
 

 

 University of Groningen

Methods to Calculate Electronic Excited-State Dynamics for Molecules on Large Metal
Clusters with Many States
Chen, Hsing Ta; Chen, Junhan; Cofer-Shabica, D. Vale; Zhou, Zeyu; Athavale, Vishikh;
Medders, Gregory; Menger, Maximilian F.S.J.; Subotnik, Joseph E.; Jin, Zuxin
Published in:
Journal of Chemical Theory and Computation

DOI:
10.1021/acs.jctc.1c01304

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Chen, H. T., Chen, J., Cofer-Shabica, D. V., Zhou, Z., Athavale, V., Medders, G., Menger, M. F. S. J.,
Subotnik, J. E., & Jin, Z. (2022). Methods to Calculate Electronic Excited-State Dynamics for Molecules on
Large Metal Clusters with Many States: Ensuring Fast Overlap Calculations and a Robust Choice of Phase.
Journal of Chemical Theory and Computation, 18(6), 3296-3307. https://doi.org/10.1021/acs.jctc.1c01304

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1021/acs.jctc.1c01304
https://research.rug.nl/en/publications/e50ef6bd-7fd2-41b7-9c79-f5a69bc11885
https://doi.org/10.1021/acs.jctc.1c01304


Methods to Calculate Electronic Excited-State Dynamics for
Molecules on Large Metal Clusters with Many States: Ensuring Fast
Overlap Calculations and a Robust Choice of Phase
Hsing-Ta Chen,* Junhan Chen, D. Vale Cofer-Shabica, Zeyu Zhou, Vishikh Athavale, Gregory Medders,
Maximilian F. S. J. Menger, Joseph E. Subotnik, and Zuxin Jin

Cite This: J. Chem. Theory Comput. 2022, 18, 3296−3307 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We present an efficient set of methods for propagating
excited-state dynamics involving a large number of configuration interaction
singles (CIS) or Tamm-Dancoff approximation (TDA) single-reference
excited states. Specifically, (i) following Head-Gordon et al., we implement
an exact evaluation of the overlap of singly-excited CIS/TDA electronic states
at different nuclear geometries using a biorthogonal basis and (ii) we employ
a unified protocol for choosing the correct phase for each adiabat at each
geometry. For many-electron systems, the combination of these techniques
significantly reduces the computational cost of integrating the electronic
Schrodinger equation and imposes minimal overhead on top of the
underlying electronic structure calculation. As a demonstration, we calculate
the electronic excited-state dynamics for a hydrogen molecule scattering off a silver metal cluster, focusing on high-lying excited
states, where many electrons can be excited collectively and crossings are plentiful. Interestingly, we find that the high-lying,
plasmon-like collective excitation spectrum changes with nuclear dynamics, highlighting the need to simulate non-adiabatic nuclear
dynamics and plasmonic excitations simultaneously. In the future, the combination of methods presented here should help theorists
build a mechanistic understanding of plasmon-assisted charge transfer and excitation energy relaxation processes near a nanoparticle
or metal surface.

1. INTRODUCTION

1.1. Molecular Non-Adiabatic Dynamics.Metallic nano-
particles support surface plasmon resonances after illumination,
and such collective excitations (involving many high-lying
electronic states) can lead to many interesting dynamical
phenomena, such as plasmon-mediated reduction and dissoci-
ation1−3 and plasmon-induced charge transfer.4−7 Near a metal
surface, the interaction of a molecular system with a continuum
of states in a metal can also lead to chemicurrents, unusual
vibrational relaxation,8,9 and other profoundly non-adiabatic
effects. In order tomodel such essential (but complicated, many-
body) phenomena, accurate and efficient tools for simulating
coupled electron-nuclei dynamics are sorely needed, especially
methods that can accommodate a large number of electronic
excited states and many nuclear degrees of freedom. Simulating
dozens or hundreds of electronic states with ab initio potentials
remains a key challenge for physical chemists.10−13

Now, if we seek a molecular description of dynamics near a
metal surface, practical considerations dictate that we must
employ a semiclassical approach, one whereby we compute the
electronic wavefunction using high-level quantum theory but the
nuclear wave packet is modeled by an ensemble of classical
trajectories. Over the past two decades, beyond Ehrenfest
dynamics,14,15 a few semiclassical methods have been proposed

to treat dynamics near a metal surface based on Tully’s fewest-
switches surface hopping (FSSH) algorithm,16 including
independent electron surface hopping (IESH),17 surface
hopping with electronic friction (FSSH-ER),18 and a broadened
classical master equation (BCME).19 Each of these methods
requires propagating trajectories on one surface, with hops
between potential energy surfaces to account for electronic
relaxation. And in principle, two of these methods (IESH and
FSSH-ER) can be combined with ab initio electronic structure
calculations so as to simulate an arbitrary number of electronic
states in the presence of many nuclear degrees of freedom. In
practice, however, the computational cost of both IESH and
FSSH-ER is very demanding and is determined by how
efficiently one can (i) calculate the adiabatic potential energy
surfaces and nuclear forces for each time step on the fly (eq 1)
and then (ii) propagate an electronic wavefunction spanning

Received: December 27, 2021
Published: May 24, 2022

Articlepubs.acs.org/JCTC

© 2022 American Chemical Society
3296

https://doi.org/10.1021/acs.jctc.1c01304
J. Chem. Theory Comput. 2022, 18, 3296−3307

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 G

R
O

N
IN

G
E

N
 o

n 
Ju

ly
 2

7,
 2

02
2 

at
 1

1:
06

:3
7 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hsing-Ta+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Junhan+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="D.+Vale+Cofer-Shabica"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zeyu+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vishikh+Athavale"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gregory+Medders"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maximilian+F.+S.+J.+Menger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maximilian+F.+S.+J.+Menger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joseph+E.+Subotnik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zuxin+Jin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.1c01304&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01304?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01304?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01304?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01304?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01304?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jctcce/18/6?ref=pdf
https://pubs.acs.org/toc/jctcce/18/6?ref=pdf
https://pubs.acs.org/toc/jctcce/18/6?ref=pdf
https://pubs.acs.org/toc/jctcce/18/6?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01304?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf


many, many excited states (eq 3). While the bulk of the time is
usually spent on the former (i.e., on the electronic structure
calculations), the latter can also add a non-trivial increase to the
cost of semiclassical simulationsespecially because propagat-
ing the latter can dictate the maximum time step allowed in the
former.
In this paper, our goal is to present a combination of new tools

for efficiently propagating the electronic wavefunction [process
(ii) above]. Before we can present the exact protocol, however,
we must review the FSSH algorithm for describing coupled
electron-nuclei dynamics so that we can highlight the essential
problems that must be overcome.
Within FSSH or any FSSH-like algorithm, one always

separates the electronic quantum subsystem from the
nuclear classical coordinates (R⃗,P⃗). The total Hamiltonian
for the full system is Ĥ(R⃗,P⃗) = ∑α(P

α)2/2Mα + Ĥele(R⃗) where
Ĥele(R⃗) is the electronic Hamiltonian. If we choose a
formally diabatic electronic basis, {|ΞA⟩,|ΞB⟩,···}, the matrix
elements of the Hamiltonian in such a diabatic basis are defined
as HAB(R⃗) = ⟨ΞA|Ĥele(R⃗)|ΞB⟩. The electronic Hamiltonian can
then be diagonalized to form the adiabatic eigenenergy surfaces
VJ(R⃗) and the corresponding eigenstates |ΨJ(R⃗)⟩ satisfying

H R R V R R( ) ( ) ( ) ( )J
J

J
ele
̂ ⃗ |Ψ ⃗ ⟩ = ⃗ |Ψ ⃗ ⟩ (1)

To propagate nuclear dynamics, one assumes that the nuclear
coordinates follow Newton’s classical equations along a Born−
Oppenheimer (BO) surface

R
t

P
M

P
t

V
R

;
∂
∂

= ∂
∂

= −
∂
∂

α α

α

α
λ
α (2)

Note that time evolution of the nuclear coordinate [R⃗(t),P⃗(t)]
depicts a classical trajectory moving on the active surface Vλ in
the nuclear phase space. Along the trajectory, the electronic
wavefunction can be expressed as |Ψ(t)⟩ = ∑JCJ(t)|ΨJ(R⃗(t))⟩
and the quantum amplitude CJ(t) follows the electronic
Schrodinger equation

i
C

t
V R t C i T C( ( ))J

J J
K

JK K∑ℏ
∂
∂

= ⃗ − ℏ
(3)

Here, the time-derivative (T) matrix

T
tJK

J
K

= Ψ ∂Ψ
∂ (4)

characterizes the effect of classical nuclear motion on the
quantum electronic subsystem.
1.2. Constructing the Time-derivative T Matrix. The

necessary ingredients for FSSH are (i) the adiabatic energy
surfaces VJ and the nuclear forces−∂VJ/∂R

α (as calculated at the
instantaneous nuclear coordinate Rα(t)) and (ii) the time-
derivative matrix T (as constructed from the adiabatic
eigenstates of the current and previous time steps). While the
on-the-fly calculation of the nuclear forces using electronic
structure packages is usually the most computationally intensive
step and propagating the electronic wavefunction is relatively
fast and cheap, constructing the T matrix can also impose
expensive overhead on top of the on-the-fly electronic structure
calculation, especially for a large number of electronic states.
Note that, within any semiclassical scheme, one would like to
propagate the classical nuclear coordinates using eq 2 using a
larger time step and integrate the electronic Schrodinger
equation (eq 3) with a smaller time step. Such a separation of

time steps is essential for large-scale, multidimensional
simulations, which makes it essential that the T matrix be
calculated as accurately as possible (and that one use the T
matrix as effectively as possible).
Naively speaking, the most straightforward approach to

construct the T matrix is to compute the derivative coupling
between adiabatic states using the usual Hellmann−Feynman
expression

d
R V VJK

J
K

J H
R

K

K J

ele

= Ψ ∂Ψ
∂

=
Ψ Ψ

−
α

α

∂ ̂

∂ α

(5)

and then evaluate the T matrix element as

T d
P
MJK JK∑=

α

α
α

α
(6)

In practice, however, this approach (via the derivative
coupling matrix, as given by eq 5) is not efficient. One reason
is that the computational cost of evaluating a single derivative
coupling dJK

α is equivalent to the cost of evaluating a single
gradient of the excited state energy surface; thus the cost of
constructing the entire derivative coupling matrix between all
pairs of states would be exorbitant, equivalent to a quadratic
number of expensive gradient calls at each time step. Another
reason is that, when the trajectory encounters a so-called trivial
crossing20,21 (a sharp crossing between two electronic states
where the diabatic coupling is effectively zero and a non-
adiabatic electronic transition must occur), very small time steps
are required to capture the electronic transition.
The first alternative to eq 5 was offered by Hammes-Schiffer

and Tully, who suggested an overlap-based propagation scheme
that does not rely on the derivative coupling and allows for a
larger time step.17 More recently, Meek and Levine have
demonstrated that interpolating the derivative coupling pairwise
between adiabatic states (and then averaging the T matrix over
that time step) provides a better approximation for the case of
two electronic states22 and allows for even larger time steps.

T t
t

t
t U U t

d
2

1
d

d ( ) ( ) ( ) ( )JK
t

t t
J K

di
k
jjj

y
{
zzz ∫ τ τ

τ
τ+ = Ψ ∂

∂
Ψ

+
†

(7)

This approach can be extended to the case of more than two
electronic states if we recognized that the T matrix can be
calculated directly from the logarithm of the overlap matrix23

t
t

t
tT U

d
2

1
d

log (d )i
k
jjj

y
{
zzz+ = [ ]

(8)

Here

U t t t t(d ) ( ) ( d )JK
J K= ⟨Ψ |Ψ + ⟩ (9)

is the overlap matrix of the adiabatic states between two
successive time points t and t + dt. In practice, the overlap matrix
U is usually evaluated approximated for a small subspace of
electronic states.24

Below, the first focus of the present paper will be the
construction of an optimal algorithm for evaluating theUmatrix
of many electronic states with minimal cost. In particular, the
first goal of the present paper is to implement an exact method
for calculating the overlap matrix of singly-excited states and
investigate high-lying excited-state dynamics of a molecule
scattering off a metallic nanoparticle. We exploit the
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biorthogonal basis technique developed by Sundstrom and
Head-Gordon25 and combine it with the protocol for choosing
the phase of the adiabatic states. We find that this exact overlap
calculation is actually faster by orders of magnitude than the
current implementation in most state-of-the-art packages,
including Q-Chem and SHARC.26

At this juncture, it is important to emphasize that the sign of a
given eigenstate (and the sign of any column in the overlap
matrix U) is undetermined. Moreover, the logarithm of the
matrix U can be very sensitive to these phases of the adiabatic
states and changing the signs of a column of the U matrix can
lead to a wildly different Tmatrix.27,28 To that end, if we wish to
run semiclassical non-adiabatic FSSH dynamics, it is crucial to
choose the phases of the states in such a way that the T matrix
elements are as smooth as possible, especially when there are
many electronic states andmany trivial crossings; otherwise, one
might need an incredibly small time step to converge. Thus, the
second goal of this paper is to implement ref 28 to choose
adiabatic eigenstates. As will be reviewed below, ref 28 extends
parallel transport to the case of nearly trivial crossings by
choosing the optimal phases of the overlap matrix through a
simple optimization process.
An outline of this paper is as follows: in Section 2, we show

how to group intermediates together so as to construct the
overlap U matrix for CIS or TDA wavefunctions in an efficient
way. (Here, we assume we can treat the TDA excitations like real
wavefunctions, following ref 29). In Section 3, we implement the
optimization process as suggested in ref 28 for dynamically
choosing the phases of the overlap matrix. In Section 4, we
present results for highly-lying excited-state dynamics of a
molecule-nanoparticle system and highlight the performance
enhancement of our scheme. We conclude and discuss future
applications in Section 5.
Regarding notation, we use Ĥ to denote a quantum operator

and a bold symbol T to denote a matrix. For classical degrees of
freedom, we denote each component of classical vectors with a
superscript label as in Rα. We let i, j, k, ··· denote the canonical
occupied orbitals, a, b, c··· denote the canonical virtual orbitals.
Wavefunctions are indexed with capital Roman letters I, J, K···
and will usually refer to the CIS/TDA excited states.

2. CONSTRUCTING THE U MATRIX FOR CIS OR TDA
WAVEFUNCTIONS
2.1. CIS (or TDA) Overlap Matrix. To describe electronic

excited states, we work in the space of the CIS (or TDA)
excitations where one electron in the occupied orbital can be
promoted to virtual orbitals. Consider a molecular system with
No occupied orbitals (ϕi) and Nv virtual orbitals (ϕa). The
Hartree-Fock (HF) ground state is |Φ⟩ = |1···No⟩ = det|ϕ1···ϕNo

|.
For a closed-shell system, we assume that the CIS (or TDA)
excited states are of the following singlet form

t ( )J

ia
ia
J

i
a

i
a∑|Ψ ⟩ = |Φ ⟩ + |Φ ⟩̅̅

(10)

Here, |Φi
a⟩ is a Slater determinant formed by replacing ϕi by ϕa,

and tia
J is the amplitude of the single excitation. In terms of the

CIS/TDA excited states, the electronic wavefunction is |Ψ(t)⟩ =
∑JCJ(t)|ΨJ⟩. Note that the canonical orbitals (ϕi and ϕa) and
the CIS/TDA amplitudes tia

J depend on nuclear coordinates R⃗.
To construct the overlap matrix U(dt) at t and t + dt, UJK′ =

⟨ΨJ|ΨK′⟩, note that the overlapmatrix can be expressed as (in the
case of a restricted calculation)

t t2 ( )J K

ia j b
ia
J

j b
K

i
a

j
b

i
a

j
b∑ ∑⟨Ψ |Ψ ⟩ = ⟨Φ |Φ ⟩ + ⟨Φ |Φ ⟩′

′ ′
′ ′
′

′
′

̅ ′
̅′

(11)

Here, we use an extra prime (′) to denote quantities calculated at
the second geometry, for example, j′, b′, K′. Note that tj′b′ = tj′̅b̅′
for a restricted calculation (the overbar indicates the opposite
spin) and eq 11 requires evaluating the overlap of two singly-

excited determinants, ⟨Φi
a|Φj′

b′⟩ and ⟨Φi
a|Φj′̅

b̅′⟩. As a practical
matter, all results below can be easily extended to triplet
calculations, unrestricted calculation, or spin-flip calculations.
See Supporting Information 4 and 5.
The overlap of two Slater determinants can be evaluated

by computing the determinant of the orbital overlap matrix. Let
{|p⟩,p = 1,···,N} and {|q′⟩,q = 1,···,N} be two arbitrary sets of
orbitals (not necessarily orthonormal). Following refs 30 and 31,
the overlap of the two determinants is

p q Sdet( )⟨··· ···|··· ′···⟩ = (12)

where the S matrix is the orbital overlap matrix Spq′ = ⟨p|q′⟩.
Specifically, the HF ground state overlap is

Sdet( )o⟨Φ|Φ′⟩ = (13)

where Sij′
o = ⟨i|j′⟩ for i, j′ = 1, ···, No. The singly-excited

determinants can be written as

Sdet( )i
a

j
b

ij
ab⟨Φ |Φ ⟩ =′

′
′
′

(14)

Here, Sij′
ab′ is a square matrix of size No, where the i-th orbital is

replaced by the virtual orbital a for the geometry at time t and the
j′-th orbital is replaced by the virtual orbital b′ for the geometry
at time t + dt.
Inmost electronic structure calculations, for a given geometry,

the canonical orbitals can be chosen to be orthonormal, that is,
⟨i|j⟩ = δij, ⟨a|b⟩ = δab, and ⟨i|a⟩ = 0. However, for different
geometries, the canonical orbitals are in general not mutually
orthonormal, that is, ⟨i|j′⟩ and ⟨a|b′⟩ are not diagonal, so that S0
and Sij′

ab′ will be formally dense matrices. As such, when directly
constructing the CIS/TDA state overlap matrix, one must

evaluate det(Sij′
ab′) (which has computational complexityO(No

3))
for each element i, j = 1, ···,No and a, b = 1, ···,Nv. In the end, the
total computational complexity isO(No

5Nv
2). The key question is

how do we most efficiently calculate all of the quantities

{det(Sij′
ab′)} between two geometries? This item has recently

been addressed by refs 32 and 33.
2.2. Method #1: Maximize the Overlap between

Orbitals at Two Geometries. Given two different geometries
(one “previous” and one “current”), the simplest approach is to
rotate the current set of orbitals so that the orbital overlap with
the previous geometry is maximized. To do so, we divide the S
matrix into So and Sv within the occupied and virtual subspaces,
respectively, and employ the singular value decomposition
(SVD) of the So and Sv matrices

S U Vo o o oΛ= † (15)

S U Vv v v vΛ= † (16)

Here, the matrix element of the occupied/virtual orbital overlap
is given by Sij′

o = ⟨i|j′⟩ and Sab′
v = ⟨a|b′⟩, Λij′

o = λi
oδij′, and Λab′

v =
λa
vδab′ are diagonal matrices and Uo, Vo, Uv, and Vv are unitary
matrices (note that Uo and Uv are distinct from the overlap
matrix U). At this point, one would like to rotate the orbitals at
the second geometry so as to best line up with the orbitals at the
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first geometry. As described in Supporting Information 1, this is
a well-known problem in applied linear algebra, and the result is
(denoting the new orbitals with tildes)

j k V U
k l

k l j l
o o∑| ̃′⟩ ≡ | ′⟩

′ ′
′ ′ ′ ′

*

(17)

b c V U
c d

c d b d
v v∑| ′̃⟩ ≡ | ′⟩

′ ′
′ ′ ′ ′

*

(18)

Here, we emphasize that an overall unitary transformation of the
orbitals inside a Slater determinant does not change the state or
mix the occupied and virtual subspaces. The CIS/TDA
amplitudes can be transformed using the same unitary matrices

t tU V V U( ) ( )j b
K

k c
b c k c

K
j k

v v o o∑̃ =′ ′
′

′ ′

†
′ ′ ′ ′

′ †
′ ′

(19)

Therefore, the CIS/TDA state overlap can be written as

t t S S2 (det( ) det( ))J K

ia j b
ia
J

j b
K

ij
ab

ij
ab∑ ∑⟨Ψ |Ψ ⟩ = ̃ ̃ + ̃′

′ ′
′ ′

′
̅
̅

(20)

where we have now defined the overlap matrices in the
transformed basis to be S̃. Note that

S S V Uo o o õ = † (21)

S S V Uv v v ṽ = † (22)

Furthermore, below, we will at times need the occupied-virtual
blocks of the overlap matrix; these blocks are defined to be

S S V Uov ov v ṽ = † (23)

S S V Uvo vo o õ = † (24)

At this point, we can calculate the determinant of the S̃ij′
ab′

matrix. Recall that the S̃ij′
ab′ matrix is the occupied block of the

transformed matrix (S̃o) with the i-th row substituted by
S̃al = ⟨a|̃l′̃⟩ (l′ = 1, ···, No) and the j-th column substituted by
S̃kb = ⟨k̃|b̃′⟩ (k = 1, ···, No). Explicitly, we consider the following
two cases

(a) If i = j, we can permute the matrix into the following form

S S

S S
Sii

ab

ab al l i

kb k i kl k l i
o

,

μ μ

∂ ∏

∂ ∏

i

k

jjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzz

̃ =

̃ ̃ |

̃ | ̃ |
′
′

≠

≠ ≠

(25)

Then, we approximate the determinant by just taking the largest
term (i.e., dropping the off-diagonal blocks S̃al|l≠i ≈ S̃kb|k≠i ≈ 0)

S
S

S Sdet( ) Trii
ab ab

ii

õ ≈ ̃
̃
̃′

′

(26)

(b) If i≠ j, we can permute the matrix into the following form

S S S

S S S

S S S

Sij
ab

ai ab al l i j

ji jb jl l i j

ki k i j kb k i j kl k l i j

,

,

, , , ,

μ μ

μ μ

∂ ∂

∂ ∂ ∏

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzz

̃ =

̃ ̃ ̃ |

̃ ̃ ̃ |

̃ | ̃ | ̃ |

′
′

≠

≠

≠ ≠ ≠

(27)

and we approximate the determinant by dropping the off-
diagonal blocks

S S S S

S S
S Sdet( ) Trij

ab ai jb ab ji

ii jj

õ ≈ ̃
̃ ̃ − ̃ ̃

̃ ̃′
′

(28)

Note that eqs 26 and 28 are very efficient approximations: one
throws away many terms in the determinant and instead
multiplies together only a few matrix elements. The computa-
tional complexity of this step is O(1), which is far cheaper than

evaluating the determinant of the dense matrix Sij′
ab′ of size No

[which has computational complexity O(No
3)]. Nevertheless,

this approximation rests on the assumption that the relevant set
of orbitals does not change much from t to t + dt; moreover, one
must construct many such orbital overlaps. See Section 2.4 for
an analysis of the computational cost of this algorithm.

2.3. Method #2: An Exact Expansion in a Biorthogonal
Basis. Rather than rotate one set of orbitals (as in method #1),
as shown by Sundstrom and Head-Gordon,25 the better
approach is to rotate both sets of orbitals (those at the current
and previous geometries) so as to generate a fully biorthogonal
basis set. Such an approach has been used previously for several
electronic structure calculations25,31,34,35 and significantly
generalized by Burton.36 Here, we apply this technique to
calculate the singly-excited state overlap matrix for use in non-
adiabatic dynamics.
Because the required orbital transformation is effectively

equivalent to the transformation described in eqs 15 and 16, we
will safely use the same notation (superscript tilde) for the new
sets of rotated canonical orbitals

i k U j l V;
k

ki
l

l j
o o∑ ∑| ⟩̃ ≡ | ⟩ | ̃′⟩ ≡ | ′⟩

′
′ ′

(29)

a c U b d V;
c

ca
d

d b
v v∑ ∑| ⟩̃ ≡ | ⟩ | ′̃⟩ ≡ | ′⟩

′
′ ′

(30)

We reiterate that these transformed orbitals are exactly
biorthogonal, that is

i j U k l V
kl

ki l j i ij
o o o∑ λ δ⟨ |̃ ̃′⟩ = ⟨ | ′⟩ =

′

*
′ ′ ′

(31)

a b U c d V
cd

ca d b a ab
v v v∑ λ δ⟨ |̃ ′̃⟩ = ⟨ | ′⟩ =

′

*
′ ′ ′

(32)

In other words, within the occupied and virtual subspaces, the
transformed orbital overlap matrices So and Sv are both diagonal.
Note that this transformation of the orbitals does not change the
HF reference and CIS states (or the DFT Kohn-Sham (KS)
reference and TDA states) as one does not mix the occupied and
virtual subspaces.

2.3.1. Singly-Excited States Overlap Matrix. With these
biorthogonal orbitals in mind, the singly-excited states can be re-
expressed as

U Ui
a

kc
ac ik k

cv o∑|Φ ⟩ = |Φ ⟩*
̃
̃

(33)

V Vj
b

l d
b d j l l

dv o∑|Φ ⟩ = |Φ ⟩′
′

′ ′
′ ′
*

′ ′ ′̃
′̃

(34)

and the overlap matrix is

U U V Vi
a

j
b

kc l d
ik ac k

c
l
d

b d j l
o v v o∑ ∑⟨Φ |Φ ⟩ = ⟨Φ |Φ ⟩′

′

′ ′

*
̃
̃

′̃
′̃

′ ′
*

′ ′
(35)
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Next, using eq 12, ⟨Φk̃
c ̃ |Φl′̃

d̃′⟩ can be evaluated by calculating the
determinant of the biorthogonal orbital overlap matrix

Sdet( )k
c

l
d

kl
cd⟨Φ |Φ ⟩ = ̃̃

̃
′̃
′̃

′
′

(36)

Again, the ij-th element of S̃kl′
cd′ is equal to the occupied block

overlap matrix element ⟨i|̃j′̃⟩whenever i≠ k and j≠ l; when i = k,
wemust evaluate ⟨c|̃j′̃⟩ for all j; when j = l, wemust evaluate ⟨i|̃d̃′⟩
for all i. Explicitly, the S̃kl′

cd′ matrix can only differ from Λo (as
obtained by the SVD calculation in eq 15) by the k-th row and
the l-th column. Note that, in the following equations, k,l and c,d
can represent both orbitals and numeric indices. Now, we
consider the following two cases:

(a) If k = l, we can permute the orbitals such that the k-th
orbital is the first column and row for the orbital overlap
matrix, that is

c dS

Y

X

kk
cd

k k

c cd k

k k

v

o

ßß

i

k
jjjjjj

y

{
zzzzzz

λ δ

Λ

̃ = ⟨··· ̃ ···|··· ′̃ ···⟩

=
|

| |

′
′

(37)

Here X and Y are the column and row of the occ-vir and vir-
occ orbital overlap matrices, respectively

X m dmd ≡ ⟨ ̃ | ′̃⟩′ (38)

Y c mcm ≡ ⟨ |̃ ̃ ′⟩′ (39)

for m = 1, ···, No. The notation X|k and Y|k indicate that the k-th
element is excluded, that is, m ≠ k.

To evaluate det(S̃kk′
cd′), we employ the Schur complement of a

block matrix (see eq S.7 in Supporting Information 2),

S Y Xdet( ) det( )kk
cd

c cd k k k
m k

m
v o 1

occ
o∏λ δ λΛ̃ = − | | |′

′ −

≠ (40)

Explicitly, we have the singly-excited state overlap matrix

c
m m

d
c k k d

k
c

k
d

c cd
m m k

k

v

1

occ

o o

o

i

k

jjjjjjj
i

k
jjjjjj

y

{
zzzzzz

y

{

zzzzzzz∑λ δ
λ λ

γ
λ

⟨Φ |Φ ⟩ = − ⟨ |̃ | ̃ ′⟩⟨ ̃ | | ′̃⟩ + ⟨ |̃ ′̃⟩⟨ |̃ ′̃⟩

×

̃
̃

′̃
′̃

=

(41)

where

Sdet( )
i

occ
o∏γ ≡ =

(42)

(b) If k ≠ l, we can build the S̃kl′
cd′ matrix from theΛo matrix by

replacing the k-th row by the virtual orbital c ̃ and the l-th
column by the virtual orbital d̃′. Again, we can permute
the orbitals such that the k and l orbitals are the first two
elements for the orbital overlap matrix, that is

c l k d

c k

l d

S

Y

0

0 X

0

kl
cd

k l k l

c cd k l

T

k l k l

v
,

,
o

,

ßß ß ß

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz

λ δ

Λ

̃ = ⟨··· ̃ ··· ̃···|··· ′̃··· ′̃ ···⟩

=

⟨ |̃ ′̃⟩ |

⟨ |̃ ′̃⟩

| |

′
′

(43)

Here 0 is a zero column vector of size No − 2. Again, we can

evaluate det(S̃kl′
cd′) using eq S.7

c k

l d
S

Y

0
0 Xdet( ) det

0
( )kl

cd c cd k l

T k l k l

m k l
m

v
, o

,
1

,

,

occ
o

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i

k

jjjjjjj
y

{

zzzzzzz
i

k
jjjjjj

y

{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
∏

λ δ

λ

Λ̃ =
⟨ |̃ ′̃⟩

⟨ |̃ ′̃⟩
−

|
| |′

′ −

≠ (44)

Note that the off-diagonal element does not contribute to the
determinant. Therefore, for the case where k ≠ l, we have

c k l dk
c

l
d

k l
o o
γ

λ λ
⟨Φ |Φ ⟩ = ⟨ |̃ ′̃⟩⟨ |̃ ′̃⟩̃

̃
′̃
′̃

(45)

Finally, we combine eqs 41 and 45 and write the orbital
overlap matrix in the biorthogonal basis as

c Q
k l

dk
c

l
d kl

k k l
o o o

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
γ

δ
λ λ λ

⟨Φ |Φ ⟩ = ̃ ̂ + | ′̃⟩⟨ |̃ ′̃̃
̃

′̃
′̃

(46)

Here, we define the Q̂ operator as

Q I
m m

m i

occ

o∑
λ

̂ ≡ ̂ − | ̃ ′⟩⟨ ̃ |

(47)

Then, we transform the overlap matrix back to the canonical
orbital basis by eqs 35 and 30

a Q b U V

U V
a k l b

i
a

j
b

kl
ik

kl

k
jl

kl
ik jl

k l

o
o

o

o o
o o

i

k
jjjjjj

y

{
zzzzzz

∑

∑

γ
δ
λ

λ λ

⟨Φ |Φ ⟩ = ⟨ | ̂ | ′⟩

+ ⟨ | ′̃⟩⟨ |̃ ′⟩

′
′ *

*

(48)

Note that this expression involves the unitary matrix elements
(Uo/v and Vo/v) from the SVD.
Next, we introduce auxiliary orbitals (indexed by subscript

bars)

i j S j i S;
j

ij
i

ij
o o∑ ∑| ̲′⟩ ≡ | ′⟩ ̲ | ̲ ⟩ ≡ | ⟩ ̲ *

(49)

where S̲o≡((So)T)−1. With the auxiliary orbitals, we can
eliminate all dependence on Uo/v and Vo/v, so that we do not
have to perform the SVD numerically (see Supporting
Information 3). In the end, the singly-excited state overlap
matrix can be written as

a Q b S a i j b( )i
a

j
b

ij
oγ⟨Φ |Φ ⟩ = ⟨ | ̂ | ′⟩ ̲ + ⟨ | ̲′⟩⟨ ̲ | ′⟩′

′
(50)

and

a Q b a b a k k b
k

∑⟨ | ̂ | ′⟩ = ⟨ | ′⟩ − ⟨ | ′⟩⟨ | ′⟩
(51)

For the opposite spin case, notice that ⟨a|Q̂|b′⟩ = 0, so that

a i j bi
a

j
b γ⟨Φ |Φ ⟩ = ⟨ | ′̲⟩⟨ ̲ ̅ | ′⟩̅′

̅′
(52)

and in the case of a restricted calculation, the spatial parts of the
orbital wavefunctions satisfy j ̅ = j,b̅ = b, so that

a i j bi
a

j
b γ⟨Φ |Φ ⟩ = ⟨ | ′̲⟩⟨ ̲ | ′⟩̅′

̅′
(53)
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Note that, compared to eqs 48, 50−53 depend on only the bare
S matrix, rather than relying on Uo, Vo, and λk

o from the SVD
calculation (eq 15). Therefore, we need only the bare Smatrix in
order to construct the exact singly-excited state overlap matrix.
2.3.2. CIS/TDA Overlap Matrix. To calculate the CIS/TDA

overlap matrix element, we insert eqs 50 and 53 into eq 11

a Q b t t S

t a i t j b

2

2

J K

ab ij
ia
J

j b
K

ij

ia
ia
J

jb
j b
K

o
i

k

jjjjjjj
y

{

zzzzzzz

∑ ∑

∑ ∑

γ⟨Ψ |Ψ ⟩ = ⟨ | ̂ | ′⟩ ̲

+ ⟨ | ′̲⟩ ⟨ ̲ | ′⟩

′
′ ′
′

′ ′
′

(54)

For simplicity, we write the virtual orbitals in terms of the
auxiliary orbitals as

W a i a j S( )ai
j

N

ji
o 1

o

∑≡ ⟨ | ′̲⟩ = ⟨ | ′⟩ −

(55)

Z j b S i b( )jb
i

N

ji
o 1

o

∑≡ ⟨ ̲ | ′⟩ = ⟨ | ′⟩−

(56)

Q a Q b a b W k bab
k

ak∑≡ ⟨ | ̂ | ′⟩ = ⟨ | ′⟩ − ⟨ | ′⟩
(57)

Then, we define the following quantities that depend on the
CIS/TDA coefficients

A t t Q S( )JK

ia jb
ia
J

j b
K

ab ji
o 1∑ ∑≡ ′ ′

′ −

(58)

B t WJ

ia
ia
J

ai∑≡
(59)

C t ZK

jb
j b
K

jb∑≡ ′ ′
′

(60)

In the end, the final expression for the CIS/TDA overlap
matrix element is

A B C2 2J K JK J Kγ⟨Ψ |Ψ ⟩ = [ + ]′
(61)

As a final note, we emphasize that method #2 is not limited to
restricted closed-shell wavefunction calculations: for the
unrestricted Hartree-Fock cases, see Supporting Information
4; for the spin-flip variants of CIS and TD-DFT,37,38 see
Supporting Information 5.
2.3.3. Algorithmic Summary. In this section, we summarize

the algorithm to construct the CIS/TDA state overlap between
two different geometries ⟨ΦJ|ΦK′⟩

1. Build the canonical orbital overlap matrix between two
different geometries: Sij = ⟨i|j′⟩, Sab = ⟨a|b′⟩, and the occ-
vir overlap Sia = ⟨i|a′⟩.

2. Consider the occupied subspace and calculate γ = det(So).
3. Project the virtual orbitals into the basis of auxiliary

orbitals by solving the linear equations in eqs 55 and 56;
evaluate Qab using eq 51. Note that, sinceWai, Zjb, Qab do
not depend on the CIS/TDA states, one needs to
calculate these quantities just once for each time step.

4. For each pair of CIS/TDA states J,K, evaluate AJK, BJ, and
CK using eqs 58−60. Then, put them all together
according to eq 61.

2.4. Computational Complexity. At this point, let us turn
our attention to the computational complexity of evaluating the

CIS/TDA overlap matrix ⟨ΨJ|ΨK′⟩ using the above methods. To
compare the computational complexity, we assume the So and Sv

matrices are known and O(No) ≈ O(Nv) ≈ O(Ns) are of the
same order of magnitude ≈ O(N). As a reference, a
straightforward approach requires two steps: (I) evaluating the

determinant of the canonical orbital overlap matrix for every Sij′
ab′

matrix (eq 14), which takes O(No
5Nv

2); (II) computing the
summation in eq 11 for every element ⟨ΨJ|ΨK′⟩, which takes
O(NsNo

2Nv
2 + Ns

2NoNv). Therefore, if we compute the CIS/TDA
overlap matrix naively, the total computational complexity is
dominated by the leading order O(No

5Nv
2) ≈ O(N7) in step (I).

2.4.1. Method #1. Method #1 takes the following steps:
(i) Two SVD calculations (eqs 15 and 16), which requires

O(No
3 + Nv

3);
(ii) Matrix multiplication for generating the S̃ matrix (eqs

21−24), which requires O(No
3 + Nv

3 + No
2Nv + Nv

2No).
Note that, once S̃ is constructed, evaluating the
approximate determinant using eqs 26 and 28 is O(1));

(iii) Transformation of the amplitude tj′b′
K for every CIS/TDA

state using eq 19, which takes O(NsNoNv
2 + NsNo

2Nv);
(iv) Evaluation of the summation in eq 20 for every J and K,

which takes O(NsNo
2Nv

2 + Ns
2NoNv).

Note that, because we approximately evaluate the determi-
nant of the orbital overlap matrix in step (ii), the most expensive
step is now the summation in step (iv). Therefore, the leading
order of computational complexity forMethod #1 isO(NsNo

2Nv
2)

≈ O(N5); in other words, method #1 reduces the cost of the
algorithm by 2 orders of magnitude relative to a naive,
straightforward approach.

2.4.2. Method #2. Method #2 takes the following steps:
(i′) Evaluation of the determinant of So to compute the

coefficient γ using eq 42, which takes O(No
3);

(ii′) Solving linear equations forWai and Zjb in eqs 55 and 56;
both steps require O(No

2Nv) work;
(iii′) Matrix multiplication for constructing the Q matrix using

eq 57, which requires O(Nv
2No) cost;

(iv′) Constructing the AJK matrix using eq 58. Here, the
summation∑ia,jb can be decomposed into∑itia

J (So)ji
−1 (of

order O(NsNvNo
2)) and∑btj′b′

K′ Qab (of order O(NsNoNv
2)).

Thus, constructing the AJK matrix requires O(NsNo
2Nv +

NsNoNv
2 + Ns

2NoNv);
(v′) Computing the BJ and CK using eqs 59 and 60, both of

which have cost O(NsNoNv).

We emphasize that method #2 can evaluate the exact
determinant of the orbital overlap matrix [steps (i′)−(iii′)] at
the same order of computational cost as in method #1, but does
not rely on approximating the orbital determinants. More
importantly, by design, the key advantage of method #2 is the
decomposition of the summation in eq 11 into two cheaper
factorized summations (AJK and BJCK) as in Steps (iv′) and (v′).
Therefore, the computational complexity of method #2 is
O(NsNo

2Nv + NsNoNv
2 + Ns

2NoNv) ≈ O(N4); by contrast, recall
that method #1 has a computational cost of O(N5).

3. CHOOSING THE PHASES OF ADIABATIC STATES
The second goal of this paper is to implement the optimization
approach described in ref 28 for choosing the phases of the
adiabatic states. For a real-valued electronic Hamiltonian, to
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smoothly propagate the electronic wavefunction using the
overlap-based scheme, the overlap matrix at each time step must
be a proper rotation matrix with a real matrix logarithm.
Mathematically, a necessary condition for any matrix to be a
proper rotation matrix is det(U) = 1. Now, if we ever find that, in
practice, det(U) ≠ 1, we may conclude that there must be one
(or an odd number of) negative eigenvalue(s) corresponding to
an eigenstate that flips its sign from the previous geometry,
meaning that the phase of the adiabatic state is not continuous.
With this necessary condition in mind, the optimal phase of

the overlap matrix should be chosen dynamically at each time
step so as to minimize the norm of the T matrix (∑JK|TJK|

2 or
equivalently Tr|logU|2). In principle, we can change the signs of
the columns of the U matrix to find the optimal matrix with the
minimal norm. However, such a direct brute-force search would
require 2Ns matrix logarithm evaluations, which is very expensive
for many electronic states. Therefore, instead of the direct
minimization, there are several protocols for choosing the
phases.
3.1. Maximally Positive (MP) Approach. The maximally

positive approach is a straightforward extension of parallel
transport where one chooses the phase of adiabatic states to
make all diagonal matrix elements of the overlap matrix (UJJ)
real and maximally positive. Explicitly, the MP protocol can be
implemented at each time step as follows

1. For each column J, if UJJ < 0, we flip the sign of the J-th
column.

2. In the end, if det(U) < 0, we find the column with the
smallest diagonal element (i.e., |UJ0J0|≤|UJJ| for all J) and
flip the sign of the J0-th column.

Note that making all diagonal elements positive may
correspond to det(U) = −1, which is incompatible with a pure
rotation of adiabatic states.28 In particular, in the extreme non-
adiabatic limit of curve crossings (such as a trivial crossing) or in
the case where more than two states cross at the same time, one
may find the diagonal element of the overlap matrix can be zero
(especially when the classical time step is large), which makes
parallel transport unstable and ambiguous; in such a case, there
is no reason at all to presume that det(U) = 1. Therefore,
changing the sign of the column with the smallest diagonal
element (i.e., maximally positive) is a straightforward fix to
ensure det(U) = 1. This being said, we emphasize that such a
change does not minimize the norm Tr| log U|2, and the time
derivative T matrix may not always be optimally smooth for a
large time step. In principle, if one uses a very small time step and
many grid points, the MP protocol can recover smooth
wavefunction propagation and capture the correct electronic
transition, but we expect that the need for such small time steps
will make calculations more expensive than our optimized
approach.
3.2. Optimization (OP) Approach. Recently, our group

has developed an alternative optimization protocol for choosing
the optimal phase of the adiabatic states. Basically, instead of
evaluating thematrix logarithmTr|logU|2 2Ns times, weminimize
a polynomial function of U (Tr(3U2 − 16U) for a real overlap
matrix U) using Jacobi sweeps. Note that the target function,
Tr(3U2 − 16U), is a second order approximation of Tr| logU|2

aroundU = I. Explicitly, the OP protocol can be implemented at
each time step as follows:

1. If det(U) < 0, we change the sign of the first eigenvector.

2. For each pair J, K, we minimize

U URe(Tr(3 16 ))2 − (62)

by calculating the difference ΔJK defined as

U U U U U U

U U U U

3( ) 6 8( )

3 ( )

JK JJ KK JK KJ JJ KK

L
JL LJ KL LK

2 2

∑
Δ = + + + +

− +
(63)

If ΔJK < 0, we flip the signs of the J-th and K-th columns
simultaneously.

3. Return to step 2 until all ΔJK > 0.

Note that, if we start with a U with det(U) = 1, then at every
iteration, we flip the signs of a pair of columns in theUmatrix in
order to preserve the condition det(U) = 1. In ref 28, we
demonstrated that this optimization approach yields the time-
derivative coupling matrix elements that are as smooth as
possible. Note that the optimization approach has the
computational complexityO(Ns

2), which is almost instantaneous
in comparison to constructing the CIS/TDA state overlap
matrix. By design, our hope has been that the OP protocol
should allow for a larger time step dtc.

4. RESULTS AND DISCUSSION
With these computational tools, we will analyze a test case of
excited state electronic dynamics for a system involving many
electronic states. Consider a molecule-nanoparticle system with
a H2 molecule scattering off a tetrahedral silver metal
nanoparticle Ag20. The initial position of the H2 molecule is
7.3 Å away from the center of the metal cluster. The Ag20 cluster
is set to be static initially, and the initial kinetic energy of the H2

molecule is EK0
= mp|v0|

2 = 0.15 eV, where mp ≈ 1836me is the
proton mass and the initial velocity (v0 = 0.001 a.u.) is moving
toward the origin.
As reported in past work,39 such a silver metal cluster supports

surface plasmon resonance at the excitation energy ∼3.59 eV,
which involves collective electronic transitions and shows a large
oscillation strength in the absorption spectrum. This plasmonic
excitation is much higher than the HOMO−LUMO gap (∼1.68
eV) of the metal cluster. Therefore, we expect that excited state
dynamics may well populate many high-lying electronic states.

4.1. Simulation Details. The optimized geometry of the
tetrahedral Ag20 cluster is centered at the origin and adopted
from ref 39. We employ time-dependent density functional
theory (TDDFT) to calculate excited states using the PBE
exchange functional and Tamm-Dancoff approximation (TDA).
We use the 6-31G basis for the hydrogen molecule and employ
the Couty-Hall modified LANL2DZ basis sets (modified-
LANL2DZ) with an effective core potential for the silver
cluster.40 The first Ns = 128 singlet excitations are computed,
and the numbers of the occupied/virtual orbitals are No = 191
and Nv = 253. We use the Q-Chem package for the electronic
structure and dynamics calculations.12 Note that we consider
only singlet states as generated from a restricted DFTKS ground
state. The overlaps between the TDA excited states are
calculated just as they would be for the CIS states following
ref 29. Due to the spatial symmetry of the tetrahedral geometry
of the metal nanoparticle, there are many degenerate states and
we can easily find trivial crossings with more than two states.
Because our focus here is on the evolution of the electronic

wavefunction, we will make the strong assumption that all
nuclear coordinates are propagated on the ground state using
the velocity Verlet method. We also neglect any non-adiabatic
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effects on the nuclear motion. The propagation of the electron-
nuclei dynamics is implemented using two different time steps.
For the nuclear degrees of freedom, the ground state nuclear
dynamics is evolved using the classical time step dtc; the overlap
U matrix and the time-derivative T matrix are evaluated by
comparing the two geometries before and after the classical time
step. For the electronic dynamics, the electronic Schrodinger
equation (eq 3) is integrated using the fourth-order Runge−
Kutta method with a substantially smaller quantum time step
(here, we choose dtq = dtc/50) and using the T matrix above.
Note that, once we have theTmatrix, propagating the electronic
amplitudes is usually very cheap (in comparison to calculating
the overlap matrix).
4.2. Method #2 Outperforms Method #1 by Orders of

Magnitude. In Figure 1, we compare the computational

expenses of constructing the overlap matrix bymethod #1 versus
method #2. In particular, we compare the walltime for
calculating the TDA state overlap at different times by eq 11
using 32 CPU cores. We find that the performance of method #2
is faster than method #1 by orders of magnitude, especially for a
large number of electronic states. In fact, as shown in Figure 1,
method #2 (red) can be ≈ 700 times faster than method #1
(blue) when we construct the overlap matrix for Ns = 256 TDA
states. As a point of comparison, the current algorithm is also
faster than the corresponding overlap in SHARC.26,32

4.3. Choosing the Proper Phase of the Overlap Matrix
Accelerates the Convergence with Respect to dtc. With
the overlap matrix as constructed using method #2, we now turn
our attention to choosing the phase of the overlap matrix. Here,
we compare the electronic state population dynamics as
obtained by integrating the electronic Schrodinger equation
(eq 3) using different phase protocols. At each time step, the
phase of the overlap matrix U(dtc) is determined following
either the OP protocol or the MP protocol. Note that, when

decreasing the classical time step dtc, one expects that both
protocols should converge and agree with each other in the
extremely small dtc limit.
To compare between the OP andMP protocols, we initialized

the electronic wavefunction to be on state J = 72 (i.e., P72 = 1 at
t = 0). This representative trajectory will encounter several
interesting scenarios.

4.3.1. Trivial Crossing with a Pure State Wavefunction. In
Figure 2, we plot the relative adiabatic states and the electronic

Figure 1.Walltime on 32 cores for constructing the TDA state overlap

matrix ⟨ΦJ|ΦK′⟩ usingmethod #1 and #2 and SHARC26,32 is plotted in a
logarithmic scale as a function of the number of electronic states. In
general, we find that method #2 (red) is at least 2 orders of magnitude
faster than method #1 (blue). For the SHARC routine, the overlap
matrix is constructed by predetermining a certain percentage of the
determinants to be evaluated with eq 11. Here, we denote SHARC 0.9
(0.99) for the results where 90% (99%) of the determinants are
evaluated. For N = 256 states, method #2 can be more than 3 orders of
magnitude faster than SHARC 0.99. Recall that method #2 is exact.

Figure 2. (a) Adiabatic potential energy surfaces and the electronic
population dynamics following the (b) OP protocol and (c) MP
protocol are plotted as a function of time for different classical time
steps dtc. The initial electronic wavefunction is an adiabatic state J = 72
(red lines). The relevant surfaces (where the corresponding
populations are non-zero) are colored. (▲) indicates a three state
crossing (76→ 78, 79) at t = 68.8 fs. After the three state crossing, the
wavefunction becomes a superposition state with P78 ≈ 0.85 and
P79 ≈ 0.15. Note that, up to t = 105 fs, the results of the OP and MP
protocols agree with each other and both are converged for dtc = 0.24 fs.
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populations according to the OP and MP protocols for the first
105 fs of the trajectory. First, in subplot (a), notice that the
energy surface for the J = 72 state (red line) has a trivial crossing
with the J = 73 state around 46.5 fs; the electronic population
makes a complete transition (72 → 73). In fact, there are three
trivial crossings occurring before t = 65 fs. Importantly, for all of
these trivial crossings, the initial electronic wavefunction begins
and ends on one adiabatic state. For this reason, we find that
both theMP andOP protocols can capture the correct transition
even with a large classical time step (such as dtc = 0.36 fs).
Intuitively, this result is not surprising: the phase of the overlap
matrix does not affect the electronic wavefunction propagation
when the propagation involves just two states.
This being said, when there is a three state crossing [e.g., 76→

78, 79 at t = 68.8 fs as labeled by the black triangle (▲) in Figure
2], the electronic transition becomes more complicated. Here,
after the crossing at (▲), the electronic population becomes
P78 ≈ 0.85 and P79 ≈ 0.15 (i.e., the wavefunction is a
superposition of the TDA states of J = 78, 79). This crossing
is non-trivial, and a small time step is required to capture the
correct electronic transition probability (here, dtc = 0.24 fs is
sufficient). For this three state crossing, we find that the
propagation following the OP and MP protocols are almost the
same and both algorithms converge to the correct results for dtc
= 0.24 fs.
4.3.2. Trivial Crossing with a Superposition Wavefunction.

In Figure 3, we continue the propagation in Figure 2, now
plotting populations from 105 fs through 145 fs. We emphasize
however, that, after 69 fs, the electronic wavefunction is a
superposition of adiabatic TDA states. In general, the more
states that are populated and the more relative phases there are
to keep track of, the more we expect the OP and MP protocols
may differ. Indeed, Figure 3 shows that the OP and MP
protocols differ for dtc = 0.24 fs. This being said, as dtc decreases,
the population dynamics following the OP protocol converges
for dtc = 0.17 fs (see Figure 3b); however, the MP protocol does
not converge even for dtc = 0.12 fs (see Figure 3c).Wemust now
explain this difference in convergence.
To understand the underlying differences between the OP

andMP protocols, let us focus on the trivial crossing at t = 110.5
fs as labeled by the black square (■) in Figure 3. We observe
that, for an incoming superposition state wavefunction, the
electronic transition between states 74 (orange line) and 75
(magenta line) affects the relative phases of the other states
(here 84 blue line). For dtc = 0.24 fs at (■), the overlap matrix
following the OP protocol is (for states 74, 75, and 84)

U

0.0 0.99987 0.0
0.99999 0.0 0.00011

0.00011

OP

μ

μ

∂

i

k

jjjjjjjjjjjjjjj
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zzzzzzzzzzzzzzz
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−
−

and the overlap matrix following the MP protocol is (for states
74, 75, and 84)

U

0.0 0.99987 0.0
0.99999 0.0 0.00011

0.00011

.MP

μ

μ

∂

i

k

jjjjjjjjjjjjjjj
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zzzzzzzzzzzzzzz
=

− −
− −

−

Here, we notice that the MP protocol flips the sign of column
74 of the overlap matrix to ensure det (UMP) = 1, leading to

changing the sign relative to states 84. (The two protocols also
differ by a sign in column 122 at this point in time, but this
adiabat is not populated and so is of no consequence.)While this
relative sign discrepancy does not lead to a difference in
populations for 10 fs (i.e., until t = 120 fs), this difference will

Figure 3. Continuation of Figure 2 for longer times. (a) Adiabatic
potential energy surfaces and the electronic population dynamics
following the (b) OP protocol and (c) MP protocol are plotted as
function of time for different classical time steps dtc. (■) and (★)
indicate trivial crossings of two states where the electronic wavefunction
is a superposition state and has non-zero coefficients for other TDA
states. At (■), there is a complete electronic transition from state 75
(magenta) to state 74 (orange), while the coefficient of state 84 (blue)
is nonzero with a relative phase of importance. The OP protocol
preserves this relative phase and converges to the correct dynamics
when dtc = 0.17 fs. However, the MP protocol disturbs this relative
phase leading to incorrect long time dynamics and cannot converge
even for dtc = 0.12 fs. In the end, using the OP protocol allows for using
at least 40% larger classical time step than the MP protocol.
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eventually lead to dramatic differences when yet another
crossing is encountered.
In Figure 4, we compare results for the OP and MP protocols

for the smallest time step we treated, dtc = 0.12 fs. We find that,

through t = 120 fs or so, we find that the population dynamics of
state 84 are the same for both protocols, from which one must
conclude that dtc = 0.12 fs is sufficiently small for the MP
protocol to recover the correct overlap matrix at (■). However,
at t = 122 fs (★), the population dynamics following the OP and
MP protocol differ for states 65 and 72, even for with a very small
time step. This discrepancy arises because another crossing is
encountered, whereby the interaction of states 63 and 65
disturbs the relative phase of state 72. This disturbance
eventually leads to a big difference in population for long
times (P84 = 0.08 for the OP protocol versus P84 = 0.21 for the
MP protocol at t = 145 fs).
Lastly, to confirm that the converged OP protocol is indeed

more physical than the MP protocol, we can check the norm of
the Tmatrix at the t = 122 fs crossing as labeled by the black star
(★) and evaluate Tr{| log U|2} for each method, respectively.
We find

t t

t t

U

U

Tr log ( 122, d 0.12) 14.01,

Tr log ( 122, d 0.12) 22.23

OP c
2

MP c
2

{| = = | } =

{| = = | } =

Note that the OP protocol indeed has smaller Tr{| log U|2},
meaning that the T matrix as chosen by the OP protocol is
smoother and closer to “parallel transport” than is the MP
protocol.
In the end, for this very simple problem, our results show that

the OP approach can use a 40% larger classical time step (which
should lead to at least 40% speedup). These results emphasize
that choosing the optimal phase is important, especially for
systems with many electronic states.
4.4. High-Lying Excitation Spectrum Becomes Dy-

namic after the Collision. With the efficient integration
scheme for the electronic Schrodinger equation in place, we are
now ready to analyze the high-lying excited state dynamics of the
H2−Ag20 scattering problem. First, we focus on the TDA

excitation spectrum. At this level of theory, the spectrum of a
tetrahedral Ag20 nanoparticle has a strong peak around
≈3.56 eV, which originates from a collective electronic
excitation in analogy to a localized surface plasmonic resonance.
Since our initial geometry positions the H2 molecule far away
from Ag20, the initial spectrum (Figure 5a) almost replicates the
spectrum of an isolated Ag20 cluster.

Second, after the H2 collision (occurring at t ≈ 70 fs), we
continue to propagate the classical nuclear dynamics so that the
H2 molecule eventually moves far away from Ag20 again.
However, the silver cluster is now excited and vibrating; the
excitation spectrum is now changing in time. In (Figure 5b), we
plot the spectrum at time t = 145 fs. Notice that the strongest
peak has shifted to 3.41 eV and an additional second (strong)
peak has emerged around 3.61 eV. Interestingly, by comparison
with the spectrum before collision, the strongest peak now
involves only single electron excitation, rather a collective
excitation, whereas the second strongest peak now is a plasmon-
like collective excitation (rather than a single electron
excitation). These conclusions highlight the need to model
both nuclear dynamics and plasmonic excitations at the same
time.

5. CONCLUSIONS
We have formulated an efficient algorithm for propagating
excited-state wavefunctions involving many electronic states
using well-established overlap-based methods23 and phase
conventions.28 In particular, we have combined an exact method
for constructing the overlap matrix for CIS/TDA wavefunctions
using a bi-orthogonal basis with an optimization protocol for
choosing the proper phase of adiabatic states. We applied the
resulting algorithm to investigate the high-lying excited-state
dynamics of a large electronic system with many trivial crossings
and degenerate states. Our results show that use of the bi-
orthogonal basis can accelerate the construction of the overlap
matrix by orders of magnitude at each time step, and that

Figure 4. Population dynamics for the OP protocol (solid lines) versus
theMP protocol (dash-dot lines) using the smallest time step size tested
(dtc = 0.12 fs in Figure 3). The OP and MP protocol agree with each
other before t = 122 fs as labeled by (★). Note that the MP protocol
does not yield the correct phase for the overlap matrix at (★), which
leads to incorrect dynamics, suggesting that one would need an even
smaller time step for the MP protocol to converge. Figure 5. (a) Initial spectrum of the H2−Ag20 system where the

strongest oscillator strength peak (≈3.56 eV) corresponds to a
plasmonic excitation of the Ag20 cluster, involving multiple single
electron excitations; in other words, the TDA state is a linear
combination of many |Φi

a⟩. (b) Final spectrum at time t = 145 fs,
significantly after the scattering event. Note that the strongest peak
(≈3.41 eV) is no longer a collective excitation; the plasmon has moved
to 3.57 eV.
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choosing the optimal phase of the overlap matrix allows for a
larger classical time step for the propagation. Altogether, large
savings can be accrued.
Looking forward, the present algorithm has been applied to a

scattering process of a hydrogen molecule from a metal
nanocluster. Altogether, the calculations presented here requires
on the order of three days of computational time on one node
with 32 CPU cores. In the future, our goal will be to apply the
present method to begin assessing non-adiabatic dynamics near
plasmonic surfaces, which is nowadays a rather “hot” topic in
physical chemistry.13
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