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Stabilizing and maneuvering angle rigid multi-agent
formations with double-integrator agent dynamics

Liangming Chen, Mingming Shi, Hector Garcia de Marina, and Ming Cao, Fellow, IEEE

Abstract—This paper studies formation stabilization and ma-
neuvering of mobile agents governed by double-integrator dy-
namics. The desired formation is described by a set of triple-
agent angles. A carefully chosen such set of angle constraints
guarantees that the desired formation is angle rigid. To achieve
the desired angle rigid formation, a stabilization control law is
proposed using only local velocity and direction measurements.
We show that the closed-loop dynamics of the formation, when
each agent is modeled by a double-integrator, are closely related
to the corresponding one in single-integrator agent dynamics.
Sufficient conditions are constructed to guarantee the closed-
loop stability for identical and distinct velocity damping gains,
respectively. To guide an angle rigid formation to move with the
desired translational velocity, orientation and scale, formation
maneuvering laws are then proposed. Simulation examples are
also provided to validate the results.

Index Terms—Formation stabilization; formation maneuver-
ing; angle rigid formations; double-integrator agent dynamics;
direction measurements.

I. INTRODUCTION

Recently, multi-agent formations have been widely studied
due to their broad applications in, e.g., search and rescue using
mobile robots [1], drone light shows [2] and formation flying
of multiple satellites [3]. Two research problems arise, i.e.,
formation stabilization and formation maneuvering [4]. Under
different specifications of formation shapes and available sen-
sor measurements, different approaches have been proposed to
solve these two problems [5].

To achieve a formation specified by relative positions, a
formation stabilization law is proposed in [6] by using the
measurements of relative positions, in which the alignment
of the coordinate frames of all the agents is required. In
some scenarios, however, it can be difficult to guarantee the
perfect alignment of all agents’ coordinate frames due to
the lack of GPS or existence of sensor measurement noise.
When misalignment exists in agents’ coordinate frames, a
distorted formation shape and nonzero translational velocity
may appear in the relative position-specified formation [7],
[8]. Without the requirement on coordinate frames’ alignment,
using distance rigidity theory, a desired formation described
by distances is achieved using local relative position measure-
ments in [9], [10]. For the translation and rotation of distance
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rigid formations, several formation maneuvering algorithms
are designed in [11]–[13] by employing a mismatch-based
approach. Besides translational and rotational maneuvering,
the scaling maneuvering is also necessary in many scenarios,
e.g., obstacle avoidance [4], which, however, due to the
pairwise distance change between agents during scaling, is not
straightforward to be obtained by directly modifying the algo-
rithms in [11]–[13]. Intuitively, the bearing/angle constraints
remain the same under scaling motion, and thus can be utilized
for both formation shape control and scaling maneuvering.
Recently, it is reported that bearing/direction measurements
can be obtained by cameras, passive sonars and sensor arrays
[14], [15], which are more accessible than relative position
measurements. These developments promote the application
of bearing rigidity theory and bearing-only formation control
algorithms [16], which, however, require the alignment of
coordinate frames of all the agents.

Not requiring the alignment of coordinate frames, a trian-
gular formation control algorithm is proposed in [17], [18] by
employing constraints of triple-agent interior angles and using
local directions as the measurements. Further, [15], [18] study
angle rigidity and extend the results of [17] to formation sta-
bilization with an arbitrary number of agents. When assigned
with proper constraints, angle rigid formations enjoy more
freedom than distance or bearing rigid formations because the
angle preservation motions allow simultaneous translation, ro-
tation and scaling. Given more degree of freedom, angle rigid
formations can be achieved using fewer sensor measurements,
and can choose more maneuvering forms to achieve practical
tasks. By exploiting this advantage, maneuvering algorithms
are proposed in [19], [27] for angle rigid formations with
single-integrator agent dynamics following a mismatch-based
approach. However, to the authors’ best knowledge, it has
not been investigated how to stabilize and maneuver angle
rigid formations with double-integrator agent dynamics, which
is closer to real applications since double-integrator models
capture better forces and moments in real mechanical systems
[20, Chapter 2].

Motivated by the aforementioned works, this paper aims at
designing control algorithms for double-integrator multi-agent
systems by using local velocity and direction measurements
to achieve the formation stabilization task, and by using the
measurements of velocity, direction, and one relative position
to achieve the desired translational, rotational and scaling ma-
neuvering. The contributions of this paper can be summarized
as follows:

(1) The stabilization and maneuvering of angle rigid for-
mations with double-integrator agent dynamics are realized.
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Although the structure of the double-integrator angle rigid
formation’s angle error dynamics is quite different from the
corresponding one in single-integrator formations, we show
that the closed-loop dynamics of the formation when the
agents are governed by double-integrator dynamics are closely
related to those of the corresponding single-integrator agent
dynamics.

(2) For the formation stabilization control law, only local
velocity and direction measurements are needed. Compared to
the stabilization of double-integrator formations using relative
position measurements [21], [22], no distance measurements
are required in our formation stabilization control law. For the
formation maneuvering law, in addition to the measurements
mentioned in the stabilization case, we require only one agent,
to measure its relative position with respect to a reference
agent. This relative position will be used to control the
rotational and scaling maneuvering of the formation.

(3) The desired maneuvering in forms of translation, rotation
and scaling is achieved simultaneously. Compared to the
formation specified by relative positions, distances and bear-
ings, angle rigid formations have more maneuvering degree
of freedom, which is helpful for those tasks requiring the
formation to maneuver in translation, rotation and scaling such
that it passes through an unknown environment with obstacles.

The rest of this paper is organized as follows. Section II
introduces basic background knowledge and formulates the
problem. In Section III, we present the results about the
stabilization of the angle rigid formation under identical and
distinct control gains, respectively. The formation maneuvering
algorithm and its stability analysis are given in Section IV.
Simulation examples are provided in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce the agent dynamics, direction
measurements and angle rigid formations. Then, the research
problem is formulated.

A. Agents’ double-integrator dynamics

Consider N mobile agents moving in the plane. Agents are
labeled from 1 to N and V = {1, 2, · · · , N} is the index set.
The dynamics of each agent i, i ∈ V , is governed by

ṗi = vi, v̇i = ui, (1)

where pi ∈ R2 denotes the position of agent i with respect to
a fixed global coordinate frame, vi ∈ R2 is its velocity in the
same frame, and ui ∈ R2 is its control input to be determined.

B. Direction measurements

Each agent i ∈ V can measure the “direction” with respect
to some other agent j ∈ V with pi 6= pj , denoted by zij :=
pj−pi
‖pj−pi‖ , which is the unit vector starting from pi and pointing
towards pj . The set of such j to which i measures its direction
is denoted by Ni, and for different i, Ni can be different. For
the triangle formed by agents i, i+ 1 and i− 1 shown in Fig.
1, the interior angle α(i+1)i(i−1) ∈ [0, π] can be calculated by
α(i+1)i(i−1) = arccos(zTi(i+1)zi(i−1)).

i iX

i+1

i-1

1iX 

1iX 

i

( 1)i iz 

( 1)i iz 

Fig. 1: The direction measurements.
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Fig. 2: Construction of an angle rigid formation.

C. Construction of desired angle rigid formation

To guarantee that the desired formation is unique under
the given angle constraints, the formation is required to be
angle rigid [18]. Now, we briefly introduce how to construct
an angle rigid formation through a sequence of steps, which is
similar to a sequence of Henneberg vertex addition steps [23].
For more details about angle rigidity, we refer the readers
to [18]. Firstly, we define an angle set A ⊂ V × V × V
corresponding to the angle constraints, where each member
of A has three ordered vertices. The desired formation is
recursively constructed by completing the following algorithm
consisting of N − 2 steps:

Step 1: The first three entries of A correspond to the three
interior angles of the triangle 4123, i.e., α312, α123, α231.
Then, the eventual orientation and scale of the whole forma-
tion are determined by the orientation and scale of the first
triangular formation, respectively.

Step 2: Add vertex 4 to the formation. This requires the
knowledge of the next two elements of A, which must be
one of the following three combinations: 142 and 243, 142
and 143, or 243 and 143. In this paper, we consider the
combination α142 and α243 which is shown in Fig. 2.

Steps 3 ∼ (N − 3): Similar to Step 2, at each step, add a
new vertex with two associated new angle constraints.

Step (N−2) (last step): Add vertex N by adding two angle
constraints: αi1Ni2 and αi2Ni3 , i1, i2, i3 ∈ {1, ..., N−1}, i1 6=
i2 6= i3.

As described in the above N − 2 steps, the angle set is
A = {(3, 1, 2), (1, 2, 3), (2, 3, 1), (1, 4, 2), (2, 4, 3), · · · ,
(j1, k, j2), (j2, k, j3), · · · , (i1, N, i2), (i2, N, i3)}. Then, for
(j, i, k) ∈ A, we define {j, k} ∈ Ni. According to the Type-
I vertex addition operation in [18] and [18, Proposition 2],
one has that the above constructed formation is generically
angle rigid. To guarantee the uniqueness of each new vertex’s
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position in Step i, i = 2, ..., N − 2, the following assumption
is needed.

Assumption 1. In each aforementioned Step k − 2, k =
4, · · · , N with the corresponding angle constraints αj1ij2 and
αj2ij3 , we assume that αj1ij2 and αj2ij3 are not zero or π,
pi, pj1 , pj2 , pj3 are not on a circle, αj1ij3 = αj1ij2 + αj2ij3 ,
sinαj1j2i > sinαij1j2 and sinαij2j3 > sinαj2j3i.

Remark 1. According to [18, Proposition 2], when As-
sumption 1 holds, the position of each new vertex k, k =
4, · · · , N is locally uniquely determined1, which implies that
the constructed formation is angle rigid. The inequalities in
Assumption 1 is used to guarantee the single-integrator angle
rigid formation locally stable [18, Theorem 8]. Compared to
[21], [24], the construction of angle rigid formations is based
on the Type-II vertex addition operation [18, Definition 7],
under which the inter-agent communication is avoided in the
control design and the number of constraints is minimized.

D. Problem formulation

Consider that all agents are governed by the double-
integrator dynamics (1), and the desired formation is con-
structed by following the steps given in subsection 2.3. The
goal is to design control input ui for each agent i such that the
whole multi-agent system can achieve formation stabilization
or formation maneuvering described formally as follows:

(1) Formation stabilization: each agent’s position pi(t) con-
verges to a fixed point which satisfies the angle constraints
given in the desired angle rigid formation, and the velocities
of all agents converge to zero, i.e.,

limt→∞ ṗi(t) = 0,∀i ∈ V. (2)

Note that when all the angle constraints are satisfied, one has
that the first three agents achieve the desired triangular shape

limt→∞ ei(t) = 0,∀i = 1, 2, 3, (3)

where ei(t) = αi(t)−α∗i , αi = α[i+1]i[i−1], [i+ 1] = 1 when
i = 3, [i− 1] = 3 when i = 1, and α∗i ∈ (0, π) denotes agent
i’s desired interior angle formed with agents [i + 1], [i − 1],
and naturally α∗1 + α∗2 + α∗3 = π. Also note that each agent
from 4 to N achieves the desired two angles

limt→∞ ei1(t) = limt→∞(αj1ij2(t)− α∗j1ij2) = 0, (4)

limt→∞ ei2(t) = limt→∞(αj2ij3(t)− α∗j2ij3) = 0, (5)

where i = 4, · · · , N , j1 < i, j2 < i, j3 < i, and α∗j1ij2 ∈
(0, π), α∗j2ij3 ∈ (0, π) denote agent i’s two desired angles
formed with different agents j1, j2, j3 ∈ {1, 2, ..., i}. The
required information by each agent i, i ∈ V consists of velocity
vi and direction bij with respect to neighboring agents j in
agent i’s local coordinate frame.

(2) Formation maneuvering: all the agents achieve the angle
rigid formation described in (3)-(5), and the velocities of all

1This represents that the position of the added vertex is locally unique
when all the vertices are perturbed within a small continuous neighborhood
of the original configuration, but might not unique when the pertubation is
large or in another non-neighboring region.

the agents converge to a desired translational velocity v∗c (t) ∈
R2, and the relative position from a reference agent (chosen
to be agent 1) to another agent (for example, agent 3) will
determine the eventual formation’s orientation and scale. In
particular, in this paper we will consider a piecewise constant
vector δ∗13(t) ∈ R2 for the orientation and scale reference.
The last two requirements in the formation maneuvering can
be mathematically described by

limt→∞ (ṗi(t)− v∗c (t)) = 0,∀i ∈ V, (6)
limt→∞ (p3(t)− p1(t)− δ∗13(t)) = 0. (7)

Therefore, the formation maneuvering task defined in this
paper requires all the agents to achieve (3)-(7) simultaneously.
In this maneuvering case, each agent can measure its own
velocity and the directions with respect to its neighbors, and
agent 3 must measure its relative position with respect to agent
1.

III. FORMATION STABILIZATION

In this section, we discuss formation stabilization using
identical and distinct control gains, respectively.

A. The case of identical control gains
We first consider the situation when all agents have the same

velocity feedback gain. Specifically, we design the formation
stabilization law as

ui = −ksvi −
∑

(j,i,k)∈A
(αjik − α∗jik)(zij + zik), (8)

where the gain ks > 0 applies to all the agents. The control
law (8) consists of a velocity damping part and an angle
error feedback part, where the intuition of using zij + zik
is that it points towards the bisector of αjik [18]. To obtain
the convergence of angle errors under (8), we need to ana-
lyze their dynamics. First, we assume that lij(0), lik(0) and
sinαjik(0),∀(j, i, k) ∈ A are finite and bounded away from
zero where lij(t) = ‖pi(t)−pj(t)‖. According to (8), when the
initial velocity vi(0) is bounded and lij(0) 6= 0, lik(0) 6= 0, the
control input ui(0) will be bounded. Therefore, ∃T1 > 0 such
that for t ∈ [0, T1), lij(t), lik(t) and sinαjik(t),∀(j, i, k) ∈ A
are bounded away from zero. We now analyze the angle error
dynamics for t ∈ [0, T1) and the extension of T1 to infinity
will be discussed later. Since d(cosαjik)

dt = −(sinαjik)α̇jik,
one has

α̇jik = − 1

sinαjik

Å
d(cosαjik)

dt

ã
. (9)

Also, one has

d(cosαjik)

dt
=

d(zTijzik)

dt
= żTijzik + zTij żik (10)

=zTik
Pzij
lij

(vj − vi) + zTij
Pzik
lik

(vk − vi),

where Pzij = I2 − zijz
T
ij , I2 ∈ R2×2 is the 2 × 2 identity

matrix. Substituting (10) into (9) yields

α̇jik =− zTik
Pzij

lij sinαjik
vj − zTij

Pzik
lik sinαjik

vk

+ (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)vi. (11)
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Let us choose the error variables defined in (2)-(5) to be the
system state

X = [e1, e2, e41, e42, · · · , eN1, eN2, v
T
1 , · · · , vTN ]T ∈ R4N−4

(12)
which consists of 2N − 4 independent angle errors and all
agents’ velocities. Then, from (8) and (11), one can check
that the closed-loop dynamics satisfy

Ẋ =

ï
0(2N−4)×(2N−4) R(X)

B(X) −ks ⊗ I2N

ò
X = D1(X)X, (13)

where R(X) ∈ R(2N−4)×2N , B(X) ∈ R2N×(2N−4) and

R(X) =


N213 +N312 −N312 −N213 0 ... 0
−N321 N321 +N123 −N123 0 ... 0
−N241 −N142 0 N142 +N241 ... 0

... ... ... ...
. . . ...


(14)

with Njik = zTij
Pzik

lik sinαjik
∈ R1×2, j, i, k ∈ V , and

B(X) =


−z12 − z13 0 0 0 ... 0

0 −z21 − z23 0 0 ... 0
z31 + z32 z31 + z32 0 0 ... 0

0 0 −z41 − z42 −z42 − z43 ... 0
... ... ... ... ... ...

 .
(15)

Now, we linearize (13) around the desired equilibrium X = 0
to study its local stability. By linearizing (13) around X = 0
for t ∈ [0, T1), one has

Ẋ = [
∂[D1(X)X]

∂X
|X=0]X = [D1(X)|X=0]X

=

ï
0(2N−4)×(2N−4) R(X)|X=0

B(X)|X=0 −ks ⊗ I2N

ò
X = D∗1X. (16)

For notation conciseness in the following analysis, a quantity
with the superscript ∗ means that it is evaluated at X = 0.
Note that the structure of the system matrix D∗1 in this
double-integrator formation is quite different from the corre-
sponding system matrix in the single-integrator formation [18,
Eqs.(32),(46)], which makes the formulated problem challeng-
ing. We then show that system (16) is stable by checking that
D∗1 ∈ R4N−4 is Hurwitz through examining its eigenvalues.
Consider the characteristic polynomial of D∗1

|λI4N−4 −D∗1 | =
∣∣∣∣λI2N−4 −R∗
−B∗ (λ+ ks)⊗ I2N

∣∣∣∣ , (17)

where λ ∈ C is an eigenvalue of D∗1 . According to the Schur
complement theorem [25], one has

|λI4N−4 −D∗1 |

=(λ+ ks)
2Ndet[λI2N−4 −

R∗B∗

λ+ ks
]

=(λ+ ks)
2Ndet[

λ(λ+ ks)I2N−4 −R∗B∗

λ+ ks
]

=(λ+ ks)
4det[λ(λ+ ks)I2N−4 −R∗B∗]. (18)

Hence, −ks is a stable eigenvalue of geometric multiplicity
at least 4. To find the other eigenvalues, we now analyze the
structure of the matrix R∗B∗. For the first three-agent case,
one has the corresponding sub-matrix

[RB](1:2,1:2) = F̃1 =

ï
a11 a12

a21 a22

ò
, (19)

where [RB](i:j,k:m) is the sub-matrix selecting rows from i to
j and columns from k to m from the matrix RB. Therefore,
it follows that

a11 = (N213 +N312)(−z12 − z13)−N213(z31 + z32),

a12 = N312(z21 + z23)−N213(z31 + z32),

a21 = N321(z12 + z13)−N123(z31 + z32),

a22 = (N321 +N123)(−z21 − z23)−N123(z31 + z32).

Since Pzijzij = 0 and N312z12 = 0, one obtains F̃1 =ï
N213(z21 + z23)−N312z13 (N312 +N213)z23

(N321 +N123)z13 N123(z13 + z12)−N321z23

ò
.

Substituting the definition of Njik given after (14) into a11

yields

a11 =
zT12Pz13(z21 + z23)

l13 sinα1
− zT13Pz12z13

l12 sinα1

=
pT12Pz13

l12l13 sinα1
(
p21

l21
+
p13 − p12

l23
)− pT13Pz12p13

l12l213 sinα1

=
1

sinα1
(−p

T
12Pz13p12

l12l13l23
− pT12Pz13p12

l212l13
− pT13Pz12p13

l12l213

)

= − sinα1

l12l13l23
(l212 + l12l23 + l13l23), (20)

where pij = pj − pi, i, j ∈ V . By using the law of sines
sinα1

l23
= sinα2

l13
= sinα3

l21
, one has

a11 = −(
sinα1

l12
+

sinα1

l13
+

sinα3

l13
) = −(g1 + f13), (21)

where we define fij =
sinαj
lij

, gi = (sinαi)(
1

li(i+1)
+

1
li(i−1)

), i, j ∈ {1, 2, 3}, and (i − 1) ∈ Ni, (i + 1) ∈ Ni.
Similarly, by using simplification and the law of sines, one
also has

a22 = − sinα2

l12l13l23
(l212 + l12l13 + l23l13) = −(g2 + f23). (22)

Then, we calculate

a12 = (
pT13Pz12

l12l13 sinα1
+

pT12Pz13
l12l13 sinα1

)
p21 + p13

l23

=
l213 − l212 −

pT13p12p
T
12p13

l212
+

pT12p13p
T
13p12

l213

l12l13l23 sinα1

=
(l213 − l212) sinα1

l12l13l23
. (23)

By using the law of sines sinα1

l23
= sinα2

l13
= sinα3

l21
, one has

a12 = f12 − f13. (24)

Similarly, one has a21 =
(l223−l

2
21) sinα2

l12l13l23
= f21−f23. Note that

the matrix F̃1 is equal to Fs defined in [18].
Then, writing down all the other elements in matrix RB, one

finds that RB has a block lower triangular structure. Consider
that for agent i, i ≥ 4, there are two desired angles α∗j1ij2 and
α∗j2ij3 where j1, j2, j3 < i are the three neighboring agents
whom the agent i will measure the directions with respect to.
Then, one has
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[RB](2i−3:2i−4,2i−3:2i−4) = F̃i = (25)ï
−(Nj1ij2 +Nj2ij1 )(zij1 + zij2 ) −(Nj1ij2 +Nj2ij1 )(zij2 + zij3 )
−(Nj2ij3 +Nj3ij2 )(zij1 + zij2 ) −(Nj2ij3 +Nj3ij2 )(zij2 + zij3 )

ò
.

By using similar simplification as for the first three agents,
one also has

F̃i =

ï
ω̄1 r̄12
r̄21 ω̄2

ò
= (26) − sinαj1ij2 ( 1
lij1

+ 1
lij2

)
sinαj2ij3
lij2

− sinαj1ij2+sinαj1ij3
lij1

sinαj1ij2
lij2

− sinαj2ij3+sinαj1ij3
lij3

− sinαj2ij3 ( 1
lij3

+ 1
lij2

)

 .
Now, we find that F̃i, 4 ≤ i ≤ N in (26) is equal to Fi defined

in [18]. By checking other matrix elements, one obtains that
the matrix R(X)B(X) in the closed-loop error dynamics (13)
of double-integrators is the same as the system matrix A(ea)
in the angle dynamics ėa = A(ea)ea of single-integrators
(ea denotes the column vector consisting of all the 2N − 4
independent angle errors), i.e.,

R(X)B(X) = A(ea) =


F̃1 0 0 · · · 0

∗∗ F̃4 0 · · · 0

∗∗ ∗∗ F̃5 · · · 0

· · · · · · · · ·
. . .

...
∗∗ ∗∗ ∗∗ ∗∗ F̃N

 (27)

which is an important and convenient fact for the later analysis.
We summarize this using the following remark about matrices
F̃i, i = 1, 4, ..., N .

Remark 2. Under the angle set A and control law (8),
R(X)B(X) in the closed-loop error dynamics (13) of double-
integrators is the same as the system matrix A(ea) in the angle
dynamics ėa = A(ea)ea of single-integrators [18]. Therefore,
according to [18, Theorems 7 and 8], the matrix F̃ ∗1 is always
Hurwitz and F̃ ∗i ,∀4 ≤ i ≤ N are Hurwitz if Assumption 1
holds.

In the case of single-integrators, A(ea)|ea=0 being Hur-
witz is sufficient to make the angle-based formation system
ea = A(ea)ea locally and exponentially stable. However, this
is not sufficient for double-integrators due to (18). Note that in
the case of double-integrators, according to (18) and (27), the
necessary and sufficient condition to make (16) exponentially
stable is that the solutions of

det[λ(λ+ ks)I2 − F̃ ∗i ] = 0, i = 1, 4, 5, · · · , N (28)

have negative real parts. While an arbitrary choice of positive
gains does not make the single-integrator system unstable, this
is not true for the double-integrator one as illustrated in the
following example.

Example 1. The desired angles: α∗123 = π/2, α∗312 =
π/4, α∗231 = π/4, α∗142 = arctan(1.2), α∗243 = arctan(0.3),
α∗251 = arctan(3/

√
10), α∗452 = arctan(1.2). The initial

states: p1(0) = [0.5, 0.1]T , p2(0) = [0.1, 1.2]T , p3(0) =
[−1.2, 0.2]T , p4(0) = [0.1, 2.0]T , p5(0) = [−1.4, 1.2]T , ṗ1(0)
= [−0.1,−0.2]T , ṗ2(0) = [0.2,−0.1]T , ṗ3(0) =
[−0.1,−0.1]T , ṗ4(0) = [−0.1, 0.4]T , ṗ5(0) = [0.1, 0.1]T .
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Fig. 3: Evolution of angle errors in Case 1.
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Fig. 4: Evolution of angle errors in Case 2.

Case 1: Single-integrator agent dynamics with Hurwitz
matrices F̃ ∗i , i = 1, 4, 5.

Case 2: Double-integrator agent dynamics with gain ks =
0.2.

Example 1 illustrates that the proper selection of velocity
damping gain ks in angle-controlled double-integrator system
is important. Now, we present the remaining results.

Lemma 1. Under Assumption 1, the matrix D∗1 is Hurwitz if
and only if

k2
sRe(λij) + (Im(λij))

2 < 0, j = 1, 2 (29)

holds for ∀i = 1, 4, · · · , N , where λi1 and λi2 are the two
conjugated eigenvalues of the matrix F̃ ∗i , and Re() and Im()
denote the real and imaginary parts of a complex number,
respectively.

Proof Note that one can always find a nonsingular matrix
P̄ ∈ C2×2 such that

F̃ ∗i = P̄

ï
λi1 ∗∗
0 λi2

ò
P̄−1, (30)

where ∗∗ represents an element which does not affect the
following analysis. Then, (28) can be written into

det[λ(λ+ ks)I2 − F̃ ∗i ]

= det{P̄
ï
λ(λ+ ks)− λi1 ∗∗

0 λ(λ+ ks)− λi2

ò
P̄−1}

= [λ(λ+ ks)− λi1][λ(λ+ ks)− λi2] (31)

which implies that the stability of (16) depends on the so-
lutions of λ(λ + ks) − λij = 0, i = 1, 4, · · · , N, j = 1, 2.
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Note that λij can be a complex number. According to [26,
Theorem 40.1], (29) is the necessary and sufficient condition
to guarantee that the two solutions of λ(λ + ks) − λij = 0
have negative real parts. �

Now, we further explore the condition (29) by calculat-
ing λi1 and λi2. According to Lemma 1, we have that if
Assumption 1 holds, then A(ea)|ea=0 = R∗B∗ is Hurwitz,
which implies that Re(λij) < 0,∀i = 1, 4, · · · , N, j = 1, 2.
According to Lemma 1, when Im(λij) = 0, λ(λ+ks)−λij = 0
will always have two solutions with negative real parts.
• For the case of Im(λi1) = Im(λi2) = 0 in the first three

agents, we require for F̃ ∗1 in (19) that

∆∗1 = (a∗11 − a∗22)2 + 4a∗12a
∗
21 (32)

= (g∗1 + f∗13 − g∗2 − f∗23)2 + 4(f∗12 − f∗13)(f∗21 − f∗23) ≥ 0.

By using the law of sines sinα∗
1

l∗23
=

sinα∗
2

l∗13
=

sinα∗
3

l∗12
and

simplification, we can conclude that (32) can be written as

(
sinα∗1
sinα∗2

+
sinα∗1
sinα∗3

+
sinα∗3
sinα∗2

− sinα∗2
sinα∗1

− sinα∗2
sinα∗3

− sinα∗3
sinα∗1

)2

+ 4(
sinα∗2
sinα∗3

− sinα∗3
sinα∗2

)(
sinα∗1
sinα∗3

− sinα∗3
sinα∗1

) ≥ 0. (33)

Similarly for agents 4 to N , to guarantee Im(λij) = 0, i =
4, · · · , N, j = 1, 2 for F̃i defined in (26), one has

∆∗i = (ω̄∗1 − ω̄∗2)2 + 4r̄∗12r̄
∗
21 ≥ 0. (34)

Multiplying l∗2ij2 at both sides of (34) and simplification yields

[(
sinα∗j2j1i
sinα∗ij2j1

+ 1) sinα∗j1ij2 − (
sinα∗ij3j2
sinα∗ij2j3

+ 1) sinα∗j2ij3 ]2

+ 4(
(sinα∗j1ij2 + sinα∗j1ij3) sinα∗j2j1i

sinα∗ij2j1
− sinα∗j2ij3)

× (
(sinα∗j2ij3 + sinα∗j1ij3) sinα∗ij3j2

sinα∗ij2j3
− sinα∗j1ij2) ≥ 0.

(35)

• For the case of Im(λij) 6= 0, since Im(λi1) = −Im(λi2)
and Re(λi1) = Re(λi2) < 0, the stability condition (29) can
be written as

∆∗i < 0 and 4k2
sRe(λij)−∆∗i < 0, (36)

where i = 1, 4, · · · , N , j = 1, 2, and Re(λij) =
a∗11+a∗22

2 when
i = 1 and Re(λij) =

ω̄∗
1+ω̄∗

2

2 when i ≥ 4. By combining the
above two cases, one obtains the conditions such that all the
eigenvalues of D∗1 have negative real parts, which implies that
D∗1 is Hurwitz. In summary, we has the following result.

Proposition 1. Consider that N agents of double-integrator
dynamics (1) are governed by (8) with the identical gain
ks, the initial errors X(0) are sufficiently small, the initial
distances are bounded away from zero, and Assumption 1
holds. The system (13) is locally stable for t ∈ [0, T1) if (29)
holds for ∀i = 1, 4, · · · , N . Moreover, (29) holds if and only
if for each i = 1, 4, · · · , N , ∆∗i ≥ 0 or (36) holds.

Note that if D∗1 is Hurwitz, X = 0 is the only equilibrium
of (16), which is exponentially stable. We now analyze the
evolution of the distance and angle errors among agents to

guarantee that the nonlinear closed-loop dynamics (13) is well-
defined because the collinearity case sinαjik = 0, (j, i, k) ∈
A and collision case lij = 0, lik = 0 will make (9) and (10)
invalid, respectively. For t ∈ [0, T1), since D∗1 is Hurwitz, for
an arbitrary positive definite matrix Q1 ∈ R(4N−4)×(4N−4),
there always exists a unique positive definite matrix P1 ∈
R(4N−4)×(4N−4) such that

D∗T1 P1 + P1D
∗
1 = −Q1. (37)

Now, for system (16), we design the Lyapunov function
candidate as

V1 = XTP1X. (38)

Taking the time-derivative of (38) yields

V̇1 = −XTQ1X ≤ −
λmin(Q1)

λmax(P1)
V1. (39)

Then, it follows that

‖X(t)‖2 ≤ V1(t)

λmin(P1)
≤ V1(0)

λmin(P1)
e
− λmin(Q1)

λmax(P1)
t
. (40)

Since ‖X(t)‖2 = e2
1+e2

2+e2
41+· · ·+e2

N1+e2
N2+

∑N
i=1 ‖vi‖2,

one has that for (j, i, k) ∈ A,

|αjik(t)− α∗jik| ≤ ‖X(t)‖ ≤
 

V1(0)

λmin(P1)
e
− λmin(Q1)

2λmax(P1)
t
,

(41)

‖vi(t)‖ ≤ ‖X(t)‖ ≤
 

V1(0)

λmin(P1)
e
− λmin(Q1)

2λmax(P1)
t
. (42)

Note that (41) implies

α∗jik −
 

V1(0)

λmin(P1)
≤ αjik(t) ≤ α∗jik +

 
V1(0)

λmin(P1)
. (43)

According to (42), one has

lij(t) = lij(0) +

∫ t

0

l̇ij(τ)dτ = lij(0) +

∫ t

0

zTij(vj − vi)dτ

≥ lij(0)−
∫ t

0

(‖vj‖+ ‖vi‖)dτ

≥ lij(0)− 4

 
V1(0)

λmin(P1)

λmax(P1)

λmin(Q1)
(1− e−

λmin(Q1)

2λmax(P1)
t
).

(44)

Therefore, if

α∗jik >

 
V1(0)

λmin(P1)
and α∗jik +

 
V1(0)

λmin(P1)
< π, (45)

then no collinearity happens among j, i, k. If

lij(0) > 4

 
V1(0)

λmin(P1)

λmax(P1)

λmin(Q1)
, (46)

no collision will happen between agents i and j.
Because α∗jik is bounded away from zero and π, and lij(0)

is bounded away from zero, and X(0), V1(0) are sufficiently
small, (45) and (46) holds for t ∈ [0, T1). Assume that there
exists a collision or collinearity in [T1,∞) and denote the first
time that it happens by T−2 . Then, one has the following two
cases.
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• Collision between i and j happens at T−2 . Since no collision
and collinearity happens in [0, T−2 ), the closed-loop system
is well-defined in [0, T−2 ). Following the calculations in (38)-

(44), one has that lij(T−2 ) ≥ lij(0)−4
√

V1(0)
λmin(P1)

λmax(P1)
λmin(Q1) > 0

which is bounded away from zero. This implies a contradiction
with the assumption that collision happens at T−2 . Thus, no
collision between agents i and j happens at T−2 .
•Collinearity among j, i, k happens at T−2 . Then, one has
that αjik(T−2 ) will approach zero or π. Since no collinearity
and collision happens in [0, T−2 ), using (43), one has that
αjik(T−2 ) is bounded away from zero and π which implies
a contradiction. Therefore, no collinearity will occur among
j, i, k at T−2 .

Since none of the above two cases is possible, no collision
and collinearity will happen in [0,∞) given that the initial
formation is sufficiently close to the desired formation. Then,
the system (13) is well-defined from t = 0 to +∞, under
which the asymptotic stability can be established by using the
same analysis from (9)-(36) for ∀t ∈ [0,∞). The following
theorem summarizes the main result.

Theorem 2. Consider that N agents of double-integrator
dynamics (1) are governed by (8) with the identical gain
ks, the initial errors X(0) are sufficiently small, the initial
distances are bounded away from zero, and Assumption 1
holds. The formation stabilization defined in (2)-(5) is locally
and asymptotically achieved for t ≥ 0 if (29) holds for
∀i = 1, 4, · · · , N .

Remark 3. Since the initial angles in Example 1 are close
to the desired angles, we can use the initial states given
in Example 1 to approximately check the stability of the
formations governed by the single-integrator agent dynamics
and the double-integrator agent dynamics, respectively.

B. The case of distinct control gains

The designed formation stabilization law (8) in the previous
section requires all agents to have the identical velocity feed-
back gains ks. To adapt for different actuator characteristics,
e.g., speed constraints in different agents, in this subsection
we design the formation stabilization law which allows each
agent to have distinct control gain ki, namely the control input
for agent i, i = 1, · · · , N is given by

ui = −kivi −
∑

(j,i,k)∈A
(αjik − α∗jik)(zij + zik), (47)

where ki > 0 and ki can be different from kj . By choosing the
same system state variable X in (12), one has the close-loop
dynamics of X

Ẋ =

ï
0(2N−4)×(2N−4) R(X)

B(X) −diag{ki} ⊗ I2

ò
X = D2(X)X,

(48)
where diag{ki} = diag{k1, · · · , kN} ∈ RN×N . To prove
the local stability of (48), we consider the characteristic
polynomial of D∗2 again, that is

|λI4N−4 −D∗2 | =
∣∣∣∣λI2N−4 −R∗
−B∗ diag{λ+ ki} ⊗ I2

∣∣∣∣ , (49)

where diag{λ+ ki} = diag{λ+ k1, · · · , λ+ kN}. According
to Schur complement theorem, one has

|λI4N−4 −D∗2 | =
N∏
i=1

{(λ+ ki)det[λI2N−4 −R∗diag{(λ+ ki)
−1} ⊗ I2B∗]}.

By multiplying matrix B∗ with diag{(λ+ ki)
−1} ⊗ I2 then

with matrix R∗, it can be observed that

R∗diag{(λ+ ki)
−1} ⊗ I2B∗

=



F̄ ∗1 0 0 · · · 0

∗∗ F̃∗
4

λ+k4
0 · · · 0

∗∗ ∗∗ F̃∗
5

λ+k5
· · · 0

· · · · · · · · ·
. . .

...

∗∗ ∗∗ ∗∗ ∗∗ F̃∗
N

λ+kN

 , (50)

where F̄ ∗1 = F̄1(X)|X=0, F̄1(X) =

ï
ã11 ã12

ã21 ã22

ò
and

ã11 =
(N213 +N312)(−z12 − z13)

λ+ k1
+
N213(z31 + z32)

λ+ k3
,

ã12 =
N312(z21 + z23)

λ+ k2
+
N213(z31 + z32)

λ+ k3
,

ã21 =
(N321 +N123)(−z21 − z23)

λ+ k2
+
N123(z31 + z32)

λ+ k3
,

ã22 =
(N321 +N123)(−z21 − z23)

λ+ k2
+
N123(z31 + z32)

λ+ k3
.

Then, it follows that

|λI4N−4 −D∗2 | ={
3∏
i=1

(λ+ ki)}det(λI2 − F̄ ∗1 )

× {
N∏
i=4

det[λ(λ+ ki)I2 − F̃ ∗i ]}. (51)

Note that the stability condition of {
∏N
i=4 det[λ(λ + ki)I2 −

F̄ ∗i ]} in (51) is the same as (28), which implies that there is
no difference for the stability condition when agents 4 to N
have identical or distinct velocity damping gains. Then, the
stability condition for agents 4 to N can be described as

k2
i Re(λij) + (Im(λij))

2 < 0, i = 4, · · · , N, j = 1, 2 (52)

which holds when (35) or (36) holds for i = 4, · · · , N . But
this is not the case for the first three agents. For the first
three agents, different from (28), the corresponding element
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in {
∏3
i=1(λ+ ki)}(λI2 − F̄ ∗1 ) =

ï
ā∗11 ā∗12

ā∗21 ā∗22

ò
becomes that

ā∗11 =[λ(λ+ k1)(λ+ k2)(λ+ k3)

− (N213 +N312)(−z12 − z13)(λ+ k2)(λ+ k3)

−N213(z31 + z32)(λ+ k1)(λ+ k2)]|X=0,

ā∗22 =[λ(λ+ k1)(λ+ k2)(λ+ k3)

− (N321 +N123)(−z21 − z23)(λ+ k1)(λ+ k3)

−N123(z31 + z32)(λ+ k1)(λ+ k2)]|X=0,

ā∗12 =− [N312(z21 + z23)(λ+ k1)(λ+ k3)

−N213(z31 + z32)(λ+ k1)(λ+ k2)]|X=0,

ā∗21 =− [(N321 +N123)(−z21 − z23)(λ+ k1)(λ+ k3)

−N123(z31 + z32)(λ+ k1)(λ+ k2)]|X=0.

By letting {
∏3
i=1(λ+ ki)}det(λI2 − F̄ ∗1 ) = 0, the stability

condition of the first three agents becomes that the 8 solutions
of the following algebraic equation all have negative real parts

ā∗11ā
∗
22 − ā∗12ā

∗
21 = b8λ

8 + b7λ
7 + · · ·+ b1λ+ b0 = 0 (53)

which can be checked by Routh stability criterion [26, The-
orem 40.1] or some numerical tools (e.g., Matlab). But the
explicit solution of (53) is hard to be obtained due to the high
order of the equation (53). The algebraic equation (53) is re-
lated to the desired triangular formation shape and the velocity
damping gains k1, k2, k3, which implies that an inappropriate
selection of the first three agents’ velocity damping gains may
cause the system unstable.

Finally, we summarize the above discussion into the follow-
ing result.

Theorem 3. Consider that N agents governed by (47) with
distinct gains ki, the initial errors X(0) are sufficient small,
initial distances are bounded away from zero and Assumption
1 holds. The formation stabilization defined in (2)-(5) can be
locally achieved if all the solutions of (53) have negative real
parts and (52) holds. Moreover, (52) holds if and only if for
each i = 4, · · · , N , (35) or (36) holds.

The proof of theorem is followed by the above analysis. The
analysis of collision and collinearity is similar to Theorem 1.

Remark 4. The formation stabilization laws (8) and (47) can
be implemented in each agent’s local coordinate frame, i.e.,
the alignment of all agents’ local coordinate frames is not
needed. This can be obtained straightforwardly by following
[18, Remark 6].

IV. FORMATION MANEUVERING

Different from the case of formation stabilization, the
maneuvering of angle rigid formation requires all agents to
not only achieve the desired formation shape, but also move
with the desired collective motion in terms of translation,
rotation and scaling. Because of the cascading construction
of the desired angle rigid formation in Subsection 2.3, the
rotational and scaling maneuvering can be controlled by the
first triangular formation formed by the first three agents.
According to (7), given a nonzero desired relative position
δ∗13(t) from agent 1 to agent 3, the desired orientation and scale

of the formation can be determined by δ∗13(t)/‖δ∗13(t)‖ and
‖δ∗13(t)‖, respectively. Therefore, the objective of this section
is to achieve the desired angles and the same translational
maneuvering velocity v∗c (t) ∈ R2 for all the agents, and
maintain the desired relative position δ∗13(t) from agent 1 to
agent 3. Let {t1, t2, ..., tn} be the instants that δ∗13(t) switches
its values where n ∈ N+. Then, we present the assumption on
the change of δ∗13(t).

Assumption 2. Each agent has the knowledge of v∗c , v̇
∗
c .

The desired relative position δ∗13(t) satisfies three properties:
a) δ∗13(t) is piecewise-constant and bounded, and δ∗13(t) 6=
0,∀t > 0; b) the number of its abrupt jumps is finite, c) the
neighboring change of δ∗13(t) is bounded and sufficiently small,
i.e., ‖δ∗13(t−i ) − δ∗13(t+i )‖ ≤ ε, ∀i = 1, 2, ..., n where ε is a
positive and small number.

Remark 5. The agents can either communicate or employ
a consensus-based finite-time estimator to obtain v∗c and v̇∗c .
Compared to the previously proposed maneuvering pattern
[19], [27] where the rotational or scaling maneuvering speed
is constant for all time, the maneuvering pattern defined in this
paper is more practical since δ∗13(t) only needs to be changed
when the rotational or scaling maneuvering is necessary for
the execution of the current task. Moreover, the requirement
that ε should be sufficiently small can be fulfilled in practice
by changing δ∗13(t) with longer time tn and more steps n. This
is equivalent to requiring that the rotational and scaling speed
should not be very large, which is similarly needed in [11],
[19], [27].

Now, we design the maneuvering control algorithm to be

ui(t) = v̇∗c (t)− ks(vi(t)− v∗c )− kmi(p3(t)− p1(t)− δ∗13(t))

−
∑

(j,i,k)∈A
(αjik(t)− α∗jik)(zij(t) + zik(t)), (54)

where kmi = 1 if i = 3, and kmi = 0 otherwise. Firstly,
we analyze the convergence of the formation within the time
interval t ∈ [0, t1] where δ∗13(t) is constant. We need to obtain
the angle error dynamics, velocity error dynamics, and the
relative position error dynamics of the closed-loop system
under the designed maneuvering control algorithm (54). In
this maneuvering case, we define the system state variables

Y = [e1, e2, e41, e42, ..., eN1, eN2, p̃
T
13, v

T
1 −v∗Tc , ..., vTN−v∗Tc ]T

(55)
where p̃13 = p3 − p1 − δ∗13 and Y ∈ R4N−2. Our
objective is to prove that Y = 0 is a locally stable
equilibrium under (54). Similar to the formation stabiliza-
tion case, p̈i(0) is bounded if the initial velocity vi(0)
is bounded and lij(0), lik(0), sinαjik(0) are bounded away
from zero. Therefore, ∃T2 > 0, T2 ≤ t1 such that
lij(t), lik(t), sinαjik(t),∀(j, i, k) ∈ A are bounded away from
zero for t ∈ [0, T2). We first analyze the error dynamics for
t ∈ [0, T2). According to (11), one has

α̇jik =− zTik
Pzij

lij sinαjik
vj − zTij

Pzik
lik sinαjik

vk

+ (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)vi. (56)
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Note that the velocity error variable in this case is vi − v∗c
instead of vi. Therefore, we rewrite (56) into

α̇jik =− zTik
Pzij

lij sinαjik
(vj − v∗c )− zTij

Pzik
lik sinαjik

(vk − v∗c )

+ (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)(vi − v∗c )

− zTik
Pzij

lij sinαjik
v∗c − zTij

Pzik
lik sinαjik

v∗c

+ (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)v∗c . (57)

In the following, we investigate the effect of the translational
maneuvering term v∗c on the angle dynamics α̇jik in (57). Note
that

− zTik
Pzij

lij sinαjik
v∗c − zTij

Pzik
lik sinαjik

v∗c

+ (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)v∗c = 0. (58)

Therefore, (57)-(58) imply that the translational maneuver-
ing has no effect on the angle dynamics α̇jik, (j, i, k) ∈ A
in (57). This is because the whole formation’s translation will
not change the interior angle αjik. Therefore, one still has the
similar angle dynamics α̇jik in (57) as the case of formation
stabilization (10).

Then, we analyze the velocity error dynamics of vi − v∗c .
Using (54), one has

v̇i − v̇∗c =− ks(vi − v∗c )− kmi (p3 − p1 − δ∗13)

−
∑

(j,i,k)∈A
(αjik − α∗jik)(zij + zik)

The dynamics of the relative position errors can be described
by

˙̃p13 = v3 − v∗c − (v1 − v∗c ) (59)

Summarizing (57)-(59) yields the overall dynamics

Ẏ =

0(2N−4)×(2N−4) 0 R(Y )
0 02×2 K2

B(Y ) K1 −ksI2N

Y = D3(Y )Y,

(60)

where R(Y ) and B(Y ) have the same definitions as (14) and
(15), respectively, K1 = [02×2; 02×2;−I2; 02×2; ...; 02×2] ∈
R2N×2 and K2 = [−I2, 02×2, I2, 02×2, ..., 02×2] ∈ R2×2N .
Using a similar linearization step for (60) as (13)-(16), the
linearized dynamics of (60) around the equilibrium Y = 0
can be described by

Ẏ =

0(2N−4)×(2N−4) 0 R̄∗

0 02×2 K2

B̄∗ K1 −ksI2N

Y = D∗3Y, (61)

where R̄∗ = R(Y )|Y=0 and B̄∗ = B(Y )|Y=0 which are
different from R∗ and B∗, respectively, due to the different
inter-agent distances at the equilibrium point. Following the

calculation method in (18), the characteristic polynomial of
D∗3 can be written as

|λI4N−2 −D∗3 | =

∣∣∣∣∣∣
λI(2N−4) 0 −R̄∗

0 λI2 −K2

−B̄∗ −K1 (λ+ ks)I2N

∣∣∣∣∣∣
=(λ+ ks)

2det
Å
λ(λ+ ks)I2N−2 −

ï
R̄∗B̄∗ R̄∗K1

K2B̄
∗ K2K1

òã
=(λ+ ks)

2det
ï
λ(λ+ ks)I2N−4 − R̄∗B̄∗ −R̄∗K1

−K2B̄
∗ (λ2 + ksλ+ 1)I2

ò
=(λ+ ks)

2(λ2 + ksλ+ 1)2

× det[λ(λ+ ks)I2N−4 − R̄∗B̄∗ −
R̄∗K1K2B̄

∗

λ2 + ksλ+ 1
] (62)

Substituting the definitions of K1,K2 into (62), one has

R̄∗K1K2B̄
∗ =


F̂ ∗1 0 · · · 0
∗∗ 0 · · · 0

∗∗ ∗∗
. . . 0

∗∗ ∗∗ · · · 0

 , (63)

F̂ ∗1 =

ï
N∗213(z∗32 + z∗12) N∗213z

∗
32

N∗123z
∗
12 N∗123z

∗
31

ò
where ∗∗ in the matrix R̄∗K1K2B̄

∗ represents some elements
that will not change the following analysis. According to the
matrix structure in (62)-(63), one has that compared to the dy-
namics (16), the dynamics of p̃12 in (61) only affect the angle
error dynamics of the first three agents, and does not affect the
remaining agents’ angle error dynamics. Using the fact (λ2 +
ksλ + 1)2 = det

(
diag[λ2 + ksλ+ 1, λ2 + ksλ+ 1, 1, ..., 1]

)
for (62), one has

|λI4N−2 −D∗3 | = (λ+ ks)
2{

N∏
i=4

det[λ(λ+ ki)I2 − F̃ ∗i ]}

× det{(λ2 + ksλ+ 1)[λ(λ+ ks)I2 − F̃ ∗1 ]− F̂ ∗1 }
(64)

Therefore, D∗3 has two eigenvalues −ks,−ks, and 4(N − 3)
eigenvalues lying in

∏N
i=4 det[λ(λ+ ki)I2 − F̃ ∗i ]} = 0, and 8

eigenvalues lying in det{(λ2 + ksλ+ 1)[λ(λ+ ks)I2 − F̃ ∗1 ]−
F̂ ∗1 } = 0. Now, we are ready to present the main result.

Theorem 4. Consider that N agents of double-integrator
agent dynamics (1) are governed by (54), the initial angle and
velocity errors are sufficiently small, the initial distances are
bounded away from zero, Assumption 1 holds and t ∈ [0, t1].
The formation maneuvering errors defined in (3)-(7) will be
locally exponentially converge if Assumption 2 and (29) hold
for i = 4, ..., N , and the solutions of det{(λ2 +ksλ+1)[λ(λ+
ks)I2 − F̃ ∗1 ]− F̂ ∗1 } = 0 have negative real parts.

Proof Under the assumptions in Theorem 4, all the eigen-
values of D∗3 have negative real parts, which implies the local
and exponential stability of (60) when t ∈ [0, T2). Now, we
extend T2 to t1 to establish the stability of (60) for t ∈ [0, t1].
Firstly, one can construct a Lyapunov function V2 = Y TP2Y
where P2 = PT2 > 0 satisfying D∗T3 P2 + P2D

∗
3 = −Q2 < 0.

Similar to (38)-(45), one has that no collinearity will happen
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since (41) and (45) still hold. The analysis for the distance
change lij is slightly different. Note that (42) is changed to

‖vi − v∗c‖ ≤ ‖Y (t)‖ ≤
 

V2(0)

λmin(P2)
e
− λmin(Q2)

2λmax(P2)
t
. (65)

Also, (44) is changed to

lij(t) = lij(0) +

∫ t

0

zTij(vj − vi)dτ

≥ lij(0)−
∫ t

0

(‖vj − v∗c‖+ ‖vi − v∗c‖)dτ

≥ lij(0)− 4

 
V2(0)

λmin(P2)

λmax(P2)

λmin(Q2)
(1− e−

λmin(Q2)

2λmax(P2)
t
), (66)

Therefore, if lij(0) > 4
√

V2(0)
λmin(P2)

λmax(P2)
λmin(Q2) , then lij(t) > 0.

Since V2(0) is sufficiently small and lij(0) is bounded away
from zero, T2 can be extended to t1. Then, it follows that
limt→∞ Y (t) = 0, which implies that the formation maneu-
vering errors defined in (3)-(7) will be locally exponentially
converge for t ∈ [0, t1]. By summarizing the above analysis,
we come to the conclusion that the transnational formation
maneuvering and desired constant relative position δ∗12 are
achieved under (54) for t ∈ [0, t1]. �

Now, we discuss the case where t ∈ [0,∞) and δ∗12(t)
is piecewise-constant. Since the control input ui(t) in (54)
is piecewise-continuous, the integration of ui(t), i.e., agent
i’s velocity vi(t), is continuous, which implies that the
evolution of velocity error vi − v∗c (t) is also continuous.
Also, the integration of vi(t), i.e., agent i’s position pi(t),
is continuous, which implies that the evolution of angle error
αjik − α∗jik, {j, k} ∈ Ni is also continuous. Therefore, under
Assumption 2, both the velocity errors and the angle errors
converge to zero. For the relative position error, one has

‖p̃13(t+i )− p̃13(t−i )‖
=‖p13(t+i )− δ∗12(t+i )− p13(t−i ) + δ∗12(t−i )‖
≤‖δ∗13(t+i )− δ∗13(t−i )‖ ≤ ε (67)

where i = 1, 2, .., n and we have used the fact that p13(t+i ) =
p13(t−i ) since p1(t), p3(t) are continuous. Using Assumption
2, one has that ‖p̃13(t+i )−p̃13(t−i )‖ is sufficiently small. There-
fore, if p̃13(0) is sufficiently small, then p̃13(t+i ),∀i = 1, ..., n
is sufficiently small. Then, for each t ∈ [ti, ti+1], one can
always employ a similar analysis from (60)-(66) to obtain the
convergence of Y (t) within t ∈ [ti, ti+1]. Since the number
of abrupt jump of δ13(t) are finite, one has that after the final
jump at t = tn, Y (t) will converge to zero as t→∞.

Remark 6. In the stabilization of distance rigid formations
with double-integrator agent dynamics [13], the fact that
their control law is the gradient of a potential function helps
their stability analysis, see e.g., the multiplication of rigidity
matrix and its transpose being positive semi-definite, and nice
structure in the Jacobian matrix of linearized system. However,
for the control law (8) designed for the stabilization of angle
rigid formations with double-integrator agent dynamics, it can
be proved that it is not a gradient-based control law due to
the asymmetric/directed direction measurements, which makes

its stability analysis challenging and this work essential. One
of the main contributions of this paper is the finding that the
relationship between single-integrator and double-integrator
agent dynamics for angle rigid formations is underscored by
R(p)B(p) = A(ea) obtained in (27). In addition, according
to the local unique determination in Remark 1, the nonlinear
dynamics (13) is indeed not globally stable.

Remark 7. To implement the formation maneuvering laws
(54) and (54) according to all agents’ local coordinate frames,
the desired translational maneuvering velocity v∗c needs to
be described in each agent’s local coordinate frame in the
design stage. But this is not required for rotation and scaling
maneuverings since δ∗13 can be described in agent 3’s local co-
ordinate frame. In addition, given the desired angles and δ∗13,
the solutions of det{(λ2+ksλ+1)[λ(λ+ks)I2−F̃ ∗1 ]−F̂ ∗1 } = 0
in Theorem 4 can be checked. The reason we choose to control
the relative position between agents 1 and 3 instead of agents
1 and 2 or agents 2 and 3 is that in the Step 2 of constructing
the desired formation, we select the combination of angles
α142, α243, under which the edges 12 and 23 lie inside 4143,
and the edge 13 lies in the outer boundary of 4143. Although
controlling arbitrary one of these three edges can guarantee
the closed-loop dynamics stable, simulation examples show
that controlling the edge 13 comes with smaller overshoot than
controlling the other two edges. We will consider the optimal
selection of the controlling edge as our future work.

V. SIMULATION EXAMPLES

We use numerical simulation examples to illustrate the
effectiveness of the proposed formation stabilization and ma-
neuvering control algorithms.

A. Formation stabilization

The simulation parameters including agents’ initial states
and desired angles are the same as those given in Example 1 of
Subsection IV.1. It can be checked that the stability condition
(29) holds when the identical velocity damping gain is chosen
as ks = 2.

Under the formation control law (8) with ks = 2, the
simulation results are shown in Figs. 5-6. According to the
formation stabilization trajectories shown in Fig. 5, the desired
angle rigid formation is achieved. According to the evolution
of angle errors shown in Fig. 6, all the angle errors converge
to zero within 20 seconds, in which the maximum initial angle
error is 0.7.

B. Formation maneuvering

We consider the formation maneuvering of four agents
to achieve the exploration of an unknown environ-
ment. The agents’ desired angles are the same as those
given in the simulation part of [27]. The agents’ ini-
tial states are chosen as p1(0) = [0;−4], p2(0) =
[−1;−4], ṗ3(0) = [−1.5;−3], p4(0) = [−1.4;−4.9], ṗ1(0) =
[0.1;−0.1], ṗ2(0) = [0.1;−0.1], ṗ3(0) = [−0.1; 0.1], ṗ4(0) =
[−0.1; 0.1]. The control gain is selected as ks = 10.
The desired translational velocity is selected as: v∗c (t) =
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Fig. 5: The formation stabilization trajectories.
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Fig. 6: The angle errors in formation stabilization.

[0; 0.82], t ∈ [0, 4]; v∗c (t) = [0.05∗t; 0.82−0.82(t−4)/20], t ∈
[4, 24]; v∗c (t) = [0.2; 0], t > 24. The piecewise-constant
δ∗13(t) is shown in Fig. 7. Under the control law (54), the
maneuvering trajectories and the evolution of angle errors are
shown in Figs. 8-9, respectively.

According to Figs. 7-9, one sees that the formation ma-
neuvering with translation, rotation and scaling is achieved
under the proposed law (54). Although δ∗13(t) is piecewise-
constant in Fig. 7, the angle errors in Fig. 9 are continuous, and
converge to zero at 150s after the final scaling maneuvering at
42s. According to Fig. 7, the formation rotates π/2 from 4s to
24s, and shrinks to half of the original formation at 33s, which
demonstrates the effectiveness of the proposed maneuvering
approach. Compared to the the maneuvering approach for
single-integrators in [11], [27], a specified rotating angle and
scaling size can be achieved in this approach.

VI. CONCLUSION

This paper has designed control algorithms to stabilize
and maneuver angle rigid formations governed by double-
integrator dynamics. For the stabilization case, each agent
only needs to measure its own velocity and directions with
respect to its neighbors. The proposed formation stabilization
control law can be implemented in agents’ local coordinate
frames, i.e., the alignment of agents’ coordinate frames is
not needed. For the maneuvering case, in addition to the
sensor measurements required in the stabilization case, one
of the first three agents must measure its relative position
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Fig. 7: The change of piecewise-constant δ∗13(t).
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Fig. 8: The formation maneuvering trajectories when conduct-
ing the exploration of the unknown environment.
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Fig. 9: The evolution of angle errors.

with respect to the maneuvering reference agent such that the
desired translational, rotational and scaling maneuvering can
be achieved. Compared to the single-integrator agents, the sta-
bilization and maneuvering of double-integrators are closer to
real applications. . Future work will focus on designing angle-
based formation laws to guarantee almost global stability.
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