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Abstract
Upon solving a finite discrete reduction in the differenceHeun equation, we arrive at an
elliptic generalization of the Racah polynomials. We exhibit the three-term recurrence
relation and the orthogonality relations for these elliptic Racah polynomials. The well-
known q-Racah polynomials of Askey and Wilson are recovered as a trigonometric
limit.

Keywords Difference Heun equation · Racah polynomials · Exactly solvable
quantum models · Eigenfunctions · Tridiagonal matrices

Mathematics Subject Classification Primary 42C05; Secondary 33C47 · 33E10 ·
47B36 · 81Q80

1 Introduction

The Askey–Wilson polynomials [2] constitute a master family from which all other
members listed in Askey’s celebrated scheme of (basic) hypergeometric orthogonal
polynomials can be recovered via parameter specializations and limit transitions [13].
In particular, for parameters subject to a suitable truncation condition the Askey–
Wilson polynomials reduce to q-Racah polynomials [1], a finite-dimensional discrete
orthogonal family that is known to express the 6 j symbols associated with the SLq(2)
quantum group [12]. In the limit q → 1, this reproduces a previously observed
interpretation of the classical 6 j symbols for the Lie group SL(2) in terms of a hyper-
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geometric orthogonal family known as Racah polynomials, which arises similarly as
a finite discrete truncation of Wilson’s master family of hypergeometric orthogonal
polynomials.

A remarkable elliptic hypergeometric generalization of the 6 j symbols originating
from the Yang–Baxter equation for exactly solvable lattice models [7, 8] has been
identified and studied by Frenkel and Turaev [9]. It was pointed out by Spiridonov and
Zhedanov [31, 32] that rather than expressing orthogonal polynomials, these elliptic
6 j symbols constitute in fact an elliptic hypergeometric counterpart of biorthogo-
nal rational functions that had been found previously at the basic hypergeometric
level by Wilson as a (non-polynomial) generalization of the q-Racah polynomials
[38]. From the point of view of representation theory, the elliptic hypergeometric
biorthogonal rational functions in question arise, respectively, as matrix elements for
(co)representations of an elliptic quantum group associated with U (2) [14] or as a
transition matrix between two different solutions for generalized eigenvalue problems
in a finite-dimensional representation of the Sklyanin algebra [26, 28]. A correspond-
ing extension of the Askey scheme to the case of (basic) hypergeometric biorthogonal
rational functions has been worked out in [39, 40].

The hallmark duality symmetry [1, 18] between the orthogonality relations and the
dual orthogonality relations for the (q-)Racah polynomials and the corresponding 6 j
symbols is known to persist at the level of the elliptic hypergeometric biorthogonal
rational functions and the elliptic 6 j symbols [31] (cf. also [14]). The purpose of
the present note, however, is to point out an elliptic generalization of the (q-)Racah
orthogonal polynomials that avoids the transition to biorthogonal rational functions, at
the expense of sacrificing this manifest duality symmetry. To this end, we start from a
difference Heun equation that is obtained from the eigenvalue problem for a quantum
Ruijsenaars–Schneider-type particle Hamiltonian introduced in [41] (cf. also [15, 16]
for a proof of the integrability), upon specializing to the case of just a single particle.
Systematic studies of the solutions of this difference Heun equation were performed
in [6] for integral values of the (coupling) parameters and in [27] for parameters
pertaining to a much larger domain of orthogonality. Particular solutions for special
parameter instances of the difference Heun equation can be found in [36] (within the
framework of the finite-gap integration of soliton equations) and in [29, 30] (through
elliptic hypergeometry). Moreover, the difference Heun equation arises in the context
of the representation theory of the Sklyanin algebra [24, 25, 30], as a linear problem
associated with the elliptic Painlevé VI equation [21], and it turns out to describe the
introduction of surface defects to the index computation of certain four-dimensional
compactifications of the six-dimensional E string theory on a Riemann surface [20].

The difference Heun equation admits a rich hierarchy of degenerations general-
izing the Askey scheme (cf. [42]), the solutions of which are currently under active
investigation [3–5, 34, 35, 37]. In this same spirit, we will introduce below a finite-
dimensional reduction in the difference Heun equation that is obtained by means of
a truncation procedure that should be viewed as an elliptic counterpart of the trun-
cation yielding the q-Racah polynomials from the Askey–Wilson polynomials. We
thus end up with a finite discrete Heun equation describing the eigenvalue problem
for a finite-dimensional tridiagonal matrix with explicit entries given by theta func-
tions. By means of standard techniques from the theory of tridiagonal matrices, we
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will solve the corresponding spectral problem in terms of an orthogonal system of dis-
crete Heun functions given by an elliptic generalization of the (q-)Racah polynomials.
This elliptic Racah polynomial is defined by a tridiagonal determinant giving rise to a
three-term recurrence relation and explicit orthogonality relations determined by the
Christoffel–Darboux identities. In the trigonometric limit, one recovers the q-Racah
polynomial of Askey and Wilson.

Let us now outline the precise layout of this note. In Sect. 2, we recall the defini-
tion of the difference Heun equation; by implementing a truncation condition on the
parameters the finite discrete Heun equation is introduced. This finite discrete Heun
equation encodes the eigenvalue problem for a finite-dimensional tridiagonal matrix
with simple spectrum. In Sect. 3, we construct the corresponding eigenvectors, which
entails the elliptic Racah polynomials together with their three-term recurrence rela-
tion and orthogonality relations. In Sect. 4, it is verified that in the trigonometric limit,
the elliptic Racah polynomials recuperate the q-Racah polynomials together with the
corresponding recurrence relation and orthogonality relations. We also point out a
Lamé type parameter reduction in the elliptic Racah polynomials that diagonalizes
a recently found elliptic generalization of the Kac–Sylvester matrix [43]. This is a
discrete elliptic counterpart of a well-known parameter reduction retrieving Rogers’
q-ultraspherical polynomials from the Askey–Wilson polynomials [13]. Themain text
exploits some standard formulas involving the construction of eigenvectors for tridiag-
onal matrices via the theory of orthogonal polynomials. For the reader’s convenience,
the pertinent formulas are recalled in Appendix A at the end.

2 Finite discrete Heun equation

2.1 Difference Heun equation

The difference Heun equation is an eigenvalue equation for a complex function f (z):

H f = e f , (2.1a)

which is determined by a linear second-order difference operator of the form

(H f )(z) = a(z) f (z + 1) + a(−z) f (z − 1) + b(z) f (z) (2.1b)

and a spectral parameter e ∈ C; notice that we have scaled the independent variable
z such that the steps of the difference equation take unit values. The coefficients a(z)
and b(z) denote meromorphic functions that are given explicitly by

a(z) =
∏

1≤r≤4

[z + ur ]r
[z]r

[z + 1
2 + vr ]r

[z + 1
2 ]r

,

b(z) =
∑

1≤r≤4

cr
[z + 1

2 + u]r
[z + 1

2 ]r
[z − 1

2 − u]r
[z − 1

2 ]r
, (2.1c)
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with

cr = 2

[u]1[u + 1]1
∏

1≤s≤4

[
uπr (s) − 1

2

]

s
[vπr (s)]s . (2.1d)

In these formulas, π1, . . . , π4 stand for permutations that act on (the indices of) the
parameters representing translations over the half-periods of the elliptic functions:
π1 = id,π2 = (12)(34),π3 = (13)(24),π4 = (14)(23).Moreover,wehave employed
the following rescaled and normalized variants:

[z]1 = θ1(
α
2 z)

α
2 θ ′

1(0)
, [z]2 = θ2(

α
2 z)

θ2(0)
, [z]3 = θ3(

α
2 z)

θ3(0)
, [z]4 = θ4(

α
2 z)

θ4(0)
, (2.2)

of the Jacobi theta functions

θ1(z) = θ1(z; p) = 2
∞∑

n=0

(−1)n p(n+ 1
2 )2 sin(2n + 1)z

= 2p1/4 sin(z)
∞∏

n=1

(1 − p2n)(1 − 2p2n cos(2z) + p4n),

θ2(z) = θ2(z; p) = 2
∞∑

n=0

p(n+ 1
2 )2 cos(2n + 1)z

= 2p1/4 cos(z)
∞∏

n=1

(1 − p2n)(1 + 2p2n cos(2z) + p4n),

θ3(z) = θ3(z; p) = 1 + 2
∞∑

n=1

pn
2
cos(2nz)

=
∞∏

n=1

(1 − p2n)(1 + 2p2n−1 cos(2z) + p4n−2),

θ4(z) = θ4(z; p) = 1 + 2
∞∑

n=1

(−1)n pn
2
cos(2nz)

=
∞∏

n=1

(1 − p2n)(1 − 2p2n−1 cos(2z) + p4n−2),

where 0 < p < 1 stands for the elliptic nome and the scaling parameter α > 0
regulates the real period 2π

α
of the coefficients of H . The difference Heun equation

depends on eight coupling parameters u1, . . . , u4, v1, . . . , v4 and a virtual regulariza-
tion parameter u; this last parameter merely shifts the spectrum of H (because the
elliptic function b(z) has only simple poles with positions and residues that do not
depend on u).
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The difference Heun operator H (2.1b)–(2.1d) goes back to a difference operator
introduced in [41,Eqs. (4.1)–(4.3)] (upon specialization to the case n = 1). Notice that
for a precise comparison between the above formulas and those in [41], it is needed
to pass from Jacobi theta functions to Weierstrass sigma functions associated with the
period lattice � = 2ω1Z + 2ω2Z (cf. e.g., [17,Chapter 6]):

[z]r = σr−1(z)e
−αη1

2π z2
, r = 1, . . . , 4, (2.3)

where ω1 = π
α
, p = eiπτ with τ = ω3/ω1, ω3 = −ω1 − ω2 and

σ0(z) = σ(z), σs(z) = e−ηs z σ(z + ωs)

σ (ωs)
with ηs = ζ(ωs) s = 1, 2, 3.

Here, σ(z) and ζ(z) = σ ′(z)/σ (z) stand for the Weierstrass sigma and zeta functions,
respectively. Indeed, it is readily seen by means of the relation in Eq. (2.3) that—upon
conjugation with a Gaussian andmultiplication by an overall constant—our difference
Heun operator H can be converted into a difference operator Ĥ of the same form as
in Eqs. (2.1b)–(2.1d) but with all rescaled theta functions [·]r being replaced by sigma
functions σr−1(·) (r = 1, . . . , 4):

Ĥ = e−a+be−az2Heaz
2
,

where a = αη1
2π

∑
1≤r≤4(ur + vr ) and b = αη1

2π

∑
1≤r≤4(u

2
r + v2r + vr ), i.e.,

H → Ĥ ⇐⇒ [z]r → σr−1(z).

The gauged and normalized differenceHeun operator Ĥ thus obtained coincides there-
fore with the difference operator in [41,Eqs. (4.1)–(4.3)] (with n = 1, β� = 1/i ,
γ = 1/2, μ = −u, and μr−1 = ur , μ′

r−1 = vr for r = 1, . . . , 4).
For the case of nonpositive integral values of the couplingparametersu1, . . . , u4 and

v1, . . . , v4, eigenfunctions for Ĥ were computed in [6]. A more general construction
of the difference Heun eigenfunctions covering a much larger domain of parameter
values can be found in [27].

2.2 Finite-dimensional reduction

From now on, we will pick real-valued coupling parameters u1, . . . u4, v1, . . . v4 from
the domain

ur > 0, |vr | < ur + 1

2
(r = 1, 2) and ur , vr ∈ R (r = 3, 4), (2.4a)

while throughout it will be assumed that the virtual parameter u is chosen in R such
that u, u + 1 	= 0 mod 2π

α
Z. To truncate the difference Heun equation, we adjust the
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real period 2π
α

in terms of the coupling parameters in the following way:

α = π

u1 + u2 + m
with m ∈ N (2.4b)

(so u1 + u2 + m = π
α
). Indeed, the conditions on the parameters ensure that the

(m + 1)-dimensional space of functions f : 
m → C over the shifted finite integer
lattice


m = {u1, u1 + 1, u1 + 2, . . . , u1 + m}

is stable for the action of the difference operator H (2.1b)–(2.1d), because a(−u1) =
a(u1 +m) = 0 in view of the zeros of [z]1 and [z]2 at z = 0 and z = π

α
, respectively.

This gives rise to the following finite-dimensional reduction in the difference Heun
equation:

ãm−k fk+1 + ak fk−1 + bk fk = e fk (2.5a)

for k = 0, 1, . . . ,m, where fk = f (u1 + k) and

ãk = a(u1 + m − k), ak = a(−u1 − k), bk = b(u1 + k) (2.5b)

(so ã0 = a0 = 0).
It is helpful to write out the coefficients in question explicitly:

ak =
∏

1≤r≤4

[u1 − ur + k]r
[u1 + k]r

[u1 − vr − 1
2 + k]r

[u1 − 1
2 + k]r

(2.6a)

(because [−z]1 = −[z]1 and [−z]r = [z]r if r 	= 1),

ãk =
∏

1≤r≤4

[u2 − uπ2(r) + k]r
[u2 + k]r

[u2 − vπ2(r) − 1
2 + k]r

[u2 − 1
2 + k]r

= π2(ak) (2.6b)

(because [z + π
α
]r = [−z]π2(r)), and similarly

bk =
∑

1≤r≤4

cr
[u1 + k + 1

2 + u]r
[u1 + k + 1

2 ]r
[u1 + k − 1

2 − u]r
[u1 + k − 1

2 ]r
, (2.6c)

so

bm−k =
∑

1≤r≤4

cπ2(r)
[u2 + k + 1

2 + u]r
[u2 + k + 1

2 ]r
[u2 + k − 1

2 − u]r
[u2 + k − 1

2 ]r
= π2(bk) (2.6d)

(because πr ◦ πs = ππr (s)), where πr is understood to act on the coefficients ak and
bk by permuting the parameters: πr (us) = uπr (s) and πr (vs) = vπr (s). With the aid
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of these formulas, one readily checks the positivity of the off-diagonal coefficients in
the finite discrete Heun equation.

Lemma 2.1 (Positivity) The off-diagonal coefficients a1, . . . , am and ã1, . . . , ãm of the
finite discrete Heun equation (2.5a), (2.5b) are all positive.

Proof Since ãk = π2(ak) (cf. Eq. (2.6b)) and the parameter restrictions in Eqs. (2.4a),
(2.4b) are invariant with respect to the action of π2, it suffices to verify the positivity
of ak . To this end, we observe from the product expansions for the theta functions
that the sign of ak (2.6a) coincides with the overall sign of the principal trigonometric
factor:

sin( α
2 k)

sin( α
2 (u1 + k))

cos( α
2 (u1 − u2 + k))

cos( α
2 (u1 + k))

sin( α
2 (u1 − v1 − 1

2 + k)

sin( α
2 (u1 − 1

2 + k))

cos( α
2 (u1 − v2 − 1

2 + k))

cos( α
2 (u1 − 1

2 + k))
.

For parameters in accordance with Eqs. (2.4a), (2.4b) and 1 ≤ k ≤ m, the positivity
of this trigonometric factor is clear because all sine functions are evaluated at angles
between 0 and π :

0 < k < u1 + k < u1 + u2 + m = π

α

and

0 < u1 − |v1| − 1

2
+ k ≤ u1 − 1

2
+ k ≤ u1 + |v1| − 1

2
+ k < 2u1 + m <

2π

α
,

whereas all cosine functions are evaluated at angles between −π
2 and π

2 :

−π

α
< u1 − u2 + k < u1 + k <

π

α

and

−π

α
< u1 − u2 < u1 − |v2| − 1

2
+ k ≤ u1 − 1

2
+ k ≤ u1 + |v2| − 1

2
+ k <

π

α
.

��

The upshot is that the finite discrete Heun Eqs. (2.5a), (2.5b) encode the spectral
problem for a real-valued finite-dimensional tridiagonal matrix of the form

Hf = ef, (2.7a)

123



   66 Page 8 of 26 J. F. van Diejen, T. Görbe

with

H =

⎡

⎢⎢⎢⎢⎢⎣

b0 ãm 0 · · · 0

a1 b1
. . .

...

0 a2
. . . ã2 0

...
. . . bm−1 ã1

0 · · · 0 am bm

⎤

⎥⎥⎥⎥⎥⎦
and f =

⎡

⎢⎢⎢⎢⎢⎢⎣

f0
f1
f2
...

fm−1
fm

⎤

⎥⎥⎥⎥⎥⎥⎦
. (2.7b)

In view of the positivity of the matrix elements on the sub- and superdiagonal by virtue
of Lemma 2.1, it is clear that the spectrum of H is given by m + 1 distinct and real
eigenvalues (cf. e.g., [23,Chapter III.11.4]):

e0 > e1 > · · · > em. (2.8)

Moreover, the tridiagonal matrix H in Eqs. (2.7a), (2.7b) is quasi-centrosymmetric in
the sense that its matrix elements Hj,k obey the relation

Hm− j,m−k = π2
(
Hj,k

)
for 0 ≤ j, k ≤ m. (2.9)

3 Elliptic Racah polynomials

3.1 Diagonalization

Wewill now solve the eigenvalue problem in Eqs. (2.7a), (2.7b) in terms of orthogonal
polynomials on the spectrum by applying standard techniques involving the interplay
between tridiagonal matrices and orthogonal polynomials, cf. e.g., [33,Chapter III]
and [10,Chapter 2]. To keep our presentation self-contained, a minimal compendium
of the pertinent formulas from the literature has been collected in Appendix A.

Specifically, let p0(e) = 1 and

pk(e) = det

⎡

⎢⎢⎢⎢⎢⎣

e − b0 −ãm 0 · · · 0

−a1 e − b1
. . .

...

0 −a2
. . . −ãm+3−k 0

...
. . . e − bk−2 −ãm+2−k

0 · · · 0 −ak−1 e − bk−1

⎤

⎥⎥⎥⎥⎥⎦
(3.1)

for k = 1, . . . ,m + 1. In other words, pk(e) is given by the kth leading principal
minor of the matrix (eIm+1 −H) governing the characteristic polynomial ofH (2.7b).
(Here Im+1 denotes the (m + 1)-dimensional identity matrix.) We will refer to the
polynomials p0(e), p1(e), . . . , pm+1(e) as (monic) elliptic Racah polynomials. By
construction, these polynomials capture the characteristic polynomial of H at the top
degree k = m + 1:
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pm+1(e) = det(eIm+1 − H) = (e − e0)(e − e1) · · · (e − em) (3.2)

(cf. Eq. (2.8)).
The following three-term recurrence relation is manifest from the definition (cf.

Appendix A, Lemma A.1):

pk+1(e) = (e − bk)pk(e) − akãm+1−k pk−1(e) for k = 0, . . . ,m (3.3)

(where a0 = ãm+1 := 0). Moreover, by expanding the determinant pk(e) (3.1) as an
alternating sum of products of matrix elements pulled from the distinct rows/columns,
one arrives at the following explicit expansion for the elliptic Racah polynomials (cf.
Appendix A, Lemma A.2):

pk(e) =

k/2�∑

l=0

(−1)l
∑

1≤ j1< j2<···< jl<k
js+1− js>1

for s=1,...,l−1

a j1 ãm+1− j1 · · · a jl ãm+1− jl

∏

1≤ j≤k
j /∈{ js , js+1}
for s=1,...,l

(e − b j−1)

(3.4)

(with the convention that empty factors are equal to 1).
This brings us in position to solve the finite discrete Heun equation in terms of

elliptic Racah polynomials (cf. Appendix 1, Lemma A.4).

Proposition 3.1 (Eigenvectors) For any eigenvalue e in the spectrum {e0 > e1 >

· · · > em} of H (2.7b) (i.e., on shell), the (m + 1)-dimensional (column) vector f(e)
with components given by normalized elliptic Racah polynomials of the form

fk(e) = ck pk(e), k = 0, 1, . . . ,m, (3.5)

where

ck =
∏

0≤l<k

ã−1
m−l =

∏

1≤l<k
1≤r≤4

[u2 + m − l]r [u2 − 1
2 + m − l]r

[u2 − uπ2(r) + m − l]r [u2 − vπ2(r) − 1
2 + m − l]r

,

solves the corresponding eigenvalue Eq. (2.7a).

Proof Since on shell we assume that e belongs to the spectrum of H and pm+1(e) =
det(eIm+1−H), it is clear that pm+1(e) = 0 in this situation. The three-term recurrence
relation (3.3) for the elliptic Racah polynomials then affirms that on shell:

epk(e) =
{
pk+1(e) + akãm+1−k pk−1(e) + bk pk(e) for k = 0, . . . ,m − 1,

amã1 pm−1(e) + bm pm(e) for k = m.

Multiplication of the kth equation by ck = ∏
0≤l<k ã

−1
m−l on both sides and rewriting

the result in terms of fk(e) for k = 0, . . . ,m, verifies that on shell the components of
the vector f(e) solve the finite discrete Heun equation (2.5a), (2.5b). ��
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Since all eigenvalues (2.8) are simple and f(e) is not a null vector (because
f0(e) = 1), it is clear that the corresponding eigenvectors in Proposition 3.1 pro-
vide an eigenbasis diagonalizing H:

F−1HF = E (3.6a)

with

F = [
f(e0), f(e1), . . . , f(em)

]
and E = diag(e0, e1, . . . , em). (3.6b)

Moreover, upon pulling out the normalization constants from the rows of F and bring-
ing the resulting (m + 1) × (m + 1) matrix of monic elliptic Racah polynomials to
Vandermonde form via unitriangular row operations, it is readily seen that

det(F) = (−1)
1
2m(m+1)

∏

1≤l≤m

ã−l
l

∏

0≤ j<k≤m

(e j − ek). (3.7)

3.2 Orthogonality relation

Let

H̃ = π2
(
H
)
, f̃(e) = π2

(
f(e)

)
, p̃k(e) = π2

(
pk(e)

)
, and ẽ j = π2(e j ).

(3.8)

From Eq. (2.9), one learns that the matrices H̃ andH are related by conjugation to the
(m + 1) × (m + 1) palindromic involution matrix:

H̃ = JHJ with J =

⎡

⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1

0 0 . .
. 1 0

... . .
.

. .
.

. .
. ...

0 1 . .
. 0 0

1 0 . . . 0 0

⎤

⎥⎥⎥⎥⎥⎦
. (3.9)

Lemma 3.2 (Palindromic quasi-symmetry) (i) For any 0 ≤ j ≤ m, one has that

ẽ j = e j and f̃(e j ) = ε jJf(e j ) with ε j = p̃m(e j )

a1 · · · am . (3.10a)

(ii) Let ε̃ j = π2(ε j ) = pm(e j )/(ã1 · · · ãm). Then

ε j ε̃ j = 1 and Sign (ε j ) = Sign (ε̃ j ) = (−1) j . (3.10b)
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Proof Because H̃ and H are related by a similarity transformation, it is clear that
ẽ j = e j and

HJf̃(e j ) = JH̃f̃(e j ) = e jJf̃(e j ).

Since the eigenvalue e j is simple, this implies that Jf̃(e j ) = ε j f(e j ) for some constant
ε j = ε j (ur , vr ) inR. Upon comparing the last components on both sides of the second
equality in Eq. (3.10a), we see that ε j = ε j f0(e j ) = f̃m(e j ) = p̃m(e j )/(a1 · · · am),
which proves (i).

Twice iterated application of Eq. (3.10a) shows that f̃(e j ) = ε jJf(e j ) = ε j ε̃ j f̃(e j )

(since J2 = Im+1), so ε j ε̃ j = 1 (as f̃(e j ) is not a null vector). To compute the sign of ε j ,
we evaluate the confluentChristoffel–Darboux identity inEq. (A.5b) ofLemmaA.3 for
n = m atx = e j bymeans of the factorization pm+1(x) = (x−e0)(x−e1) · · · (x−em);
this reveals that pm(e j )

∏
0≤l≤m
l 	= j

(e j − el) = pm(e j )p′
m+1(e j ) > 0, so

Sign(ε j ) = Sign(ε̃ j ) = Sign
(
pm(e j )

) = Sign

⎛

⎜⎜⎝
∏

0≤l≤m
l 	= j

(e j − el)

⎞

⎟⎟⎠ = (−1) j

(upon recalling the ordering of the eigenvalues from Eq. (2.8)). This completes the
proof of (ii). ��

Notice that it follows from the relation ε j ε̃ j = 1 in Lemma 3.2 that

pm(e j ) p̃m(e j ) =
∏

1≤k≤m

akãk . (3.11)

Moreover, if

(u1, v1) = (u2, v2) and (u3, v3) = (u4, v4), (3.12a)

then our matrix becomes centrosymmetric: JHJ = H̃ = H. We then have that ε̃ j = ε j

with ε2j = 1, so

ε j = (−1) j (3.12b)

on this particular parameter manifold enjoying palindromic symmetry.
The orthogonality relations for the elliptic Racah polynomials are governed by the

positive weights

�k =
∏

1≤l≤k

ãm+1−l

al
(for k = 0, 1 . . . ,m)
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= [2u1 + 2k]1
[2u1]1

∏

1≤l≤k
1≤r≤4

[u2 − uπ2(r) + m + 1 − l]r [u2 − vπ2(r) + m + 1
2 − l]r

[u1 − ur + l]r [u1 − vr − 1
2 + l]r

(3.13)

(where the expression was simplified using the duplication formula [2z]1 =
2
∏

1≤r≤4[z]r for the scaled theta functions).

Proposition 3.3 (Orthogonality relation) The normalized elliptic Racah polynomials
fk(e) (3.5) satisfy the orthogonality relation

m∑

k=0

fk(ei ) fk(e j )�k =
{
N j if i = j,

0 if i 	= j,
(3.14a)

for 0 ≤ i, j ≤ m, with

N j = 1

|ε j | a1 · · · am
∏

0≤l≤m
l 	= j

|e j − el |

= 1

|ε j |
∏

1≤k≤m
1≤r≤4

[u1 + k]r
[u1 − ur + k]r

[u1 − 1
2 + k]r

[u1 − vr − 1
2 + k]r

∏

0≤l≤m
l 	= j

|e j − el |. (3.14b)

Proof The asserted orthogonality follows by combining the Christoffel–Darboux for-
mulas in Lemma A.3 for n = m with Eq. (3.2) (cf. Appendix 1, Remark A.5):

m∑

k=0

fk(ei ) fk(e j )�k =
m∑

k=0

pk(ei )pk(e j )∏
1≤l≤k al ãm+1−l

=

⎧
⎪⎨

⎪⎩

p′
m+1(e j )pm(e j )∏
1≤l≤m al ãm+1−l

if i = j,

0 if i 	= j .

Indeed, since p′
m+1(e j ) = ∏

0≤l≤m
l 	= j

(e j − el) and pm(e j ) = ã1 · · · ãm/ε j (by Eqs.

(3.10a), (3.10b)), the expression for the quadratic norm readily simplifies to the formula
stated in the proposition. ��

The orthogonality relation in Proposition 3.3 supplies the following expressions for
the inverse and the determinant of the elliptic Racah matrix F from Eqs. (3.6a), (3.6b).

Corollary 3.4 (Inverse Elliptic Racah Matrix) The inverse and the determinant of the
elliptic Racah matrix F (3.6b) are given by

F−1 = N−1FT� (3.15a)

and

det(F) = (−1)
1
2m(m+1)

∏

0≤l≤m

(
Nl

�l

)1/2

, (3.15b)
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where N = diag (N0, N1, . . . , Nm), � = diag (�0,�1, . . . ,�m) and

FT =

⎡

⎢⎢⎢⎢⎣

f0(e0) f1(e0) · · · fm(e0)
f0(e1) f1(e1) · · · fm(e1)

...
...

...
...

f0(em−1) f1(em−1) · · · fm(em−1)

f0(em) f1(em) · · · fm(em)

⎤

⎥⎥⎥⎥⎦
.

If one compares Eq. (3.15b) with the evaluation of the determinant in Eq. (3.7),
then it follows that

ε0ε1 · · · εm = (−1)
1
2m(m+1)

∏

1≤l≤m

(
ãl
al

)l

, (3.16a)

or equivalently (cf. Eq. (3.11))

pm(e0)pm(e1) · · · pm(em) = (−1)
1
2m(m+1)

∏

1≤l≤m

(al ãm+1−l)
l . (3.16b)

Remark 3.5 It is clear from the Christoffel–Darboux formulas (cf. Lemma A.3 of the
appendix) that the general form of the orthogonality relation in Proposition 3.3 holds
for an arbitrary real tridiagonal matrix H of the form in Eq. (A.1) with al ãm+1−l > 0
for l = 1, . . . ,m (upon reading JHJ for H̃). The same is then true for Eq. (3.11),
Corollary 3.4 and Eqs. (3.16a), (3.16b). If in addition al = ãl for l = 1, . . . ,m, i.e.,
if we are in the centrosymmetric situation that JHJ = H, then the norm formulas in
question simplify as in this case ε j = (−1) j (cf. Eq. (3.12b)).

3.3 Finite discrete Heun function

In order to describe the complete solution of the finite discrete Heun equation (2.5a),
(2.5b) in terms of elliptic Racah polynomials, the following theorem summarizes the
main findings of this section.

Theorem 3.6 (Finite Discrete Heun Function)
(i) The finite discrete Heun Eq. (2.5a), (2.5b) only possesses nontrivial solutions

for e ∈ {e0, . . . , em}, where e0 > e1 > · · · > em denote the roots of the top-degree
elliptic Racah polynomial pm+1(e) (3.1).

(ii) The solutions of the finite discrete Heun equation from part (i) are given by

hk(e j ) = h0(e j )pk(e j )
∏

0≤l<k

ã−1
m−l (k = 0, . . . ,m), (3.17a)

where it is convenient to fix the normalization picking

h0(e j ) = |ε j |1/2 =
∣∣∣∣
ã1 · · · ãm
pm(e j )

∣∣∣∣
1/2

(3.17b)
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(cf. Proposition 3.1).
(iii) The finite discrete Heun function (3.17a), (3.17b) satisfies the palindromic

quasi-symmetry

h̃k(ẽ j ) = (−1) j hm−k(e j ) with ẽ j = e j ( j, k = 0, . . . ,m), (3.17c)

where h̃k(ẽ j ) denotes the finite discrete Heun function with permuted coupling param-
eters: (u1, v1) ↔ (u2, v2) and (u3, v3) ↔ (u4, v4) (cf. Lemma 3.2).

(iv) The finite discrete Heun functions satisfy the orthogonality relation

m∑

k=0

hk(ei )hk(e j )
∏

1≤ j≤k

ãm+1− j

∏

k+1≤ j≤m

a j =
⎧
⎨

⎩

∏
0≤l≤m
l 	= j

|e j − el | if i = j,

0 if i 	= j

(3.17d)

(0 ≤ i, j ≤ m), and the dual orthogonality relation

m∑

j=0

hl(e j )hk(e j )∏
0≤i≤m
i 	= j

|e j − ei | =
⎧
⎨

⎩

(∏
1≤ j≤k ãm+1− j

∏
k+1≤ j≤m a j

)−1
if l = k,

0 if l 	= k

(3.17e)

(0 ≤ l, k ≤ m), which encode, respectively, the column and row orthogonality of the
elliptic Racah matrix F (3.6b) (cf. Proposition 3.3).

4 Degenerations

4.1 Finite discrete Lamé equation

If all parameters vr tend to zero, then the difference Heun operator H (2.1a)–(2.1d)
reduces to a second-order difference operator stemming from the Sklyanin algebra
[24, 25, 28, 30]:

(H f )(z) = f (z + 1)
∏

1≤r≤4

[z + ur ]r
[z]r + f (z − 1)

∏

1≤r≤4

[z − ur ]r
[z]r . (4.1)

The corresponding parameter degeneration of Theorem 3.6 solves a finite discrete
Heun equation of the form

ãm−k fk+1 + ak fk−1 = e fk for k = 0, . . . ,m, (4.2a)

with

ak =
∏

1≤r≤4

[u1 − ur + k]r
[u1 + k]r and ãk =

∏

1≤r≤4

[u2 − uπ2(r) + k]r
[u2 + k]r . (4.2b)
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After this reduction, the diagonal of the discrete Heun matrix H in Eqs. (2.7a), (2.7b)
vanishes, so the corresponding elliptic Racah polynomials pk(e) (3.1) are even in e if
k is even and odd in e if k is odd. This implies that in this situation the eigenvalues
e0 > e1 > · · · > em of H are distributed symmetrically around the origin:

em− j = −e j ( j = 0, . . . ,m). (4.3)

Moreover—via the duplication formula [2z]1 = 2
∏

1≤r≤4[z]r—it is seen that if
all parameters ur are equal (to u > 0 say), then the eigenvalue problem in Eqs. (4.2a),
(4.2b) reduces to a finite discrete Lamé equation of the form studied in [43]:

[m − k]1
[u + m − k]1 fk+1 + [k]1

[u + k]1 fk−1 = e fk for k = 0, . . . ,m, (4.4)

with α = 2π
2u+m (so 2u + m = 2π

α
).

4.2 Trigonometric limit: q-Racah polynomials

In [43], it was shown that the solutions of the finite discrete Lamé Eq. (4.4) can be
expressed in terms of Rogers’ q-ultraspherical polynomials in the trigonometric limit
p → 0. Here we finish by checking that the elliptic Racah polynomials degenerate in
turn to the q-Racah polynomials of Askey andWilson in the limit p → 0. To this end,
let us first observe that in the trigonometric limit the scaled theta functions degenerate
as follows:

lim
p→0

[z]1 = 2
α
sin(α

2 z), lim
p→0

[z]2 = cos(α
2 z), lim

p→0
[z]3 = 1, lim

p→0
[z]4 = 1.

The corresponding coefficients of the difference Heun equation thus become

at (z) = lim
p→0

a(z)

=
sin

(
α
2 (z + u1)

)

sin
(

α
2 z
)

cos
(

α
2 (z + u2)

)

cos
(

α
2 z
)

sin
(

α
2 (z + 1

2 + v1)
)

sin
(

α
2 (z + 1

2 )
)

cos
(

α
2 (z + 1

2 + v2)
)

cos
(

α
2 (z + 1

2 )
)

(4.5a)

and

bt (z) = lim
p→0

b(z) = ct,1
sin

(
α
2 (z + 1

2 + u)
)

sin
(

α
2 (z + 1

2 )
)

sin
(

α
2 (z − 1

2 − u)
)

sin
(

α
2 (z − 1

2 )
)

+ ct,2
cos

(
α
2 (z + 1

2 + u)
)

cos
(

α
2 (z + 1

2 )
)

cos
(

α
2 (z − 1

2 − u)
)

cos
(

α
2 (z − 1

2 )
) + ct,3 + ct,4

(4.5b)
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with

ct,r =
2 sin

(
α
2 (uπr (1) − 1

2 )
)
sin

(
α
2 vπr (1)

)
cos

(
α
2 (uπr (2) − 1

2 )
)
cos

(
α
2 vπr (2)

)

sin
(

α
2 u

)
sin

(
α
2 (u + 1)

) .

We now have that

at (z) + at (−z) + bt (z) = ct = 2 cos
α

2
(u1 + u2 + v1 + v2) +

∑

1≤r≤4

ct,r .

(4.6)

Indeed, as a periodic function of z all poles on the LHS of Eq. (4.6) are seen to cancel,
while for Im (z) → ∞ the expression in question tends to the constant value on the
RHS.

The q-Racah polynomials [1] are basic hypergeometric orthogonal polynomials of
the form [13,Chapter 4.2]:

Rk(x) = Rk(x(x); a, b, c, d|q) = 4φ3
(
q−k ,abqk+1,q−x ,cdqx+1

aq,bdq,cq ; q, q
)

(4.7a)

with

x = x(x) = cdqx+1 + q−x . (4.7b)

From the basic hypergeometric representation, the k ↔ j , a ↔ c, b ↔ d duality
symmetry [1, 18] of the q-Racah polynomial Rk(x( j); a, b, c, d|q) is immediate:

Rk(x( j); a, b, c, d|q) = R j (x̂(k); â, b̂, ĉ, d̂|q), (4.8a)

with

x̂(x) = ĉd̂qx+1 + q−x and (â, b̂, ĉ, d̂) = (c, d, a, b). (4.8b)

The following proposition recovers the q-Racah polynomials as a trigonometric limit
of the elliptic Racah polynomials. The proof hinges on the observation that the
trigonometric degeneration of the recurrence in Eq. (3.3) can be identified with the
three-term recurrence relation for the q-Racah polynomials found by Askey and Wil-
son [1,Section 3]. Throughout, we will implicitly exploit that the normalized theta
functions [·]r (2.2) extend analytically in p to the domain −1 < p < 1. The matrix
elements ofH (2.7a), (2.7b) inherit this analyticity in p and thus so do the eigenvalues
e0, · · · , em (cf. e.g., [11,Chapter II, Theorem 6.1]).

Proposition 4.1 (q-Racah limit)For 1 ≤ j, k ≤ m and parameters in accordance with
Eqs. (2.4a), (2.4b), one has that

lim
p→0

e j = et, j = 2 cos
α

2
(2 j + u1 + u2 + v1 + v2) +

∑

1≤r≤4

ct,r (4.9a)
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and

lim
p→0

fk(e) = ft,k(e) = Rk(x(x); a, b, c, d|q) (4.9b)

= 4φ3

(
q−k ,q2u1+k ,q−x ,qu1+u2+v1+v2+x

−qu1+u2 ,qu1+v1+1/2,−qu1+v2+1/2; q, q
)

,

where

q = eiα, e = 2 cos
α

2
(2x + u1 + u2 + v1 + v2) +

∑

1≤r≤4

ct,r (4.9c)

and

a = −qu1+u2−1, b = −qu1−u2 , c = −qu1+v2−1/2, d = −qu2+v1−1/2. (4.9d)

Proof From the recurrence relation for the normalized elliptic Racah polynomials, it
follows that in the trigonometric limit:

ãt,m−k ft,k+1(e) + at,k ft,k−1(e) + (ct − ãt,m−k − at,k) ft,k(e) = e ft,k(e)

(4.10)

for 0 ≤ k < m as a polynomial identity in e, where

at,k = at (−u1 − k)

= sin α
2 (k)

sin α
2 (u1 + k)

sin α
2 (u1 − v1 − 1

2 + k)

sin α
2 (u1 − 1

2 + k)

cos α
2 (u1 − u2 + k)

cos α
2 (u1 + k)

cos α
2 (u1 − v2 − 1

2 + k)

cos α
2 (u1 − 1

2 + k)
,

ãt,k = at (u1 + m − k)

= sin α
2 (k)

sin α
2 (u2 + k)

sin α
2 (u2 − v2 − 1

2 + k)

sin α
2 (u2 − 1

2 + k)

cos α
2 (u2 − u1 + k)

cos α
2 (u2 + k)

cos α
2 (u2 − v1 − 1

2 + k)

cos α
2 (u2 − 1

2 + k)
,

and the coefficient bt,k = bt (u1 + k) has been rewritten with the aid of the identity
in Eq. (4.6). Upon comparing with the three-term recurrence relation for the q-Racah
polynomials [13,Eq. (14.2.3)] for 0 ≤ k < m:
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Ak Rk+1(x) + Ck Rk−1(x) + (cdq + 1 − Ak − Ck)Rk(x) = xRk(x), (4.11)

with

Ak = (1 − aqk+1)(1 − abqk+1)(1 − bdqk+1)(1 − cqk+1)

(1 − abq2k+1)(1 − abq2k+2)

and

Ck = q(1 − qk)(1 − bqk)(c − abqk)(d − aqk)

(1 − abq2k)(1 − abq2k+1)
,

one observes that ãt,m−k = (qcd)−1/2Ak , at,k = (qcd)−1/2Ck , and e − ct =
(qcd)−1/2(x(x) − cdq − 1) provided the variables and parameters are identified in
accordance with Eqs. (4.9c), (4.9d). The upshot is that the recurrences in Eqs. (4.10)
and (4.11) coincide while ft,0(e) = R0(x) = 1, so Eq. (4.9b) follows.

To infer the limit in Eq. (4.9a), it suffices to check that the eigenvalues of the
trigonometric degeneration of our finite discrete Heun operator are indeed given by
the asserted formulas on the RHS. In principle, this can be deduced via the explicit
formula for the roots of the top degreem+1 q-Racah polynomial found by Askey and
Wilson, cf. [1, Section 3]. Here, however, we prefer to rather determine the eigenvalues
at the trigonometric level directly from the q-difference equation [13, Eq. (14.2.6)]
for the dual q-Racah polynomial R̂ j (x̂(k)) = R j (x̂(k); â, b̂, ĉ, ĉ|q) (4.8a), (4.8b):

Ak R̂ j (x̂(k + 1)) + Ck R̂ j (x̂(k − 1)) + (cdq + 1 − Ak − Ck)R̂ j (x̂(k))

= x( j)R̂ j (x̂(k))

for 0 ≤ j, k ≤ m, where Am = 0 (because 1 − aqm+1 = 1 + qu1+u2+m = 0) and
C0 = 0. Indeed, with the aid of the duality symmetry in Eqs. (4.8a), (4.8b) this yields
Eq. (4.11) evaluated at x = x( j) for 0 ≤ j, k ≤ m. Upon rewriting the latter formula
in terms of ft,k(e) bymeans of Eqs. (4.9b)–(4.9d), we conclude that Eq. (4.10) holds at
e = et, j (4.9a) for 0 ≤ j, k ≤ m. The upshot is that et, j (4.9a) must be an eigenvalue
of the trigonometric degeneration of the matrix H in Eqs. (2.7a), (2.7b). Since our
parameter restrictions (2.4a), (2.4b) guarantee that the ordering of the eigenvalues
in question agrees with the convention in Eq. (2.8): et,0 > et,1 > · · · > et,m, the
trigonometric limit asserted in Eq. (4.9a) now follows. ��

Proposition 4.1 reveals that on shell the trigonometric degeneration of the normal-
ized elliptic Racah polynomial fk(e j ) is given by the following q-Racah polynomial

ft,k(et, j ) = Rk

(
x( j);−qu1+u2−1,−qu1−u2 ,−qu1+v2−1/2,−qu2+v1−1/2|q

)

= 4φ3

(
q−k ,q2u1+k ,q− j ,qu1+u2+v1+v2+ j

−qu1+u2 ,qu1+v1+1/2,−qu1+v2+1/2; q, q
)

, (4.12)
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with x( j) = qu1+u2+v1+v2+ j + q− j . The corresponding degeneration of the orthog-
onality relation from Proposition 3.3 becomes

m∑

k=0

ft,k(et,i ) ft,k(et, j )�t,k =
{
Nt, j if i = j,

0 if i 	= j,
(4.13a)

for 0 ≤ i, j ≤ m, with

�t,k = sin α(u1 + k)

sin(αu1)

∏

1≤l≤k

sin α
2 (m + 1 − l) sin α

2 (u2 − v2 + m + 1
2 − l)

sin
(

α
2 l
)
sin α

2 (u1 − v1 − 1
2 + l)

×
∏

1≤l≤k

cos α
2 (u2 − u1 + m + 1 − l) cos α

2 (u2 − v1 + m + 1
2 − l)

cos α
2 (u1 − u2 + l) cos α

2 (u1 − v2 − 1
2 + l)

(4.13b)

and

Nt, j = 1

εt, j at,1 · · · at,m
∏

0≤l≤m
l 	= j

(et, j − et,l)

= 1

εt, j

∏

1≤k≤m

sin α
2 (u1 + k)

sin α
2 k

sin α
2 (u1 − 1

2 + k)

sin α
2 (u1 − v1 − 1

2 + k)

×
∏

1≤k≤m

cos α
2 (u1 + k)

cos α
2 (u1 − u2 + k)

cos α
2 (u1 − 1

2 + k)

cos α
2 (u1 − v2 − 1

2 + k)

×
∏

0≤l≤m
l 	= j

(
2 cos

α

2
(2 j + u1 + u2 + v1 + v2)

− 2 cos
α

2
(2l + u1 + u2 + v1 + v2)

)
, (4.13c)

where

ε−1
t, j = pt,m(et, j )

ãt,1 · · · ãt,m = ft,m(et, j ) = 4φ3

(
q−m,q2u1+m,q− j ,qu1+u2+v1+v2+ j

−qu1+u2 ,qu1+v1+1/2,−qu1+v2+1/2; q, q
)

.

By means of the relation qu1+u2+m = −1, we reduce the latter 4φ3 series to a 3φ2
series that can be evaluated via Jackson’s q-Pfaff-Saalschütz sum [22, Eq. (17.7.4)]:

ε−1
t, j = 3φ2

(−qu1−u2 ,q− j ,qu1+u2+v1+v2+ j

qu1+v1+1/2,−qu1+v2+1/2 ; q, q
)

= (−qu2+v1+1/2, q−u2−v2+1/2− j ; q) j

(qu1+v1+1/2,−q−u1−v2+1/2− j ; q) j
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= (−1) j
∏

0≤l< j

sin α
2 (u2 + v2 + 1/2 + l)

sin α
2 (u1 + v1 + 1/2 + l)

cos α
2 (u2 + v1 + 1/2 + l)

cos α
2 (u1 + v2 + 1/2 + l)

(4.14)

(where (z; q) j = ∏
0≤l< j (1 − zql) and (z1, . . . , zs; q) j = (z1; q) j · · · (zs; q) j ).

It is instructive to compare the orthogonality in Eqs. (4.13a)–(4.14) with the (dual)
orthogonality relations for the q-Racah polynomials subject to the truncation condition
aqm+1 = 1 (cf. [13, Eq. (14.2.2)]):

m∑

k=0

Rk(x(i); a, b, c, d|q)Rk(x( j); a, b, c, d|q)�k(a, b, c, d; q)

=
{
N0/� j (c, d, a, b; q) if i = j

0 if i 	= j
(4.15a)

with

�k(a, b, c, d; q) = (cq, bdq, aq, abq; q)k

(q, c−1abq, d−1aq, bq; q)k

(1 − abq2k+1)

(cdq)k(1 − abq)
(4.15b)

and

N0 =
m∑

k=0

�k(a, b, c, d; q) =
m∑

j=0

� j (c, d, a, b; q) = (b−1, cdq2)m
(b−1cq, dq; q)m

. (4.15c)

Indeed, the orthogonality weights in Eq. (4.13b) and Eq. (4.15b) coincide for parame-
ters in accordance with Eq. (4.9c), (4.9d) (subject to the truncation condition (2.4b)):

�t,k = �k(−qu1+u2−1,−qu1−u2 ,−qu1+v2−1/2,−qu2+v1−1/2; q)

when q = eiα with α = π
u1+u2+m . This implies that the quadratic norms Nt, j (4.13c),

(4.14) can be rewritten in the form:

Nt, j = Nt,0/�̂t, j (4.16a)

with

�̂t, j = � j (−qu1+v2−1/2,−qu2+v1−1/2,−qu1+u2−1,−qu1−u2; q)

= sin α
2 (u1 + u2 + v1 + v2 + 2 j)

sin α
2 (u1 + u2 + v1 + v2)

×
∏

1≤l≤ j

sin α
2 (m + 1 − l) sin α

2 (u2 − v2 + m + 1
2 − l)

sin(α
2 l) sin

α
2 (u2 + v2 − 1

2 + l)
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×
∏

1≤l≤ j

cos α
2 (−v1 − v2 + m + 1 − l) cos α

2 (u2 − v1 + m + 1
2 − l)

cos α
2 (v1 + v2 + l) cos α

2 (u2 + v1 − 1
2 + l)

(4.16b)

and

Nt,0 =
m∑

k=0

�t,k =
m∑

j=0

�̂t, j (4.16c)

=
∏

1≤l≤m

sin α
2 (2u1 + l) sin α

2 (u1 + u2 + v1 + v2 + l)

sin α
2 (u1 − v1 − 1

2 + l) sin α
2 (u2 + v2 − 1

2 + l)
.

We thus conclude that the inverse of the matrix

Ft =

⎡

⎢⎢⎢⎢⎣

ft,0(et,0) ft,0(et,1) · · · ft,0(et,m)

ft,1(et,0) ft,1(et,1) · · · ft,1(et,m)
...

...
...

...

ft,m−1(et,0) ft,m−1(et,1) · · · ft,m−1(et,m)

ft,m(et,0) ft,m(et,1) · · · ft,m(et,m)

⎤

⎥⎥⎥⎥⎦

is given by (cf. Corollary 3.4)

F−1
t = N−1

t,0 �̂tFT
t �t (4.17a)

with

�t = diag
(
�t,0,�t,1, . . . ,�t,m

)
, �̂t = diag

(
�̂t,0, �̂t,1, . . . , �̂t,m

)
, (4.17b)

while its determinant is given by

det(Ft ) = (−1)
1
2m(m+1)N

1
2 (m+1)
t,0√∏

0≤l≤m �t,l�̂t,l

. (4.17c)
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AppendixA. Eigenvectors of tridiagonalmatrices via orthogonal poly-
nomials

This appendix collects a few standard formulas concerning the construction of eigen-
vectors for tridiagonal matrices in terms of orthogonal polynomials. These formulas
were used in Sect. 3 to build the solutions of our finite discrete Heun equation and
to derive their orthogonality relations. For the broader context in which formulas of
this type arise in connection with the theory of orthogonal polynomials, the reader
is referred to, e.g., [33,Chapter III] and [10,Chapter 2]. Explicit expansions for the
determinants of tridiagonal matrices are discussed in further detail in [19,Chapter
XIII].

For any tridiagonal matrices

⎡

⎢⎢⎢⎢⎢⎣

b0 ãm 0 · · · 0

a1 b1
. . .

...

0 a2
. . . ã2 0

...
. . . bm−1 ã1

0 · · · 0 am bm

⎤

⎥⎥⎥⎥⎥⎦
, (A.1)

with a1, . . . , am, ã1, . . . , ãm and b0, . . . , bm in C, let pk(x) denote the polynomial
given by the kth leading principal minor stemming from the characteristic polynomial:

pk(x) = det

⎡

⎢⎢⎢⎢⎢⎣

x − b0 −ãm 0 · · · 0

−a1 x − b1
. . .

...

0 −a2
. . . −ãm+3−k 0

...
. . . x − bk−2 −ãm+2−k

0 · · · 0 −ak−1 x − bk−1

⎤

⎥⎥⎥⎥⎥⎦
. (A.2)
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Lemma A.1 (Three-term recurrence relation) The polynomials pk(x) obey the follow-
ing three-term recurrence relation

pk+1(x) = (x − bk)pk(x) − akãm+1−k pk−1(x) for k = 0, . . . ,m, (A.3)

with the convention that p0(x) = 1 and a0 = ãm+1 = 0.

Proof Immediate upon expanding the determinant for pk+1(x) with respect to the last
row/column. ��
Lemma A.2 (Explicit expansion) The polynomial pk(x) is given explicitly by

pk(x) =

k/2�∑

l=0

(−1)l
∑

1≤ j1< j2<···< jl<k
js+1− js>1

for s=1,...,l−1

a j1 ãm+1− j1 · · · a jl ãm+1− jl

∏

1≤ j≤k
j /∈{ js , js+1}
for s=1,...,l

(x − b j−1), (A.4)

with the convention that empty factors are equal to 1.

Proof Let us recall that the determinant of any k×k matrix [Ai, j ]1≤i, j≤k is given by an
alternating sumof terms (−1)τ A1,τ (1)A2,τ (2) . . . Ak,τ (k) summedover all permutations
τ = ( 1 2 ··· k

τ(1) τ (2) ··· τ(k)

)
of the symmetric group Sk (where (−1)τ refers to the sign of

τ ). In the case of a tridiagonal matrix, nonvanishing products can occur only when τ

decomposes as a product of 0 ≤ l ≤ 
k/2� commuting simple transpositions:

τ = ( j1, j1 + 1)( j2, j2 + 1) · · · ( jl , jl + 1)

with

1 ≤ j1 < j1 + 1 < j2 < j2 + 1 < · · · < jl < jl + 1 ≤ k

(so the sign of τ is equal to (−1)l ). In the case of pk(e) (A.2), each transposition
( js, js + 1) contributes a factor a js ãm+1− js to the product, while the indices j that
are fixed by τ each contribute a factor of the form (x − b j−1). By collecting the
contributions

(−1)la j1 ãm+1− j1 · · · a jl ãm+1− jl

∏

1≤ j≤k
j /∈{ js , js+1}
for s=1,...,l

(x − b j−1)

from all such permutations τ , the asserted formula for pk(x) follows. ��
Lemma A.3 (Christoffel–Darboux formulas) For any 0 ≤ n ≤ m, the polynomials
p0, . . . , pn+1 enjoy the following Christoffel–Darboux identities:

n∑

k=0

pk(x)pk(y)
∏k

j=1 a j ãm+1− j
= pn+1(x)pn(y) − pn(x)pn+1(y)

(x − y)
∏n

j=1 a j ãm+1− j
, (A.5a)
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and

n∑

k=0

p2k (x)
∏k

j=1 a j ãm+1− j
= p′

n+1(x)pn(x) − p′
n(x)pn+1(x)

∏n
j=1 a j ãm+1− j

, (A.5b)

assuming a1 · · · am · ã1 · · · ãm 	= 0.

Proof From the three-term recurrence (A.3), it follows that

pn+1(x)pn(y) − pn(x)pn+1(y)

= (x − y)pn(x)pn(y) + anãm+1−n
(
pn(x)pn−1(y) − pn−1(x)pn(y)

)
.

Downward iteration entails that

pn+1(x)pn(y) − pn(x)pn+1(y) = (x − y)

n∑

k=0

⎛

⎝pk(x)pk(y)

n∏

j=k+1

a j ãm+1− j

⎞

⎠ .

Upondividing both sides by (x−y)
∏n

j=1 a j ãm+1− j , theChristoffel–Darboux formula
in Eq. (A.5a) is immediate, while Eq. (A.5b) follows subsequently via the confluent
limit y → x. ��

Lemma A.4 (Eigenvector) If e is a root of pm+1(x) and ã1 · · · ãm 	= 0, then

⎡

⎢⎢⎢⎢⎢⎣

b0 ãm 0 · · · 0

a1 b1
. . .

...

0 a2
. . . ã2 0

...
. . . bm−1 ã1

0 · · · 0 am bm

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

c0 p0(e)
c1 p1(e)
c2 p2(e)

...

...

cm pm(e)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= e

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

c0 p0(e)
c1 p1(e)
c2 p2(e)

...

...

cm pm(e)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (A.6)

where ck = ∏
0≤l<k ã

−1
m−l with the convention that c0 = 1 (and p0(e) = 1).

Proof Since pm+1(x) encodes the characteristic polynomial of the matrix in Eq. (A.1),
it is clear that the root e is an eigenvalue. The asserted eigenvalue equation in Eq. (A.6)
amounts in turn to the recurrence relation of Lemma A.1 evaluated at x = e. ��

Remark A.5 If the upper diagonal matrix elements are nonzero, Lemma A.4 produces
a complete basis of eigenvectors provided the spectrum of the matrix in Eq. (A.1) is
simple. If both the matrix elements on the upper and lower diagonals are nonzero,
then the eigenvectors in question satisfy (generally complex) orthogonality relations
stemming from the Christoffel–Darboux identities in Lemma A.3 with n = m.
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