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2R E L AT E D W O R K

As outlined in Chapter 1, our main research question regards the poten-
tial of using medial descriptors to implement image simpli�cation and
compression. As such, we review related work on medial descriptors
(Sec. 2.1), image compression methods (Sec. 2.2), and metrics to evalu-
ate compression quality (Sec. 2.3) in this chapter.

2.1 medial descriptors

Medial descriptors, also known as medial axes, or more generally the
skeletons, are e�cient and e�ective tools for a wide range of com-
puter science applications, including shape recognition (Shen et al.,
2016; Ayzenberg, 2019), shape segmentation (Shah, 2005; Reniers and
Telea, 2007, 2008), matching and retrieval (Bai and Latecki, 2008; Goh,
2008; Sundar et al., 2003; Xie et al., 2008), and shape simpli�cation (Tam
and Heidrich, 2003; Hajdu et al., 2007) and denoising (Telea, 2012; Schu-
bert et al., 2020). The process of computing skeletons from given binary
shapes is called skeletonization. Conceptually, skeletonization Sn,m gen-
erates m-dimensional descriptors from an n-dimensional shape Ω ⊂
Rn (Reniers, 2009). In this thesis, we explore the potential of medial
descriptors for 2D image compression. Thus, we focus on S2,1, or, in
other words, skeletons of two-dimensional binary shapes. For read-
ers interested in 3D skeletonization S3,2 (surface skeletons) and S3,1

(curve skeletons) and their applications, we refer to Tagliasacchi et al.
(2016); Cornea et al. (2007); Saha et al. (2016). In the remainder of this
section, we overview the de�nitions of medial descriptors (Sec. 2.1.1),
skeletonization methods (Sec. 2.1.2), skeleton regularization methods
(Sec. 2.1.3), and methods for shape reconstruction from medial descrip-
tors (Sec. 2.1.4).

2.1.1 De�nitions

Medial descriptors, �rst introduced by Blum (Blum, 1967), were de�ned
as the loci of centers of maximal discs contained in a shape Ω ⊂ R2, as
shown in Fig. 2.1 (a). A maximally inscribed disc is completely inside the
shape Ω and is not fully included in another inscribed disc. While such
a de�nition is simple and intuitive, it is di�cult to derive an e�ective
way for computing the skeleton in practice from it. Some methods have
been able to directly use this de�nition to compute skeletons (Jalba et al.,
2013). However, this typically entails the use of brute-force computation
to search for the centers of maximally inscribed discs.
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Figure 2.1: Three alternative de�nitions of medial descriptors: (a) centers of
maximally-inscribed discs; (b) shock graph of the grass�re front
�ow; (c) points with at least two closest points on the boundary. Im-
age taken from Tagliasacchi et al. (2016).

As an alternative, another more commonly used de�nition, the grass-
�re analogy, was proposed in Leymarie and Levine (1992). Imagine Ω ⊂
R2 as a compact, uniformly growing grass �eld whose entire boundary
∂Ω catches �re at the exact same time t0. The �ame propagates from ∂Ω
to the interior of Ω with an isotropic velocity (constant speed) along the
internal normal of ∂Ω. The locations where �re fronts coming from dif-
ferent parts of ∂Ω meet and quench de�ne the skeleton SΩ of Ω. The
arrival time t > t0 of the front is positively related to the inscribed disc
radius. The grass�re model de�nition is depicted in Fig. 2.1 (b). This def-
inition leads to direct techniques, e.g., morphological thinning methods,
for computing skeletons, as described next in Sec. 2.1.2.

In the grass�re de�nition, the medial (skeletal) point, i.e., the quench-
ing point, is always generated by the meeting of at least two �re fronts.
Since the grass�re propagates isotropically, a skeleton point always
associates with at least two di�erent closest points on the boundary
∂Ω, which are called feature points (Meijster et al., 2002; Hesselink and
Roerdink, 2008). This model is shown in Fig. 2.1 (c). These feature points,
f1, f2, are exactly the tangent points between the maximally inscribed
disc and ∂Ω in Blum’s de�nition (Fig. 2.1 (a)). Using these feature points,
the skeleton SΩ of Ω can be de�ned as

SΩ= {x ∈ Ω | ∃f1, f2 ∈∂Ω, f1, f2: ‖f1−x‖= ‖f2−x‖ = DTΩ(x)}. (2.1)

Here, DTΩ is the so-called distance transform of Ω, which is de�ned as

DTΩ(x ∈ Ω) = min
y∈∂Ω

‖x − y‖ . (2.2)

The notation ‖·‖ in Eqn. 2.1 and Eqn. 2.2 denotes the Euclidean distance
in R2. Intuitively, DTΩ(x) indicates the shortest distance from x to ∂Ω.
Thus, DTΩ(x) monotonically increase as x goes from ∂Ω towards the
interior of Ω; see the example shown in Fig. 2.2 (b).
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0

(a) (c)(b)
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Figure 2.2: A rectangular shape with random noise added to the boundary (a)
and its distance transform shown by color-coding and isolines (b),
and its corresponding medial axes generated by the Fast Marching
Method (FMM) (Sethian, 1996).

For completeness, we note that the concept of feature points de�nes
a so-called feature point transform

FTΩ(x ∈ Ω) = argmin
y∈∂Ω

‖x − y‖ , (2.3)

which associates to each point x inside Ω the set of its feature points.
By de�nition, a point x ∈ Ω is on SΩ if FTΩ(x) yields at least two
points; non-skeletal points x ∈ Ω have a FTΩ(x) yielding a single point;
and skeleton bifurcations and branch endpoints x ∈ SΩ have a FTΩ(x)
that yields more than two points. Analyzing the feature transform has
proven useful in many applications of skeletons such as shape segmen-
tation (Kustra et al., 2015; Feng et al., 2016).

The tuple formed by the distance transform and skeleton of a shape,
denoted

MAT (Ω) = (SΩ,DTΩ), (2.4)

is called the Medial Axis Transform (MAT) of the shape Ω. More exactly,
the MAT records all the points x ∈ SΩ together with their distance
transform values DTΩ(x). As we shall see later in Sec. 2.1.4, the shape
Ω can be reconstructed from its MAT. Since the MAT can be obviously
computed from Ω, one says that the MAT is a dual representation of the
shape.

2.1.2 Skeletonization techniques

In Sec. 2.1.1, we described three alternative de�nitions of medial
descriptors. More alternative de�nitions which lead to the same
descriptor are presented in Tagliasacchi et al. (2016); Siddiqi and Pizer
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(2008). We next overview the most prevalent classes of skeletonization
techniques which use various forms of these alternative de�nitions to
compute SΩ .

Morphological thinning methods simulate the grass�re evolution
(Fig. 2.1 (b) and Fig. 2.2 (b)) by iteratively eroding Ω inwards with
constant speed until left with a one-pixel-thin connected structure rep-
resenting SΩ (Beucher, 1994; Peter and Breuß, 2013). While relatively
straightforward to implement and fast, thinning methods generate
di�erent results due to di�erent pixel removal orders. Thus, such
methods do not in general guarantee that SΩ is centered within Ω,
i.e., DTΩ can be poorly approximated (Lam et al., 1992; Pudney, 1998).
Another de�ciency is that it is di�cult to prune the skeleton (see next
in Sec. 2.1.3) based on the feature points which are typically not stored
during the thinning process.

Geometric methods (Ogniewicz and Kübler, 1995; Attali and Montan-
vert, 1997) �nd SΩ as a subset of the edges of the Voronoi diagram
of a piecewise-linear (polyline) representation of ∂Ω, as illustrated in
Fig. 2.3. Voronoi diagrams decompose Ω into cells based on sites, where
each point in a cell is closer to that cell’s site than to any other site. Sites
are a dense discrete set of sampling points on ∂Ω (Fig. 2.3 (a)), i.e., the
endpoints of the segments forming the above mentioned polyline repre-
sentation of the boundary. Sampling criteria play an important role in
the quality of the obtained skeletons. The more sampling points on ∂Ω,
the more spurious branches the skeleton has, which need to be elimi-
nated next. Conversely, the fewer sampling points are used on ∂Ω, the
worse can this sampling capture �ne-scale details of the shape bound-
ary. In practice, the sampling density is determined by the local feature
size (Amenta and Bern, 1999; Zhu et al., 2014) to capture the bound-
ary topology faithfully. The strongest point of geometric methods is
that they fully work with a vector representation of both ∂Ω and SΩ
which, as outlined in Chapter 1, is advantageous for many reasons. Al-
though also very accurate, compact, and connected in representation,
geometric approaches are rather complex to implement, require a ro-
bust boundary discretization, and are computationally expensive (Telea
and van Wijk, 2002).

Distance �eld methods compute DTΩ (Eqn. 2.2) from ∂Ω, and next
�nd SΩ along singularities of DTΩ (Kimmel et al., 1995; Sethian, 1996;
Telea and van Wijk, 2002; Falcão et al., 2004; Meijster et al., 2002; Hes-
selink and Roerdink, 2008). To start with, these methods need to com-
puteDTΩ . A well known technique for this is the Fast Marching Method
(FMM) introduced by Sethian (Sethian, 1996) as an O(n log(n)) algo-
rithm (for n pixels used to discretize Ω) to solve the Eikonal equation
|∇DTΩ | = 1. Other, even faster, techniques compute the exact Euclidean
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Figure 2.3: Voronoi diagram based skeletonization method. (a) Sample the
boundary of a 2D shape to create sites. (b) The Voronoi diagram of
the boundary of sites, subsets of which (in red) can be approximated
as skeletons. Image taken from Zhu et al. (2014).

distance transform in time linear in the pixel count n (Meijster et al.,
2002).

However, the detection of the singularities of the DTΩ �eld is non-
trivial. Direct computation of singularities does not guarantee con-
nected, one-pixel-thin skeletons (Niblack et al., 1990; Bouix and Sid-
diqi, 2000; Reinders et al., 2000), and is numerically unstable (Saha et al.,
2016). As shown in Fig. 2.2 (c), perturbations along ∂Ω introduce many
so-called spurious medial branches. To address this, Telea and van Wijk
(2002) proposed the Augmented Fast Marching Method (AFMM), which
is simple to implement, behaves robustly to boundary noise, and deliv-
ers connected skeletons. Key to this technique is tracking, for every
point x ∈ Ω visited by the FMM during the computation of DTΩ , the
‘span’ of the boundary ∂Ω that is delimited by the feature points in
FTΩ(x). For non-skeletal points, this span is exactly one pixel. For skele-
tal points on branches that correspond to small-scale bumps on ∂Ω, this
span is small – equal to the arc-length of the boundary fragments cor-
responding to those bumps. Points located increasingly deeper along
the skeleton have increasingly large spans. As such, the AFMM is a
method for both skeleton detection and regularization – the latter is dis-
cussed in more detail in Sec. 2.1.3. The AFMM technique can be fur-
ther accelerated on the GPU, yielding real-time skeletonization compu-
tation (Cao et al., 2010; Telea, 2014). Therefore, we next adopt this GPU-
based distance-�eld-and-skeleton (thus MAT) computation approach
for our work in this thesis.

2.1.3 Regularization methods

As stated in Sec. 2.1.2, medial axes SΩ estimated directly from skele-
tonization approaches are notoriously unstable (Saha et al., 2016):
Small perturbations along ∂Ω, created e.g. by sampling inherent to
both raster and vector representations, introduce spurious medial

13



related work

branches (Fig. 2.2 (c)), which contribute little (or not at all in practice)
to the description of Ω, but considerably complicate SΩ . E�ort has been
invested in regularizing or simplifying medial axes, by removing (parts
of) the spurious branches, to make them stable. However, a simpli�ed
skeleton S̃Ω cannot exactly represent, or encode, Ω. Hence, accuracy (of
representing a shape) and stability (of MAT computation) are related,
but competing goals. We classify attempts to improve stability and
accuracy into two groups, as follows.

Reconstruction-based methods approach the joint stability-
accuracy problem by maximizing reconstruction accuracy, i.e., the
di�erence between Ω and Ω̃ (Attali et al., 2009). This can be esti-
mated using the Hausdor� distance (Rote, 1991) between (sampled
representations) of ∂Ω and ∂Ω̃, de�ned as

H (Ω, Ω̃) = max
{
h(Ω, Ω̃),h(Ω̃,Ω)

}
, (2.5)

where h(A,B) is the one-sided Hausdor� distance given by

h(A,B) = max
a∈∂A

{
min
b∈∂B

‖a − b‖
}
. (2.6)

These methods (such as that of Zhu et al. (2014)) compute the simpli�ed
S̃Ω by iteratively removing endpoints from SΩ , continuously checking
their reconstruction error (Eqn. 2.5) and stopping when this reaches a
user-allowed level. While yielding accurate medial axes due to their
explicit goal of optimizing for H , reconstruction-based methods are
computationally expensive.

Medial-axis-based methods aim mainly to compute a stable, or reg-
ularized, S̃Ω by removing spurious branches from SΩ following criteria
that only use the information present in the MAT. Arguably the most
successful class of such criteria computes a so-called importance ρ(x) of
every medial point x ∈ SΩ as the boundary length between the feature
points f1 and f2 of x. This is precisely the length of the so-called bound-
ary ‘span’ mentioned earlier in Sec. 2.1.2. Only medial points with ρ(x)
above a user-given threshold are taken over from SΩ into S̃Ω . Impor-
tance thresholding is simple to implement for both raster (Falcão et al.,
2004; Telea and van Wijk, 2002) and vector (Ogniewicz and Kübler, 1995;
Attali and Montanvert, 1997) medial representations, delivers connected
skeletons, and has an intuitive interpretation: The reconstructed shape
Ω̃ from S̃Ω replaces all bumps along ∂Ω shorter than the threshold by
circular arcs, e�ectively acting like a low-pass noise-boundary �lter or
multiscale representation of the shape and its skeleton.

However, the collapsed boundary length metric ρ has a key limita-
tion: It treats boundary details of a given size (scale) similarly. In prac-
tice, this can be undesirable. Consider e.g. the rightmost noisy rectan-
gle in Fig. 2.4. Using ρ to simplify this shape (and/or its skeleton, the
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2.1 medial descriptors

Figure 2.4: Skeleton regularization for �ve rectangular shapes with di�erent
amounts of noise added to the boundary using salience metric σ .

two being duals) will yield a shape where all small scale jaggies along
the boundaries are eliminated, including rounding o� the corners of the
shape. Arguably, the latter is not desired. From a perceptual standpoint,
the corners of the rectangle are more important, so we would like to
have a way to obtain a shape with the jaggies along the edges removed
but still having sharp corners, like the leftmost image in Fig. 2.4. For
this goal, a modi�ed version of the collapsed boundary length, called
the salience metric (Telea, 2012) was proposed, as

σ (x) = ρ(x)/DTΩ(x). (2.7)

Using this metric to regularize the skeleton, branches representing
small-scale boundary bumps will be removed while branches that repre-
sent important (salient) corners are kept untouched. Figure 2.4 explores
this insight by showing �ve rectangular shapes with randomly added
noise of di�erent scales on their boundary, and their simpli�ed medial
axes for σ > 1.5. We see that as the noise increases, the simpli�ed me-
dial axes change little, and are thus quite stable to noise.

Other skeleton-based regularization metrics include the angle be-
tween feature vectors (Attali and Montanvert, 1996; Foskey et al., 2003;
Dey and Zhao, 2004; Hesselink and Roerdink, 2008), the divergence of
the distance transform (Siddiqi et al., 2002), and higher order moments
of the distance transform (Rumpf and Telea, 2002). Such metrics have
proven very e�ective in producing simpli�ed stable skeletons for 2D but
also for 3D shapes (Tagliasacchi et al., 2016). However, they do not have
the joint properties of multiscale representation/simpli�cation, deliver-
ing a connected skeleton, and capturing directly an intuitive geometric
property of the boundary that the collapsed boundary length ρ and its
re�nement, the saliency metric σ mentioned above, have. Moreover, the
computation of ρ and σ do not add any overheads to their underlying
skeletonization processes, as they directly use the distance and feature
transform information that these processes need to compute. As such,
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we next choose the salience metric σ (Telea, 2012) to simplify skeletons
in our work.

2.1.4 Shape reconstruction

As stated in Chapter 1 and earlier in Sec. 2.1.1, the pair (SΩ,DTΩ),
called the Medial Axis Transform (MAT), is a dual representation of
shape: All information in a shape can be derived from its MAT and vice
versa. Section 2.1.2 has illustrated three types of methods on how to
extract the MAT from a shape. In turn, in this section, we discuss how
to reconstruct a shape from its MAT.

Reverse fast marching method is exactly the reversed execution
of the FMM depicted in Sec. 2.1.2. We evolve starting from each
skeleton point x ∈ SΩ outwards until reaching its distance transform
value DTΩ(x), which is equivalent to solving the Eikonal equation
|∇ (−DTΩ)| = 1, and obtain the reconstructed shape Ω̃ when DTΩ = 0.
The advantages of this method are its computational e�ciency
(O(n logn) for a shape Ω of n pixels) and the ability to stop the
‘in�ation’ of the skeleton SΩ towards Ω at any desired moment, based
on local criteria. The latter can be important in applications where
one wants to construct intermediate shapes between SΩ and Ω, see
e.g.Rumpf and Telea (2002).

(a) (b)

Figure 2.5: Illustration of the medial discs envelope method. (a) Medial axis
transform of a 2D shape Ω. (b) The reconstructed shape Ω̃ is approxi-
mated as the envelope of medial discs. Image adapted from Zhu et al.
(2014).

Medial discs envelope methods reconstruct Ω̃ as the union
∪x∈S̃ΩB(x,DTΩ(x)) of discs B centered at pixels x of the simpli�ed skele-
ton S̃Ω with skeletal-point radii given by the distance transform DTΩ(x),
as illustrated in Fig. 2.5. The disc B, called themedial disc, is the maximal
inscribed disc in Ω as given by Blum’s de�nition (Fig. 2.1 (a)). The en-
velope, or boundary, of the union-of-discs yields thus the reconstructed
shape boundary ∂Ω̃. Medial discs envelope methods can be e�ciently
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implemented on the GPU, see e.g. the detailed pseudocode in Meiburg
(2011). As such, we next adopt this method to reconstruct a binary shape
from its simpli�ed skeleton.

2.2 image compression methods

As our goal is to use medial descriptors to e�ciently and e�ectively
represent (encode) binary, grayscale, and color images; methods that
aim for similar goals are of interest. We now brie�y review the main
classes of such methods.
Image compression is a well-studied �eld (Shum et al., 2003; Satone

et al., 2017) which can be divided into two main classes: Lossless and
lossy methods. Lossy compression has seen great interest due to its
particularly high compression ratio (CR) while maintaining visual qual-
ity. In the past few decades, countless lossy compression approaches
have been proposed. In the early days, transform domain coding dom-
inated, such as the well-known discrete cosine transform (DCT) and
related mechanisms used by JPEG (Wallace, 1992). DCT-based method
divides the image into non-overlapping blocks for processing. When
a high compression rate is desired, the results tend to show speci�c
artifacts such as blocking or banding. To address this, the JPEG com-
mittee subsequently replaced the DCT’s block-based algorithm with
wavelet transform and proposed the e�cient JPEG 2000 (Taubman and
Marcellin, 2001), which not only yields better compression performance
than JPEG, but has signi�cant �exibility in the codestream.

In recent years, Deep Neural Network (DNN) methods have attracted
increasing interest due to their high compression rate and good qual-
ity. Important methods in this area use Recurrent Neural Networks
(RNNs) (Toderici et al., 2016, 2017; Johnston et al., 2018) and autoen-
coders (Choi et al., 2019; Theis et al., 2017). Generative Adversarial
Network (GAN) methods (Agustsson et al., 2019; Mentzer et al., 2020)
have also been developed recently. However, all such approaches ex-
pose issues with the distortion metric that was used to train the net-
works (Mentzer et al., 2020). They can react in hard to predict ways to
unseen data (images that are far from the types present during training).
Besides, DNN methods require signi�cant training data and training
computational e�ort.

Let us position our research with respect to the above existing de-
velopments. Our dense skeleton-based methods, described in Chap-
ters 3, 4, 6, and 7, do not aim to compete with the compression rates
of the above DNN techniques. However, our explicit ‘feature engineer-
ing’ approaches o�er more control over how images are simpli�ed dur-
ing compression, are fast, and do not require training data. Separately,
technique-wise, we show, for the �rst time, that medial descriptors, rep-
resented suitably by raster or vector models, are useful and usable tools
for image compression.
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2.3 image compression qality metrics

Section 2.2 introduced a few main classes of methods for image com-
pression. For all such methods, quality metrics are required to measure
their performance. As stated earlier, lossy compression – our �eld of in-
terest – has an inherent trade-o� between how much we can compress
a given image and how similar the compressed image will look to the
raw, uncompressed, one. We thus distinguish two types of metrics to
capture these two aspects, as follows.

First, we need to measure the amount of compression of an image.
Let I be a raw, uncompressed, image and Ĩ be its compressed version,
by whichever method we want to assess. The amount of compression
can be computed by the so-called compression ratio metric CR(I , Ĩ ) ∈
R+ which measures the size of the binary representation of I divided
by the size of the binary representation of Ĩ . In this model, the sizes
of the images’ binary representations are simply the amount of bytes
used to store the respective images, and depend on how the images are
represented. For example, for a raw (uncompressed) image I of n ×m
pixels, using b bytes-per-pixel, the storage size will be O(n × m × b).
Storage sizes for the compressed representation Ĩ strongly depend on
what this representation actually is. Obviously, we want that CR � 1
for a good compression method.

Secondly, we need to measure how close the compressed image Ĩ is
to the original I , using so-called quality metrics Q(I , Ĩ ) ∈ R+. Such met-
rics include the mean squared error (MSE) and peak signal-to-noise ra-
tio (PSNR). While simple to compute and with clear physical meanings,
these do not match well perceived visual quality (Wang and Bovik, 2009;
Zhang et al., 2011, 2012). As visible in Fig. 2.6 (b), the JPEG compression
of the original image (a), with a JPEG quality setting of 10%, is fuzzy,
blocky, and has color quantization e�ects. Image (c) shows the result
of one of our proposed compression methods, called SSDMD, discussed
further in this thesis (Chapter 4). Although SSDMD’s compression re-
sult also looks possibly a bit fuzzy, it is, we argue, perceptually closer
to the original image than the JPEG compression result. However, the
PSNR metric values, listed in the �gure, tells the opposite. Thus, PSNR
may not correspond well with perceived quality.

The structural similarity (SSIM) index (Wang et al., 2004) alleviates
the above issue by measuring, pixel-wise, how similar two images – an
image I and its reconstruction Ĩ , in our case – are by considering human
perception, and is de�ned as

SSIM(I , Ĩ ) =
(2µI µ Ĩ +C1)(2σI Ĩ +C2)

(µ2I + µ
2
Ĩ
+C1)(σ

2
I + σ

2
Ĩ
+C2)

, (2.8)

where µI and σI are the mean intensity and the standard deviation of
I , respectively, and similarly for Ĩ . In the above, σI Ĩ is the covariance
between I and Ĩ . Also, C1 = (k1L)

2 and C2 = (k2L)
2, in which L is
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(a) Original image (b) JPEG compression (10%)

           PSNR = 28.1

(c) SSDMD compression

         PSNR = 22.7

Figure 2.6: Example of PSNR tending not to match perceived visual quality well.
(a) The original image. (b) JPEG compression with a quality of 10%.
(c) SSDMD compression (introduced in Chapter 4).

the dynamic range of the pixel values (255 for 8-bit grayscale images)
and k1 = 0.01 and k2 = 0.03 are typical defaults to evaluate Eqn. 2.8.
SSIM was extended to three-component SSIM (3-SSIM) by using non-
uniform weights for the SSIM map over three region types: edges, tex-
ture, and smooth areas (Li and Bovik, 2010). Further on, multiscale SSIM
(MS-SSIM) (Wang et al., 2003) is an advanced top-down interpretation
of how the human visual system interprets images that considers vari-
ations of image resolution and viewing conditions, and is de�ned as

MS-SSIM(I , Ĩ ) = [SSIM(I , Ĩ )]βM
M−1∏
j=1
[c j (I , Ĩ )]

βj , (2.9)

where c j is the contrast map c(I , Ĩ ) iteratively downsampled by a
factor of 2 on scale 1 ≤ j ≤ M . c(I , Ĩ ) = (2σIσĨ + C2)/(σ

2
I + σ

2
Ĩ
+ C2).

The exponent βj models the relative importance of di�erent scales.
Comprehensive evaluations (Sheikh et al., 2006; Ponomarenko et al.,
2009) have demonstrated that SSIM and MS-SSIM can o�er statistically
much better performance in assessing image quality than other quality
metrics. Therefore, we next consider either SSIM or MS-SSIM in this
thesis to compare a raw image I with its simpli�ed, or compressed,
representation Ĩ .

Having introduced related work on medial descriptors, image com-
pression methods, and metrics to evaluate compression quality, we are
now ready to present our �rst contribution in the area of dense medial
descriptor compression.
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