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Big data processing and large-scale computational needs will
soon be limited by local on-chip power dissipation of available semi-
conductor technologies. Moreover, the increasing demand for infor-
mation processing will likely create an unsustainable exponential
growth in global energy consumption. This will slow down Moore’s
law and will require the holistic rethinking of computation all the way
from unique materials, unconventional devices, and functionalities to
novel systems and architectures. Neuromorphic systems based on con-
ventional CMOS technologies have demonstrated promise in provid-
ing brain-like functionalities such as pattern recognition, adaptive
learning, and complex sensing. However, their future potential is lim-
ited by unsurmountable issues, intrinsic to the materials properties of
conventional semiconductors. Quantum materials and devices are
likely to serve as a revolutionary, energy efficient, next-generation
computational platform for developing a machine that emulates a bio-
logical brain. This field is at a stage where it could greatly benefit from
further basic research in all aspects of this problem. This Special Topic
issue is dedicated to appraising the field’s state of the art and showcas-
ing new, potentially revolutionary ideas.

Further understanding of the properties of quantum materials,
the effect of defects and their ultimate effect on devices and systems
must be understood using a combination of techniques that include ab
initio theoretical calculations combined with state-of-the-art synthesis
and nanoscale structural, electrical, magnetic, and optical characteriza-
tion. A comprehensive, quantitative, interdisciplinary study of relevant
materials under high (electrical, thermal, magnetic, and physical)
stresses is important.1 Modern synthesis and characterization tools are
at a stage when they can provide detailed control and information

regarding the structure of materials and their effect on their physical
properties.

Armed with a thorough understanding of the materials proper-
ties, new design concepts are being developed that go beyond conven-
tional semiconductor devices either based on the charge2 or even the
spin3,4 of the electron. For instance, Mott physics provides the means
to emulate brain inspired devices. “Neuronal” devices accumulate
“metal phase” and modulate the conduction by metallic filamentary
growth, while synaptic devices encode a memory state by moving and
modulating the concentration of defects (e.g., oxygen vacancies).5,6

Broadly speaking, memristive phenomena are yielding fascinating
design concepts for memory,7 networks,8 and neuro-sensors when
combined with light-sensitive oxides.9 Synaptic behavior, which
requires plasticity in the response function of a material, can be
achieved in polymer-gated transistors showing multiple functionali-
ties,10 as well as in photonic11 and magnetoelectric systems.12

Alternatively, spin-based devices take advantage of prominent nonli-
nearities in the magnetic responses of quantum materials. Nanoscale
magnetic phenomena can be harnessed to fabricate nanowires,13 while
magnetic anisotropies are proposed to train networks,14 and optomag-
netic neural networks can be tailored to produce low-dissipation net-
works thanks to the low-energy plasticity and non-volatility of
magnetic properties.15 Superconducting Josephson devices can gener-
ate time-dependent responses that mimic neuronal spiking and synap-
tic and dendritic trees.16 These and many other physical phenomena
are being considered as pathways to mimic the majestic processes car-
ried out by the brain such as reservoir computing17 and in-memory
computing.18 However, in order to incorporate these into functional
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devices, it is important to understand the ultimate physical limits of
these phenomena, including what are the minimal sizes, shortest
times, or the closest physical proximity allowed by the physics of the
materials and devices; all these are directly relevant to scaling issues.

Biological neurons and synapses display emergent behavior,
which is at the heart of their complexity and unparalleled efficiency.
The emergent properties of quantummaterials and their nonlinearities
exhibit numerous self-organizing principles, which provide a multi-
plicity of static and dynamic states useful to emulate complex neural
devices and networks.19 In particular, metastability produced by com-
plex energy landscape of the quantum system offers the potential for a
variety of multiple memory states, fine tuning of critical behavior20

and emergence of novel collective phenomena.21 In order to approach
the challenge of creating a brain-like machine, it is critical to consider
the network in which the devices exist. Adapting Herbert Kroemer’s
statement to bio inspired neuromorphic computing, “the network is
the system.”

This Special Topic issue of Applied Physics Letters is dedicated to
address some of the important issues outlined above and hopefully
will serve as a future springboard for further work in the field.
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was supported as part of the “Quantum Materials for Energy
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Center funded by the U.S. Department of Energy, Office of Science,
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