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In this work we investigated the dynamical actuation of microsystems with non-identical material 
components in the presence of non-equilibrium Casimir forces between Au and highly doped SiC that 
show significant difference in conductivity. For autonomous systems, the bifurcation and phase space 
analysis revealed that when the less conductive material operates at higher temperature, then at short 
separations the non-equilibrium force causes instability. Furthermore, for periodically driven systems 
the Melnikov function and Poincare portrait analysis showed that the devices are more robust against 
chaotic motion when the less conductive component is at low temperature at short separations. At larger 
separations chaotic behavior is more likely to occur for systems with the more conductive component at 
higher temperature.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dispersion forces are genuine in nature and originate form quantum fluctuations of the electromagnetic field between uncharged bodies 
in vacuum and/or in a material medium. These forces cover both the van der Waals (short-range) and Casimir (long-range) asymptotic 
regimes [1–5]. By the advancement in micro/nanofabrication and consequent reduction of the scale of microdevices into the submicron 
range, the role of Casimir and electrostatic forces could become comparable [6–9]. Due to large surface areas and separation gaps small 
enough, it is feasible the Casimir force to play a remarkable role and under certain conditions to drag mechanical elements together leading 
to permanent adhesion and device malfunction [6–9]. Hence, by miniaturizing the micro electromechanical systems (MEMS) technology 
towards nano electromechanical systems (NEMS), the correct estimation of the magnitude of the Casimir force as an omnipresent force 
between components is essential for the design of micro/nano systems [6–9].

The Casimir force was proposed in 1948 by the Dutch physicist Hendrik Casimir [10], who recognized that the force is due to pertur-
bation of the zero-point energy by assuming two perfectly reflecting parallel plates. Soon after, Lifshitz and co-workers in the 1950s [11]
presented a general macroscopic theory, which elaborates the forces via the dielectric response of the interacting bodies and the inter-
vening medium relating the dissipative properties of the plates (due to optical absorption by many microscopic dipoles) and the resulting 
electromagnetic (EM) fluctuations. This theory covers both the Casimir (long-range) and van der Waals (short-range) regimes [11–14]. 
Furthermore, the dependence of the Casimir force on material optical properties provides the opportunity to tailor the force using the 
appropriate choice of the interacting materials [15–24]. Besides the optical properties, extensive investigations have been done to reveal 
the effect of corrugation of surface [25–27], thermal effect [28–30] and surface roughness [31] on the magnitude of the Casimir force. So 
far, some studies have shown the strong dependency of the material optical properties on the thermal effect, which consequently defines 
the magnitude of both the thermal equilibrium and non-equilibrium Casimir forces.

Although the role of the thermal effect on the dynamic stability of devices consisting of identical materials has been explored [32,33], 
it remains unexplored how the device performance consisting of non-identical bodies can be affected by thermal fluctuation under non-
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Fig. 1. Schematic of the microdevice under consideration, where the acting forces on the moving plate are illustrated.

equilibrium conditions. This leads us to investigate the non-equilibrium Casimir force in MEMS with significant difference in the optical 
properties between its interacting components. Hence, we will address how the low and high conductive components can influence 
the non-equilibrium Casimir force and consequently the actuation dynamics of microdevices by changing their temperature and taking 
precisely into account the optical properties at low frequencies. For the latter the measurement of the optical data is not feasible and 
extrapolation in necessary [33–35]. Moreover, in order to have a realistic view for the study and design of MEMS, it is crucial to take 
into account the chaotic motion as an unavoidable problem that can lead to device malfunction. Therefore, we have studied the con-
ditions that can enhance the occurrence of chaotic behavior in devices, which could lead to irreversible adhesion between components 
during long-term operation. Eventually, this study can provide substantial knowledge for the modeling a microsystem that operate under 
non-equilibrium conditions, and add the novel possibility to device design by considering the precise modeling of the material optical 
properties.

2. Optical properties of materials and modeling of dynamical systems

In order to cover a wide range of materials with diverse optical properties, we have chosen Au as a good metal conductor [4,5,
20], and nitrogen doped SiC as a poor conductor though it is a material suitable for operation in harsh environments [36,37]. In the 
Drude model, using the plasma frequency ωp and the damping factor ωτ , which are obtained from the analysis of the optical data 
(see Fig. A1, Supplemental Material), the static conductivity of the materials σ = (ω2

p/ωτ )/4π can be estimated. For SiC we obtained 
ω2

p/ωτ = 0.4 eV [36], and for Au ω2
p/ωτ = 1600 eV [20,21]. These values demonstrate a conductivity contrast for Au/SiC more than three 

orders of magnitude. Subsequently, from the measured optical properties we calculated the corresponding dielectric functions at imaginary 
frequencies ε(iξ) as in (see Supplemental Material Appendix A) [32,33], which are essential for the calculation of the Casimir force via 
Lifshitz theory (see Supplemental Material Appendix B).

Furthermore, in order to analyze the effect of the non-equilibrium Casimir force on the dynamics performance, it is assumed a sim-
plified MEMS composed from two electrodes operating at different temperature [1–5]. The fixed electrode is assumed to be coated 
with SiC, and the moving one is with Au (see Fig. 1). The latter is supported from a mechanical spring that can be described by the 
Hooke’s law. The elastic restoring force Fres = K(d − z) that originates from the spring with stiffness K, operates against the attrac-
tive Casimir force. The non-equilibrium Casimir force between two non-identical components at temperatures T1 and T2 is denoted as 
FCas (T1, T2, z) = F0 (z) + Fneq

th (T1, T2, z). Here the first term describes the zero temperature contribution whereas the second part, 
which consists of propagating Fneq, PW

th (T, z) and evanescent waves Fneq, EW
th (T, z), describes the thermal fluctuations (see Supplemental 

Material Appendix A). It is necessary to mention that we are considering significantly thick electrodes (than the mean free path of charge 
carriers), and the components of the Casimir force are obtained using the Lifshitz theory between two half spaces. Moreover, in this study 
the dielectric function is independent on temperature and all the data have been measured at room temperature. Thus, in order to present 
more accurate data analysis, it is necessary to consider the influence of the temperature in ε(ω) [38]. Eventually, the equation of motion 
for the actuating system (see Fig. 1) is given by

M
d2z

dt2
+

(
Mω0

Q

)
dz

dt
= −Fres + FCas + γ F ext

0 cos (ωt) . (1)

In Eq. (1) M is the mass of the moving plate, and the term (Mω0/Q )(dz/dt) defines the intrinsic energy dissipation of the system. The 
conservative system is supposed to be a MEMS with a high quality factor Q > 104 [39] so that energy dissipation effects is negligible. 
The frequency ω0 is considered similar to the dynamic mode atomic force microscope cantilevers or other MEMS (typically ω = 300 kH z) 
[39]. The parameter γ describes the difference between the conservative autonomous operating system (γ = 0), and the non-conservative 
driven system by an applied periodic force and dissipation effects using a finite quality factor Q (γ = 1). In addition, we considered 
surfaces without roughness. This is because by scaling down into nanometers the roughness yields remarkable contribution at separations 
smaller than 100 nm, while in our analysis we considered larger initial separations between the components in the ranges 200 nm 

< d < 4500 nm. Moreover, the lateral dimensions of the interacting plates are assumed to be Lx = Ly = 10 μm.
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Fig. 2. Plots of the force ratio F (= F0 + F neq
th )/F0 vs. λ (z/d with d = 4500 nm) under non-equilibrium conditions for the Au- SiC interacting systems. The temperature of the 

components and the method of extrapolation at low frequencies are indicated.

3. Results and discussion

3.1. Out of thermal equilibrium Casimir force between Au-SiC systems

The first part of this study is devoted to calculations of the Casimir force between non-identical interacting components at different 
temperatures. The results clearly illustrate that by interchanging the temperature of the non-identical components can induce a strong 
change in the non-equilibrium force [28]. Here, we considered a large temperature difference between the interacting components in order 
to show more clearly how the optical properties can influence the contribution of the non-equilibrium thermal force. Fig. 2, which displays 
the relative values between total force (F0 + Fneq

th ) with respect to the part that corresponds to zero point fluctuation (F0) versus surface 
separation, shows that the Casimir force is stronger at higher temperature and short separations when a less conductive component is 
present. However, at large separations the opposite takes place and the temperature of the more conductive component plays key role 
on the magnitude of the Casimir force. It should be clarified that the evanescent components (Fneq, EW

th ) yields the major contribution to 
the force at short separations, while it decays quickly by increasing the separation and at larger separations the propagating component 
(Fneq, PW

th ) plays crucial role. The calculations indicate that the evanescent components reveal significant dependence on the SiC component 
at higher temperature, while the propagating part reveals more sensitivity to the Au component. This part is significant and preserves its 
strength over wider separations, when Au is placed at higher temperature. And it is also negative at large separations if the temperature 
of SiC becomes higher than that of Au. As a result F/F0 < 1 at large separations when the hot component is SiC.

In any case, the differences between the Au-Au and the Au-SiC systems (see also Fig. A2, Supplemental Material Appendix B) are 
significant, and possibly can be measured at separations above 200 nm taking into account the successful force measurements at larger 
separations for Au-Au interacting bodies [3–5,40]. Finally, the sensitivity of the force to the Drude and Plasma models (see Supplemental 
Material Appendix A) is significantly stronger in MEMS where the non-equilibrium thermal condition varies by changing the temperature 
of its poorly conducting component. As Figs. 2a and 2b indicate, the influence of the thermal correction becomes weaker by for the Plasma 
model. This is because there is no extrapolation of the dielectric function at rear low frequencies, which eventually lead to reduction of 
the differences in these ranges.

3.2. Conservative systems (γ = 0)

For the conservative system it is convenient to introduce the bifurcation parameter δCas = Fm
Cas/kd [41–43] which is the ratio of the 

minimum of Casimir force to the maximum restoring force. The parameter δCas determines when there is a closed orbit solution for the 
motion of the microdevice indicating the existence of sufficient restoring force to prevent the occurrence of permanent adhesion [42]. 

Using δCas, Eq. (1) can be rewritten in this form (for γ = 0)

3
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Fig. 3. Bifurcation diagrams δCas vs λ (= z/d) for the Au-SiC system under non-equilibrium conditions, where the Au component is fixed at 300 K and the temperature of SiC 
is indicated. For the left column (a and b) the Drude model is used, and for the right column (c and d) the Plasma model. In the upper row (a and c) the initial distance (d) 
is 4200 nm, and for lower row (b and d) it is 1900 nm. The solid and dashed lines represent the unstable and stable equilibrium points, respectively.

d2λ

dT2
+

(
1

Q

)
dλ

dT
= − (1 − λ) + δCas

FCas

Fm
Cas

+ ε
F ext

0

FMax
res

cos

(
ω

ω0
T

)
(2)

with λ = z/d and T = ω0t. The bifurcation diagrams in Figs. 3 and 4 display how the effect of the thermal corrections on the unstable and 
stable regions depends on the temperature and the conductivity of the interacting components. The two equilibria points appear when 
the restoring force becomes sufficiently strong so that δCas < δMax

Cas . The stationary points closest to the initial separation (λ = 1) are stable 
centers with closed orbit or equivalently periodic solutions around them. Furthermore, the so-called unstable points are located near to 
the fixed plate, and the motion around them will lead to irreversible adhesion on the fixed electrode due to the Casimir force. These plots 
indicate that the thermal contribution makes remarkable changes on the actuation of MEMS. This is also reflected in Fig. 5 that shows 
how λc (corresponding to δCas

Max) changes for different temperatures of the less conductive (SiC) component.
In Fig. 3a and 3b, using the Drude model, the more conductive component is fixed at 300 K and the temperature of the less conductive 

part varies from low to high temperatures. It is obvious by considering the initial short separation (Fig. 3b), then an increasing temperature 
of Au leads to enlargement of the stable performance, while these changes become weaker in Fig. 3d depending on the model used for 
the extrapolation. In the case of a large initial separation (Figs. 3a and 3c), the opposite takes place for both the Plasma and Drude 
models. Moreover, Fig. 4 shows that the dependence on the method of extrapolation disappears when the less conductive component is 
fixed at 300K, and the temperature of the more conductive varies from low to high temperatures. Indeed, the system with colder the SiC 
component reveals weaker stability and there is no sensitivity to the model of extrapolation.

In addition to the bifurcation analysis, the sensitive dependence of the actuation dynamics on the thermal effect can be captured by 
the Poincare maps shown in Figs. 6 to 8. The homoclinic orbit establishes the separation between unstable motion, which leads to stiction 
within one period for the autonomous microdevice, from the closed periodic orbits around the stable point. According to Figs. 6 and 
7, by increasing the temperature of the less conductive component the stability of the device increases for large distance between the 
components in both the Plasma and Drude models. The opposite takes place for short separations. Fig. 8 shows also that by decreasing the 
temperature of the more conductive component leads to enlargement of the homoclinic orbit or equivalently the stable area of operation 
over a wider region. Therefore, the non-equilibrium thermal corrections to the Casimir force have remarkable impact on conservative 
actuation depending also on the optical properties of the interacting materials.

3.3. Non-conservative systems (γ = 1)

Furthermore, it is investigated the chaotic behavior of the actuating device by an external periodic force F ext
0 cos (ω t) [44]. Here it is 

supposed that the motion occurs in clean and dry conditions. Moreover, capillary and hydrodynamic forces, which can be significant under 

ambient conditions, are not considered here. After rescaling all terms to F ext

0 , the term related to the driving force is small compared to 
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Fig. 4. Bifurcation diagrams δCas vs λ (= z/d) for the Au- SiC system under non-equilibrium conditions. The SiC component is fixed at 300 K and the temperature of Au, as 
well as the method of extrapolation are indicated. The initial distance (d) is 3500 nm.

Fig. 5. Diagrams of λc (corresponding to δcas
Max) vs. �T (=TAu-TSiC). The Au component is fixed at 300 K, and the temperature of SiC changes from 400 K to 1 K. Here we 

considered the initial distance d=4200 nm.

the other forces (since | cos (ωt) |< 1). Thus, the source of the chaotic motion will be the splitting of the separatrix of the conservative 
system, which by the Smale-Birkhoff homoclinic theorem [45] yields the occurrence of chaotic motion. In the first-order approximation of 
the non-conservative system, the so called Melnikov function can provide a solution to the splitting of separatrix [45,46]. As a first-order 
perturbation on a conservative system, the so called Melnikov function can be introduced:

M (T0) =
+∞∫

dϕC
hom(T)

[
−σω0d

ext

dϕC
hom (T) + cos

[
ω(T + T0)

]]
dT. (3)
F. Tajik, M. Sedighi and G. Palasantzas Physics Letters A 443 (2022) 128220
−∞
dT F0 dT
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Fig. 6. Contour phase space plots dλ/dt vs. λ for the Au-SiC system under non-equilibrium conditions, where the Au component is fixed at 300K, and the temperature of SiC 
as well as the method of extrapolation are indicated. For the computation it is used 200 × 200 initial conditions (λ, dλ/dt). The elliptical in shape homoclinic orbit encloses 
the initial conditions that lead to stable oscillations. In (a) δCas = 0.02 and d=4500 nm, and in (b) δCas = 0.073 and d=1900 nm.

Fig. 7. Contour phase space plots dλ/dt vs. λ for the Au-SiC system under non-equilibrium conditions where the Au component is fixed at 300 K and the temperature of SiC 
as well as the method of extrapolation are indicated. For the calculations we used 200 × 200 initial conditions (λ, dλ/dt). The elliptical in shape homoclinic orbit encloses 
the initial conditions that lead to stable oscillations. In (a) δCas = 0.08 and d=4200 nm, and in (b) δCas = 0.08 and d=1900 nm.
6
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Fig. 8. Contour phase space plots dλ/dt vs. λ for the Au-SiC system under non-equilibrium conditions, where the SiC component is fixed at 300 K and temperature of Au as 
well as the method of extrapolation are indicated. For the computation we used 200 × 200 initial conditions (λ, dλ/dt). The elliptical in shape homoclinic orbit encloses the 
initial conditions that lead to stable oscillations. The initial distance is d=3500 nm and δCas = 0.13.

The homoclinic solution of the conservative system is denoted as ϕC
hom(T). By considering

+∞∫
−∞

(dϕC
hom (T) /dT)2dT =< (dϕC

hom (T) /dT)2 > and α = σω0d/F ext
0 (σ = Mωo/Q),

the Eq. (6) can be written as:

M (T0) = −α < (
dϕC

hom (T)

dT
)2 > +A(ω) cos

[
ω(T0 + ϕ(ω))

]
. (4)

The term A(ω) cos[ω(T0 + ϕ(ω))] is the real part of the Fourier transform of dϕC
hom (T) /dT. Therefore, if we define

μc
hom =< (

dϕC
hom (T)

dT
)2 > . and β (ω) =

∣∣∣∣∣H
[

Re

(
F

{
dϕC

hom (T)

dT

})]∣∣∣∣∣ , (5)

where H[. . . ] denotes the Hilbert transform [44,47], then the threshold condition for chaotic motion to take place α = β(ω)/μc
hom obtains 

the form

α = σω0d

F ext
0

=
∣∣∣∣∣H

[
Re

(
F

{
dϕC

hom (T)

dT

})]∣∣∣∣∣/ < (
dϕC

hom (T)

dT
)2 > (6)

Eqs. (3) and (4) are valid only for the case of an additive perturbative force in Eq. (1). And it is possible to replace FCas(z) with another 
nonlinear function of z [48].

Figs. 9 and 10 show the threshold curves α = σω0d/F ext
0 vs. driving frequency ratio ω/ωo. For the area above the curve, where the 

magnitude of α is significant, the influence of the driving force is negligible as compared to dissipation (α ∼ σ/F ext
0 ). As a result the 

motion goes finally towards the stable periodic orbit of the conservative system. While in lower part of curve, where the magnitude 
of α is weak, the separatrix starts to split leading possibly to chaotic motion. Clearly for the Au-SiC system with large initial operation 
distance, by placing Au at 300 K and increasing the temperature of SiC from 1 K to 400 K, the thermal fluctuations lead to decrease 
in the possibility for chaotic motion for both the Plasma and Drude models (Figs. 9a and 9c). Furthermore, by considering small initial 
separations, according to Figs. 9b and 9d, then by increasing the temperature of SiC the device loses its stability sooner increasing the risk 
of chaotic motion. In Fig. 10 the temperature of the less conductive part is fixed at 300 K, and the temperature of the more conductive 

component varies from 1 K to 400 K. In this case, for small separations the change in temperature of the Au plate does not influence the 
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Fig. 9. Threshold curve α (= σω0d/F ext
0 ) vs. driving frequency ω/ωo (with ωo the natural frequency of the system) to compare the influence of thermal effects under 

non-equilibrium conditions for the Au-SiC system. Au component is fixed at 300 K and temperature of SiC is indicated. For left column (a and b) Drude model and for right 
column (c and d) Plasma model is used. In the upper row (a and c) the initial distance is d=4200 nm, and for lower row (b and d) d=1900 nm. In (a) δCas = 0.036, (b) 
δCas = 0.07, and in (c) and (d) δCas = 0.08.

thermal contribution (see also Figs. 2c and 2d) and as a result the possibility of chaotic behavior for both extrapolation models. However, 
at large separations chaotic motion is more possible to take place in systems with a hot Au plate for both the Plasma and Drude models.

Chaotic motion can be further analyzed using the sensitive dependence of the motion on its initial conditions via the Poincare maps as 
it is shown in Figs. 11 and 12. When chaotic motion occurs (with decreasing value of α), a region of initial conditions can be seen where 
the sharp border between distinct solutions is not obvious. For chaotic motion, the absence of a sharp boundary is demonstrated between 
the blue and the red regions. As a result, if the motion is chaotic then stiction can still takes place between the interacting plates after 
several oscillation and influence the long-term stable performance of the system [32,33]. Therefore, chaotic behavior introduces significant 
risk for device malfunction due to stiction, and by increasing the Casimir force our ability to predict the long term performance of the 
system becomes more limited.

For the Au-SiC system by placing the interacting plates at a large initial separation (Fig. 11a) and set the Au component at 300K, the 
thermal corrections are more effective to decrease the possibility of chaotic motion and enlarge the stable operation by decreasing the 
temperature of the SiC plate in both the Plasma and Drude models. However, according to Fig. 11b, for a small initial distance between the 
components the thermal corrections of the Casimir force, and consequently the stable actuation reveals the reverse order. If we compare 
the Poincare maps of Fig. 12a and 12b by setting the temperature of the SiC part at 300 K and increase the temperature of the Au 
plate from 1 K to 400 K, the possibility of chaotic behavior starts to increase and the device loses sooner its stability. In this case the 
magnitude of the thermal corrections, and as a consequence the stable operation of the device do not show any sensitivity to the method 
of extrapolation at low frequencies that distinguishes the Plasma and Drude models. It would interesting in the future, however, the 
present studies about chaotic behavior to be further extended by incorporating also non-local effects on the optical properties [49].

4. Conclusions

In conclusion, we have studied the dynamical actuation of systems with non-identical components in the presence of non-equilibrium 
Casimir forces. For this purpose, we considered the Casimir interaction between Au and highly doped SiC because of their significant 
difference in conductivity, as well as the Drude and Plasma models have been applied for extrapolation of the optical properties at 
low frequencies, where it is not feasible to do measurements. For frictionless autonomous systems, bifurcation and phase space analysis 
revealed that when the less conductive material is at higher temperature, then at short distances the non-equilibrium Casimir force 
causes instability. However, at larger distances the reduction of the thermal effect allows for a wider range of stable operation. Moreover, 
the variation of the non-equilibrium Casimir force and consequently the stable performance of devices that is produced by changing 
the temperature of the less conductive component, reveals a sensitive dependence on the model to extrapolate the optical data at low 

frequencies. Finally, for driven system the Melnikov function and Poincare portrait analysis have illustrated that the devices can be more 

8



Fig. 10. Threshold curve α (= σω0d/F ext
0 ) vs. driving frequency ω/ωo (with ωo the natural frequency of the system) to compare the influence of thermal effects under 

non-equilibrium conditions for the Au-SiC system. The SiC component is fixed at 300 K and the temperature of Au and method of extrapolation is indicated. The initial 
distance is d=3500 nm and δCas = 0.05.

robust against chaotic motion when the less conductive component is at low temperature and operating at short separations. At large 
separations chaotic behavior is more likely to occur for systems with the more conductive component at higher temperature. Therefore, 
non-equilibrium Casimir forces are able to affect the long term dynamics operation of a driven device, but any analysis must take carefully 
into account their significant dependency on the optical properties and the conductive state of the interacting materials.
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Fig. 11. Contour plot of the transient times to stiction using Poincare phase maps dλ/dt vs. λ for the non-conservative Au-SiC system, where the Au component is fixed 
at 300 K and the temperature of SiC as well as the method of extrapolation are indicated. For the computation we used 200 × 200 initial conditions (λ, dλ/dt). We have 
considered α = 2 and ω/ω0 = 0.5. In (a) δCas = 0.02 and d=4200 nm, and in (b) δCas = 0.073 and d=1900 nm. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 12. Contour plot of the transient times to stiction using Poincare phase maps dλ/dt vs. λ for the non-conservative Au-SiC system where the SiC component is fixed at 
300 K and temperature of Au as well as the method of extrapolation are indicated. For the computation we used 200 × 200 initial conditions (λ, dλ/dt). We have considered 
α = 1.8 and ω/ω0 = 0.7. The initial distance is d=3500 nm and δCas = 0.13.
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .physleta .2022 .128220.
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