
 

 

 University of Groningen

Artificial intelligence and computer vision in orthopaedic trauma
Machine Learning Consortium; Prijs, Jasper; Liao, Zhibin; Ashkani-Esfahani, Soheil; Olczak,
Jakub; Gordon, Max; Jayakumar, Prakash; Jutte, Paul C.; Jaarsma, Ruurd L.; IJpma, Frank
F.A.
Published in:
The bone & joint journal

DOI:
10.1302/0301-620X.104B8.BJJ-2022-0119.R1

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Machine Learning Consortium, Prijs, J., Liao, Z., Ashkani-Esfahani, S., Olczak, J., Gordon, M., Jayakumar,
P., Jutte, P. C., Jaarsma, R. L., IJpma, F. F. A., & Doornberg, J. N. (2022). Artificial intelligence and
computer vision in orthopaedic trauma: the why, what, and how. The bone & joint journal, 104-B(8), 911-
914. https://doi.org/10.1302/0301-620X.104B8.BJJ-2022-0119.R1

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1302/0301-620X.104B8.BJJ-2022-0119.R1
https://research.rug.nl/en/publications/9c05da64-1fcd-4dbf-b780-b74f74489dd3
https://doi.org/10.1302/0301-620X.104B8.BJJ-2022-0119.R1


THE BONE & JOINT JOURNAL 911

J. Prijs,
Z. Liao,
S. Ashkani-Esfahani,
J. Olczak,
M. Gordon,
P. Jayakumar,
P. C. Jutte,
R. L. Jaarsma,
F. F. A. IJpma,
J. N. Doornberg,
on behalf of the 
Machine Learning 
Consortium

From University 
Medical Centre, 
Groningen, the 
Netherlands, and 
Flinders University/
Medical Centre, 
Adelaide, Australia

Correspondence should be 
sent to J. Prijs; email:  
jasperprijs@icloud.com

© 2022 The British Editorial 
Society of Bone & Joint Surgery
doi:10.1302/0301-620X.104B8.
BJJ-2022-0119.R1 $2.00 

Bone Joint J
2022;104-B(8):911–914.

�� Annotation

Artificial intelligence and computer vision in 
orthopaedic trauma
the why, what, and how

Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing 
methods that train computers to perform and learn from executing certain tasks, called 
machine learning, and methods to build intricate computer models that both learn and 
adapt, called complex neural networks. Computer vision is a function of AI by which ma-
chine learning and complex neural networks can be applied to enable computers to cap-
ture, analyze, and interpret information from clinical images and visual inputs. This anno-
tation summarizes key considerations and future perspectives concerning computer vision, 
questioning the need for this technology (the ‘why’), the current applications (the ‘what’), 
and the approach to unlocking its full potential (the ‘how’).

Cite this article: Bone Joint J 2022;104-B(8):911–914.

Why AI and computer vision?
In orthopaedic surgery, we have been shown time 
and time again that "surgeons agree mostly with 
themselves, but not so much with each other".1–8 
Daniel Kahneman coined this form of human bias 
“WYSIATI”: What You See Is All There Is.9 Our 
field is rife with unsatisfactory levels of interob-
server reliability in the recognition and classifi-
cation of fractures among surgeons. The issue of 
reliability covers trauma from injuries involving 
the upper2–4,7 and lower limb.5,6,8 Advances in the 
power of hardware and computing, the develop-
ment of more accurate imaging techniques, and 
improvements in the capabilities of software by 
using computer vision, promise to increase the 
speed and accuracy of diagnosis and overcome 
concerns about reliability for the evaluation of 
images in trauma.10,11 The widely used complex 
neural networks have several characteristic 
features and merits. Compared with conven-
tional machine-learning methods such as decision 
tree, random forest, boosting, and support vector 
machines, which are typically used to solve prob-
lems in machine-learning on top of structured data, 
the convolutional filtering operations in a complex 
neural network can respond to local patterns in 
features of input which are spatially and temporally 
correlated. These consume fewer computational 
resourses compared with a matrix multiplication 
process, and hence are predominantly used in 
the processing of images and videos. Complex 
neural networks also include a type of deep neural 
network in which the structure of the model can 

be easily modified by adding or removing a layer. 
There is a rich literature involving the structure of 
complex neural networks in the computer vision 
domain, providing a good methodological basis 
for the analysis of medical images. Finally, the 
number of learnable parameters in a complex 
neural networks is at a scale of millions to billions, 
and the optimization of the parameters of models 
is often favourable when dealing with a massive 
amount of data.

Rather than a replacement for human interpre-
tation, we believe that the attraction of computer 
vision in the practice of trauma surgery lies in 
augmenting the diagnostic capabilities of surgeons 
and musculoskeletal radiologists, reducing bias 
and variation, minimizing error and mismanage-
ment, and ultimately buying time to focus on our 
patients and delivering optimal care.10,12,13

How does computer vision work?
AI algorithms are now incorporated into many 
digital products, from smartphones to automated 
vehicles. The data generated through use of these 
devices serve as a perpetual source of information 
for further computer learning and improvement. In 
orthopaedic surgery, AI is being used in the devel-
opment of advanced models of prediction as well 
as automated methods for the diagnosis and clas-
sification of different conditions. Models which 
predict the stratification of risk using machine-
learning now go beyond conventional statistics 
identifying non-linear relationships between 
individual characteristics and outcomes.14,15 For 
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instance, models have been used to predict same-day discharge 
and assess balance and prosthetic alignment during total knee 
arthroplasty.16,17 Computer vision has been evaluated in the 
detection and classification of fractures using radiographs and 
CT scans.18,19 In other specialties, clinicians are using this tech-
nology to interpret images such as mammograms, fundosco-
pies for papilloedema, and CT scans for the identification of 
intracerebral haemorrhage.20–22 There has been a considerable 
increase in the number of studies aiming to improve clinical 
decision-making through the analysis of large databases using 
AI and computer vision.18,19,23 The next phase should focus on 
prospective clinical evaluation, the maturation of techniques, 
and expansion of work to gain external validity in geograph-
ical areas and populations, in order to consolidate accuracy, 
reliability, and transferability while minimizing bias.19 Kunze et 
al24 and others have emphasized these factors and the need for 
improvement in the regulations and standards for taxonomy, the 
quality of data, critical appraisal, and reporting.25–28

What are we doing with AI and computer vision?
Appreciating the fundamental differences in ‘learning’ – 
the process of absorbing information to increase knowl-
edge, skills, and capabilities, and applying this intelligence 
across a variety of different contexts – between humans and  
AI-powered machines can help us improve our understanding of 
the technology behind computer vision. Humans use the brain’s 
computational power, memory, and innate ability to learn from 
direct experience or to be trained by others. We are also taught 
to explain how and why we came to certain conclusions about 
the things we have learned and interpret, and write out the 
mathematics (or ‘logic’) so that it can be understood and vali-
dated by others. In contrast, machines driven by AI rely on the 
provision of data and the respective outcomes into the system 
to build current and future logic, and understand how outcomes 
might be inferred. A trained machine-learning model is highly 
complex, encapsulating millions of numerical parameters that 
collectively contribute to any decision it makes. Therefore, it 
is beyond our human capacity to fully explain why a model 
came to a certain conclusion, as the decision could be based on 
either a pattern that makes sense (clinically) or on a pattern with 
apparent association to the decision (i.e. a model may learn to 
recognize sheep by learning the texture of grass, as sheep are 
always found on grass).

Increasing the number of labels and observers is the most 
common way to deal with inadvertent human interobserver 
variation and mistakes. However, what we are teaching the 
computer is the majority-voted decision, which is usually the 
best available truth but unfortunately not error-free. If we want 
the computer to learn beyond what is given (i.e. information 
based on our understanding such as of classifications) it needs 
to act with the task (environment) and trial-and-error actions, 
where the process is in many ways similar to the evolutionary 
process. For example, the AlphaGo Zero chess player made by 
Google AI was created by allowing AI players to play against 
each other.29 This was different from the original AlphaGo,30 
which learned from human moves. After a huge number of 
games, the AI players start to invent moves. As the computer 
can play so much quicker than a human, it may cover or surpass 

the entirety of games played throughout human history and thus 
generate a huge amount of data, which is key to an excellent 
model. In order to generate enormous datasets and create models 
that outperform us, it is essential that we collaborate, not only 
nationally but globally. However, it is also essential to consider 
ethical issues. For example, what if a dataset of 100,000 images 
is lost? Even though these images were anonymized, it would 
still lead to headlines and have an enormous effect on the future 
collection of these datasets. In addition to ethical considerations, 
laws between countries about sharing data between institutions, 
each with their own protocols and mandates, often significantly 
impair collaborations.

In computer vision-based analysis of orthopaedic images, the 
input can include any form of digital data, most often radio-
graphs and CT scans. Medical images are usually stored in the 
Digital Imaging and Communications in Medicine (DICOM) 
format. As this contains substantial, often unnecessary, and 
sometimes incorrect, information about the patients and the 
study, the data are converted into more generic formats such 
as Portable Network Graphics (PNG, lossless) or Joint Photo-
graphic Experts Group (JPEG, lossy compression) files to 
minimize redundancy and increase efficiency. These data and 
converted formats are then split into training and test sets in a 
60:40 or 80:20 ratio. Within the training set, a separate set of 
images is selected or stochastically sampled, often using n-fold 
cross-validation, to develop the validation set. This is then used 
to optimize the performance of the training set without compro-
mising the objectivity of the test set, which is then finally used 
to evaluate performance. In other words, one is not directly 
training the model to fit the test set as a strategy to avoid over-
fitting the model. Thus, the computer model can effectively 
perform the designated task, not only on the images it has seen 
before, but on the images it has yet to see. This characteristic is 
termed ‘generalization’.

The computer can reach human-level performance, or even 
outperform humans in certain tasks, but limitations in the ways 
of validating decisions can lower the reliability of medical AI 
systems, making the use of applied AI in medicine challenging.

Pitfalls and what to look out for when appraising 
manuscripts dealing with complex neural 
networks for fractures
There is a healthy reservation or resistance towards using AI 
in diagnostics and medical decision-making, and anyone who 
has had AI take the wheel can attest that the deviation from 
the normal situation is challenging. However, as we gain more 
experience with the applications of AI, it will become easier 
to understand and navigate through these situations. Even 
though computers, given the ‘artificial’ intelligence, might be 
able to perform certain tasks better than humans, they do not 
possess common sense and are therefore always ‘stupid’ or cold 
as robots. The main weakness of complex neural networks is 
the fact that their quality relies heavily on the database upon 
which they were trained. One cannot expect such a network to 
recognize fractures or pathology it has not seen before, even 
though they may be similar to what it already ‘knows’. There-
fore, the utmost care must be taken when choosing the data that 
are used for training, testing, and validation, either internally 
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or externally. External validation is a crucial step in the vali-
dation of a model on new data from a different geographical 
location, as this could expose possible biases and performance 
weaknesses.19 Many AI models in orthopaedic surgery have 
not undergone external validation.19 However, assisting clini-
cians with AI-based solutions has some important strengths, 
including consistent predictions, no mental fatigue, no inherent 
bias, and analysis in just a few seconds. It can reach the level 
of an experienced clinician and is therefore able to provide 
continual top-level expertise effortlessly.31–36

Future perspectives
Regardless of the challenges in the past, present, and future, 
there has been a rapid development of AI and a surge of 
practical applications in day-to-day life. We enjoy the use of 
voice assistance to turn on the lights, dictate a message, or as 
reminders. We believe the future of medicine will enjoy similar 
quality-of-life improvements, with significant effects on the 
lives of our patients. Would it not bring comfort to patients and 
doctors to be able to make informed decisions together, based 
on the patient’s specific medical characteristics, and to focus on 
the patients who require close monitoring, and spend one’s time 
where it is the most efficient? We do not believe that AI will 
replace doctors, but will instead reduce the burdens on us and 
allow us to spend our time more efficiently with our patients.

In order to achieve these goals, we need to overcome one of 
the most difficult challenges yet: the relative shortage of quality 
data in a single hospital. We need to rise above isolated models 
that are developed, tested, and applied clinically in one centre, 
and thus are not applicable elsewhere. Only together can we 
create large enough databases to predict the conditions that 
matter, such as patient-specific outcomes based on individual 
characteristics, the risks of postoperative infection, hardware 
failure, morbidities, and mortality.

Take home message
- - Artificial intelligence has seen a surge of applications; 

however, only together can the orthopaedic community create 
large databases so we can train models that are globally 

applicable and with a greater ability to predict the conditions that 
matter.
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