance score in 

comparison to the random forest, k-NN, or decision tree 

methods. The highest performance score is shown by the 

proposed method where the combined LSTM+wavelet 

approach outperformed all of the classifiers. 

Table 2. Validation results of the classifications methods. 

Model AUC F1 Precision Recall 

Decision tree 50 94 92 96 

K-NN 50 93 92 95 

Naive Bayes 86 86 87 85 

Logistic regression 78 91 94 89 

SVM 68 82 91 76 

LSTM + Wavelet 98 98 99 97 

Random forest 40 60 49 79 

Limitations of the analysis are principally related to the 

employed classifier hyper-parameter settings and the very 

specific nature of the employed data (methods can be 

performed differently on other datasets). Numeric hyper-

parameters have been tested empirically using a genetic 

algorithm to find appropriate settings. However, as the genetic 

algorithm does not guarantee global maxima, the obtained 

parameters can be biased, leading to evidence but not 

necessary conclusions. The identified hyperparameters have 

been set throughout the trials in order to employ the best 

performing settings, according to the evidence. A further 

limitation is related to the data annotation process. Although 

experts have annotated data, human-based annotations may 

have biases or errors. These in turn influence the learning and 

the classification results. Additionally, the experiments carried 

out do not take into consideration information such as track 

and wheel condition, vehicle mass, and traction forces, which 

are all contextually relevant parameters. The lack of such 

inputs limits the performance of the undertaken analysis.  

5. CONCLUSION 

This paper introduced a new method for detecting wheel slips 

activity on urban trains. The employed method involves a 

multi-stage data workflow, that includes data cleaning and 

alignment, data filtering, data labelling and feature extraction, 

and a simple ensemble approach that based on time series 

wavelet and LSTM learning, was shown to be successful in 

identifying wheel slip events when tested on real data from 
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operational trains. Focusing on the performance of the method, 

this compared favourably to alternative classifiers, namely 

Decision tree, K-NN, Naïve Bayes, Logistic Regression, 

SVM, and Random Forest. Limitations of the proposed 

method are the partial reliance on expert annotation and 

reliance on method parameters that have been tested 

empirically. Moreover, in this analysis, the absence of certain 

conditions such as weather information, track condition, 

traction load, and wheel condition limits analysis performance. 

Areas for improvement include tackling the challenge 

mentioned and incorporating external data for more efficient 

diagnosis. Long-term work includes designg a distributed 

online diagnosis system with fault isolation, allowing similar 

train systems to share newly discovered fault characteristics. 
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